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Abstract
Curriculum learning (CL) - training using sam-
ples that are generated and presented in a mean-
ingful order - was introduced in the machine learn-
ing context around a decade ago. While CL has
been extensively used and analysed empirically,
there has been very little mathematical justifica-
tion for its advantages. We introduce a CL model
for learning the class of k-parities on d bits of
a binary string with a neural network trained by
stochastic gradient descent (SGD). We show that
a wise choice of training examples involving two
or more product distributions, allows to reduce
significantly the computational cost of learning
this class of functions, compared to learning under
the uniform distribution. Furthermore, we show
that for another class of functions - namely the
‘Hamming mixtures’ - CL strategies involving a
bounded number of product distributions are not
beneficial.

1. Introduction
Several experimental studies have shown that humans and
animals learn considerably better if the learning materials
are presented in a curated, rather than random, order (Elio
& Anderson, 1984; Ross & Kennedy, 1990; Avrahami et al.,
1997; Shafto et al., 2014). This is broadly reflected in the
educational system of our society, where learning is guided
by an highly organized curriculum. This may involve several
learning steps: with easy concepts introduced at first and
harder concepts built from previous stages.

Inspired by this, (Bengio et al., 2009) formalized a curricu-
lum learning (CL) paradigm in the context of machine learn-
ing and showed that for various learning tasks it provided
improvements in both the training speed and the perfor-
mance obtained at convergence. This seminal paper inspired
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many subsequent works, that studied curriculum learning
strategies in various application domains, e.g. computer
vision (Sarafianos et al., 2017; Dong et al., 2017), com-
putational biology (Xiong et al., 2021), auto-ML (Graves
et al., 2017), natural language modelling (Shi et al., 2013;
Zaremba & Sutskever, 2014; Shi et al., 2015; Campos,
2021). While extensive empirical analysis of CL strate-
gies have been carried out, there is a lack of theoretical
analysis. In this paper, we make progress in this direction.

A stylized family of functions that is known to pose com-
putational barriers is the class of k-parities over d bits of
a binary string. In this work we focus on this class. To
define this class: for each subset S of coordinates, the par-
ity over S is defined as +1 if the number of negative bits
in S is even, and −1 otherwise, i.e. χS(x) :=

∏
i∈S xi,

xi ∈ {±1}. The class of k-parities contains all χS such
that |S| = k and it has cardinality

(
d
k

)
. Learning k-parities

requires learning the support of χS by observing samples
(x, χS(x)), x ∈ {±1}d, with the knowledge of the cardi-
nality of S being k. This requires finding the right target
function among the

(
d
k

)
functions belonging to the class.

Learning parities is always possible, and efficiently so, by
specialized methods (e.g. Gaussian elimination over the
field of two elements). Moreover, ((Abbe & Sandon, 2020))
showed that there exists a neural net that learns parities of
any degree if trained by SGD with small batch size. How-
ever, this is a rather unconventional net. In fact, under the
uniform distribution, parities are not efficiently learnable
by population queries with any polynomially small noise.
The latter can be explained as follows. Assume we sam-
ple our binary string uniformly at random, i.e. for each
i ∈ {1, ..., d}, xi ∼ Rad(1/2)1. Then, the covariance be-
tween two parities χS , χS′ is given by:

Ex∼Rad(1/2)⊗d [χS(x)χS′(x)] =

{
1 if S = S′,

0 if S ̸= S′,

where x ∼ Rad(1/2)⊗d denotes the product measure such
that xi

iid∼ Rad(1/2), i ∈ {1, ..., d}. More abstractly, a
parity function of k bits is uncorrelated with any function
of k − 1 or less bits. This property makes parities hard
to learn for any progressive algorithm, such as gradient
descent. Indeed, when trying to learn the set of relevant

1z ∼ Rad(p) if P(z = 1) = 1− P(z = −1) = p.
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features, a learner cannot know how close its progressive
guesses are to the true set. In other words, all wrong guesses
are indistinguishable, which suggests that the learner might
have to perform exhaustive search among all the

(
d
k

)
sets.

The hardness of learning unbiased parities - and more in
general any classes of functions with low cross-correlations
- with gradient descent has been analysed e.g. in (Abbe &
Sandon, 2020), where the authors show a lower bound on the
computational complexity of learning low cross-correlated
classes with gradient-based algorithms with bounded gra-
dient precision. For k-parities, this gives a computational
lower bound of dΩ(k) for any architecture and initialization.

However, if we look at different product distributions, then
the inner product of a monomial and a component xi that
is inside and outside the support becomes distinguishable.
Suppose the inputs are generated as x ∼ Rad(p)⊗d, for
some p ∈ (0, 1). Then the covariance between χS and χS′

is:

Ex∼Rad(p)⊗d

[
(χS(x)− E[χS(x)]) · (χS′(x)− E[χS′(x)])

]
= µ2k−|S∩S′|

p − µ2k
p ,

where we denoted by µp := Ez∼Rad(p)[z] = 2p− 1. This
implies that if for instance |p − 0.5| > 0.1, just comput-
ing correlations with each bit, will recover the parity with
complexity linear in d and exponential in k. If we choose
p = 1− 1/k, say, we can get a complexity that is linear in d
and polynomial in k. Moreover, the statements above hold
even for parities with random noise.

This may lead one to believe that learning biased parities
is easy for gradient descent based methods for deep nets.
Indeed, (Malach et al., 2021) showed that biased parities are
learnable by SGD on a differentiable model consisting of a
linear predictor and a fixed module implementing the parity.
However, if we consider fully connected networks, as our
experiments show (Figure 1), while gradient descent for a
p far from a half converges efficiently to zero training loss,
the learned function actually has non-negligible error when
computed with respect to the uniform measure. This is intu-
itively related to the fact that, by concentration of measure,
there are essentially no examples with Hamming weight2

close to d/2 in the training set sampled under Rad(p)⊗d,
and therefore it is not reasonable to expect for a general
algorithm like gradient descent on fully connected networks
(that does not know that the target function is a parity) to
learn the value of the function on such inputs.

We thus propose a more subtle question: Is it possible to
generate examples from different product distributions and
present them in a specific order, in such a way that the error
with respect to the unbiased measure becomes negligible?

2The Hamming weight of x ∈ {±1}d is: H(x) =∑d
i=1 1(xi = 1).

As we mentioned, training on examples sampled from a
biased measure is not sufficient to learn the parity under the
unbiased measure. However, it does identify the support of
the parity. Our curriculum learning strategy is the following:
We initially train on inputs sampled from Rad(p)⊗d with p
close to 1, then we move (either gradually or by sharp steps)
towards the unbiased distribution Rad(1/2)⊗d. We show
that this strategy allows to learn the k-parity problem with
a computational cost of dO(1) with SGD on the hinge loss
or on the covariance loss (see Def. 3.2). In our proof, we
consider layer-wise training (similarly to e.g. (Malach et al.,
2021; Malach & Shalev-Shwartz, 2020; Barak et al., 2022))
and the result is valid for any (even) k and d.

As we mentioned earlier, the failure of learning parities un-
der the uniform distribution from samples coming from a
different product measure is due to concentration of Ham-
ming weight. This leads us to consider a family of functions
that we call Hamming mixtures. Given an input x, the out-
put of a Hamming mixture is a parity of a subset S of the
coordinates, where the subset S depends on the Hamming
weight of x (see Def. 2.4). Our intuition is based on the
fact that given a polynomial number of samples from, say,
the p = 1/4 biased measure, it is impossible to distinguish
between a certain parity χS and a function that is χS , for
x’s whose Hamming weight is at most 3/8d, and a differ-
ent function χT , for x’s whose Hamming weight is more
than 3/8d, for some T that is disjoint from S. In other
words, a general algorithm does not know whether there is
consistency between x’s with different Hamming weight.
We show a lower bound for learning Hamming mixtures
with curriculum strategies that do not allow to get enough
samples with relevant Hamming weight.

Of course, curriculum learning strategies with enough learn-
ing steps allow to obtain samples from several product distri-
butions, and thus with all relevant Hamming weights. There-
fore, we expect that CL strategies with unboundedly many
learning steps will be able to learn the Hamming mixtures.

While our results are restricted to a limited and stylized
setting, we believe they may open new research directions.
Indeed, we believe that our general idea of introducing cor-
relation among subsets of the input coordinates to facilitate
learning, may apply to more general settings. We discuss
some of these future directions in the conclusion section of
the paper.

Importantly, we remark that a limitation of the curriculum
strategy presented in this paper is that it requires an ora-
cle that provides labeled samples from arbitrary product
measures. However, in applications one usually has a fixed
dataset and would like to select samples in a suitable order,
to facilitate learning. We leave to future work the analysis
of a setting where curriculum and non-curriculum have a
common sampling distribution.
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Contributions. Our contributions are the following.

1. We propose and formalize a mathematical model for
curriculum learning;

2. We prove that our curriculum strategy allows to learn
k-parities with SGD with the hinge loss or with the co-
variance loss on a two-layers fully connected network
with a computational cost of dO(1);

3. We empirically verify the effectiveness of our curricu-
lum strategy for a set of fully connected architectures
and parameters;

4. We propose a class of functions - the Hamming mix-
tures - that is provably not learnable by some curricu-
lum strategies with finitely many learning steps. We
conjecture that a continuous curriculum strategy (see
Def. 2.6) may allow to significantly improve the per-
formance for learning such class of functions.

1.1. Related Work

Learning parities on uniform inputs. Learning k-parities
over d bits requires determining the set of relevant features
among

(
d
k

)
possible sets. The statistical complexity of this

problem is thus θ(k log(d)). The computational complexity
is harder to determine. k-parities can be solved in dO(1)

time by specialized algorithms (e.g. Gaussian elimination)
that have access to at least d samples. In the statistical query
(SQ) framework (Kearns, 1998) - i.e. when the learner has
access only to noisy queries over the input distribution - k-
parities cannot be learned in less then Ω(dk) computations.
(Abbe & Sandon, 2020; Shalev-Shwartz et al., 2017) showed
that gradient-based methods suffer from the same SQ com-
putational lower bound if the gradient precision is not good
enough. On the other hand, (Abbe & Sandon, 2020) showed
that one can construct a very specific network architecture
and initialization that can learn parities beyond this limit.
This architecture is however far from the architectures used
in practice. (Barak et al., 2022) showed that SGD can learn
sparse k-parities with SGD with batch size dθ(k) on a small
network. Moreover, they empirically provide evidence of
‘hidden progress’ during training, ruling out the hypothesis
of SGD doing random search. (Andoni et al., 2014) showed
that parities are learnable by a dθ(k) network. The problem
of learning noisy parities (even with small noise) is conjec-
tured to be intrinsically computationally hard, even beyond
SQ models (Alekhnovich, 2003).

Learning parities on non-uniform inputs. Several
works showed that when the input distribution is not the
Unif{±1}d, then neural networks trained by gradient-based
methods can efficiently learn parities. (Malach et al., 2021)
showed that biased parities are learnable by SGD on a dif-
ferentiable model consisting of a linear predictor and fixed

module implementing the parity. (Daniely & Malach, 2020)
showed that sparse parities are learnable on a two layers
network if the input coordinates outside the support of the
parity are uniformly sampled and the coordinates inside the
support are correlated. To the best of our knowledge, none
of these works propose a curriculum learning model to learn
parities under the uniform distribution.

Curriculum learning. Curriculum Learning (CL) in the
context of machine learning has been extensively analysed
from the empirical point of view (Bengio et al., 2009; Wang
et al., 2021; Soviany et al., 2022). However, theoretical
works on CL seem to be more scarce. In (Saglietti et al.,
2022) the authors propose an analytical model for CL for
functions depending on a sparse set of relevant features. In
their model, easy samples have low variance on the irrel-
evant features, while hard samples have large variance on
the irrelevant features. In contrast, our model does not re-
quire knowledge of the target task to select easy examples.
In (Weinshall et al., 2018; Weinshall & Amir, 2020) the au-
thors analyse curriculum learning strategies in convex mod-
els and show an improvement on the speed of convergence
of SGD. In contrast, our work covers an intrinsically non-
convex problem. Some works also analysed variants of CL:
e.g. self-paced CL (SPCL), i.e. curriculum is determined by
both prior knowledge and the training process (Jiang et al.,
2015), implicit curriculum, i.e. neural networks tend to con-
sistently learn the samples in a certain order (Toneva et al.,
2018). To a different purpose, (Abbe et al., 2021a; 2022a)
analyse staircase functions - sum of nested monomials of
increasing degree - and show that the hierarchical structure
of such tasks guides SGD to learn high degree monomials.
Moreover, (Refinetti et al., 2022; Kalimeris et al., 2019)
show that SGD learns functions of increasing complexity
during training. In a concurrent work (Abbe et al., 2023),
the authors propose a curriculum learning algorithm (named
‘Degree Curriculum’) that consists of training on Boolean
inputs of increasing Hamming weight, and they empirically
show that it reduces the sample complexity of learning pari-
ties on small input dimension. However, the paper does not
include a theoretical analysis of such curriculum.

2. Definitions and Main Results
We define a curriculum strategy for learning a general
Boolean target function. We will subsequently restrict our
attention to the problem of learning parities or mixtures of
parities. For brevity, we denote [d] = {1, ..., d}. Assume
that the network is presented with samples (x, f(x)), where
x ∈ {±1}d is a Boolean vector and f : {±1}d → R is
a target function that generates the labels. We consider a
neural network NN(x; θ), whose parameters are initialized
at random from an initial distribution P0, and trained by
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stochastic gradient descent (SGD) algorithm, defined by:

θt+1 = θt − γt
1

B

B∑
i=1

∇θtL(θ
t, f, xti), (1)

for all t ∈ {0, ..., T − 1}, where L is an almost surely
differentiable loss-function, γt is the learning rate, B is
the batch size and T is the total number of training steps.
For brevity, we write L(θt, f, x) := L(NN(.; θt), f, x). We
assume that for all i ∈ [B], xti

iid∼ Dt, where Dt is a step-
dependent input distribution supported on {±1}d. We define
our curriculum learning strategy as follows. Recall that
z ∼ Rad(p) if P(z = 1) = 1− P(z = −1) = p.

Definition 2.1 (r-steps curriculum learning (r-CL)). For
a fixed r ∈ N, let T1, ...Tr ∈ N and p1, ..., pr ∈ [0, 1].
Denote by p̄ := (p1, ..., pr) and T̄ := (T1, ..., Tr−1). We
say that a neural network NN(x; θt) is trained by SGD with
a r-CL(T̄ , p̄) if θt follows the iterations in (1) with:

Dt = Rad(p1), 0 < t ≤ T1,

Dt = Rad(p2), T1 < t ≤ T2,

· · ·
Dt = Rad(pr), Tr−1 < t ≤ T.

We say that r is the number of curriculum steps.

We assume r to be independent on T , in order to distinguish
the r-CL from the continuous-CL (see Def. 2.6 below). We
hypothesize that r-CL may help to learn several Boolean
functions, if one chooses appropriate r and p̄. However, in
this paper we focus on the problem of learning unbiased
k-parities. For such class, we obtained that choosing r = 2,
a wise p1 ∈ (0, 1/2) and p2 = 1/2 brings a remarkable gain
in the computational complexity, compared to the standard
setting with no curriculum. An interesting future direction
would be studying the optimal r and p̄. Before stating our
Theorem, let us clarify the generalization error that we are
interested in. As mentioned before, we are interested in
learning the target over the uniform input distribution.

Definition 2.2 (Generalization error). We say that SGD
on a neural network NN(x; θ) learns a target function f :
{±1}d → R with r-CL(T̄ , p̄) up to error ϵ, if it outputs a
network NN(x; θT ) such that:

Ex∼Rad(1/2)⊗d

[
L(θT , f, x)

]
≤ ϵ, (2)

where L is any loss function such that
Ex∼Rad(1/2)⊗d [L(f, f, x)] = 0.

We state here our main theoretical result informally. We
refer to Section 3.1 for the formal statement with exact
exponents and remarks.

Theorem 2.3 (Main positive result, informal). There exists
a 2-CL strategy such that a 2-layer fully connected network

of dO(1) size trained by SGD with batch size dO(1) can learn
any k-parities (for k even) up to error ϵ in at most dO(1)/ϵ2

iterations.

Let us analyse the computational complexity of the above.
At each step, the number of computations performed by a
2-layer fully connected network is given by:

(dN +N) ·B, (3)

where d is the input size, N is the number of hidden neurons
and B is the batch size. Multiplying by the total number
of steps and substituting the bounds from the Theorem we
get that we can learn the k-parity problem with a 2-CL
strategy in at most dO(1) total computations. Specifically,
O(1) denotes quantities that do not depend on k or on d,
and the statement holds also for large k, d. We prove the
Theorem in two slightly different settings, see Section 3.1.

One may ask whether the r-CL strategy is beneficial for
learning general target tasks (i.e. beyond parities). While we
do not have a complete picture to answer this question, we
propose a class of functions for which some r-CL strategies
are not beneficial. We call those functions the Hamming
mixtures, and we define them as follows.

Definition 2.4 ((S,T,ϵ)-Hamming mixture). For ϵ ∈ [0, 1],
S, T ∈ [d], we say that GS,T,ϵ : {±1}d → R is a (S,T,ϵ)-
Hamming mixture if

GS,T,ϵ(x) := χS(x)1(H(x) ≤ ϵd) + χT (x)1(H(x) > ϵd),

where H(x) :=
∑d
i=1 1(xi = 1) is the Hamming weight of

x, χS(x) :=
∏
i∈S xi and χT (x) :=

∏
i∈T xi are the parity

functions over set S and T respectively.

The intuition of why such functions are hard for some r-CL
strategies is the following. Assume we train on samples
(x,GS,T.ϵ(x)), with S, T disjoint and ϵ ∈ (0, 1/2). Assume
that we use a 2-CL strategy and we initially train on samples
x ∼ Rad(p)⊗d for some p < ϵ. If the input dimension d is
large, then the Hamming weight of x is with high probability
concentrated around pd (e.g. by Hoeffding’s inequality).
Thus, in the first part of training the network will see, with
high probability, only samples of the type (x, χS(x)), and
it will not see the second addend of GS,T,ϵ. When we
change our input distribution to Rad(1/2)⊗d, the network
will suddenly observe samples of the type (x, χT (x)). Thus,
the pre-training on p will not help determining the support
of the new parity χT (in some sense the network will “forget”
the first part of training). This intuition holds for all r-CL
such that p1, ..., pr−1 < ϵ. We state our negative result for
Hamming mixtures here informally, and refer to Section 4
for a formal statement and remarks.

Theorem 2.5 (Main negative result, informal). For each r-
CL strategy with r bounded, there exists a Hamming mixture
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Figure 1. Learning 20-parities with 2-steps curriculum, with initial bias p1 = 39/40 (top-left), p1 = 19/20 (top-center), p1 = 1/20
(top-right), with continuous curriculum (bottom-left) and with no curriculum (bottom-right). In all plots, we use a 2-layers ReLU MLP
with batch size 1024, input dimension 100, and 100 hidden units.

GS,T,ϵ that is not learnable by any fully connected neural
network of poly(d) size and permutation-invariant initial-
ization trained by the noisy gradient descent algorithm (see
Def. 4.1) with poly(d) gradient precision in poly(d) steps.

Inspired by the hardness of Hamming mixtures, we define
another curriculum learning strategy, where, instead of hav-
ing finitely many discrete curriculum steps, we gradually
move the bias of the input distribution during training from
a starting point p0 to a final point pT . We call this strategy
a continuous-CL strategy.

Definition 2.6 (Continuous curriculum learning (C-CL)).
Let p0, pT ∈ [0, 1]. We say that a neural network NN(x; θt)
is trained by SGD with a C-CL(p0, pT , T ) if θt follows the
iterations in (1) with:

Dt = Rad

(
p0 + t · pT − p0

T

)
t ∈ [T ]. (4)

We conjecture that a well chosen C-CL might be beneficial
for learning any Hamming mixture. A positive result for
C-CL and comparison between r-CL and C-CL are left for
future work.

3. Learning Parities
3.1. Theoretical Results

Our goal is to show that the curriculum strategy that we
propose allows to learn k-parities with a computational
complexity of dO(1). We prove two different results. In
the first one, we consider SGD on the hinge loss and prove
that a network with θ(d2) hidden units can learn the k-parity

problem in dO(1) computations, if trained with a well chosen
2-CL strategy. Let us state our first Theorem.

Theorem 3.1 (Hinge Loss). Let k, d be both even integers,
such that k ≤ d/2. Let NN(x; θ) =

∑N
i=1 aiσ(wix+bi) be

a 2-layers fully connected network with activation σ(y) :=
Ramp(y) (as defined in (9)) and N = θ̃(d2 log(1/δ))3.
Consider training NN(x; θ) with SGD on the hinge loss with
batch size B = θ̃(d10/ϵ2 log(1/δ)). Then, there exists an
initialization, a learning rate schedule, and a 2-CL strategy
such that after T = θ̃(d6/ϵ2) iterations, with probability
1− 3δ, SGD outputs a network with generalization error at
most ϵ.

For our second Theorem, we consider another loss function,
that is convenient for the analysis, namely the covariance
loss, for which we give a definition here.

Definition 3.2 (Covariance loss). Let f : X → R be a
target function and let f̂ : X → R be an estimator. Let

cov(f, f̂ , x, PX ) :=

:=
(
f(x)− Ex′∼PX [f(x

′)]
)
·
(
f̂(x)− Ex′∼PX [f̂(x

′)]
)
,

where PX is an input distribution supported in X . We define
the covariance loss as

Lcov(f, f̂ , x, PX ) := max{0, 1− cov(f, f̂ , x, PX )}.

Remark 3.3. We will consider optimization over the covari-
ance loss through SGD with large batch size (B = θ̃(d2k3)).
At each step, we use the batch to estimate first the inner ex-
pectations (i.e. Ex[f(x)] and Ex[NN(x; θt)]) and then the

3θ̃(dc) = θ(dc · poly(log(d))), for all c ∈ R.
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Figure 2. Convergence time for different values of d, k. Left: we take p1 = 1/16 and a 2-layers ReLU architecture with with h = 2k

hidden units. Right: we take p1 = 1− 1
2k

and a 2-layers ReLU architecture with h = d hidden units.

gradients. The expectation of the labels (i.e. Ex[f(x)]) does
not need to be estimated at each training step and could be
estimated once per curriculum step. One could also use part
of the batch at each step to estimate the inner expectations
and part of the batch to estimate the gradients.

We show that SGD on the covariance loss can learn the
k-parity problem in dO(1) computations using a network
with only O(k) hidden units. The reduction of the size of
the network, compared to the hinge loss case, allows to get
a tighter bound on the computational cost, see Remark 3.5.

Theorem 3.4 (Covariance Loss). Let k, d be integers, such
that k ≤ d and k even. Let NN(x; θ) =

∑N
i=1 aiσ(wix+bi)

be a 2-layers fully connected network with activation
σ(y) := ReLU(y) and N = θ̃(k). Consider training
NN(x; θ) with SGD on the covariance loss with batch size
B = θ̃(d2k3/ϵ2 log(1/δ)). Then, there exists an initializa-
tion, a learning rate schedule, and a 2-CL strategy such that
after T = θ̃(k4/ϵ2) iterations, with probability 1−3δ, SGD
outputs a network with generalization error at most ϵ.

The proofs of Theorem 3.1 and Theorem 3.4 follow a similar
outline. Firstly, we prove that training the first layer of the
network on one batch of size dO(1) sampled from a biased
input distribution (with appropriate bias), allows to recover
the support of the parity. We then show that training the
second layer on the uniform distribution allows to achieve
the desired generalization error under the uniform distribu-
tion. We refer to Appendices A and B for restatements of
the Theorems and their full proofs.
Remark 3.5. Let us look at the computational complexity
given by the two Theorems. Theorem 3.1 tells that we can
learn k-parities in dNB + (T − 1)N = θ̃(d19) computa-
tions. We remark that our result holds also for large k (we
however need to assume k, d even and k ≤ d/2, for techni-
cal reasons). On the other hand, Theorem 3.4 tells that we
can learn k-parities in θ̃(d3k8), which is much lower than
the bound given by Theorem 3.1. Furthermore, the proof
holds for all k ≤ d. The price for getting this tighter bound

is the use of a loss that (to the best of our knowledge) is
not common in the machine learning literature, and that is
particularly convenient for our analysis.

Remark 3.6. We remark that our proofs extend to the gra-
dient descent model with bounded gradient precision, used
in (Abbe & Sandon, 2020), with gradient precision bounded
by dO(1). Thus, for large k, d, our result provides a separa-
tion to their dΩ(k) computational lower bound for learning
k-parities under the uniform distribution with no curriculum.

Remark 3.7. Let us comment on the p1 (i.e. the bias of the
initial distribution) that we used. In both Theorems we take
p1 close to 1. In Theorem 3.1 we take p1 ≈ 1− θ(1/d), and
the proof is constructed specifically for this value of p1. In
Theorem 3.4, the proof holds for any p1 ∈ (1/2, 1) and the
asymptotic complexity in d does not depend on the specific
choice of p1. However, to get poly(k) complexity we need
to take p1 = 1− θ(1/k), while we get exp(k) complexity
for all p1 = θd,k(1).

Our theoretical analysis captures a fairly restricted setting:
in our proofs we use initializations and learning schedules
that are convenient for the analysis. We conduct experiments
to verify the usefulness of our CL strategy in more standard
settings of fully connected architectures.

3.2. Empirical Results

In all our experiments we use fully connected ReLU net-
works and we train them by SGD on the square loss 4.

In Figure 1, we compare different curriculum strategies for
learning 20-parities over 100 bits, with a fixed architecture,
i.e. a 2-layer ReLU network with 100 hidden units. We
run a 2-steps curriculum strategy for 3 values of p1, namely
p1 = 39/40, 19/20, 1/20. In all the 2-CL experiments
we train on the biased distribution until convergence, and
then we move to the uniform distribution. We observe that

4Code: https://github.com/ecornacchia/
Curriculum-Learning-for-Parities
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Figure 3. Convergence time with respect to the initial bias p1. We
compute the convergence time for learning a 10-parity over 100
bits with a 2-layer ReLU network. We omitted all points with
convergence time above 100, 000.

training with an initial bias of p1 = 39/40 allows to learn
the 20-parity in 16, 000 epochs. One can see that during
the first part of training (on the biased distribution), the test
error under the uniform distribution stays at 1/2 (orange
line), and then drops quickly to zero when we start training
on the uniform distribution. This trend of hidden progress
followed by a sharp drop has been already observed in the
context of learning parities with SGD in the standard setting
with no-curriculum (Barak et al., 2022). Here, the length
of the ‘hidden progress’ phase is controlled by the length
of the first phase of training. Interestingly, when training
with continuous curriculum, we do not have such hidden
progress and the test error under the uniform distribution
decreases slowly to zero. With no curriculum, the network
does not achieve non-trivial correlation with the target in
25, 000 epochs.

In Figure 2 we study the convergence time of a 2-CL strategy
on a 2-layers ReLU network for different values of the input
dimension (d) and size of the parity (k). We take two slightly
different settings. In the plot on the left, we take a fixed
initial bias p1 = 1/16 and h = 2k hidden units. On the
right we take p1 = 1 − 1

2k initial bias and an architecture
with h = d hidden units. The convergence time is computed
as T1+T2, where T1 and T2 are the number of steps needed
to achieve training error below 0.01 in the first and second
part of training, respectively. We compute the convergence
time for k = 5, 6, 7, 8, 9, 10 and d = 25, 50, 75, 100, and
for each k we plot the convergence time with respect to d
in log-log scale. Each point is obtained by averaging over
10 runs. We observe that for each k, the convergence time
scales (roughly) polynomially as dck , with ck varying mildly
with k.

In Figure 3, we study the convergence time of a 2-CL strat-
egy for different values of the initial bias p1. We con-
sider the problem of learning a 10-parity over 100 bits
with a 2-layers ReLU network with h = 100 hidden

units. As before, we computed the convergence time as
T1 + T2, where T1 and T2 are the number of steps needed
to achieve training error below 0.01 in the first and sec-
ond part of training, respectively. We ran experiments
for p1 = 0.001, 0.05, 0.1, 0.15, ..., 0.95, 0.999. We omit-
ted from the plot any point for which the convergence time
exceeded 100, 000 iterations: these correspond to p1 near
1/2 and p1 = 0.001, 0.999. Each point is obtained by aver-
aging over 10 runs. We observe that the convergence time is
smaller for p1 close to 0 or to 1. Moreover, T2 has modest
variations across different p1’s.

4. Learning Hamming Mixtures
In this section we consider the class of functions defined
in Def. 2.4 and named Hamming mixtures. We consider a
specific descent algorithm, namely the noisy GD algorithm
with batches (used also in (Abbe & Sandon, 2020; Abbe
et al., 2021b)). We give a formal definition here of noisy
GD with curriculum.

Definition 4.1 (Noisy GD with CL). Consider a neural net-
work NN(.; θ), with initialization of the weights θ0. Given
an almost surely differentiable loss function, the updates of
the noisy GD algorithm with learning rate γt and gradient
range A are defined by

θt+1 = θt − γt
(
Ext [∇θtL(θ

t, f, xt)]A + Zt
)
, (5)

where for all t ∈ {0, ..., T − 1}, Zt are i.i.d. N (0, τ2), for
some τ , and they are independent from other variables, xt ∼
Dt, for some time-dependent input distribution Dt, f is the
target function, from which the labels are generated, and by
[.]A we mean that whenever the argument is exceeding A
(resp. −A) it is rounded to A (resp. −A). We call A/τ the
gradient precision. In the noisy-GD algorithm with r-CL,
we choose Dt according to Def. 2.1.

Let us state our hardness result for learning Hamming mix-
tures with r-CL strategies with r bounded.

Theorem 4.2. Assume the network observes samples gener-
ated by GS,T,ϵ(x) (see Def. 2.4), where |S| = kS , |T | = kT
such that kS , kT = o(

√
d), and |S ∩ T | = 0. Then, for

any r-CL(T̄ , p̄) with r bounded and pr = 1/2, there exists
an ϵ such that the noisy GD algorithm with r-CL(T̄ , p̄) (as
in (5)) on a fully connected neural network with |θ| weights
and permutation-invariant initialization, after T training
steps, outputs a network NN(x, θT ) such that∣∣∣Ex∼Rad(1/2)⊗d

[
GS,T,ϵ(x) ·NN(x; θT )

] ∣∣∣
≤
AT
√
|θ|

τ

(
1

dkT /2
+ e−dδ

2

)
+

2kSkT
d

+O(d−2),

where A, τ are the gradient range and the noise level in the
noisy-GD algorithm and δ is a constant.
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The proof uses an SQ-like lower bound argument for noisy
GD, in a similar flavour of (Abbe et al., 2022b; Abbe &
Boix-Adsera, 2022). We refer to Appendix C for the full
proof.
Remark 4.3. In Theorem 4.2, the neural network can have
any fully connected architecture and any activation such
that the gradients are well defined almost everywhere. The
initialization can be from any distribution that is invariant
to permutations of the input neurons.

For the purposes of E
[
GS,T,ϵ(x) ·NN(x; θT )

]
, it is as-

sumed that the neural network outputs a guess in {±1}.
This can be done with any form of thresholding, e.g. taking
the sign of the value of the output neuron.
Remark 4.4. One can remove the 2kSkV

d term in the right
hand side by further assuming e.g. that set S is supported
on the first d/2 coordinates and set V on the last d/2 coor-
dinates. This also allows to weaken the assumption on the
cardinality of S and V . We formalize this in the following
Corollary.

Corollary 4.5. Assume the network observes samples gen-
erated by GS,V,ϵ(x), where S ⊆ {1, ..., d/2}, and V ⊆
{d/2 + 1, ..., d} (where we assumed d to be even for sim-
plicity). Denote kV = |V |. Then, for any r-CL(T̄ , p̄) with
r bounded and pr = 1/2, there exists an ϵ such that the
noisy GD algorithm with r-CL(T̄ , p̄) (as in (5)) on a fully
connected neural network with |θ| weights and permutation-
invariant initialization, after T training steps, outputs a
network NN(x, θ(T )) such that∣∣∣Ex∼Rad(1/2)⊗d

[
GS,V,ϵ(x) ·NN(x; θ(T ))

] ∣∣∣
≤

2AT
√
|θ|

τ

((
d/2

kV

)−1/2

+ e−dδ
2

)
,

for some δ > 0.

The proof of Corollary 4.5 is deferred to Appendix D.

Theorem 4.2 states failure at the weakest form of learning,
i.e. achieving correlation better than guessing in the asymp-
totic of large d. More specifically, it tells that if the network
size, the number of training steps and the gradient precision

(i.e. A/τ ) are such that AT
√

|θ|
τ = o(d−kT /2), then the net-

work achieves correlation with the target under the uniform
distribution of od(1). Corollary 4.6 follows immediately
from the Theorem.

Corollary 4.6. Under the assumptions of Theorem 4.2, if
kT = ωd(1) (i.e. kT grows with d), |θ|, A/τ, T are all
polynomially bounded in d, then∣∣∣Ex∼Rad(1/2)⊗d

[
GS,T,ϵ(x) ·NN(x; θT )

] ∣∣∣ = od(1), (6)

i.e. in poly(d) computations the network will fail at weak-
learning GS,T,ϵ.

We conjecture that if we take instead a C-CL strategy with
an unbounded number of curriculum steps, we can learn
efficiently (i.e. in poly(d) time) any GS,T,ϵ (even with
kT = ωd(1) and for any ϵ). Furthermore, we believe this
conjecture to hold for any bounded mixture, i.e. any function
of the type:

M∑
m=1

χSm
(x)1(ϵm−1d ≤ H(x) < ϵmd), (7)

with S1, ..., SM being distinct sets of coordinates, 0 = ϵ0 <
ϵ1... < ϵM ≤ 1, and M bounded.

5. Conclusion and Future Work
In this work, we mainly focused on learning parities and
Hamming mixtures with r-CL strategies with bounded r.
Some natural questions arise, for instance: does the depth of
the network help? What is the optimal number of curriculum
steps for learning parities? We leave to future work the
analysis of C-CL with unboundedly many curriculum steps
and the comparison between r-CL and C-CL. In the previous
Section, we also raised a conjecture concerning the specific
case of Hamming mixtures.

Furthermore, we believe that our results can be extended to
more general families of functions. First, consider the set
of k-Juntas, i.e., the set of functions that depend on k out
of d coordinates. This set of functions contains the set of
k-parities so it is at least as hard to learn. Moreover, as in
the case of parities, Juntas are correlated with each of their
inputs for generic p, see e.g. (Mossel et al., 2004). So it is
natural to expect that curriculum learning can learn such
functions in time dO(1)2O(k) (the second term is needed
since there is a doubly exponential number of Juntas on
k bits). In this work we propose to learn parities using a
mixture of product distributions, but there are other ways to
correlate samples that may be of interest. For example, some
works in PAC learning showed that, even for the uniform
measure, samples that are generated by a random walk often
lead to better learning algorithms (Bshouty et al., 2005; Arpe
& Mossel, 2008). Do such random walk based algorithms
provide better convergence for gradient based methods?

We further believe that a similar idea to the one presented
in this paper can be applied to product distributions with
orthogonal basis (such as Hermite monomials for the i.i.d.
standard Gaussian distribution or spherical harmonics for
the uniform distribution over a sphere). These basis ele-
ments are no longer orthogonal under biased distributions,
and we anticipate that the footprints of our proof would
extend to these scenarios. However, in real-world datasets,
input coordinates are often not i.i.d., and each coordinate
may depend on multiple other coordinates. Nevertheless,
we are hopeful that in certain real-world datasets it may be
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possible to identify easy and hard samples by means of the
variance of the input coordinates (i.e. 1

d−1

∑d
i=1(xi − x̄)2

for x ∈ Rd). For instance, consider a task where a learner
is required to identify a small object in an image (e.g. a
‘stop’ signal or a traffic light). In each image, the learner
has to identify the relevant subset of coordinates and, in-
tuitively, this is easier in images where the background is
plain (samples with low variance) than in images where the
background is noisy (samples with large variance).

To conclude, we remark that an important limitation of the
curriculum strategy presented in this paper is that it requires
an oracle that provides labeled samples from arbitrary prod-
uct measures. However, in applications one usually has a
fixed dataset and would like to select samples in a suitable
order, to facilitate learning. It would be an interesting fu-
ture direction to consider settings where curriculum and
non-curriculum have a common sampling distribution.
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A. Proof of Theorem 3.1
Theorem A.1 (Theorem 3.1, restatement). Let k, d be both even integers, such that k ≤ d/2. Let NN(x; θ) =∑N

i=1 aiσ(wix + bi) be a 2-layers fully connected network with activation σ(y) := Ramp(y) (as defined in (9)) and
N ≥ (d+ 1)(d− k + 1) log((d+ 1)(d− k + 1)/δ). Consider training NN(x; θ) with SGD on the hinge loss with batch

size B ≥ (8ζ2N2)−1 log(Nd+Nδ ), with ζ ≤ ϵµk

24(d+1)2(d−k+1)2N and µ =
√
1− 1

2(d−k) . Then, there exists an initialization

and a learning rate schedule, and a 2-CL strategy such that after T ≥ 64
ϵ2 (d− k + 1)3(d+ 1)N iterations, with probability

1− 3δ SGD outputs a network with generalization error at most ϵ.

A.1. Proof Setup

We consider a 2-layers neural network, defined as:

NN(x; θ) =

N∑
i=1

aiσ(wix+ bi), (8)

where N is the number of hidden units, θ = (a, b, w) and σ := Ramp denotes the activation defined as:

Ramp(x) =


0 x ≤ 0,

x 0 < x ≤ 1,

1 x > 1

. (9)

Without loss of generality, we assume that the labels are generated by χ[k](x) :=
∏k
i=1 xi. Indeed, SGD on fully connected

networks with permutation-invariant initialization is invariant to permutation of the input neurons, thus our result will hold
for all χS(x) such that |S| = k. Our proof scheme is the following:

1. We train only the first layer of the network for one step on data (xi, χ[k](xi))i∈[B] with xi ∼ Rad(p)⊗d for i ∈ [B],

with p = 1
2

√
1− 1

2(d−k) +
1
2 ;

2. We show that after one step of training on such biased distribution, the target parity belongs to the linear span of the
hidden units of the network;

3. We subsequently train only the second layer of the network on (xi, χ[k](xi))i∈[B] with xi ∼ Rad(1/2)⊗d for i ∈ [B],
until convergence;

4. We use established results on convergence of SGD on convex losses to conclude.

We train our network with SGD on the hinge loss. Specifically, we apply the following updates, for all t ∈ {0, 1, ..., T − 1}:

wt+1
i,j = wti,j − γt

1

B

B∑
s=1

∇wt
i,j
L(θt, χ[k], x

t
s),

at+1
i = ati − ξt

1

B

B∑
s=1

∇ati
L(θt, χ[k], x

t
s) + ct, (10)

bt+1
i = λt

(
bti + ψt

1

B

B∑
s=1

∇bti
L(θt, χ[k], x

t
s)

)
+ dt,

where L(θt, χ[k], x) = max{0, 1− χ[k](x)NN(x; θt)}. Following the 2-steps curriculum strategy introduced above, we set

x0s
iid∼ Rad (p)

⊗d ∀s ∈ [B], (11)

xts
iid∼ Rad (1/2)

⊗d ∀t ≥ 1, s ∈ [B], (12)
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where p = 1
2

√
1− 1

2(d−k) +
1
2 . For brevity, we denote µ := 2p− 1 =

√
1− 1

2(d−k) . We set the parameters of SGD to:

γ0 = µ−(k−1)2N, γt = 0 ∀t ≥ 1, (13)

ξ0 = 0, ξt =
ϵ

2N
∀t ≥ 1, (14)

ψ0 =
N

µk
, ψt = 0 ∀t ≥ 1, (15)

c0 = − 1

2N
, ct = 0 ∀t ≥ 1, (16)

λ0 = (d+ 1), λt = 1 ∀t ≥ 1, (17)
d0 = 0, dt = 0 ∀t ≥ 1, (18)

and we consider the following initialization scheme:

w
(0)
i,j = 0 ∀i ∈ [N ], j ∈ [d];

a
(0)
i =

1

2N
∀i ∈ [N ]; (19)

b
(0)
i ∼ Unif

{ blm
d+ 1

+
1

2
: l ∈ {0, ..., d},m ∈ {−1, ..., d− k}

}
,

where we define

blm := −d+ 2l − 1

2
+
m+ 1

d− k
. (20)

Note that such initialization is invariant to permutations of the input neurons. We choose such initialization because it
is convenient for our proof technique. We believe that the argument may generalize to more standard initialization (e.g.
uniform, Gaussian), however this would require more work and it may not be a trivial extension.

A.2. First Step: Recovering the Support

As mentioned above, we train our network for one step on (xi, χ[k](xi))i∈[B] with xi ∼ Rad(p)⊗d.

Population gradient at initialization. Let us compute the population gradient at initialization. Since we set ξ0 = 0, we
do not need to compute the initial gradient for a. Note that at initialization |NN(x; θ0)| < 1. Thus, the initial population
gradients are given by

∀j ∈ [k], i ∈ [N ] Gwi,j
= −aiEx∼Rad(p)⊗d

 ∏
l∈[k]\j

xl · 1(⟨wi, x⟩+ bi ∈ [0, 1])

 (21)

∀j ̸∈ [k], i ∈ [N ] Gwi,j
= −aiEx∼Rad(p)⊗d

 ∏
l∈[k]∪j

xl · 1(⟨wi, x⟩+ bi ∈ [0, 1])

 (22)

∀i ∈ [N ] Gbi = −aiEx∼Rad(p)⊗d

∏
l∈[k]

xl · 1(⟨wi, x⟩+ bi ∈ [0, 1])

 (23)

Lemma A.2. Initialize a, b, w according to (19). Then,

∀j ∈ [k], Gwi,j = −µ
k−1

2N
; (24)

∀j ̸∈ [k], Gwi,j
= −µ

k+1

2N
; (25)

Gbi = − µk

2N
. (26)

Proof. If we initialize according to (19), we have ⟨wi, x⟩+bi ∈ [0, 1] for all i. The results holds since Ex∼Rad(p)⊗d [χS(x)] =

µ|S|.

12
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Effective gradient at initialization.
Lemma A.3. Let

Ĝwi,j
:=

1

B

B∑
s=1

∇w0
i,j
L(θ0, χ[k], x

t
s) (27)

Ĝbi :=
1

B

B∑
s=1

∇b0i
L(θ0, χ[k], x

t
s) (28)

be the effective gradients at initialization. If B ≥ (8ζ2N2)−1 log(Nd+Nδ ), then with probability 1− 2δ,

∥Ĝwi,j
−Gwi,j

∥∞ ≤ ζ, (29)

∥Ĝbi −Gbi∥∞ ≤ ζ, (30)

where Gwi,j
, Gbi are the population gradients.

Proof. We note that E[Ĝwi,j
] = Gwi,j

, E[Ĝbi ] = Gbi , and |Ĝwi,j
|, |Ĝbi | ≤ 1

2N

Px∼Rad(p)⊗d

(
| Ĝwi,j

−Gwi,j
|≥ ζ

)
≤ 2 exp

(
−8ζ2N2B

)
≤ 2δ

Nd+N
, (31)

Px∼Rad(p)⊗d

(
| Ĝbi −Gbi |≥ ζ

)
≤ 2 exp

(
−8ζ2N2B

)
≤ 2δ

Nd+N
. (32)

The result follows by union bound.

Lemma A.4. Let

w
(1)
i,j = w

(0)
i,j − γ0Ĝwi,j (33)

b
(1)
i = λ0

(
b
(0)
i − ψ0Ĝbi

)
(34)

(35)

If B ≥ (8ζ2N2)−1 log(Nd+Nδ ), with probability 1− 2δ

i) For all j ∈ [k], i ∈ [N ], |w(1)
i,j − 1| ≤ 2Nζ

µk−1 ;

ii) For all j ̸∈ [k], |w(1)
i,j − (1− 1

2(d−k) )| ≤
2Nζ
µk−1 ;

iii) For all i ∈ [N ], |b(1)i − (d+ 1)(b
(0)
i − 1

2 )| ≤
N(d+1)ζ

µk .

Proof. We apply Lemma A.4:

i) For all j ∈ [k], i ∈ [N ], |ŵ(1)
i,j − 1| = γ0|Ĝwi,j −Gwi,j | ≤

2Nζ
µk−1 ;

ii) For all j ̸∈ [k], i ∈ [N ], |ŵi,j − (1− 1
2(d−k) )| = γ0|Ĝwi,j −Gwi,j | ≤

2Nζ
µk−1 ;

iii) For all i ∈ [N ],

|b̂(1)i − (d+ 1)(b
(0)
i − 1

2
)| = |λ0(b(0)i + ψ0Ĝbi)− λ0(b

(0)
i + ψ0Gbi)| (36)

≤ |λ0| · |ψ0| · |Ĝbi −Gbi | (37)

≤ N(d+ 1)ζ

µk
. (38)

13
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Lemma A.5. If N ≥ (d+ 1)(d− k+ 1) log((d+ 1)(d− k+ 1)/δ), then with probability 1− δ, for all l ∈ {0, ..., d}, and
for all m ∈ {−1, ..., d− k} there exists i such that b(0)i = blm

d+1 + 1
2 .

Proof. The probability that there exist l,m such that the above does not hold is(
1− 1

(d+ 1)(d− k + 1)

)N
≤ exp

(
− N

(d+ 1)(d− k + 1)

)
≤ δ

(d+ 1)(d− k + 1)
. (39)

The result follows by union bound.

Lemma A.6. Let σlm(x) = Ramp
(∑d

j=1 xj −
1

2(d−k)
∑
j>k xj + blm

)
, with blm given in (20). If B ≥

(8ζ2N2)−1 log(Nd+Nδ ) and N ≥ (d+1)(d− k+ 1) log((d+1)(d− k+ 1)/δ), with probability 1− 3δ, for all l,m there
exists i such that

∣∣∣σlm(x)− Ramp

 d∑
j=1

ŵ
(1)
i,j xj + b̂

(1)
i

∣∣∣ ≤ 3N(d+ 1)ζµ−k. (40)

Proof. By Lemma A.5, with probability 1− δ, for all l,m there exists i such that b(0)i = blm
d+1 + 1

2 . For ease of notation, we

replace indices i 7→ (lm), and denote σ̂lm(x) = Ramp
(∑d

j=1 w
(1)
lm,jxj + b

(1)
lm

)
. Then, by Lemma A.4 with probability

1− 2δ,

|σlm(x)− σ̂lm(x)| ≤
∣∣∣ k∑
j=1

(w
(1)
lm,j − 1)xj +

d∑
j=k+1

(
w

(1)
lm,j −

(
1− 1

2(d− k)

))
xj + b

(1)
lm − blm

∣∣∣ (41)

≤ k2Nζµ−(k−1) + (d− k)2Nζµ−(k−1) +N(d+ 1)ζµk (42)

≤ 3N(d+ 1)ζµ−k. (43)

Lemma A.7. There exists a∗ with ∥a∗∥∞ ≤ 4(d− k) such that

d∑
l=0

d−k∑
m=−1

a∗lmσlm(x) = χ[k](x). (44)

Proof. Recall, that we assumed d, k even and recall that

σlm(x) = Ramp

 d∑
j=1

xj −
1

2(d− k)

∑
j>k

xj + blm

 , (45)

where blm = −d+ 2l − 1
2 + m+1

d−k for l ∈ [d],m ∈ {−1, ..., d− k + 1} and Ramp(x) =


0 x ≤ 0,

x 0 < x ≤ 1,

1 x > 1

.

Let
∑d
j=1 xj = d− 2t, where t is the total number of −1, and similarly let −

∑d
j=k+1 xj = (d− k)− 2s, where s is the

number of +1 outside the support of the parity χ[k](x).We have,

σlm(x) = Ramp

(
2(l − t) +

m+ 1− s

d− k

)
. (46)

14
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We take

a∗lm = (−1)l(−1)m2(d− k) ∀l ∈ [d],m = −1, (47)

a∗lm = (−1)l(−1)m4(d− k) ∀l ∈ [d],m ∈ {0, 1, ..., d− k − 2}, (48)

a∗lm = (−1)l(−1)m3(d− k) ∀l ∈ [d],m = d− k − 1, (49)

a∗lm = (−1)l(−1)m(d− k) ∀l ∈ [d],m = d− k, (50)

Note that for all l < t,

2(l − t) +
m+ 1− s

d− k
≤ −2 +

d− k + 1

d− k
≤ 0, (51)

thus, σlm(x) = 0 for all m. Moreover, for all l > t,

2(l − t) +
m− s+ 1

d− k
≥ 2− d− k

d− k
= 1. (52)

Thus, σlm(x) = 1 for all m and

d−k∑
m=−1

a∗lmσlm(x) =

d−k∑
m=−1

a∗lm = 0. (53)

If l = t,

d−k∑
m=−1

a∗tmσtm(x)

= (−1)t(d− k)

[
d−k−2∑
m=0

4(−1)mRamp

(
m+ 1− s

d− k

)
− 3Ramp

(
d− k − s

d− k

)
+Ramp

(
d− k + 1− s

d− k

)]

= (−1)t

[
d−k−2∑
m=s

4(−1)m (m+ 1− s)+ − 3 (d− k − s)+ + (d− k + 1− s)+

]
= (−1)t(−1)s.

Since we assumed d, k even, (−1)s =
∏d
i=k+1 xi. Moreover, observe that χ[k](x) =

∏d
i=k+1 xi ·

∏d
i=1 xi. Thus,∑

lm

a∗lmσlm(x) = (−1)t(−1)s = χ[k](x). (54)

Lemma A.8. Let f∗(x) =
∑
l,m a

∗
lmσlm(x) and let f̂(x) =

∑
l,m a

∗
lmσ̂lm(x), with σlm, σ̂lm defined in Lemma B.4 and

a∗ defined in Lemma A.7. If B ≥ (8ζ2N2)−1 log(Nd+Nδ ) and N ≥ (d+ 1)(d− k + 1) log((d+ 1)(d− k + 1)/δ), with
probability 1− 3δ for all x,

L(f̂ , f∗, x) ≤ (d+ 1)2(d− k + 1)212Nζµ−k. (55)

Proof.

|f∗(x)− f̂(x)| =
∣∣∣∑
l,m

a∗l,m(σlm(x)− σ̂lm(x)
∣∣∣ (56)

≤ d(d− k + 1)∥a∗∥∞ sup
lm

|σlm(x)− σ̂lm(x)| (57)

≤ (d+ 1)2(d− k + 1)212Nζµ−k. (58)
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Thus,

(1− f(x)f∗(x))+ ≤ |1− f(x)f∗(x)| (59)

= |f∗
2

(x)− f(x)f∗(x)| (60)

= |f∗(x)| · |f∗(x)− f(x)| ≤ (d+ 1)2(d− k + 1)212Nζµ−k, (61)

which implies the result.

A.3. Second Step: Convergence

To conclude, we use an established result on convergence of SGD on convex losses (see e.g. (Shalev-Shwartz et al., 2012;
Shalev-Shwartz & Ben-David, 2014; Daniely & Malach, 2020; Malach & Shalev-Shwartz, 2020; Barak et al., 2022)).
Theorem A.9. Let L be a convex function and let a∗ ∈ argmin∥a∥2≤B L(a), for some B > 0. For all t, let α(t) be
such that E

[
α(t) | a(t)

]
= −∇a(t)L(a(t)) and assume ∥α(t)∥2 ≤ ρ for some ρ > 0. If a(0) = 0 and for all t ∈ [T ]

a(t+1) = a(t) + γα(t), with γ = B
ρ
√
T

, then :

1

T

T∑
t=1

L(a(t)) ≤ L(a∗) + Bρ√
T
. (62)

Let L(a) := Ex∼Rad(1/2)⊗d

[
L((a, b(1), w(1)), χ[k], x)

]
. Then, L is convex in a and for all t ∈ [T ],

α(t) = − 1

B

B∑
s=1

∇a(t)L((a
(t), b(1), w(1)), χ[k], x) (63)

= − 1

B

B∑
s=1

σ(w(1)x+ b(1)). (64)

Thus, recalling σ = Ramp, we have ∥α(t)∥2 ≤
√
N . Let a∗ be as in Lemma A.7. Clearly, ∥a∗∥2 ≤ 4(d−k+1)3/2(d+1)1/2.

Moreover, a(1) = 0. Thus, we can apply Theorem A.9 with B = 4(d− k + 1)3/2(d+ 1)1/2, ρ =
√
N and obtain that if

1. N ≥ (d+ 1)(d− k + 1) log((d+ 1)(d− k + 1)/δ);

2. ζ ≤ ϵµk

24(d+1)2(d−k+1)2N ;

3. B ≥ (8ζ2N2)−1 log(Nd+Nδ );

4. T ≥ 64
ϵ2 (d− k + 1)3(d+ 1)N .

then, with probability 1− 3δ over the initialization

Ex∼Rad(1/2)⊗d

[
min
t∈[T ]

L
(
θ(t), χ[k], x

)]
≤ ϵ

2
+
ϵ

2
= ϵ. (65)

Remark A.10. We assume k ≤ d/2 to avoid exponential dependence of ζ (and consequently of the batch size and of the
computational complexity) in d. Indeed, if k ≤ d/2, then,

µk =

(
1− 1

2(d− k)

)k/2
≥
(
1− 1

d

)d/4
∼ e−1/4. (66)

B. Proof of Theorem 3.4
Theorem B.1 (Theorem 3.4, restatement). Let k, d be integers, such that d ≥ k and k even. Let NN(x; θ) =

∑N
i=1 aiσ(wix+

bi) be a 2-layers fully connected network with activation σ(y) := ReLU(y) and N ≥ (k + 1) log(k+1
δ ). Consider training

NN(x; θ) with SGD on the covariance loss with batch size B ≥ (2ζ2)−1 log(dNδ ), with ζ ≤ ϵ(µk−1−µk+1)
64k2N ·

(
1 + d−k

k

)−1
,

for some µ ∈ (0, 1). Then, there exists an initialization, a learning rate schedule, and a 2-CL strategy such that after
T ≥ 64k3N

ϵ2 iterations, with probability 1− 3δ SGD outputs a network with generalization error at most ϵ.
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B.1. Proof Setup

Similarly as before, we consider a 2-layers neural network, defined as NN(x; θ) =
∑N
i=1 aiσ(wix+ bi), where N is the

number of hidden units, θ = (a, b, w) and σ := ReLU. Our proof scheme is similar to the previous Section. Again, we
assume without loss of generality that the labels are generated by χ[k](x) :=

∏k
i=1 xi. We assume k to be even. We train

our network with SGD on the covariance loss, defined in Def. 3.2. We use the same updates as in (10) with:

x0s
iid∼ Rad(p)⊗d ∀s ∈ [B], (67)

xts
iid∼ Rad(p)⊗d ∀t ≥ 1, s ∈ [B], (68)

for some p ∈ (1/2, 1). We denote µ := 2p− 1. We set the parameters to:

γ0 = 16N(µk−1 − µk+1)−1k−1, γt = 0 ∀t ≥ 1, (69)

ξ0 = 0, ξt =
ϵ

8N
∀t ≥ 1, (70)

ψ0 = 0, ψt = 0 ∀t ≥ 1, (71)
c0 = −1, ct = 0 ∀t ≥ 1, (72)
λ0 = 1, λt = 1 ∀t ≥ 1, (73)
d0 = −1, dt = 0 ∀t ≥ 1, (74)

and we consider the following initialization scheme:

w
(0)
i,j = 0 ∀i ∈ [N ], j ∈ [d];

a
(0)
i =

1

16N
∀i ∈ [N ]; (75)

b
(0)
i ∼ Unif

{2(i+ 1)

k
: i ∈ {0, 1, ..., k}

}
.

B.2. First Step: Recovering the Support

Population gradient at initialization. At initialization, we have |NN(x; θ0)| < 1
4 , thus∣∣∣cov(χ[k], θ

0, x,Rad(p)⊗d)
∣∣∣ < 1. (76)

The initial gradients are therefore given by:

∀i, j Gwi,j
= −aiEx∼Rad(p)⊗d

( ∏
l∈[k]

xl − µk
)
·
(
xj1(⟨wi, x⟩+ bi > 0)− Exj1(⟨wi, x⟩+ bi > 0)

) (77)

∀i ∈ [N ] Gbi = −aiEx∼Rad(p)⊗d

( ∏
l∈[k]

xl − µk
)
·
(
1(⟨wi, x⟩+ bi > 0)− E1(⟨wi, x⟩+ bi > 0)

) (78)

If we initialize a, b, w according to (75). Then,

∀j ∈ [k], Gwi,j
= −µ

k−1 − µk+1

16N
; (79)

∀j ̸∈ [k], Gwi,j = 0; (80)
Gbi = 0. (81)

Effective gradient at initialization.

17



A Mathematical Model for Curriculum Learning

Lemma B.2. Let

w
(1)
i,j = w

(0)
i,j − γ0Ĝwi,j

(82)

b
(1)
i = λ0

(
b
(0)
i − ψ0Ĝbi

)
+ d0, (83)

(84)

where Ĝwi,j , Ĝbi are the gradients estimated from the initial batch. Then, with probability 1− 2δ, if B ≥ (2ζ2)−1 log
(
dN
δ

)
,

i) For all j ∈ [k], i ∈ [N ], |w(1)
i,j − 1

k | ≤
ζ16N

k(µk−1−µk+1)
;

ii) For all j ̸∈ [k], |w(1)
i,j | ≤

ζ16N
k(µk−1−µk+1)

;

iii) For all i ∈ [N ], b(1)i = b(0) − 1

Proof. By Lemma A.4 ,if B ≥ (2ζ2)−1 log
(
dk
δ

)
, then for all j ∈ [k], i ∈ [N ], |Ĝwi,j

−Gwi,j
| ≤ ζ. Thus,

i) For all j ∈ [k], i ∈ [N ], |w(1)
i,j − 1

k | = γ0|Ĝwi,j −Gwi,j | ≤
ζ16N

k(µk−1−µk+1)
;

ii) For all j ∈ [k], i ∈ [N ], |w(1)
i,j | = γ0|Ĝwi,j

−Gwi,j
| ≤ ζ16N

k(µk−1−µk+1)
;

iii) follows trivially.

Lemma B.3. If N ≥ (k + 1) log
(
k+1
δ

)
, with probability 1 − δ for all i ∈ {0, ..., k} there exists l ∈ [N ] such that

b
(0)
l = 2(i+1)

k .

Proof. The probability that there exists i such that the above does not hold is(
1− 1

k + 1

)N
≤ exp

(
− N

k + 1

)
≤ δ

k + 1
. (85)

The result follows by union bound.

Lemma B.4. Let σi(x) := ReLU
(

1
k

∑k
j=1 xj + bi

)
, with bi = −1 + 2(i+1)

k . Then, with probability 1 − 3δ, for all

i ∈ {0, ..., k} there exists l ∈ [N ] such that

∣∣∣σi(x)− ReLU

 d∑
j=1

w
(1)
l,j xj + b

(1)
l

∣∣∣ ≤ ζ16N

µk−1 − µk+1
·
(
1 +

d− k

k

)
. (86)

Proof. By Lemma B.3 and Lemma B.2, with probability 1− 3δ, for all i there exists l such that b(1)l = −1 + 2(i+1)
k , and

∣∣∣σi(x)− ReLU

 d∑
j=1

w
(1)
l,j xj + b

(1)
l

∣∣∣ ≤ ∣∣∣ k∑
j=1

(
1

k
− w

(1)
l,j xj

) ∣∣∣+ ∣∣∣ d∑
j=k+1

w
(1)
l,j xj

∣∣∣ (87)

≤ ζ16N

µk−1 − µk+1
+

ζ16N(d− k)

(µk−1 − µk+1)k
(88)

=
ζ16N

µk−1 − µk+1
·
(
1 +

d− k

k

)
. (89)
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Lemma B.5. There exist a∗ with ∥a∗∥∞ ≤ 2k such that

k∑
i=0

a∗i σi(x) = χ[k](x). (90)

Proof. We assume k to be even. Let
∑k
j=1 xj = k − 2t, where t := |{i : xi = −1, i ∈ [k]}|. Thus,

σi(x) = ReLU

(
2(i+ 1− t)

k

)
. (91)

We choose

a∗i = (−1)i2k ∀i ∈ {0, 1, ..., k − 2}, (92)

a∗i = (−1)i
3

2
k i = k − 1, (93)

a∗i = (−1)i
1

2
k i = k. (94)

One can check that with these a∗i the statement holds.

Lemma B.6. Let f∗(x) =
∑k
i=0 a

∗
i σi(x) and let f̂(x) =

∑k
i=0 a

∗
i σ̂i(x), with σi(x) defined above and σ̂i(x) :=

ReLU(
∑d
j=1 w

(1)
i,j xj + b

(1)
i ). Then, with probability 1− 3δ for all x,

(1− f(x)f∗(x))+ ≤ 32k2ζN

µk−1 − µk+1
·
(
1 +

d− k

k

)
, (95)

where (z)+ := max{0, z}.

Proof.

|f∗(x)− f̂(x)| =
∣∣∣∑

i

a∗i (σi(x)− σ̂i(x)
∣∣∣ (96)

≤ k∥a∗∥∞ sup
i

|σi(x)− σ̂i(x)| (97)

≤ 32k2ζN

µk−1 − µk+1
·
(
1 +

d− k

k

)
. (98)

Thus,

(1− f(x)f∗(x))+ ≤ |1− f(x)f∗(x)| (99)

= |f∗
2

(x)− f(x)f∗(x)| (100)

= |f∗(x)| · |f∗(x)− f(x)| ≤ 32k2ζN

µk−1 − µk+1
·
(
1 +

d− k

k

)
. (101)

B.3. Second Step: Convergence

We apply Theorem A.9 with L(a) := Ex∼Rad(1/2)⊗d

[
Lcov((a, b

(1), w(1)), χ[k], x)
]
, ρ = 2

√
N , B = 2k

√
k. We get that if

1. N ≥ (k + 1) log(k+1
δ );

2. ζ ≤ ϵ(µk−1−µk+1)
64k2N ·

(
1 + d−k

k

)−1
;
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3. B ≥ (2ζ2)−1 log(dNδ );

4. T ≥ 64k3N
ϵ2 .

then with probability 1− 3δ over the initialization,

Ex∼Rad(1/2)⊗d

[
min
t∈[T ]

Lcov

(
χ[k], θ

t, x,Rad(1/2)⊗d
)]

≤ ϵ. (102)

Remark B.7. We remark that if µ = θd,k(1), then ζ decreases exponentially fast in k, and as a consequence the batch size
and the computational cost grow exponentially in k. If however we choose µ = 1− 1/k, then we get ζ = 1/ poly(k) and,
as a consequence, the batch size and the computational cost grow polynomially in k.

C. Proof of Theorem 4.2
Let us consider r = 2. The case of general r follows easily. Let us state the following Lemma.

Lemma C.1. Let x ∼ Rad(p)⊗d and let H(x) :=
∑d
i=1 1(xi = 1) be the Hamming weight of H(x). Assume ϵ < p < ϵ′

for some ϵ, ϵ′ ∈ [0, 1/2], then,

Px∼Rad(p)⊗d (H(x) ≥ ϵ′d) ≤ 2 exp
(
−(ϵ′ − p)2d

)
; (103)

Px∼Rad(p)⊗d (H(x) ≤ ϵd) ≤ 2 exp
(
−(p− ϵ)2d

)
. (104)

Proof of Lemma C.1. We apply Hoeffding’s inequality with E[H(x)] = pd and
∑d
i=1 xi = d− 2H(x):

P(|H(x)− pd| ≥ td) ≤ 2 exp
(
−(t− p)2d

)
. (105)

Take ϵ such that |p1 − 1
2 | > ϵ, and consider the following algorithm:

1. Choose a set V ⊆ [d] uniformly at random among all subsets of [d] of cardinality kS ;

2. Take a fully connected neural network NN(x;ψ) with the same architecture as NN(x; θ) and with initialization
ψ0 = θ0;

3. Train NN(x;ψ) on data (x, χV (x)), with x ∼ Rad(p1)
⊗d;

4. Train until convergence the pre-trained network NN(x;ψ) with initialization ψT1 on data (x, χT (x)), with x ∼
Rad(1/2)⊗d.

The result holds by the following two Lemmas.

Lemma C.2. If V = S, TV(θT ;ψT ) ≤ AT
√

|θ|
τ exp(−dδ2), where δ = min{|ϵ− p1|, |1/2− ϵ|} and TV denotes the total

variation distance between the law of θT and ψT .

Proof. Clearly, TV(θ0;ψ0) = 0. Then, using subadditivity of TV

TV(θT ;ψT ) ≤
T∑
t=1

TV(θt;ψt|{Zi}i≤t−2) (106)

=

T∑
t=1

TV(γ(gθt−1 + Zt−1); γ(gψt−1 + Zt−1)|{Zi}i≤t−1), (107)
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where gθt−1 , gψt−1 denote the population gradients in θt−1 and ψt−1, respectively. Then, recalling that the Zt−1 are
Gaussians, we get

TV(θT ;ψT )
(a)

≤
T∑
t=1

1

2τγ
∥γgθt−1 − γgψt−1∥2 (108)

(b)

≤
Tr−1∑
t=1

1

2τγ
· 2
√
|θ|Aγ · P(H(x) ≥ ϵd) +

T∑
t=Tr−1

1

2τγ
· 2
√

|θ|Aγ · P(H(x) ≤ ϵd) (109)

(c)

≤
AT
√
|θ|

τ
exp(−dδ2). (110)

In (a) we applied the formula for the TV between Gaussian variables with same variance. In (b) we used that each gradient
is in [−A,A] and that during the first part of training, for all x with H(x) < ϵ, the two gradients are the same, and similarly
in the second part of training for all H(x) > ϵd. In (c) we applied Lemma C.1.

We apply Theorem 3 from (Abbe & Sandon, 2020), which we restate here for completeness.
Theorem C.3 (Theorem 3 in (Abbe & Sandon, 2020)). Let Pk be the set of k-parities over d bits. Noisy-GD on any neural
network of size |θ| and any initialization, after T steps of training under the uniform distribution, outputs a network such
that

1

|Pk|
∑
f∈Pk

|Ex∼Rad(1/2)⊗d

[
NN(x; θT ) · f(x)

]
| ≤

T
√
|θ|A
τ

· d−k/2. (111)

In our case, this implies:

EV |Ex
[
NN(x;ψT ) ·GS,T,ϵ(x)

]
| ≤

(T − Tr−1)
√
|θ|A

τdkT /2
(112)

To conclude our proof, note that:

EV |Ex
[
NN(x, ψT ) ·GS,T,ϵ(x)

]
| = EV

[∣∣∣Ex [NN(x, ψT ) ·GS,T,ϵ(x)
] ∣∣∣ | ∣∣∣V ∩ T

∣∣∣ = 0
]
P(|V ∩ T | = 0) (113)

+ EV
[∣∣∣Ex [NN(x, ψT ) ·GS,T,ϵ(x)

] ∣∣∣ | ∣∣∣V ∩ T
∣∣∣ > 0

]
P(|V ∩ T | > 0). (114)

One can check that,

P(|V ∩ T | > 0) = 1− 2kSkT
d

+O(d−2). (115)

Moreover, by symmetry, for any V such that |V ∩ T | = 0, the algorithm achieves the same correlation (to see this,
one find an appropriate permutation of the input neurons and use invariance of GD on fully connected networks with
permutation-invariant initialization). Thus,

EV
[∣∣∣Ex [NN(x, ψT ) ·GS,T,ϵ(x)

] ∣∣∣ | ∣∣∣V ∩ T
∣∣∣ = 0

]
= EV

[∣∣∣Ex [NN(x, ψT ) ·GS,T,ϵ(x)
] ∣∣∣ | V = S

]
. (116)

By Lemma C.2,

|Ex
[
NN(x; θT ) ·GS,T,ϵ(x)

]
| ≤ EV

[∣∣∣Ex [NN(x, ψT ) ·GS,T,ϵ(x)
] ∣∣∣ | V = S

]
+
AT
√

|θ|
τ

exp(−dδ2) (117)

≤
(T − Tr−1)

√
|θ|A

τdkT /2
+
AT
√

|θ|
τ

exp(−dδ2) + 2kSkT
d

+O(d−2). (118)

The argument for general r holds by taking ϵ such that |pl − 1
2 | > ϵ for all l ∈ [r − 1] and by replacing step 3 of the

algorithm above with the following:

3. Train NN(x;ψ) on data (x, χV (x)) using a (r − 1)-CL((T1, ..., Tr−1), (p1, ..., pr−1)) strategy.
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D. Proof of Corollary 4.5
We use the same proof strategy of Theorem 4.2: specifically, we use the same algorithm for training a network NN(x;ψ)
with the same architecture as NN(x; θ), so that Lemma C.2 still holds. We import Theorem 3 from (Abbe & Sandon, 2020)
in the following form.

Theorem D.1 (Theorem 3 in (Abbe & Sandon, 2020)). Let F be the set of k-parities over set {d/2 + 1, ..., d}. Noisy-GD
on any neural network NN(x;w) of size |w| and any initialization, after T steps of training on samples drawn from the
uniform distribution, outputs a network such that

1

|F|
∑
f∈F

∣∣∣Ex∼Rad(1/2)⊗d

[
NN(x;w(T )) · f(x)

] ∣∣∣ ≤ T
√

|w|A
τ

·
(
d/2

k

)−1/2

. (119)

Similarly as before, Theorem D.1 and Lemma C.1 imply:

EV
∣∣∣Ex∼Rad(1/2)⊗d

[
NN(x;ψ(T )) ·GS,V,ϵ(x)

] ∣∣∣ ≤ (T − Tr−1)
√

|θ|A
τ

·
(
d/2

kV

)−1/2

+ exp(−dδ2), (120)

where by EV we denote the expectation over set V sampled uniformly at random from all subsets of {d/2 + 1, ..., d} of
cardinality kV . Since both the initialization and noisy-GD on fully connected networks are invariant to permutation of the
input neurons, for any V ⊆ {d/2 + 1, ..., d}, the algorithm achieves the same correlation. Thus, applying Lemma C.2:

∣∣∣Ex [NN(x; θ(T )) ·GS,V,ϵ(x)
] ∣∣∣ ≤ (T − Tr−1)

√
|θ|A

τ
·
(
d/2

kV

)−1/2

+
2AT

√
|θ|

τ
exp(−dδ2). (121)
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