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Abstract
Feature selection helps reduce data acquisition
costs in ML, but the standard approach is to train
models with static feature subsets. Here, we con-
sider the dynamic feature selection (DFS) prob-
lem where a model sequentially queries features
based on the presently available information. DFS
is often addressed with reinforcement learning,
but we explore a simpler approach of greedily
selecting features based on their conditional mu-
tual information. This method is theoretically
appealing but requires oracle access to the data
distribution, so we develop a learning approach
based on amortized optimization. The proposed
method is shown to recover the greedy policy
when trained to optimality, and it outperforms
numerous existing feature selection methods in
our experiments, thus validating it as a simple but
powerful approach for this problem.

1. Introduction
A machine learning model’s inputs can be costly to obtain,
and feature selection is often used to reduce data acquisition
costs. In applications where information is gathered sequen-
tially, a natural option is to select features adaptively based
on the currently available information, rather than using a
fixed feature set. This setup is known as dynamic feature
selection (DFS),1 and the problem has been considered by
several works in the last decade (Saar-Tsechansky et al.,
2009; Dulac-Arnold et al., 2011; Chen et al., 2015b; Early
et al., 2016a; He et al., 2016a; Kachuee et al., 2018).

Compared to static feature selection with a fixed feature
set (Li et al., 2017; Cai et al., 2018), DFS can offer better
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1The problem has also been referred to as sequential feature
selection, active feature acquisition, and information pursuit.

performance given a fixed budget. This is easy to see, be-
cause selecting the same features for all instances (e.g., all
patients visiting a hospital’s emergency room) is suboptimal
when the most informative features vary across individuals.
Although it should in theory offer better performance, DFS
also presents a more challenging learning problem, because
it requires learning both (i) a feature selection policy and
(ii) how to make predictions given variable feature sets.

Prior work has approached DFS in several ways, though of-
ten using reinforcement learning (RL) (Dulac-Arnold et al.,
2011; Shim et al., 2018; Kachuee et al., 2018; Janisch et al.,
2019; Li & Oliva, 2021). RL is a natural approach for se-
quential decision-making problems, but current methods are
difficult to train and do not reliably outperform static fea-
ture selection methods (Henderson et al., 2018; Erion et al.,
2021). Our work therefore explores a simpler approach:
greedily selecting features based on their conditional mutual
information (CMI) with the response variable.

The greedy approach is known from prior work (Chen et al.,
2015b; Ma et al., 2019), but it is difficult to use in practice
because calculating the CMI requires oracle access to the
data distribution (Cover & Thomas, 2012). Our focus is
therefore developing a practical approximation. Whereas
previous work makes strong assumptions about the data (Ge-
man & Jedynak, 1996) or approximates the data distribution
with generative models (Ma et al., 2019), we develop a flex-
ible approach that directly predicts the optimal selection at
each step. Our method is based on a variational perspective
on the greedy CMI policy, and it uses a technique known
as amortized optimization (Amos, 2022) to enable training
using only a standard labeled dataset. Notably, the model is
trained with an objective function that recovers the greedy
policy when it is trained to optimality.

Our contributions in this work are the following:

1. We derive a variational, or optimization-based perspec-
tive on the greedy CMI policy, which shows it to be
equivalent to minimizing the one-step-ahead prediction
loss given an optimal classifier.

2. We develop a learning approach based on amortized op-
timization, where a policy network is trained to directly
predict the optimal selection at each step. Rather than re-
quiring a dataset that indicates the correct selections, our
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training approach is based on a standard labeled dataset
and an objective function whose global optimizer is the
greedy CMI policy.

3. We propose a continuous relaxation for the inherently
discrete learning objective, which enables efficient and
architecture-agnostic gradient-based optimization.

Our experiments evaluate the proposed method on numer-
ous datasets, and the results show that it outperforms many
recent dynamic and static feature selection methods. Over-
all, our work shows that when learned properly, the greedy
CMI policy is a simple and powerful approach for DFS.

2. Problem formulation
In this section, we describe the DFS problem and introduce
notation used throughout the paper.

2.1. Notation

Let x denote a vector of input features and y a response
variable for a supervised learning task. The input consists
of d distinct features, or x = (x1, . . . ,xd). We use the nota-
tion s ⊆ [d] ≡ {1, . . . , d} to denote a subset of indices and
xs = {xi : i ∈ s} a subset of features. Bold symbols x,y
represent random variables, the symbols x, y are possible
values, and p(x,y) denotes the data distribution.

Our goal is to design a policy that controls which features
are selected given the currently available information. The
selection policy can be viewed as a function π(xs) ∈ [d],
meaning that it receives a subset of features as its input
and outputs the next feature index to query. The policy is
accompanied by a predictor f(xs) that can make predic-
tions given the set of available features; for example, if y
is discrete then predictions lie in the probability simplex,
or f(xs) ∈ ∆K−1 for K classes. The notation f(xs ∪ xi)
represents the prediction given the combined features. We
initially consider policy and predictor functions that operate
on feature subsets, and Section 4 proposes an implementa-
tion using a mask variable m ∈ [0, 1]d where the functions
operate on x⊙m.

2.2. Dynamic feature selection

The goal of DFS is to select features with minimal budget
that achieve maximum predictive accuracy. Having access
to more features generally makes prediction easier, so the
challenge is selecting a small number of informative fea-
tures. There are multiple formulations for this problem,
including versions with non-uniform feature costs and dif-
ferent budgets for each sample (Kachuee et al., 2018), but
we focus on the setting with a fixed budget and uniform
costs. Our goal is to handle predictions at inference time by
beginning with no features, sequentially selecting features

xs such that |s| = k for a fixed budget k < d, and finally
making accurate predictions for the response variable y.

Given a loss function that measures the discrepancy between
predictions and labels ℓ(ŷ, y), a natural scoring criterion is
the expected loss after selecting k features. The scoring is
applied to a policy-predictor pair (π, f), and we define the
score for a fixed budget k as follows,

vk(π, f) = Ep(x,y)

[
ℓ
(
f
(
{xit}kt=1

)
,y

)]
, (1)

where feature indices are chosen sequentially for each (x,y)
according to in = π({xit}n−1

t=1 ). The goal is to minimize
vk(π, f), or equivalently, to maximize our final predictive
accuracy.

One approach is to frame this as a Markov decision process
(MDP) and solve it using standard RL techniques, so that
π and f are trained to optimize a reward function based on
eq. (1). Several recent works have designed such formula-
tions (Shim et al., 2018; Kachuee et al., 2018; Janisch et al.,
2019; Li & Oliva, 2021). However, these approaches are
difficult to train effectively, so our work focuses on a greedy
approach that is easier to learn and simpler to interpret.

3. Greedy information maximization
This section first defines the greedy CMI policy, and then
describes an existing approximation strategy that relies on
generative models.

3.1. The greedy selection policy

As an idealized approach to DFS, we are interested in the
greedy algorithm that selects the most informative feature at
each step. This feature can be defined in multiple ways, but
we focus on the information-theoretic perspective that the
most useful feature has maximum CMI with the response
variable (Cover & Thomas, 2012). The CMI, denoted as
I(xi;y | xs), quantifies how much information an unknown
feature xi provides about the response y when accounting
for the current features xs, and it is defined as the KL diver-
gence between the joint and factorized distributions:

I(xi;y | xs) = DKL

(
p(xi,y | xs) || p(xi | xs)p(y | xs)

)
.

Based on this, we define the greedy CMI policy as π∗(xs) ≡
argmaxi I(xi;y | xs), so that features are sequentially se-
lected to maximize our information about the response vari-
able. We can alternatively understand the policy as perform-
ing greedy uncertainty minimization, because this is equiva-
lent to minimizing y’s conditional entropy at each step, or
π∗(xs) = argmini H(y | xi, xs) (Cover & Thomas, 2012).
For a complete characterization of this idealized approach,
we also consider that the policy is paired with the Bayes
classifier as a predictor, or f∗(xs) = p(y | xs).
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Maximizing the information about y at each step is intuitive
and should be effective in many problems. Prior work has
considered the same idea, but from two perspectives that
differ from ours. First, Chen et al. (2015b) take a theoretical
perspective and prove that the greedy algorithm achieves
performance within a multiplicative factor of the optimal
policy; the proof requires specific distributional assump-
tions, but we find that the greedy algorithm performs well
with many real-world datasets (Section 6). Second, from
an implementation perspective, two works aim to provide
practical approximations; however, these suffer from several
limitations, so our work aims to develop a simple and flexi-
ble alternative (Section 4). In these works, Ma et al. (2019)
and Chattopadhyay et al. (2022) both require a conditional
generative model of the data distribution, which we discuss
next.

3.2. Estimating conditional mutual information

The greedy policy is trivial to implement if we can directly
calculate CMI, but this is rarely the case in practice. Instead,
one option is to estimate it. We now describe a procedure to
do so iteratively for each feature, assuming for now that we
have oracle access to the response distributions p(y | xs)
for all s ⊆ [d] and the feature distributions p(xi | xs) for
all s ⊆ [d] and i ∈ [d].

At any point in the selection procedure, given the current
features xs, we can estimate the CMI for a feature xi where
i /∈ s as follows. First, we can sample multiple values for
xi from its conditional distribution, or xj

i ∼ p(xi | xs) for
j ∈ [n]. Next, we can generate Bayes optimal predictions
for each sampled value, or p(y | xs, x

j
i ). Finally, we can

calculate the mean prediction and the mean KL divergence
relative to this prediction, which yields the following CMI
estimator:

Ini =
1

n

n∑
j=1

DKL

(
p(y | xs, x

j
i ) ||

1

n

n∑
l=1

p(y | xs, x
l
i)
)
.

(2)
This score measures the variability among predictions and
captures whether different xi values significantly affect y’s
conditional distribution. The estimator can be used to select
features, or we can set π(xs) = argmaxi I

n
i , due to the

following limiting result (see Appendix A):

lim
n→∞

Ini = I(y;xi | xs). (3)

This procedure thus provides a way to identify the correct
greedy selections by estimating the CMI. Prior work has
explored similar ideas for scoring features based on sam-
pled predictions (Saar-Tsechansky et al., 2009; Chen et al.,
2015a; Early et al., 2016a;b), but the implementation choices
in these works prevent them from performing greedy infor-
mation maximization. In eq. (2), is it important that our

estimator uses the Bayes classifier, that we sample features
from the conditional distribution p(xi | xs), and that we
use the KL divergence as a measure of prediction variability.
However, this estimator is impractical because we typically
lack access to both p(y | xs) and p(xi | xs).

In practice, we would instead require learned substitutes
for each distribution. For example, we can use a a classi-
fier that approximates f(xs) ≈ p(y | xs) and a generative
model that approximates samples from p(xi | xs). Simi-
larly, Ma et al. (2019) propose jointly modeling (x,y) with
a conditional generative model, which is implemented via
a modified VAE (Kingma et al., 2015). This approach is
limited for several reasons, including (i) the difficulty of
training an accurate conditional generative model, (ii) the
challenge of modeling mixed continuous/categorical fea-
tures (Ma et al., 2020; Nazabal et al., 2020), and (iii) the
slow CMI estimation process. In our approach, which we
discuss next, we bypass all three of these challenges by
directly predicting the best selection at each step.

4. Proposed method
We now introduce our approach, a practical approximation
of the greedy policy trained using amortized optimization.
Unlike prior work that estimates the CMI as an intermediate
step, we develop a variational perspective on the greedy pol-
icy, which we then leverage to train a network that directly
predicts the optimal selection given the current features.

4.1. A variational perspective on CMI

For our purpose, it is helpful to recognize that the greedy
policy can be viewed as the solution to an optimization
problem. Section 3 provides a conventional definition of
CMI as a KL divergence, but this is difficult to integrate into
an end-to-end learning approach. Instead, we now consider
the one-step-ahead prediction achieved by a policy π and
predictor f , and we determine the behavior that minimizes
their loss. Given the current features xs and a selection
i = π(xs), the expected one-step-ahead loss is:

Ey,xi|xs

[
ℓ
(
f(xs ∪ xi),y

)]
. (4)

The variational perspective we develop here consists of
two main results regarding this expected loss. The first
result relates to the predictor, and we show that the loss-
minimizing predictor can be defined independently of the
policy π. We formalize this in the following proposition for
classification tasks, and our results can also be generalized
to regression tasks (see proofs in Appendix A).

Proposition 1. When y is discrete and ℓ is cross-entropy
loss, eq. (4) is minimized for any policy π by the Bayes
classifier, or f∗(xs) = p(y | xs).
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This property requires that features are selected without
knowledge of the remaining features or the response vari-
able, which is a valid assumption for DFS, but not in scenar-
ios where selections are based on the full feature set (Chen
et al., 2018; Yoon et al., 2018; Jethani et al., 2021). Now,
assuming that we use the Bayes classifier f∗ as a predictor,
our second result concerns the selection policy. As we show
next, the loss-minimizing policy is equivalent to making
selections based on CMI.

Proposition 2. When y is discrete, ℓ is cross-entropy
loss and the predictor is the Bayes classifier f∗, eq. (4)
is minimized by the greedy CMI policy, or π∗(xs) =
argmaxi I(y;xi | xs).

With this, we can see that the greedy CMI policy defined
in Section 3 is equivalent to minimizing the one-step-ahead
prediction loss. Next, we exploit this variational perspec-
tive to develop a joint learning procedure for a policy and
predictor network.

4.2. An amortized optimization approach

Instead of estimating each feature’s CMI to identify the next
selection, we now develop an approach that directly predicts
the best selection at each step. The greedy policy implicitly
requires solving an optimization problem for each selection,
or argmaxi I(y,xi;xs), but since we lack access to this ob-
jective, we now formulate an approach that directly predicts
the solution. Following a technique known as amortized
optimization (Amos, 2022), we do so by casting our varia-
tional perspective on CMI from Section 4.1 as an objective
function to be optimized by a learnable network.

First, because it facilitates gradient-based optimization, we
now consider that the policy outputs a distribution over fea-
ture indices. With slight abuse of notation, this section lets
the policy be a function π(xs) ∈ ∆d−1, which generalizes
the previous definition π(xs) ∈ [d]. Using this stochastic
version of the policy, we can now formulate our objective
function as follows.

Let the selection policy be parameterized by a neural
network π(xs;ϕ) and the predictor by a neural network
f(xs; θ). Let p(s) represent a distribution with support over
all subsets, or p(s) > 0 for all |s| < d. Then, our objective
function L(θ, ϕ) is defined as

L(θ, ϕ) = Ep(x,y)Ep(s)

[
Ei∼π(xs;ϕ)

[
ℓ
(
f(xs ∪ xi; θ),y

)]]
.

(5)
Intuitively, eq. (5) represents generating a random feature
set xs, sampling a feature index according to i ∼ π(xs;ϕ),
and then measuring the loss of the prediction f(xs ∪ xi; θ).
Our objective thus optimizes for individual selections and
predictions rather than the entire trajectory, which lets us
build on Proposition 1-2. We describe this as an implemen-

tation of the greedy approach because it recovers the greedy
CMI selections when it is trained to optimality. In the clas-
sification case, we show the following result under a mild
assumption that there is a unique optimal selection.

Theorem 1. When y is discrete and ℓ is cross-entropy loss,
the global optimum of eq. (5) is a predictor that satisfies
f(xs; θ

∗) = p(y | xs) and a policy π(xs;ϕ
∗) that puts all

probability mass on i∗ = argmaxi I(y;xi | xs).

If we relax the assumption of a unique optimal selection,
the optimal policy π(xs;ϕ

∗) simply splits probability mass
among the best indices. A similar result holds in the re-
gression case, where we can interpret the greedy policy as
performing conditional variance minimization.

Theorem 2. When y is continuous and ℓ is squared error
loss, the global optimum of eq. (5) is a predictor that satisfies
f(xs; θ

∗) = E[y | xs] and a policy π(xs;ϕ
∗) that puts all

probability mass on i∗ = argmini Exi|xs
[Var(y | xi, xs)].

Proofs for these results are in Appendix A. We note that the
function class for each model must be expressive enough to
contain their respective optima, and that the result holds for
any p(s) with support over all subsets.

This approach has two key advantages over the CMI estima-
tion procedure from Section 3.2. First, we avoid modeling
the feature conditional distributions p(xi | xs) for all (s, i).
Modeling these distributions is a difficult intermediate step,
and our approach instead aims to directly output the optimal
index. Second, our approach is faster because each selection
is made in a single forward pass: selecting k features using
the procedure from Ma et al. (2019) requires O(dk) scor-
ing steps, but our approach requires only k forward passes
through the policy network π(xs;ϕ).

Furthermore, compared to a policy trained by RL, the
greedy approach is easier to learn. Our training proce-
dure can be viewed as a form of reward shaping (Sutton
et al., 1998; Randløv & Alstrøm, 1998), where the reward
accounts for the loss after each step and provides a strong
signal about whether each selection is helpful. In compar-
ison, observing the reward only after selecting k features
provides a comparably weak signal to the policy network
(see eq. (1)). RL methods generally face a challenging
exploration-exploitation trade-off, but learning the greedy
policy is simpler because it only requires finding the locally
optimal choice at each step.

4.3. Training with a continuous relaxation

Our objective in eq. (5) yields the correct greedy policy
when it is perfectly optimized, but L(θ, ϕ) is difficult to
optimize by gradient descent. In particular, gradients are dif-
ficult to propagate through the policy network given a sam-
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Figure 1. Diagram of our training approach. Left: features are selected by making repeated calls to the policy network using masked
inputs. Right: predictions are made after each selection using the predictor network. Only solid lines are backpropagated through when
performing gradient descent.

pled index i ∼ π(xs;ϕ). The REINFORCE trick (Williams,
1992) is one way to get stochastic gradients, but high gra-
dient variance can make it ineffective in many problems.
There is a robust literature on reducing gradient variance
in this setting (Tucker et al., 2017; Grathwohl et al., 2018),
but we propose using a simple alternative: the Concrete
distribution (Maddison et al., 2016).

An index sampled according to i ∼ π(xs;ϕ) can be rep-
resented by a one-hot vector m ∈ {0, 1}d indicating the
chosen index, and with the Concrete distribution we instead
sample an approximately one-hot vector in the probability
simplex, or m ∈ ∆d−1. This continuous relaxation lets us
calculate gradients using the reparameterization trick (Mad-
dison et al., 2016; Jang et al., 2016). Relaxing the subset
s ⊆ [d] to a continuous vector also requires relaxing the
policy and predictor functions, so we let these operate on
a masked input x, or the element-wise product x⊙m. To
avoid ambiguity about whether features are zero or masked,
we can also pass the mask as a model input.

Training with the Concrete distribution requires specifying
a temperature parameter τ > 0 to control how discrete the
samples are. Previous works have typically trained with a
fixed temperature or annealed it over a pre-determined num-
ber of epochs (Chang et al., 2017; Chen et al., 2018; Balın
et al., 2019), but we instead train with a sequence of τ values
and perform early stopping at each step. This removes the
temperature and number of epochs as important hyperpa-
rameters to tune. Our training procedure is summarized in
Figure 1, and in more detail by Algorithm 1.

There are also several optional steps that we found can
improve optimization:

• Parameters can be shared between the predictor and pol-
icy networks f(x; θ), π(x, ϕ). This does not complicate
their joint optimization, and learning a shared represen-
tation in the early layers can in some cases help the
networks optimize faster (e.g., for image data).

• Rather than training with a random subset distribution

p(s), we generate subsets using features selected by the
current policy π(x;ϕ). This allows the models to focus
on subsets likely to be encountered at inference time, and
it does not affect the globally optimal policy/predictor:
gradients are not propagated between selections, so both
eq. (5) and this sampling approach treat each feature
set as an independent optimization problem, only with
different weights (see Appendix D).

• We pre-train the predictor f(x; θ) using random subsets
before jointly training the policy-predictor pair. This
works better than optimizing L(θ, ϕ) from a random ini-
tialization, because a random predictor f(x; θ) provides
no signal to π(x;ϕ) about which features are useful.

5. Related work
Prior work has frequently addressed DFS using RL. For
example, Dulac-Arnold et al. (2011); Shim et al. (2018);
Janisch et al. (2019); Li & Oliva (2021) optimize a reward
based on the final prediction accuracy, and Kachuee et al.
(2018) use a reward that accounts for prediction uncertainty.
RL is a natural approach for sequential decision-making
problems, but it can be difficult to optimize in practice:
RL requires complex training routines, is slow to converge,
and is highly sensitive to its initialization (Henderson et al.,
2018). As a result, RL-based DFS does not reliably outper-
form static feature selection, as shown by Erion et al. (2021)
and confirmed in our experiments.

Several other approaches include imitation learning (He
et al., 2012; 2016a) and iterative feature scoring methods
(Melville et al., 2004; Saar-Tsechansky et al., 2009; Chen
et al., 2015a; Early et al., 2016b;a). Imitation learning casts
DFS as supervised classification, whereas our training ap-
proach bypasses the need for an oracle policy. Most existing
feature scoring techniques are greedy methods, like ours,
but they use scoring heuristics that are unrelated to maximiz-
ing CMI (see Section 3.2). Two feature scoring methods are
specifically designed to calculate the CMI, but they suffer
from important practical limitations: both Ma et al. (2019)
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Figure 2. Evaluating the greedy approach on six tabular datasets. The results for each method are the average across five runs.

and Chattopadhyay et al. (2022) rely on difficult-to-train
generative models, which can lead to inaccurate CMI esti-
mation. Our approach is simpler, faster and more flexible,
because the selection logic is contained within a policy net-
work that avoids the need for generative modeling.2

Static feature selection is a long-standing problem (Guyon
& Elisseeff, 2003; Cai et al., 2018). There are no default ap-
proaches for neural networks, but one option is ranking fea-
tures by local or global importance scores (Breiman, 2001;
Shrikumar et al., 2017; Sundararajan et al., 2017; Covert
et al., 2020). In addition, several prior works have leveraged
continuous relaxations to learn feature selection strategies
by gradient descent: for example, Chang et al. (2017); Balın
et al. (2019); Yamada et al. (2020); Lee et al. (2021); Covert
et al. (2022) perform static feature selection, and Chen et al.
(2018); Jethani et al. (2021) perform instance-wise feature
selection given access to all the features. Our work uses a
similar continuous relaxation for optimization, but in the
DFS context, where our method learns a selection policy
rather than a static selection layer.

Finally, several works have examined greedy feature selec-
tion algorithms from a theoretical perspective. For example,
Das & Kempe (2011); Elenberg et al. (2018) show that weak
submodularity implies near-optimal performance for static
feature selection. More relevant to our work, Chen et al.
(2015b) find that the related notion of adaptive submodu-
larity (Golovin & Krause, 2011) does not not hold in the
DFS setting, but the authors provide performance guarantees
under specific distributional assumptions.

2Concurrently, Chattopadhyay et al. (2023) proposed a similar
approach to predict the optimal selection at each step.

6. Experiments
We now demonstrate the use of our greedy approach on
several datasets. We first explore tabular datasets of vari-
ous sizes, including four medical diagnosis tasks, and we
then consider two image classification datasets. Several
of the tasks are natural candidates for DFS, and the re-
maining ones serve as useful tasks to test the effectiveness
of our approach. Code for reproducing our experiments
is available online: https://github.com/iancovert/
dynamic-selection.

We evaluate our method by comparing to both dynamic
and static feature selection methods. We also ensure con-
sistent comparisons by only using methods applicable to
neural networks. As static baselines, we use permutation
tests (Breiman, 2001) and SAGE (Covert et al., 2020) to
rank features by their importance to the model’s accuracy,
as well as per-prediction DeepLift (Shrikumar et al., 2017)
and IntGrad (Sundararajan et al., 2017) scores aggregated
across the dataset. We then use a supervised version of the
Concrete Autoencoder (CAE, Balın et al. 2019), a state-of-
the-art static feature selection method. As dynamic base-
lines, we use two versions of the CMI estimation procedure
described in Section 3.2. First, we use the PVAE generative
model from Ma et al. (2019) to sample unknown features,
and second, we instead sample unknown features from their
marginal distribution; in both cases, we use a classifier
trained with random feature subsets to make predictions.
Finally, we also use the RL-based Opportunistic Learning
(OL) approach (Kachuee et al., 2018). Appendix C provides
more information about the baseline methods.
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Table 1. AUROC averaged across budgets of 1-10 features (with 95% confidence intervals).

Spam MiniBooNE Diabetes Bleeding Respiratory Fluid

St
at

ic
IntGrad 82.84 ± 0.68 89.10 ± 0.33 88.91 ± 0.24 66.70 ± 0.27 81.10 ± 0.04 79.94 ± 0.94
DeepLift 90.16 ± 1.24 88.62 ± 0.30 95.42 ± 0.13 67.75 ± 0.49 76.05 ± 0.35 76.96 ± 0.56
SAGE 89.70 ± 1.10 92.64 ± 0.03 95.43 ± 0.01 71.34 ± 0.19 82.92 ± 0.26 83.27 ± 0.53
Perm Test 85.64 ± 3.58 92.19 ± 0.15 95.46 ± 0.02 68.89 ± 1.06 81.56 ± 0.28 81.35 ± 1.04
CAE 92.28 ± 0.27 92.76 ± 0.41 95.91 ± 0.07 70.69 ± 0.57 83.10 ± 0.45 79.40 ± 0.86

D
yn

am
ic Opportunistic (OL) 85.94 ± 0.20 69.23 ± 0.64 83.07 ± 0.82 60.63 ± 0.55 74.44 ± 0.42 78.13 ± 0.31

CMI (Marginal) 86.57 ± 1.54 92.21 ± 0.40 95.48 ± 0.05 70.57 ± 0.46 79.62 ± 0.62 81.97 ± 0.93
CMI (PVAE) 89.01 ± 1.40 88.94 ± 1.25 90.50 ± 5.16 70.17 ± 0.74 74.12 ± 3.50 80.27 ± 1.02
Greedy (Ours) 93.91 ± 0.17 94.46 ± 0.12 96.03 ± 0.02 72.64 ± 0.31 84.48 ± 0.08 86.59 ± 0.25

6.1. Tabular datasets

We first applied our method to three medical diagnosis tasks
derived from an emergency medicine setting. The tasks
involve predicting a patient’s bleeding risk via a low fibrino-
gen concentration (bleeding), whether the patient requires
endotracheal intubation for respiratory support (respiratory),
and whether the patient will be responsive to fluid resus-
citation (fluid). See Appendix B for more details about
the datasets. In each scenario, gathering all possible inputs
at inference time is challenging due to time and resource
constraints, thus making DFS a natural solution.

We use fully connected networks for all methods, and we
use dropout to reduce overfitting (Srivastava et al., 2014).
Figure 2 (top) shows the results of applying each method
with various feature budgets. The classification accuracy is
measured via AUROC, and the greedy method achieves the
best results for nearly all feature budgets on all three tasks.
Among the baselines, several static methods are sometimes
close, but the CMI estimation method is rarely competitive
(Ma et al., 2019). Additionally, OL provides unstable and
weak results. The greedy method’s advantage is often largest
when selecting a small number of features, and it usually
becomes narrower once the accuracy saturates.

Next, we conducted experiments using three publicly avail-
able tabular datasets: spam classification (Dua & Graff,
2017), particle identification (MiniBooNE) (Roe et al.,
2005) and diabetes diagnosis (Miller, 1973). The diabetes
task is a natural application for DFS and was used in prior
work (Kachuee et al., 2018). We again tested various num-
bers of features, and Figure 2 (bottom) shows plots of the
AUROC for each feature budget. On these tasks, the greedy
method is once again most accurate for nearly all numbers
of features. Table 1 summarizes the results via the mean
AUROC across k = 1, . . . , 10 features, further emphasizing
the benefits of the greedy method across all six datasets.
Appendix E shows larger versions of the AUROC curves
(Figure 4 and Figure 5), as well as plots demonstrating the
variability of selections within each dataset.

The results with these datasets reveal that, perhaps sur-
prisingly, dynamic methods can be outperformed by static

methods. Interestingly, this point was not highlighted in
prior works where strong static baselines were not tested
(Kachuee et al., 2018; Janisch et al., 2019). For example,
OL is not competitive on these datasets, and the two ver-
sions of the CMI estimation approach are not consistently
among the top baselines. Dynamic methods are in principle
capable of performing better, so the sub-par results from
these methods underscore the difficulty of learning both a
selection policy and a prediction function that works for
multiple feature sets. In these experiments, our approach is
the only dynamic method to do both successfully.

6.2. Image classification datasets

Next, we considered two standard image classification
datasets: MNIST (LeCun et al., 1998) and CIFAR-10
(Krizhevsky et al., 2009). Our goal is to begin with a blank
image, sequentially reveal multiple pixels or patches, and
ultimately make a classification using a small portion of
the image. Although this is not an obvious use case for
DFS, it represents a challenging problem for our method,
and similar tasks were considered in several earlier works
(Karayev et al., 2012; Mnih et al., 2014; Early et al., 2016a;
Janisch et al., 2019).

For MNIST, we use fully connected architectures for both
the policy and predictor, and we treat pixels as individual
features; we therefore have d = 784. For CIFAR-10, we
use a shared ResNet backbone (He et al., 2016b) for the
policy and predictor networks, and each network uses its
own output head. The 32 × 32 images are coarsened into
d = 64 patches of size 4× 4, so the selector head generates
logits corresponding to each patch, and the predictor head
generates probabilities for each class.

Figure 3 shows our method’s accuracy for different feature
budgets. For MNIST, we use the previous baselines but ex-
clude the CMI estimation method due to its computational
cost: it becomes slow when evaluating many candidate
features. We observe a large benefit for our method, particu-
larly when making a small number of selections. Our greedy
method reaches nearly 90% accuracy with just 10 pixels,
which is roughly 10% higher than the best baseline and con-
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Figure 3. Greedy feature selection for image classification. Top left: accuracy comparison on MNIST with results averaged across five
runs. Top right: accuracy comparison on CIFAR-10 with 95% confidence intervals. Bottom: example selections and predictions for the
greedy method with 10 out of 64 patches for CIFAR-10 images.

siderably higher than prior work (Balın et al., 2019; Yamada
et al., 2020; Covert et al., 2020). OL yields the worst results,
and it also trains slowly due to the large number of states.

For CIFAR-10, we omit several baseline comparisons due
to their computational cost. We use the CAE, which is
our most competitive static baseline, as well as two simple
baselines: center crops and random masks of various sizes.
For each method, we plot the mean and 95% confidence
intervals determined from five trials. Our greedy approach
is slightly less accurate with a very small number of patches,
but it reaches significantly higher accuracy when using 6-20
patches. Finally, Figure 3 (bottom) also shows qualitative
examples of our method’s predictions after selecting 10 out
of 64 patches, and Appendix E shows similar plots with
different numbers of patches.

7. Conclusion
In this work, we explored a greedy algorithm for dynamic
feature selection (DFS) that selects features based on their
CMI with the response variable. We proposed an approach
to approximate this policy by directly predicting the optimal
selection at each step, and we conducted experiments that
show our method outperforms a variety of existing feature
selection methods, including both dynamic and static base-
lines. Future work on this topic may include incorporating
non-uniform features costs or determining the ideal feature
budget on a per-sample basis; from a theoretical perspective,

characterizing the greedy algorithm’s performance outside
of our fixed-budget case is another interesting topic for fu-
ture work (Chen et al., 2015b). Finally, future work may
also explore architectures that are well-suited to processing
partial inputs, particularly for structured data like images.
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A. Proofs
In this section, we re-state and prove our main theoretical results. We begin with our proposition regarding the optimal
predictor for an arbitrary policy π.

Proposition 1. When y is discrete and ℓ is cross-entropy loss, eq. (4) is minimized for any policy π by the Bayes classifier,
or f∗(xs) = p(y | xs).

Proof. Given the predictor inputs xs, our goal is to determine the prediction that minimizes the expected loss. Because
features are selected sequentially by π with no knowledge of the non-selected values, there is no other information to
condition on; for the predictor, we do not even need to distinguish the order in which features were selected. We can
therefore derive the optimal prediction ŷ ∈ ∆K−1 for a discrete response y ∈ [K] as follows:

f∗(xs) = argmin
ŷ

Ey|xs

[
ℓ(ŷ,y)

]
= argmin

ŷ

∑
i∈Y

p(y = i | xs) log ŷi

= argmin
ŷ

DKL

(
p(y | xs) || ŷ

)
+H(y | xs)

= p(y | xs).

In the case of a continuous response y ∈ R with squared error loss, we have a similar result involving the response’s
conditional expectation:

f∗(xs) = argmin
ŷ

Ey|xs

[
(ŷ − y)2

]
= argmin

ŷ
Ey|xs

[
(ŷ − E[y | xs])

2
]
+Var(y | xs)

= E[y | xs].

Proposition 2. When y is discrete, ℓ is cross-entropy loss and the predictor is the Bayes classifier f∗, eq. (4) is minimized
by the greedy CMI policy, or π∗(xs) = argmaxi I(y;xi | xs).

Proof. Following eq. (4), the policy network’s selection i = π(xs) incurs the following expected loss with respect to the
distribution p(y,xi | xs):

Ey,xi|xs

[
ℓ(f∗(xs ∪ xi),y)

]
= Ey,xi|xs

[
ℓ(p(y | xi, xs),y)

]
= Exi|xs

[
Ey|xi,xs

[ℓ(p(y | xi, xs),y)]
]

= Exi|xs

[
H(y | xi, xs)

]
= H(y | xs)− I(y;xi | xs).

Note that H(y | xs) is a constant that does not depend on i. When identifying the index that minimizes the expected loss,
we therefore have the following result:

argmin
i

Ey,xi|xs

[
ℓ(f∗(xs ∪ xi),y)

]
= argmax

i
I(y;xi | xs).
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In the case of a continuous response with squared error loss and an optimal predictor given by f∗(xs) = E[y | xs], we have
a similar result:

Ey,xi|xs

[
(f∗(xs ∪ xi)− y)2

]
= Ey,xi|xs

[
(E[y | xi, xs]− y)2

]
= Exi|xs

[
Ey|xi,xs

[(E[y | xi, xs]− y)2]
]

= Exi|xs
[Var(y | xi, xs)].

When we aim to minimize the expected loss, our selection is therefore the index that yields the lowest expected conditional
variance:

argmin
i

Exi|xs
[Var(y | xi, xs)].

Next, we also prove the limiting result presented in eq. (3), which states that Ini → I(y;xi | xs).

Proof. The conditional mutual information I(y;xi | xs) is defined as follows (Cover & Thomas, 2012):

I(y;xi | xs) = DKL

(
p(xi,y | xs) || p(xi | xs)p(y | xs)

)
= Ey,xi|xs

[
log

p(y,xi | xs)

p(xi | xs)p(y | xs)

]
.

Rearranging terms, we can write this as an expected KL divergence with respect to xi:

I(y;xi | xs) = Exi|xs
Ey|xs,xi

[
log

p(y,xi | xs)

p(xi | xs)p(y | xs)

]
= Exi|xs

Ey|xs,xi

[
log

p(y | xi, xs)

p(y | xs)

]
= Exi|xs

[
DKL

(
p(y | xi, xs) || p(y | xs)

)]
Now, when we sample multiple values x1

i , . . . , x
n
i ∼ p(xi | xs) and make predictions using the Bayes classifier, we have

the following mean prediction as n becomes large:

lim
n→∞

1

n

n∑
j=1

p(y | xs, x
j
i ) = Exi|xs

[
p(y | xi, xs)

]
= p(y | xs).

Calculating the mean KL divergence relative to this prediction, we arrive at the following result:

lim
n→∞

Ini = Exi|xs

[
DKL

(
p(y | xi, xs) || p(y | xs)

)]
= I(y;xi | xs).

Theorem 1. When y is discrete and ℓ is cross-entropy loss, the global optimum of eq. (5) is a predictor that satisfies
f(xs; θ

∗) = p(y | xs) and a policy π(xs;ϕ
∗) that puts all probability mass on i∗ = argmaxi I(y;xi | xs).
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Proof. We first consider the predictor network f(xs; θ). When the predictor is given the feature values xs, it means that
one index i ∈ s was chosen by the policy according to π(xs\i;ϕ) and the remaining indices s \ i were sampled from p(s).
Because s is sampled independently from (x,y), and because π(xs\i;ϕ) is not given access to (x[d]\s,xi,y), the predictor’s
expected loss must be considered with respect to the distribution y | xs. The globally optimal predictor f(xs; θ

∗) is thus
defined as follows, regardless of the selection policy π(xs;ϕ) and which index i was selected last:

f(xs; θ
∗) = argmin

ŷ
Ey|xs

[
ℓ(ŷ,y)

]
= p(y | xs).

The above result follows from our proof for Proposition 1. Now, given the optimal predictor f(xs; θ
∗), we can define the

globally optimal policy by minimizing the expected loss for a fixed input xs. Denoting the probability mass placed on each
index i ∈ [d] as πi(xs;ϕ), where π(xs;ϕ) ∈ ∆d−1, the expected loss is the following:

Ei∼π(xs;ϕ)Ey,xi|xs

[
ℓ(f(xs ∪ xi; θ

∗),y)
]
=

∑
i∈[d]

πi(xs;ϕ)Ey,xi|xs

[
ℓ
(
f(xs ∪ xi; θ

∗),y
)]

=
∑
i∈[d]

πi(xs;ϕ)Exi|xs
[H(y | xi, xs)].

The above result follows from our proof for Proposition 2. If there exists a single index i∗ ∈ [d] that yields the lowest
expected conditional entropy, or

Exi∗ |xs
[H(y | xi∗ , xs)] < Exi|xs

[H(y | xi, xs)] ∀i ̸= i∗,

then the optimal predictor must put all its probability mass on i∗, or πi∗(xs;ϕ
∗) = 1. Note that the corresponding feature

xi∗ has maximum conditional mutual information with y, because we have

I(y;xi∗ | xs) = H(y | xs)︸ ︷︷ ︸
Constant

−Exi∗ |xs
[H(y | xi∗ , xs)].

To summarize, we derived the global optimum to our objective L(θ, ϕ) by first considering the optimal predictor f(xs; θ
∗),

and then considering the optimal policy π(xs;ϕ
∗) when we assume that we use the optimal predictor.

Theorem 2. When y is continuous and ℓ is squared error loss, the global optimum of eq. (5) is a predictor that satisfies
f(xs; θ

∗) = E[y | xs] and a policy π(xs;ϕ
∗) that puts all probability mass on i∗ = argmini Exi|xs

[Var(y | xi, xs)].

Proof. Our proof follows the same logic as our proof for Theorem 1. For the optimal predictor given an arbitrary policy, we
have:

f(xs; θ
∗) = argmin

ŷ
Ey|xs

[
(ŷ − y)2

]
= E[y | xs].

Then, for the policy’s expected loss, we have:

Ei∼π(xs;ϕ)Ey,xi|xs

[(
f(xs ∪ xi; θ

∗)− y
)2]

=
∑
i∈[d]

πi(xs;ϕ)Exi|xs
[Var(y | xi, xs)].

If there exists an index i∗ ∈ [d] that yields the lowest expected conditional variance, then the optimal policy must put all its
probability mass on i∗, or πi∗(xs;ϕ

∗) = 1.
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B. Datasets
The datasets used in our experiments are summarized in Table 2. Three of the tabular datasets and the two image classification
datasets are publicly available, and the three emergency medicine tasks were privately curated from the Harborview Medical
Center Trauma Registry.

Table 2. Summary of datasets used in our experiments.

Dataset # Features # Feature Groups # Classes # Samples

Fluid 224 162 2 2,770
Respiratory 112 35 2 65,515
Bleeding 121 44 2 6,496

Spam 58 – 2 4,601
MiniBooNE 51 – 2 130,064
Diabetes 45 – 3 92,062

MNIST 784 – 10 60,000
CIFAR-10 1,024 64 10 60,000

B.1. MiniBooNE and spam classification

The spam dataset includes features extracted from e-mail messages to predict whether or not a message is spam. Three
features describes the usage of capital letters in the e-mail, and the remaining 54 features describe the frequency with which
certain key words or characters are used. The MiniBooNE particle identification dataset involves distinguishing electron
neutrinos from muon neutrinos based on various continuous features (Roe et al., 2005). Both datasets were obtained from
the UCI repository (Dua & Graff, 2017).

B.2. Diabetes classification

The diabetes dataset was obtained from from the National Health and Nutrition Examination Survey (NHANES) (NHA,
2018), an ongoing survey designed to assess the well-being of adults and children in the United States. We used a version
of the data pre-processed by Kachuee et al. (2018; 2019) that includes data collected from 1999 through 2016. The input
features include demographic information (age, gender, ethnicity, etc.), lab results (total cholesterol, triglyceride, etc.),
examination data (weight, height, etc.), and questionnaire answers (smoking, alcohol, sleep habits, etc.). An expert was also
asked to suggest costs for each feature based on the financial burden, patient privacy, and patient inconvenience, but we
assume uniform feature costs in our experiments. Finally, the fasting glucose values were used to define three classes based
on standard threshold values: normal, pre-diabetes, and diabetes.

B.3. Image classification datasets

The MNIST and CIFAR-10 datasets were downloaded using PyTorch (Paszke et al., 2017). We used the standard train-test
splits, and we split the train set to obtain a validation set with the same size as the test set (10,000 examples).

B.4. Emergency medicine datasets

The emergency medicine datasets used in this study were gathered over a 13-year period (2007-2020) and encompass 14,463
emergency department admissions. We excluded patients under the age of 18, and we curated 3 clinical cohorts commonly
seen in pre-hospitalization settings. These include 1) pre-hospital fluid resuscitation, 2) emergency department respiratory
support, and 3) bleeding after injury. These datasets are not publicly available due to patient privacy concerns.

Pre-hospital fluid resuscitation We selected 224 variables that were available in the pre-hospital setting, including
dispatch information (injury date, time, cause, and location), demographic information (age, sex), and pre-hospital vital
signs (blood pressure, heart rate, respiratory rate). The outcome was each patient’s response to fluid resuscitation, following
the Advanced Trauma Life Support (ATLS) definition (Subcommittee et al., 2013).
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Emergency department respiratory support In this cohort, our goal is to predict which patients require respiratory
support upon arrival in the emergency department. Similar to the previous dataset, we selected 112 pre-hospital clinical
features including dispatch information (injury date, time, cause, and location), demographic information (age, sex), and
pre-hospital vital signs (blood pressure, heart rate, respiratory rate). The outcome is defined based on whether a patient
received respiratory support, including both invasive (intubation) and non-invasive (BiPap) approaches.

Bleeding In this cohort, we only included patients whose fibrinogen levels were measured, as this provides an indicator for
bleeding or fibrinolysis (Mosesson, 2005). As with the previous datasets, demographic information, dispatch information,
and pre-hospital observations were used as input features. The outcome, based on experts’ opinion, was defined by whether
an individual’s fibrinogen level is below 200 mg/dL, which represents higher risk of bleeding after injury.

C. Baselines
This section provides more details on the baseline methods used in our experiments (Section 6).

C.1. Global feature importance methods

Two of our static feature selection baselines, permutation tests and SAGE, are global feature importance methods that rank
features based on their role in improving model accuracy (Covert et al., 2021). In our experiments, we ran each method
using a single classifier trained on the entire dataset, and we then selected the top k features depending on the budget.

When running the permutation test, we calculated the validation AUROC while replacing values in the corresponding feature
column with random draws from the training set. When running SAGE, we used the authors’ implementation with automatic
convergence detection (Covert et al., 2020). To handle held-out features, we averaged across 128 sampled values for the six
tabular datasets, and for MNIST we used a zeros baseline to achieve faster convergence.

C.2. Local feature importance methods

Two of our static feature selection baselines, DeepLift and Integrated Gradients, are local feature importance methods that
rank features based on their importance to a single prediction. In our experiments, we generated feature importance scores
for the true class using all examples in the validation set. We then selected the top k features based on their mean absolute
importance. We used a mean baseline for Integrated Gradients (Sundararajan et al., 2017), and both methods were run using
the Captum package (Kokhlikyan et al., 2020).

C.3. Differentiable feature selection

Our last static feature selection baseline is the Concrete autoencoder (CAE) from Balın et al. (2019). The method was
originally proposed to perform unsupervised feature selection by reconstructing the full input vector, but we changed the
prediction target to use it in a supervised fashion. The authors propose training with an exponentially decayed temperature
over a hand-tuned number of epochs, but we used an approach similar to our own method: we trained with a sequence of
temperature values, performing early stopping using the validation loss for each one, and we returned the features chosen
after training with the final temperature.

We tried a similar method proposed by Yamada et al. (2020), but this method requires tuning a penalty parameter to achieve
the desired number of features, and we found that it gave similar performance in our experiments on MNIST. Among
methods that learn to select features within a neural network, there are several others that do so using group sparse penalties
(Feng & Simon, 2017; Tank et al., 2021; Lemhadri et al., 2021); we tested the LassoNet approach from Lemhadri et al.
(2021) and found that it was not competitive on MNIST. For simplicity, we present results only for the supervised CAE.

C.4. CMI estimation

Our experiments use two versions of the CMI estimation approach described in Section 3.2. Both are inspired by the
EDDI method introduced by Ma et al. (2019), but a key difference is that we do not jointly model (x,y) within the same
conditional generative model: we instead separately model the response with a classifier f(xs) ≈ p(y | xs) and the features
with a generative model of p(xi | xs). This partially mitigates one challenge with this approach, which is working with
mixed continuous/categorical data (i.e., we do not need to jointly model categorical response variables).

16



Learning to Maximize Mutual Information for Dynamic Feature Selection

For the first version of this approach, we train a PVAE as a generative model (Ma et al., 2019). The encoder and decoder both
have two hidden layers, the latent dimension is set to 16, and we use 128 samples from the latent posterior to approximate
p(xi | xs) =

∫
p(xi | z)p(z | xs). We use Gaussian distributions for both the latent and decoder spaces, and we generate

samples using the decoder mean, similar to the original approach (Ma et al., 2019). In the second version, we bypass the
need for a generative model with a simple approximation: we sample features from their marginal distribution, which is
equivalent to assuming feature independence.

C.5. Opportunistic learning

Kachuee et al. (2018) proposed Opportunistic Learning (OL), an approach to solve DFS using RL. The model consists
of two networks analogous to our policy and predictor: a Q-network that estimates the value associated with each action,
where actions correspond to features, and a P-network responsible for making predictions. When using OL, we use the same
architectures as our approach, and OL shares network parameters between the P- and Q-networks.

The authors introduce a utility function for their reward, shown in eq. (6), which calculates the difference in prediction
uncertainty as approximated by MC dropout (Gal & Ghahramani, 2016). The reward also accounts for feature costs, but we
set all feature costs to ci = 1:

ri =
||Cert(xs)− Cert(xs ∪ xi)||

ci
(6)

To provide a fair comparison with the remaining methods, we made several modifications to the authors’ implementation.
These include 1) preventing the prediction action until the pre-specified budget is met, 2) setting all feature costs to be
identical, and 3) supporting pre-defined feature groups as described in Appendix D.4. When training, we update the P-,
Q-, and target Q-networks every 1 + d

100 experiences, where d is the number of features in a dataset. In addition, the
replay buffer is set to store the 1000d most recent experiences, and the random exploration probability is decayed so that it
eventually reaches a value of 0.1.
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D. Training approach and hyperparameters
This section provides more details on our training approach and hyperparameter choices.

D.1. Training pseudocode

Algorithm 1 summarizes our training approach. Briefly, we select features by drawing a Concrete sample using policy
network’s logits, we calculate the loss based on the subsequent prediction, and we then update the mask for the next step
using a discrete sample from the policy’s distribution. We implemented this approach using PyTorch (Paszke et al., 2017)
and PyTorch Lightning.3

Algorithm 1: Training pseudocode
Input: Data distribution p(x,y), budget k > 0, learning rate γ > 0, temperature τ > 0
Output: Predictor model f(x; θ), policy model π(x;ϕ)
initialize f(x; θ), π(x;ϕ)
while not converged do

sample x, y ∼ p(x,y)
initialize L = 0, m = [0, . . . , 0]
for j = 1 to k do

calculate logits α = π(x⊙m;ϕ), sample Gi ∼ Gumbel for i ∈ [d]

set m̃ = max
(
m, softmax(G+ α, τ)

)
// update with Concrete

set m = max
(
m, softmax(G+ α, 0)

)
// update with one-hot

update L ← L+ ℓ
(
f(x⊙ m̃; θ), y

)
end
update θ ← θ − γ∇θL, ϕ← ϕ− γ∇ϕL

end
return f(x; θ), π(x;ϕ)

One notable difference between Algorithm 1 and our objective L(θ, ϕ) in the main text is the use of the policy π(x;ϕ) for
generating feature subsets. This differs from eq. (5), which generates feature subsets using a subset distribution p(s). The
key shared factor between both approaches is that there are separate optimization problems over each feature set that are
effectively treated independently. For each feature set xs, the problem is the one-step-ahead loss, and it incorporates both
the policy and predictor as follows:

Ei∼π(xs;ϕ)

[
ℓ
(
f(xs ∪ xi; θ),y

)]
. (7)

The problems for each subset do not interact: during optimization, the selection given xs is based only on the immediate
change in the loss, and gradients are not propagated through multiple selections as they would be for an RL-based solution.
In solving these multiple problems, the difference is simply that eq. (5) weights them according to p(s), whereas Algorithm 1
weights them according to the current policy π(x, ϕ).

We find that incorporating the current policy when generating feature sets is important to achieve good performance. As
an ablation, we tested how much our method’s performance changes when we instead generate training examples (xs,y)
at random rather than using the current policy: using the MNIST dataset, we find that using random subsets leads to a
significant drop in performance (Table 3).

D.2. Model selection

One detail not shown in Algorithm 1 that we alluded to in the main text is our approach for decaying the Concrete
distribution’s temperature parameter τ . We train with a sequence of relatively few temperature values, using the validation
loss to perform early stopping with each value. To perform model selection, we separately calculate the validation loss using
a temperature value of zero, which more accurately represents the model’s usage at inference time; we eventually return the
version of the model that performed best on this zero-temperature loss, chosen across all training temperatures.

3https://www.pytorchlightning.ai
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Table 3. Ablation experiment using MNIST.

# Features 5 10 15 20 25 30 40 50

Ours 0.695 0.875 0.926 0.950 0.960 0.966 0.973 0.975
Ablation 0.578 0.757 0.807 0.819 0.838 0.850 0.869 0.883

D.3. Hyperparameters

Our experiments with the six tabular datasets used fully connected architectures with dropout in all layers (Srivastava
et al., 2014). The dropout probability is set to 0.3, the networks have two hidden layers of width 128, and we performed
early stopping using the validation loss. For our method, the predictor and policy were separate networks with identical
architectures. When training models with the features selected by static methods, we reported results using the best model
from multiple training runs based on the validation loss. We did not perform any additional hyperparameter tuning due to
the large number of models being trained.

For MNIST, we used fully connected architectures with two layers of width 512 and the dropout probability set to 0.3.
Again, our method used separate networks with identical architectures. For CIFAR-10, we used a shared ResNet backbone
(He et al., 2016b) consisting of several residually connected convolutional layers. The classification head consists of global
average pooling and a linear layer, and the selection head consisted of a transposed convolution layer followed by a 1× 1
convolution, which outputs a grid of logits with size 8× 8. Our CIFAR-10 networks are trained using random crops and
random horizontal flips as augmentations.

D.4. Feature grouping

All of the methods used in our experiments were designed to select individual features, but this is undesirable when using
categorical features with one-hot encodings. Each of our three emergency medicine tasks involve such features, so we
extended each method to support feature grouping.

SAGE and permutation tests are trivial to extend to feature groups: we simply removed groups of features rather than
individual features when calculating importance scores. For DeepLift and Integrated Gradients, we used the summed
importance within each group, which preserves each method’s additivity property. For the method based on Concrete
Autoencoders, we implemented a generalized version of the selection layer that operates on feature groups. We also extended
OL to operate on feature groups by having actions map to groups rather than individual features.

Finally, for our method, we parameterized the policy network π(x;ϕ) so that the number of outputs is the number of groups
g rather than the total number of features d (where g < d). When applying masking, we first generate a binary mask
m ∈ [0, 1]g , and we then project the mask into [0, 1]d using a binary group matrix G ∈ {0, 1}d×g , where Gij = 1 if feature
i is in group j and Gij = 0 otherwise. Thus, our masked input vector is given by x⊙ (Gm).

E. Additional results
This section provides several additional experimental results. First, Figure 4 and Figure 5 show the same results as Figure 2
but larger for improved visibility. Next, Figure 6 though Figure 11 display the feature selection frequency for each of the
tabular datasets when using the greedy method. The heatmaps in each plot show the portion of the time that a feature (or
feature group) is selected under a specific feature budget. These plots reveal that our method is indeed selecting different
features for different samples.

Finally, Figure 12 displays examples of CIFAR-10 predictions given different numbers of revealed patches. The predictions
generally become relatively accurate after revealing only a small number of patches, reflecting a similar result as Figure 3.
Qualitatively, we can see that the policy network learns to select vertical stripes, but the order in which it fills out each stripe
depends on where it predicts important information may be located.

19



Learning to Maximize Mutual Information for Dynamic Feature Selection

0 5 10 15 20 25
# Selected Features

0.55

0.60

0.65

0.70

0.75
AU

RO
C

Bleeding AUROC Comparison

0 5 10 15 20 25
# Selected Features

0.65

0.70

0.75

0.80

0.85

AU
RO

C

Respiratory AUROC Comparison

2 4 6 8 10
# Selected Features

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

AU
RO

C

Fluid AUROC Comparison

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

IntGrad
DeepLift

SAGE
Perm Test

CAE
Opportunistic (OL)

CMI (Marginal)
CMI (PVAE)

Greedy (Ours)

Figure 4. AUROC comparison on the three emergency medicine diagnosis tasks.
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Figure 5. AUROC comparison on the three public tabular datasets.
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Figure 6. Feature selection frequency for our greedy approach on the bleeding dataset.
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Figure 7. Feature selection frequency for our greedy approach on the respiratory dataset.
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Figure 8. Feature selection frequency for our greedy approach on the fluid dataset.
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Figure 9. Feature selection frequency for our greedy approach on the spam dataset.
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Figure 10. Feature selection frequency for our greedy approach on the MiniBooNE dataset.
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Figure 11. Feature selection frequency for our greedy approach on the diabetes dataset.
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Figure 12. CIFAR-10 predictions with different numbers of patches revealed by our approach.
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