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Abstract
Contrastive learning has shown outstanding per-
formances in both supervised and unsupervised
learning, and has recently been introduced to
solve weakly supervised learning problems such
as semi-supervised learning and noisy label learn-
ing. Despite the empirical evidence showing that
semi-supervised labels improve the representa-
tions of contrastive learning, it remains unknown
if noisy supervised information can be directly
used in training instead of after manual denoising.
Therefore, to explore the mechanical differences
between semi-supervised and noisy-labeled infor-
mation in helping contrastive learning, we estab-
lish a unified theoretical framework of contrastive
learning under weak supervision. Specifically, we
investigate the most intuitive paradigm of jointly
training supervised and unsupervised contrastive
losses. By translating the weakly supervised in-
formation into a similarity graph under the frame-
work of spectral clustering based on the posterior
probability of weak labels, we establish the down-
stream classification error bound. We prove that
semi-supervised labels improve the downstream
error bound whereas noisy labels have limited
effects under such a paradigm. Our theoretical
findings here provide new insights for the com-
munity to rethink the role of weak supervision in
helping contrastive learning.

1. Introduction
Contrastive learning has shown state-of-the-art empirical
performances in unsupervised representation learning (Chen

*Equal contribution 1National Key Lab of General Artifi-
cial Intelligence, School of Intelligence Science and Technol-
ogy, Peking University 2Qing Yuan Research Institute, Shang-
hai Jiao Tong University 3Huawei Noah’s Ark Lab 4School of
Mathematical Sciences, Peking University 5Institute for Artificial
Intelligence, Peking University. Correspondence to: Yisen Wang
<yisen.wang@pku.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

et al., 2020; He et al., 2020; Chen & He, 2021; Wang et al.,
2021a). It learns good representations of high-dimensional
observations from a large amount of unlabeled data, by
pulling together an anchor and its augmented views in the
embedding space. On the other hand, supervised contrastive
learning (Khosla et al., 2020) uses same-class examples
and their corresponding augmentations as positive labels,
and achieves significantly better performance than both the
unsupervised contrastive learning and the state-of-the-art
classification losses, e.g. cross entropy loss. While accurate
supervised signals are not always available, there is a lot of
weak supervision accompanying the data. This makes us
wonder: can weak supervision help contrastive learning?

There are two major types of weak supervision. The first is
semi-supervised information, where the supervised labels
are only available on a small fraction of samples. The second
is noisy-labeled information, where the labels are available
but unreliable, i.e. the labels can possibly be wrong. Empir-
ical evidence has shown that semi-supervised information
can directly be used in positive sample selection to help im-
prove the representations of contrastive learning by jointly
training the supervised and unsupervised contrastive losses
(Assran et al., 2020; Acharya et al., 2022). By contrast,
for noisy-labeled information, most methodological studies
use contrastive learning as a tool to select confident sam-
ples based on the learned representations (Yao et al., 2021;
Ortego et al., 2021; Li et al., 2022; Zhang et al., 2022a),
whereas none of the existing literature demonstrates if noisy
label information can help improve the representations of
contrastive learning. Therefore, we are wondering if the
conclusion on noisy-labeled information is the same as the
semi-supervised information. If not, what are the differences
between semi-supervised and noisy-labeled information in
helping contrastive learning?

In this paper, we show an awkward fact that noisy labels
have a limited effect on representations of contrastive learn-
ing under the joint training paradigm, and the winner of su-
pervised and unsupervised contrastive learning itself serves
as an embarrassingly strong baseline. As a preview of re-
sults, in Figure 1, we plot the result of unsupervised con-
trastive learning trained without labels (SimCLR (Chen
et al., 2020)), supervised contrastive learning trained with
noisy labels (SupCon (Khosla et al., 2020)), the winner of
SupCon and SimCLR (Max), and joint training of SimCLR
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Figure 1: The winner of SupCon and SimCLR serves as
a strong baseline of joint training under label noise on the
CIFAR-10 dataset.

and SupCon under label noise (JointTraining), respectively.
We conduct experiments under symmetric label noise with
noise rates ranging from 0% to 60%, stepped by 10%. We
evaluate the trained representations by linear probing on the
clean testing data. The weight parameter θ of JointTrain-
ing is tuned in {0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}, and the
best linear probing accuracy under the optimal θ is reported.
We show that supervised training outperforms unsupervised
training when the noise rate is low, and the situation reverses
when the noise rate is high. Nonetheless, the joint training of
SimCLR and SupCon (with finely tuned weights) has only
limited advantage over the winner of SupCon and SimCLR.
Moreover, its performance coincides with that of SupCon
when noise rate is 0, and converges to that of SimCLR when
noise rate increases. This indicates that noisy labels provide
limited help to contrastive representation learning under the
paradigm of joint training, and that the winner of SupCon
and SimCLR itself serves as a strong baseline.

To explain the above phenomena in depth and exploit the
mechanical differences between semi-supervised and noisy-
labeled information in helping contrastive learning, we es-
tablish a unified theoretical framework of weakly supervised
contrastive learning, applying to both semi-supervised and
noisy-labeled settings. We investigate the joint training of
supervised and unsupervised contrastive losses, and take
spectral contrastive learning (HaoChen et al., 2021) as a
performance proxy for (standard) contrastive learning to
conduct the theoretical analysis. Based on the posterior
probability of labeled samples, we translate the weakly su-
pervised information (under symmetric label noise assump-
tion) into a similarity graph under the framework of spectral
clustering. This enables us to analyze the effect of the label
information on the augmentation graph, and consequently
on the derived error bound. Accordingly, we prove that un-
der the semi-supervised setting, the label information helps
improve the downstream error bound, whereas under the
noisy-labeled setting, the joint training is no better than the
winner of supervised and unsupervised contrastive learning
in terms of an error bound.

The contributions of this paper are summarized as follows.

• We for the first time establish a theoretical framework
for contrastive learning under weak supervision, includ-
ing noisy label learning and semi-supervised learning.

• By formulating the label information into a similar-
ity graph based on the posterior probability of la-
bels, we derive the downstream error bound of jointly
trained contrastive learning losses. We prove that semi-
supervised labels improve the downstream error bound
compared with unsupervised learning, whereas under
the noisy-labeled setting, joint training fails to improve
the error bound compared with the winner of super-
vised and unsupervised contrastive learning.

• We empirically verify that noisy labels have only lim-
ited help to contrastive representation learning under
the paradigm of joint training. Thus, complex designs
such as label denoising are still required for leverag-
ing noisy labeled information in improving supervised
contrastive learning.

2. Related Works
Theoretical Frameworks of Contrastive Learning. The
theoretical frameworks of unsupervised contrastive learning
can be divided into two major categories. The first category
is devoted to building the relationship between unsupervised
contrastive learning and supervised downstream classifica-
tion. Arora et al. (2019) first introduce the concept of latent
classes, hypothesizes that semantically similar points are
sampled from the same latent class, and proves that the unsu-
pervised contrastive loss serves as an upper bound of down-
stream supervised learning loss. Nozawa & Sato (2021);
Ash et al. (2022); Bao et al. (2022) further investigate the
effect of negative samples, and establish surrogate bounds
for the downstream classification loss that better match the
empirical observations on the negative sample size. How-
ever, studies in this category have to assume the existence of
supervised latent classes, and that the positive pairs are con-
ditionally independently drawn from the same latent class.
This assumption fails to distinguish between supervised and
unsupervised contrastive learning, and therefore cannot be
used to analyze the weakly supervised setting.

Another major approach is to analyze contrastive learning
by modeling the feature similarity. HaoChen et al. (2021)
first introduce the concept of the augmentation graph to
represent the feature similarity of the augmented samples,
and analyzes contrastive learning from the perspective of
spectral clustering. Shen et al. (2022) use a stochastic block
model to analyze spectral contrastive learning for the prob-
lem of unsupervised domain adaption. Similarly, Wang et al.
(2021b) propose the concept of augmentation overlap to
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formulate how the positive samples are aligned. Moreover,
contrastive learning is also understood through other exist-
ing theoretical frameworks of unsupervised learning, such
as nonlinear independent component analysis (Zimmermann
et al., 2021), neighborhood component analysis (Ko et al.,
2022), variational autoencoder (Aitchison, 2021), stochastic
neighbor embedding (Hu et al., 2023), geometric analysis of
embedding space (Huang et al., 2023), and message passing
(Wang et al., 2023).

In this paper, we follow the second category of contrastive
learning approaches, and formulate the weakly supervised
information into a similarity graph based on both label and
feature information.

Contrastive Learning for Noisy Label Learning. Ghosh
& Lan (2021) first find that pretraining with contrastive
learning improves robustness to label noise through empiri-
cal evidence. Many methodological studies are carried out
for noisy label learning with the help of contrastive learn-
ing. Yao et al. (2021); Ortego et al. (2021); Li et al. (2022)
use representations learned from unsupervised contrastive
learning to filter out confident samples from all noisy ones,
and in turn use the confident samples to conduct super-
vised contrastive learning to generate better representations.
Navaneet et al. (2022) introduce additional semantically
similar supervision to contrastive representation learning by
incorporating nearest neighbors under certain constraints
as additional positive samples, which also adapts to noisy
label learning. By contrast, Yan et al. (2022) follow the idea
of negative learning (Kim et al., 2019; 2021b), and lever-
ages the negative correlations from the noisy data to avoid
same-class negatives in contrastive learning. Chuang et al.
(2022) propose a robust contrastive loss function inspired
by the symmetric losses that are proved to be noise tolerant.
Very recently, Zhang et al. (2022a) use contrastive learning
to handle noisy labels of long-tailed data. For theoretical
studies, Cheng et al. (2021) analyze the robustness of cross-
entropy with SSL features, and Xue et al. (2022) prove the
robustness of downstream classifier in contrastive learning.

Contrastive Learning for Semi-supervised Learning.
Lee et al. (2022); Yang et al. (2022) use contrastive regular-
ization to enhance the reliability of pseudo-labeling in semi-
supervised learning. Kim et al. (2021a) introduce a semi-
supervised learning method that combines self-supervised
contrastive pre-training and semi-supervised fine-tuning
based on augmentation consistency regularization. Zhang
et al. (2022b) use contrastive loss to model pairwise similar-
ities among samples, generates pseudo labels from the cross
entropy loss, and in turn calibrates the prediction distribu-
tion of the two branches.

To conclude, the existing studies of contrastive learning
under weak supervision mainly focus on using contrastive

learning as a tool to improve the weakly supervised learn-
ing performance, whereas to the best of our knowledge,
none of the previous works reveals how weak supervision
helps contrastive learning. To fill in the blank, in this pa-
per, we establish a theoretical framework for contrastive
learning under weak supervision, and show the effects of
semi-supervised and noisy-labeled information on the error
bounds of contrastive learning.

3. Preliminaries
Notations. Suppose that random variables X̄ ∈ X̄ := Rd,
and Y ∈ [r] := {1, . . . , r}. Let the input natural data
{(x̄i, yi)}i∈[N ] be i.i.d. sampled from the joint distribution
P(X̄, Y ). Given a natural data x̄ ∈ X̄ , we use A(·|x̄) to
denote the distribution of its augmentations and use X to
denote the set of all augmented data, which is assumed to
be finite but exponentially large. Denote n = |X |.

3.1. Spectral Contrastive Learning

In HaoChen et al. (2021), an augmentation graph G is used
to describe the distribution of augmented samples, where
the edge weight wxx′ := Ex̄∼P̄ [A(x|x̄)A(x′|x̄)] denotes
the marginal probability of generating augmented views x
and x′ from the same natural data. Due to the total proba-
bility mass,

∑
x,x′∈X wxx′ = 1. The adjacent matrix of the

augmentation graph is denoted as A := (wxx′)x,x′∈X ∈
Rn×n, and the normalized adjacent matrix is denoted as
Ā := D−1/2AD−1/2, where D := diag(wx)x∈X , and
wx :=

∑
x′∈X wxx′ .

In this paper, we consider the spectral contrastive loss L(f)
proposed by HaoChen et al. (2021), that is, for an embed-
ding function f : X → Rk,

−2 · Ex,x+ [f(x)⊤f(x+)] + Ex,x′

[(
f(x)⊤f(x′)

)2]
. (1)

Spectral contrastive loss is proved to be equivalent to the
matrix factorization loss, i.e. for F ∈ Rn×k := (ux)x∈X ,
ux := w

1/2
x f(x),

Lmf(F ) := ∥Ā− FF⊤∥2F = L(f) + const. (2)

3.2. Noisy Label Learning

Recall that we denote the true label of a given instance
x ∈ X is y. One common assumption of the generation
procedure of label noise is as follows. Given the true labels,
the noisy label is randomly flipped to another label ỹ with
some probability. In this paper, we take the widely adopted
symmetric label noise assumption as an example.

For notational simplicity, we write the symmetric la-
bel noise assumption in matrix form. Denote Y :=
(ηj(xi))i∈[n],j∈[r], ηj(x) = P(Y = j|x), as the posterior
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probability matrix of the clean label distribution, and de-
note Ỹ := (η̃j(xi))i∈[n],j∈[r], η̃j(x) = P(Ỹ = j|x), as
the noisy label distribution. In Assumption 3.1, we assume
that the flipping probability is conditional independent of
the input data, and that the flipping probability to all other
classes is uniformly at random.

Assumption 3.1. For symmetric label noise with noise
rate γ ∈ (0, 1), we denote the transition matrix T =
(ti,j)i∈[r],j∈[r], where

ti,i = 1− γ, and ti,j =
γ

r − 1
, for j ̸= i. (3)

Then the noisy label posterior distribution is assumed to be

Ỹ = Y T . (4)

Under Assumption 3.1, T is symmetric. Specifically, when
γ = 0, T degenerates to the identity matrix Ir×r. Moreover,
to guarantee PAC-learnability, we usually assume the true
label is the dominating class, i.e. γ < r−1

r .

3.3. Semi-Supervised Learning

For j ∈ [r], let nj be the number of labeled samples of
Class j. Let nL =

∑
j∈[r] nL,j be the number of all labeled

samples, and nU be the number of unlabeled samples. Ob-
viously, we have nL + nU = n. Usually, the number of
labeled samples is much smaller than that of the unlabeled
ones because human annotation is costly and labor-intensive.
That is, we can naturally assume nL ≪ nU .

In the following parts of the paper, we analyze the settings
of noisy label learning and semi-supervised learning in a
unified framework. Without loss of generality, we assume
(x1, . . . , xnL

) is labeled with noise rate γ ∈ [0, r−1
r ), and

denote the corresponding clean and noisy posterior prob-
ability matrices as Y L and Ỹ L, respectively. Then we
have Ỹ L = Y LT . Specifically, when γ = 0, our ana-
lyzing framework degenerates to the standard setting of
semi-supervised learning, and when nL = n, our analyzing
framework reduces to the standard noisy label learning.

4. Mathematical Formulations
We mention that our formulation of “similarity graph” is
not a distributional assumption on the underlying similarity
among data, but to formulate a possible probability of draw-
ing positive samples in contrastive learning that takes both
label and feature information into consideration. Specif-
ically, in Sections 4.1 and 4.2, we only discuss the simi-
larity graph induced by the weakly supervised labels and
neglected feature similarity. Note that in Section 4.2 we
investigate the setting of semi-supervised noisy labels, so as
to include semi-supervised learning and noisy label learning
in a unified framework. Then in Section 4.3, we take both

label and feature similarity into consideration through the
convex combination to describe the joint training loss.

4.1. Similarity Graph Describing Noisy Labels

To leverage the labeled information in the form of a similar-
ity graph, we first consider a simple example where noise
rate γ = 0 and the label distribution is deterministic, i.e.
for a sample x with true label y, the posterior probability
ηy(x) = 1 and ηj(x) = 0 for j ̸= y. In this case, we
can naturally assume that in the label similarity graph, the
intra-class vertices are fully connected and the inter-class
vertices are disconnected. That is, wxx′ = 1 if x and x′ has
the same label and otherwise wxx′ = 0.

Then we consider the more general stochastic label scenario.
Recall that for unsupervised spectral contrastive learning,
the edge weight wxx′ in an augmentation graph G describes
the marginal probability of generating x and x′ from the
same natural data. That is, wxx′ describes the joint prob-
ability of a pair of positive samples. Similarly, since the
positive samples for supervised contrastive learning (Khosla
et al., 2020) are selected as all same-class samples, we can
naturally define the edge weight wxx′ as the probability
of two views x and x′ generating from the same class, i.e.
wxx′ =

∑
j∈[r] ηj(x)ηj(x

′), and therefore AL := Y LY
⊤
L .

Moreover, we denote Ā as the normalized adjacent matrix.
For the simplicity of notations, we consider the case where
the data is class-balanced, i.e. n1 = . . . = nr = nL/r.
Then we have Ā = r

nL
A.

Next, we add label noise to our mathematical formulations.
To be specific, when performing supervised contrastive
learning based on noisy labeled data, we naturally select
positive samples as the samples with the same noisy labeled
data. According to Assumption 3.1, we have Ỹ L = Y LT ,
where T is symmetric. Then the adjacent matrix of the
similarity graph describing noisy labels is formulated as

A⋆
L : = Ỹ LỸ

⊤
L = Y LT (Y LT )⊤ = Y LTT⊤Y ⊤

L

= Y LT
2Y ⊤

L . (5)

Similarly, when data is class balanced, we have the normal-
ized adjacent matrix Ā

⋆
L = nL

r A⋆
L.

4.2. Similarity Graph Describing Semi-Supervised
Noisy Labels

Under the setting of semi-supervised learning, we have no
prior knowledge about the label information of the unlabeled
samples. Therefore, from the perspective of unsupervised
contrastive learning, the unlabeled samples can be viewed
as having unique class labels. Therefore, to construct the
similarity graph, we attach sample-specific labels to the
unlabeled samples. Thus, the posterior probability matrix of
unlabeled samples Y U is an identity matrix InU×nU

. Note
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that here we only discuss the similarity graph of supervised
information, so the feature similarity between samples is
not included in the similarity graph.

Combining both labeled and unlabeled samples, the poste-
rior probability matrix of all semi-supervised samples can
be denoted as

Ỹ =

[
Ỹ L 0

0 Ỹ U

]
=

[
Y LT 0
0 InU×nU

]
. (6)

Therefore, the similarity graph of samples with nL noisy
labels can be denoted as

A⋆ = Ỹ Ỹ
⊤
=

[
Y LT

2Y ⊤
L 0

0 InU×nU
.

]
(7)

In Lemma 4.1 we present the influence of symmetric label
noise with noise rate γ on the similarity graph A⋆.

Lemma 4.1. Under Assumption 3.1, if the data is class
balanced, i.e. n1 = . . . = nr = nL

r , then there holds

Ā
⋆
=

[
α(γ)ĀL + β(γ) r

nL
1⃗nL

1⃗⊤nL
0

0 InU×nU

]
, (8)

where α(γ) :=
(
1− r

r−1γ
)2

and β(γ) := γ
r−1

(
2− r

r−1γ
)
.

Note that without label noise, i.e. γ = 0, we have α(γ) = 1
and β(γ) = 0. For the sake of simplicity, in the follow-
ing, we write α and β instead of α(γ) and β(γ) when no
ambiguity is aroused.

In Lemma 4.1, we show that the effect of symmetric la-
bel noise is to add a uniform weight to the edges between
all labeled samples. This uniform weight increases the
confusion between intra- and inter-class similarities. For
example, under the deterministic label scenario, we have
AL = InL×nL

, and under label noise, the original intra-
class similarity is uniformly shrunk from 1 to α and the
inter-class similarity increases from 0 to β. Moreover, as
the noise rate γ increases, α decreases and β increases,
which results in severer confusion between the intra- and
inter-class similarities. Intuitively, as the similarity graph
describes the sampling probability of positive pairs, α and
β measure how noisy that similarity is. (The sampling
probability of negative samples remains unaffected because
they are assumed to be uniformly sampled regardless of
labels.) Then under label noise, the probability of same-
class samples being selected as positive pairs reduces from
1 to α+ r

nL
β, and the probability of different-class samples

being selected as positive pairs raises from 0 to r
nL

β.

Note that our mathematical formulations can also be
extended to generalized label noise assumptions of the
noise transition matrix T (other than symmetric label
noise). Specifically, under generalized assumptions, the

term r
nL

1⃗nL
1⃗⊤nL

in (8) will become a real symmetric ma-
trix which depends on the specific form of the label noise
assumption.

4.3. Similarity Graph Describing Joint Training

Recall that we want to investigate the effect of noisy labels in
the joint training of supervised and unsupervised contrastive
losses. Specifically, for θ ∈ (0, 1), we have the loss for joint
training as

LJointTraining := (1− θ)Lunsup + θLsup, (9)

where in Lunsup, the positive samples are selected as aug-
mentations of the anchor sample, and in Lsup, the positive
samples are selected as (possibly noisy) same-class samples.
The specific algorithms of joint training for noisy label learn-
ing and semi-supervised learning are shown in Appendix
B.1.

According to (2), the spectral contrastive loss is equivalent
to the matrix factorization loss. Therefore, we can write (9)
as a convex combination of matrix factorization losses with
similarity graphs under label and feature information, i.e.

(1− θ)∥Ā0 − FF⊤∥2F + θ∥Ā⋆ − FF⊤∥2F , (10)

where we denote A0 as the augmentation graph of arbitrary
unlabeled samples describing feature information, and A⋆

is denoted in (7) describing the similarity graph induced by
the semi-supervised noisy labeled (augmented) samples.

Note that (10) can be rewritten as

∥((1− θ)Ā0 + θ ¯̃A)− FF⊤∥2F + c0(θ), (11)

where c0(θ) := (1− θ)∥Ā0∥2F + θ∥ ¯̃A∥2F − ∥(1− θ)Ā0 +

θ ¯̃A∥2F is independent of F . As c0(θ) does not affect the
training procedure, optimizing (10) and (11) results in the
same optimal F . Therefore, in the following, to analyze the
joint training loss (9), we investigate the properties of the
mixed similarity graph

Aθ,γ,nL
:= (1− θ)Ā0 + θĀ

⋆
. (12)

5. Theoretical Results
In this section, we first compute eigenvalues of the simi-
larity graph induced by both label and feature information,
which plays a key role in deriving the error bound of con-
trastive learning in Section 5.1. Then in Section 5.2, we
show that (clean) label information in the semi-supervised
setting can help improve the error bound, whereas in Sec-
tion 5.3, we prove that the joint training of supervised and
unsupervised contrastive learning fails to improve the error
bound compared with purely supervised or purely unsuper-
vised contrastive learning.
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5.1. Eigenvalues of Similarity Graph Describing Joint
Training

We first compute the eigenvalues of the similarity graph
describing the weak labels (without describing feature infor-
mation).
Proposition 5.1. For arbitrary Y , assume that the labeled
data is class-balanced, i.e.

∑
i∈[nL] ηj(xi) = nL/r for

j ∈ [r]. Assume that the eigenvalues of ĀL are µ1, . . . , µn

(in descending order). Then under Assumption 3.1, the
eigenvalues of Ā⋆ are

µ̃1 = . . . = µ̃nU+1 = 1, (13)
µ̃j = µjα, for j = nU + 2, . . . , n, (14)

where α = µj

(
1− r

r−1γ
)2

.

In Proposition 5.1, we show that the eigenvalues of Ā
⋆

rely on the eigenvalues of Ā and consequently rely on
the posterior probabilities of clean labels. Specifically,
if the true label has a higher posterior probability, i.e.
maxj∈[r] P(Y = j|x) is larger, then the eigenvalues of
Ā are larger. On the other hand, the existence of label
noise uniformly shrinks the eigenvalues of Ā⋆ except for
the largest ones, and larger noise rate γ results in smaller α
and thus leads to smaller eigenvalues of Ā⋆. Moreover, the
number of largest eigenvalues is decided by the number of
unlabeled samples.

Note that rank(A⋆) ≤ rank(Y L) + nU ≤ nU + r, and
therefore we have µ̃nU+r+1 = . . . = µ̃n = 0. Specifically,
under the deterministic label scenario, we have µnU+2 =
. . . = µnU+r = 1. Then the eigenvalues of Ā⋆ become

µ̃1 = . . . = µ̃nU+1 = 1, (15)

µ̃nU+2 = . . . = µ̃nU+r = α =
(
1− r

r − 1
γ
)2

, (16)

µ̃nU+r+1 = . . . = µ̃n = 0. (17)

Then in the following proposition, we discuss the eigenval-
ues of the mixed similarity graph Aθ,γ,nL

describing both
weak labels and feature information.
Proposition 5.2. Denote λ1, . . . , λn as the eigenvalues of
Aθ,γ,nL

. Then given the eigenvalues of Ā0, i.e. ν1, . . . , νn
and the eigenvalues of ĀL, i.e. µ1, . . . , µnL

(in descending
order), under the deterministic scenarios, when k ≤ nU ,
there holds

max
{
θ + (1− θ)νnL+k, (1− θ)νk+1, θα+ (1− θ)νnL+k−r+1

}
≤ λk+1 ≤ θ + (1− θ)νk+1,

and for k ≥ nU + r,

(1− θ)νk+1 ≤ λk+1

≤ min{θ + (1− θ)νk+1, θα+ (1− θ)νk−nU
, (1− θ)νk+1−r−nU

}.

In Proposition 5.2, we derive both the upper and lower
bounds for the k + 1-th largest eigenvalue of Aθ,γ,nL

. We
see that under the deterministic scenario, the upper bound
of the k + 1-th largest eigenvalue of Aθ,γ,nL

depends on
at most three specific eigenvalues of the unsupervised aug-
mentation graph A0. The value of λk+1 is also affected by
the weighting parameter θ. However, the specific depen-
dence relies on the relative magnitudes of νk+1, νk−nU

, and
νk+1−nU−r. A perhaps somehow anti-intuitive conclusion
is that when k is smaller than nU , the upper bound of λk+1

is unaffected by the noise rate. Similarly, we notice that for
k ≥ nU + r, the lower bound of λk+1 is unaffected by the
noise rate.

5.2. Error Bound of Joint Training under
Semi-supervised Setting

Recall that the goal of contrastive representation learning is
to learn an embedding function f : X → Rk. The quality of
the learned embedding is often evaluated through linear eval-
uation. To be specific, denote B ∈ Rk×r as the weights of
the downstream linear classifier, and the linear predictor is
denoted as gf,B(x̄) = argmaxi∈[r] Px∼A(·|x̄)(gf,B(x) =
i). In this paper, we focus on analyzing the error bound
of the best possible downstream linear classifier gf∗

pop,B
∗ ,

where f∗
pop ∈ argminf :X→Rk is the minimizer of the popu-

lation spectral contrastive loss L(f) defined in (1), and B∗

is the optimal weight for the downstream linear classifier.

Following HaoChen et al. (2021), we assume that the labels
are recoverable from augmentations, i.e. we assume there
exists a classifier g that can predict y(x) given x with error
at most δ ∈ (0, 1).

Assumption 5.3. Assume that for some δu, δs > 0, there
holds

Ex̄∼PX̄ ,x∼A(·|x̄)1[ŷ(xi) ̸= y(x̄)] ≤ δu. (18)

and

1

nL

∑
i∈[nL]

∑
ℓ∈[r]

ηℓ(xi)1[ŷ(xi) ̸= ℓ] ≤ δs. (19)

Compared with Assumption 3.5 in HaoChen et al. (2021),
Assumption 5.3 additionally assumes the recoverable of
labels taking expectation under the posterior probability dis-
tribution. Intuitively, δu represents the error under unsuper-
vised learning, and δs represents the error under supervised
learning (with clean posterior distributions). Therefore, it is
reasonable to assume that δs ≤ δu. Note that Assumption
5.3 is a minor revision of the original assumption. The ad-
ditional assumption (19) does not change the nature of the
original idea of label recovery, and will be used to bound
the error term of learning from weakly supervised labels.

6



Rethinking Weak Supervision in Helping Contrastive Learning

Then we derive the error bound of downstream linear evalu-
ation learned by contrastive learning under semi-supervised
setting.

Theorem 5.4. Assume the assumptions in Theorem 5.5 hold.
Then if

∥B∗∥F ≤ 1/max
{
(1− θ)νk, θ + (1− θ)νnL+k−r

}
,

we have

E ≤
2
[
2δu + [(1 + ρ)δs − 2δu]θ

]
1− θ − (1− θ)νk+1

+ 8δu. (20)

By Theorem 5.4, the error bound of linear probing is larger
when the label recovery error δu and δs gets larger.

The error bound in Theorem 5.4 attains the minimum
when θ = 1 if ρ ≤ 2δu/δs − 1. And therefore we have
E ≤ 2(1 + ρ)δs + 8δu ≤ 2(1 + ρ)δu + 8δu. Since
νk+1 ∈ [0, 1], then when ρ ≤ (1 + νk+1)/(1 − νk+1),
2(1+ ρ)δu +8δu ≤ 4δu

1−νk+1
+8δu. Recall that in HaoChen

et al. (2021), the error bound of purely unsupervised con-
trastive learning is 4δu

1−νk+1
+ 8δu. Our result indicates that

semi-supervised information improves the error bound com-
pared with purely unsupervised contrastive learning since
by using all labeled samples. This theoretical point can also
be verified by existing experimental research about semi-
supervised contrastive learning, e.g. Assran et al. (2020).

5.3. Error Bound of Joint Training under Noisy-labeled
Setting

In Theorem 5.5, we present the error bound of joint training
contrastive learning under noisy label setting.

Theorem 5.5. For arbitrary Y , assume that the labeled
data is class-balanced, i.e.

∑
i∈[nL] ηj(xi) = nL/r for j ∈

[r]. Denote ν1, . . . , νn as the eigenvalues of Ā0 (in descend-
ing order). Denote E := Px̄∼PX̄ ,x∼A(·|x̄)

(
gf∗

pop,B
∗(x) ̸=

y(x̄)
)

as the linear evaluation error, where B∗ ∈ Rr×k with
norm ∥B∗∥F ≤ 1/(1 − θ)νk. Assume there exists ρ > 0,
such that wi/wj < ρ, for i, j ∈ [n], and k > r. Then
under the deterministic scenario and Assumptions 3.1 and
5.3, there holds

E ≤
2
[
2δu + [α(1 + ρ)δs − 2δu + (1− α)]θ

]
1− λ(ν; θ, α)

+ 8δu, (21)

where

λ(ν; θ, α) = min{θ + (1− θ)νk+1, θα+ (1− θ)νk,

(1− θ)νk+1−r}. (22)

and α :=
(
1− r

r−1γ
)2

.

The bound in Theorem 5.5 gets larger when the noise rate γ
and the label recovery error δu and δs gets larger. It is worth

noting that Theorem 5.5 shows that joint training fails to
improve the error bound. Specifically, since the numerator
is positive, this bound is equivalent to the minimum of the
following three terms

2
[
2δu + [α(1 + ρ)δs − 2δu + (1− α)]θ

]
1− θ − (1− θ)νk+1

+ 8δu, (23)

2
[
2δu + [α(1 + ρ)δs − 2δu + (1− α)]θ

]
1− θα− (1− θ)νk

+ 8δu, (24)

and

2
[
2δu + [α(1 + ρ)δs − 2δu + (1− α)]θ

]
1− (1− θ)νk+1−r

+ 8δu. (25)

Since each of the three terms is a monotonic function with
respect to θ, the minimum must be attained at the end
of the range of θ, i.e. θ = 0 or θ = 1. Therefore,
the minimum of E must be attained at θ = 0 or θ = 1,
too. Specifically, when the noise rate is relatively high,

i.e. γ > γthreshold := r−1
r

(
1−

√
1−νk+1−2δu

(1−(1+ρ)δs)(1−νk+1)

)
, E

achieves its minimum at θ = 0, whereas when the noise
rate is relatively low, i.e. γ < γthreshold, E achieves its
minimum at θ = 1. Either way, joint training of supervised
and unsupervised contrastive learning (θ ∈ (0, 1)) does not
improve the error bound compared with purely supervised
or purely unsupervised contrastive learning.

Then we derive the finite sample bound for the linear prob-
ing error for contrastive learning under label noise, which
explicitly depends on the training set size n.

Theorem 5.6. Denote Ê := Px̄∼PX̄ ,x∼A(·|x̄)
(
gf̂ ,B̂(x) ̸=

y(x̄)
)

as the generalization bound for the linear probing
error. For any labeling function ŷ : X → [r], there exists a
linear probe B̂ ∈ Rr×k such that with probability at least
1− ε over the randomness of data, we have

Ê ≤ min
1≤k′≤k

(
2
[
2δu + [α(1 + ρ)δs − 2δu + (1− α)]θ

]
1− λ(ν; θ, α, k′ + 1)

+
4k′

[
c1 · R̂n/2(F) + c2

(√ log 2/δ
n

+ ε
)]

(
(1− θ)νk′ − λ(ν; θ, α, k + 1)

)2 )
+ 8δu, (26)

where R̂n/2(F) is the maximal possible empirical
Rademacher complexity of F over n/2 data, λ(ν; θ, α, k +
1) = min{θ+(1−θ)νk+1, θα+(1−θ)νk, (1−θ)νk+1−r},
α :=

(
1− r

r−1γ
)2

, c1 ≲ k2κ2 + kκ and c2 ≲ kκ2 + k2κ4.

Note that in Theorem 5.6, as the training size n → ∞,
the sample error term (second term) approximates 0, and
therefore the bound in Theorem 5.6 degenerates to that in
Theorem 5.5.

For a given sample size n < ∞, we observe a trade-off in the
choice of k. Specifically, as k increases, the approximation

7
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error (1st term in (26)) decreases, whereas the sample error
(2nd term in (26)) increases. It will lead to the following
two cases: 1) when k is small, the approximation error could
be very large since λk+1 is large; 2) when k is large, the
eigen gap λk′ − λk+1 → 0 since both λk′ and λk+1 are
very small, and accordingly the sample error goes to infinity.
This suggests that we should choose a moderate feature
dimension k, so that both approximation and sample error
terms are relatively small.

5.4. Discussions

By comparing Theorems 5.4 and 5.5, we show that clean
semi-supervised labels help improve the downstream linear
error bound of contrastive representation learning, whereas
jointly training supervised and unsupervised contrastive
losses fails to improve the error bound under noisy labels.
In other words, the winner of supervised and unsupervised
contrastive learning itself serves as a strong baseline for
noisy label contrastive learning. This theoretical finding
partly explains why the intuitive joint-training method is not
investigated by the community, and why complex algorith-
mic design such as label denoising is a popular approach to
leveraging noisy labels in contrastive learning.

For technical contributions, although the theoretical analysis
is based on HaoChen et al. (2021), our analysis is essentially
different from existing works in the following aspects: 1)
We for the first time establish a theoretical framework for
weakly supervised contrastive learning, where we translate
the label information into a similarity graph, whereas exist-
ing works analyzed pure unsupervised contrastive learning;
2) The main technical difficulty of our analysis is to discuss
the eigenvalues of the mixed similarity graph containing
both label and feature information (Proposition 5.2), rather
than to utilize existing results about self-supervised con-
trastive learning.

The joint training of SimCLR and SupCon is also discussed
in previous works (Islam et al., 2021; Chen et al., 2022),
which focus on the empirical improvement of transfer per-
formances whereas we focus on the theoretical properties of
joint training. More details can be found in Appendix B.2.

6. Experiments
Recall that it is already empirically verified by Assran et al.
(2020) that clean semi-supervised labels help improve over
unsupervised contrastive learning. Therefore, in this section,
we only empirically verify our theoretical results that noisy
labels have limited effects in improving the performance of
contrastive learning, and show that the winner of SupCon
and SimCLR itself serves as a strong baseline for contrastive
learning with noisy labels. Based on this, we discuss that
complex designs are imperative for improving contrastive

representation learning with noisy labels.

6.1. Experimental Setups

We conduct numerical comparisons on the CIFAR-10 and
TinyImageNet-200 benchmark datasets. Because the stan-
dard supervised contrastive learning algorithm SupCon
(Khosla et al., 2020) is adapted from the self-supervised
contrastive learning framework SimCLR (Chen et al., 2020),
for fair comparisons, we use SupCon as the supervised con-
trastive loss, and SimCLR as the self-supervised contrastive
loss. We argue that we can to a large extent verify the theo-
retical insights discussed in the previous section, even if the
theoretical parts consider the spectral contrastive loss. First
of all, as shown in the original paper, spectral contrastive
loss has comparative empirical performances with respect
to that of SimCLR. Besides, the theoretical evidence can
be found in Johnson et al. (2023), which proves that by
interpreting the exponentiated dot product ef(x)

⊤f(x′) as
the similarity and treating the exponential and temperature
term τ as part of the model instead of part of the objective,
InfoNCE loss and Spectral contrastive loss share the same
population minimum. That means, by adopting similar ker-
nel deriviations, our work also has the potential to extend to
other contrastive losses including standard InfoNCE.

We follow the experimental setting of SimCLR and SupCon.
Specifically, we use ResNet-50 as the encoder and a 2-layer
MLP as the projection head. We set the batch size as 1024.
We use 1000 epochs for training representations. We use
the SGD optimizer with the learning rate 0.5 decayed at the
700-th, 800-th, and 900-th epochs with a weight decay 0.1.
We run experiments on 4 NVIDIA Tesla V100 32GB GPUs.
The data augmentations we use are random crop and resize
(with random flip), color distortion, and color dropping. We
evaluate the self-supervised learned representation by linear
evaluation protocol, where a linear classifier is trained on
the top of the encoder, and regard its test accuracy as the
performance of the encoder. 100 epochs are used for linear
probing on the clean data. The symmetric noisy labels are
generated by flipping the labels of a given proportion of
training samples uniformly to one of the other class labels.
For the CIFAR-10 dataset, we run experiments with noise
rate {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and for TinyImageNet-200,
we run experiments with noise rate {0.2, 0.4, 0.6, 0.8}.

6.2. Parameter Analysis of θ

We first conduct an analysis of the parameter θ for the joint
training of SimCLR and SupCon. In Figure 2(a), we plot
the optimal θ for LJointTraining on the CIFAR-10 dataset
across various noise rates. We show that when the noise rate
is relatively high, θ is relatively small, and LJointTraining re-
lies more on unsupervised learning, whereas when the noise
rate is relatively low, θ is relatively large, and LJointTraining

8
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relies more on supervised learning. Moreover, the optimal θ
lies very close to either 0 or 1, which indicates that only one
loss mainly contributes to the joint training. On the other
hand, in Figure 2(b), we plot the performance changes of
LJointTraining with respect to the parameter θ under noise
rates 0.4 and 0.8 on the TinyImageNet-200 dataset. We
show that under both noise rates, as θ increases, the accu-
racy of LJointTraining decreases. Moreover, the performance
drop of LJointTraining under high noise rates is more signif-
icant than that under low noise rates, indicating that too
much noisy label information hurts the performance of joint
training, especially when the noise rate is high.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

noise rate

0.2

0.4

0.6

0.8

1.0

op
t. 

(a) Optimal θ for various noise
rates on CIFAR-10.
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44
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nr=0.8

(b) Performance change w.r.t. θ
on TinyImageNet-200.

Figure 2: Parameter analysis of θ.

6.3. Parameter Analysis of k

We empirically verify the discussions following Theorem
5.6 about the feature dimension k. We train the joint objec-
tive (12) with θ = 0.1 using ResNet-50 on the CIFAR-10
dataset under 30% label noise with feature dimension vary-
ing in {128, 256, 512, 1024, 2048}, and report the linear
probing accuracy in Table 1.

Table 1: Parameter analysis of k.

k 128 256 512 1024 2048

Acc (%) 91.89 92.18 92.12 91.77 90.9

We observe that as k increases, the linear probing accuracy
first increases and then decreases, which validates the the-
oretical insight that we should choose a moderate feature
dimension k in Theorem 5.6.

6.4. The Winner of SupCon and SimCLR Serves as a
Strong Baseline

In this section, we show that under label noise, joint training
of SupCon and SimCLR has limited improvement over a
simple but strong baseline, that is, the winner of SupCon and
SimCLR on the TinyImageNet-200 dataset. Specifically, in
Figure 3, the box plot show the linear probing performances
of LJointTraining with θ ∈ {0.1, 0.2, 0.4, 0.6} under noise
rates {0.2, 0.4, 0.6, 0.8} respectively. And the curves re-
spectively show the performance of SimCLR, SupCon, and

0.0 0.2 0.4 0.6 0.8

noise rate

45

50

55

60

ac
c

SimCLR
SupCon
Max(SimCLR,SupCon)

Figure 3: The winner of SupCon and SimCLR serves as
a strong baseline of joint training under label noise on the
TinyImageNet-200 dataset.

the winner of the two. We can see that the “Max” perfor-
mance of SupCon and SimCLR lies within the box plots,
indicating that the winner of SupCon and SimCLR has a
comparative or sometimes better performance compared
with the jointly trained model. Additionally, we observe the
same trends on tasks like detection, segmentation, and fine-
tuning in Appendix B.3. These experimental results verify
the theoretical result in Theorem 5.5 that joint training does
not improve the error bound.

7. Conclusion
In this paper, we establish a theoretical framework for
weakly supervised contrastive learning, which is compatible
with the settings of both noisy label learning and semi-
supervised learning. We take spectral contrastive learning
as a proxy for theoretical analysis. By formulating a mixed
similarity graph induced by both weakly supervised label
information and unsupervised feature information, we an-
alyze the weakly supervised spectral contrastive learning
based on the framework of spectral clustering, and derive the
downstream linear evaluation error bound. Our theoretical
results show that semi-supervised information improves the
downstream error bound, whereas, under the setting of sym-
metric label noise, we prove that jointly training supervised
and unsupervised contrastive losses fail to improve the error
bound. Our theoretical findings here provide new insights
for the community to rethink the role of weak supervision in
helping the representation of contrastive learning. For future
works, we will investigate the effect of more complex weak
supervision, such as active learning and label-dependent
label noise, on contrastive learning.
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Appendix
The appendix consists of the proofs for lemmas and theorems (Section A) and additional experimental results (Section B).

A. Proofs
A.1. Proof of Lemma 4.1

Proof. Under Assumption 3.1, we have

(T 2)i,j =

{
(1− γ)2 + γ2/(r − 1), i = j

2γ(1− γ)/(r − 1) + (r − 2)γ2/(r − 1)2, i ̸= j

=

(1− γ)2 + γ2/(r − 1), i = j
γ

r − 1

(
2− r

r − 1
γ
)
, i ̸= j.

(27)

That is, we have

T 2 =
[
(1− γ)2 + γ2/(r − 1)− γ

r − 1

(
2− r

r − 1
γ
)]

Ir×r

+
γ

r − 1

(
2− r

r − 1
γ
)
1⃗r1⃗

⊤
r

=
(
1− r

r − 1
γ
)2

Ir×r +
γ

r − 1

(
2− r

r − 1
γ
)
1⃗r1⃗

⊤
r

:= αIr×r + β1⃗r1⃗
⊤
r . (28)

Given γ ∈ [0, 1), we have

A⋆
L = Y LT

2Y ⊤
L = Y L

(
αIr×r + β1⃗r1⃗

⊤
r

)
Y ⊤

L

= αY LY
⊤
L + βY L1⃗r1⃗

⊤
r Y

⊤
L

= αAL + β1⃗nL
1⃗⊤nL

, (29)

where the last equality holds because
∑

j ηj(xi) = 1 for i ∈ [n].

and the normalized augmentation graph is

Ā
⋆
= D̃

−1/2
A⋆D̃

−1/2
, (30)

where

D̃ =

[
D̃L 0
0 InU×nU

]
, (31)

D̃L = diag(di), (32)

and

di =
∑

j∈[nL]

A⋆
i,j = α

∑
j∈[nL]

∑
ℓ∈[r]

ηℓ(xi)ηℓ(xj) + nLβ

= α
∑
ℓ∈[r]

ηℓ(xi)
∑

j∈[nL]

ηℓ(xj) + nLβ = α
∑
ℓ∈[r]

ηℓ(xi)nℓ + nLβ (33)

Specifically, when the labeled data is class-balanced, i.e. n1 = . . . = nr = nL/r. Then we have

di =
nL

r
α
∑
ℓ∈[r]

ηℓ(xi) + nLβ =
nL

r
α+ nLβ =

nL

r
, (34)
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and thus

Ā
⋆
=

[
α r

nL
AL + β r

nL
1⃗nL

1⃗⊤nL
0

0 InU×nU

]
. (35)

A.2. Proof of Proposition 5.1

Proof. We first prove that v1 = 1√
nL

1⃗nL
is an eigenvector of ĀL := r

nL
AL with eigenvalue µ1 = 1. To be specific,

ĀL · 1
√
nL

1⃗nL
=

1
√
nL

· r

nL
AL · 1⃗nL

=
1

√
nL

· r

nL
Y LY

⊤
L 1⃗nL

=
1

√
nL

· r

nL
Y L

nL

r
1⃗r

=
1

√
nL

1⃗nL
, (36)

where the second last equality is due to class balance, i.e.
∑

i∈[nL] ηj(xi) = nL/r for j ∈ [r], and the last equality holds
because

∑
j∈[r] ηj(xi) = 1 for i ∈ [nL].

Therefore, we can rewrite ĀL as

ĀL =
[

1√
nL

1⃗nL
, v2, . . . , vnL

]
1 0 . . . 0
0 µ2 . . . 0
...

...
...

0 0 . . . µnL




1√
nL

1⃗⊤nL

v⊤2
...

v⊤nL

 . (37)

Note that 1
nL

1⃗nL
1⃗⊤nL

can be decomposed as

1

nL
1⃗nL

1⃗⊤nL
=

( 1
√
nL

1⃗nL

)( 1
√
nL

1⃗nL

)⊤

=
[

1√
nL

1⃗nL
, v2, . . . , vnL

]
1 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0




1√
nL

1⃗⊤nL

v⊤2
...

v⊤nL

 . (38)

Then we have

Ā
⋆
L := α

r

nL
AL + rβ

1

nL
1⃗nL

1⃗⊤nL

=
[

1√
nL

1⃗nL
, v2, . . . , vnL

]
α 0 . . . 0
0 αµ2 . . . 0
...

...
...

0 0 . . . αµnL




1√
nL

1⃗⊤nL

v⊤2
...

v⊤nL



·
[

1√
nL

1⃗nL
, v2, . . . , vnL

]
rβ 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0




1√
nL

1⃗⊤nL

v⊤2
...

v⊤nL



=
[

1√
nL

1⃗nL
, v2, . . . , vnL

]
α+ rβ 0 . . . 0

0 αµ2 . . . 0
...

...
...

0 0 . . . αµnL




1√
nL

1⃗⊤nL

v⊤2
...

v⊤nL

 . (39)
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Since α+ rβ = 1, the eigenvalues of Ā⋆
L are 1, αµ2, . . . , αµnL

. Thus the eigenvalues of

Ā
⋆
=

[
Ā

⋆
L 0
0 InU×nU

]
(40)

are

µ̃1 = . . . = µ̃nU+1 = 1, (41)
µ̃j = αµj , for j = nU + 2, . . . , n. (42)

A.3. Proof of Proposition 5.2

Proof. By equation 13 in Fulton (2000), for two real symmetric n by n matrix (1− θ)Ā0 and θĀ
⋆, the k + 1-th largest

eigenvalue of Aθ,λ,nL
:= (1− θ)Ā0 + θĀ

⋆ can take any value in the interval

max
i+j=n+k+1

(1− θ)νi + θµ̃j ≤ λk+1 ≤ min
i+j=k+2

(1− θ)νi + θµ̃j . (43)

By Proposition 5.1, we have

µ̃j =


1, j = 1, . . . , nU + 1;

αµj , j = nU + 2, . . . , nU + r;

0, j = nU + r + 1, . . . , n.

(44)

Therefore, we have

max
i+j=n+k+1

(1− θ)νi + θµ̃j

= max
1≤i≤n+k+1

(1− θ)νi + θµ̃n+k+1−i

= max


θ + (1− θ)νi, i = nL + k, . . . , n;

θαµn+k+1−i + (1− θ)νi, i = nL + k − r + 1, . . . , nL + k − 1;

(1− θ)νi, i = k + 1, . . . , nL + k − r

= max


θ + (1− θ)νnL+k

θαµn+k+1−i + (1− θ)νi, i = nL + k − r + 1, . . . , nL + k − 1;

(1− θ)νk+1,

(45)

where the last equality holds because {νi}i∈[n] is ranked in descending order. Then when k ≤ nU ,

λk+1 ≥ max
{
θ + (1− θ)νnL+k, max

i=nL+k−r+1,...,nL+k−1
{θαµn+k+1−i + (1− θ)νi}, (1− θ)νk+1

}
, (46)

when nU < k < nU + r,

λk+1 ≥ max
{
(1− θ)νk+1, max

i=nL+k−r+1,...,nL+k−1
{θαµn+k+1−i + (1− θ)νi}

}
, (47)

and when k ≥ nU + r,

λk+1 ≥ (1− θ)νk+1. (48)

On the other hand, we have

min
i+j=k+2

(1− θ)νi + θµ̃j

= min
1≤i≤k+2

(1− θ)νi + θµ̃k+2−i

14
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= min


θ + (1− θ)νi, i = k + 1− nU , . . . , k + 1;

θαµk+2−i + (1− θ)νi, i = k + 2− r − nU , . . . , k − nU ;

(1− θ)νi, i = k + 2− n, . . . , k + 1− r − nU .

= min


θ + (1− θ)νk+1;

θαµk+2−i + (1− θ)νi, i = k + 2− r − nU , . . . , k − nU ;

(1− θ)νk+1−r−nU
.

(49)

Then when k ≤ nU , there holds

λk+1 ≤ θ + (1− θ)νk+1, (50)

when nU < k < nU + r, there holds

λk+1 ≤ min
{
θ + (1− θ)νk+1, min

i=k+2−r−nU ,...,k−nU

{θαµk+2−i + (1− θ)νi}
}
, (51)

and when k ≥ nU + r, there holds

λk+1 ≤ min
{
θ + (1− θ)νk+1, min

i=k+2−r−nU ,...,k−nU

{θαµk+2−i + (1− θ)νi}, (1− θ)νk+1−r−nU

}
. (52)

A.4. Proof of Theorem 5.4

To prove Theorem 5.4, we first prove Proposition A.1.

Proposition A.1. For arbitrary Y , assume that the labeled data is class-balanced, i.e.
∑

i∈[nL] ηj(xi) = nL/r for j ∈ [r].
Denote ν1, . . . , νn as the eigenvalues of Ā0 (in descending order). Denote E := Px̄∼PX̄ ,x∼A(·|x̄)

(
gf∗

pop,B
∗(x) ̸= y(x̄)

)
as

the linear evaluation error, where B∗ ∈ Rr×k with norm ∥B∗∥F ≤ 1/λk. Assume there exists ρ > 0, such that wi/wj < ρ,
for i, j ∈ [n]. Then under the deterministic scenario and Assumptions 3.1 and 5.3, for k ≤ nU , there holds

E ≤
2
[
2δu + [α(1 + ρ)δs − 2δu + (1− α)]θ

]
1− θ − (1− θ)νk+1

+ 8δu, (53)

for nU + 1 ≤ k ≤ nU + r − 1, there holds

E ≤
2
[
2δu + [α(1 + ρ)δs − 2δu + (1− α)]θ

]
1−min{θ + (1− θ)νk+1, θα+ (1− θ)νk−nU

}
+ 8δu, (54)

and for k ≥ nU + r, there holds

E ≤
2
[
2δu + [α(1 + ρ)δs − 2δu + (1− α)]θ

]
1− λ(ν; θ, α)

+ 8δu, (55)

where

λ(ν; θ, α) = min{θ + (1− θ)νk+1, θα+ (1− θ)νk−nU
,

(1− θ)νk+1−r−nU
} (56)

and α :=
(
1− r

r−1γ
)2

.

Proof of Proposition A.1. By Lemma B.3 of HaoChen et al. (2021), for any labeling function y⃗ : X → [r], there exists a
linear probe B∗ ∈ Rr×k with norm ∥B∗∥F ≤ 1/λk such that

Px̄∼PX̄ ,x∼A(·|x̄)

(
gf∗

pop,B
∗(x) ̸= y(x̄)

)
≤ 2ϕŷ

1− λk+1
+ 8δu, (57)
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where according to the definition of Aθ,λ,nL
,

ϕŷ =
∑

i,j∈[n]

[
(1− θ)

wij√
wiwj

+ θĀ
⋆
i,j

]
1[ŷ(xi) ̸= ŷ(xj)]

=
1

√
wiwj

[
(1− θ)

∑
i,j∈[n]

wi,j1[ŷ(xi) ̸= ŷ(xj)] + θ
∑

i,j∈[n]

√
wiwjĀ

⋆
i,j1[ŷ(xi) ̸= ŷ(xj)]

]
. (58)

We investigate the RHS of (58) respectively. The first term is∑
i,j∈[n]

wi,j1[ŷ(xi) ̸= ŷ(xj)]

=
∑

i,j∈[n]

Ex̄∼PX̄A(xi|x̄)A(xj |x̄)1[ŷ(xi) ̸= ŷ(xj)]

≤
∑

i,j∈[n]

Ex̄∼PX̄A(xi|x̄)A(xj |x̄)
(
1[ŷ(xi) ̸= ŷ(x̄)] + 1[ŷ(xj) ̸= ŷ(x̄)]

)
= 2

∑
i∈[n]

Ex̄∼PX̄A(xi|x̄)1[ŷ(xi) ̸= ŷ(x̄)]

≤ 2δu. (59)

The second term is ∑
i,j∈[n]

√
wiwjĀ

⋆
i,j1[ŷ(xi) ̸= ŷ(xj)]

=
∑

i,j∈[nL]

√
wiwj(Ā

⋆
L)i,j1[ŷ(xi) ̸= ŷ(xj)] +

∑
i>nL

√
wiwj1[ŷ(xi) ̸= ŷ(xi)]

+ 2
∑

i≤nL,j>nL

√
wiwjĀ

⋆
i,j1[ŷ(xi) ̸= ŷ(xi)]. (60)

According to the definition of Ā⋆, the last two terms are equal to 0. Then by Lemma 4.1, the second term on the RHS of
(58) becomes ∑

i,j∈[n]

√
wiwjĀ

⋆
i,j1[ŷ(xi) ̸= ŷ(xj)]

=
∑

i,j∈[nL]

√
wiwj

(
αĀi,j + β

r

nL

)
1[ŷ(xi) ̸= ŷ(xj)]

≤ α
r

nL

∑
i,j∈[nL]

∑
ℓ∈[r]

√
wiwjηℓ(xi)ηℓ(xj)

(
1[ŷ(xi) ̸= ℓ] + 1[ŷ(xj) ̸= ℓ]

)
+ (1− α)

1

nL

∑
i,j∈[nL]

√
wiwj

≤ α
r

nL

∑
i,j∈[nL]

∑
ℓ∈[r]

1

2
(wi + wj)ηℓ(xi)ηℓ(xj)

(
1[ŷ(xi) ̸= ℓ] + 1[ŷ(xj) ̸= ℓ]

)
+ (1− α)

1

nL

∑
i,j∈[nL]

1

2
(wi + wj)

=
1

2
α

r

nL

∑
ℓ∈[r]

∑
i,j∈[nL]

wiηℓ(xi)ηℓ(xj)1[ŷ(xi) ̸= ℓ]

+
1

2
α

r

nL

∑
ℓ∈[r]

∑
i,j∈[nL]

wiηℓ(xi)ηℓ(xj)1[ŷ(xj) ̸= ℓ]
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+
1

2
α

r

nL

∑
ℓ∈[r]

∑
i,j∈[nL]

wjηℓ(xi)ηℓ(xj)1[ŷ(xi) ̸= ℓ]

+
1

2
α

r

nL

∑
ℓ∈[r]

∑
i,j∈[nL]

wjηℓ(xi)ηℓ(xj)1[ŷ(xj) ̸= ℓ] + (1− α)

≤ 1

2
α

r

nL

∑
ℓ∈[r]

∑
i,j∈[nL]

ρwjηℓ(xi)ηℓ(xj)1[ŷ(xi) ̸= ℓ]

+
1

2
α

r

nL

∑
ℓ∈[r]

∑
i,j∈[nL]

wiηℓ(xi)ηℓ(xj)1[ŷ(xj) ̸= ℓ]

+
1

2
α

r

nL

∑
ℓ∈[r]

∑
i,j∈[nL]

wjηℓ(xi)ηℓ(xj)1[ŷ(xi) ̸= ℓ]

+
1

2
α

r

nL

∑
ℓ∈[r]

∑
i,j∈[nL]

ρwiηℓ(xi)ηℓ(xj)1[ŷ(xj) ̸= ℓ] + (1− α)

=
1

2
α

r

nL

∑
ℓ∈[r]

∑
i∈[nL]

ρπℓηℓ(xi)1[ŷ(xi) ̸= ℓ]

+
1

2
α

r

nL

∑
ℓ∈[r]

∑
j∈[nL]

πℓηℓ(xj)1[ŷ(xj) ̸= ℓ]

+
1

2
α

r

nL

∑
ℓ∈[r]

∑
i∈[nL]

πℓηℓ(xi)1[ŷ(xi) ̸= ℓ]

+
1

2
α

r

nL

∑
ℓ∈[r]

∑
j∈[nL]

ρπℓηℓ(xj)1[ŷ(xj) ̸= ℓ] + (1− α)

= α(1 + ρ)
1

nL

∑
ℓ∈[r]

∑
i∈[nL]

ηℓ(xi)1[ŷ(xi) ̸= ℓ] + (1− α)

≤ α(1 + ρ)δs + (1− α), (61)

where we denote πℓ = P(Y = ℓ) and by class-balance, πℓ =
1
r . Then combining (58), (59) and (61), we have

ϕŷ ≤ 2(1− θ)δu + θα(1 + ρ)δs + θ(1− α) = 2δu + [α(1 + ρ)δs − 2δu + (1− α)]θ. (62)

Therefore, by (57), we have

E := Px̄∼PX̄ ,x∼A(·|x̄)

(
gf∗

pop,B
∗(x) ̸= y(x̄)

)
≤

2
[
2δu + [α(1 + ρ)δs − 2δu + (1− α)]θ

]
1− λk+1

+ 8δu, (63)

Combined with Proposition 5.2, we have for k ≤ nU , there holds

E ≤
2
[
2δu + [α(1 + ρ)δs − 2δu + (1− α)]θ

]
1− θ − (1− θ)νk+1

+ 8δu, (64)

for nU + 1 ≤ k ≤ nU + r − 1, there holds

E ≤
2
[
2δu + [α(1 + ρ)δs − 2δu + (1− α)]θ

]
1−min{θ + (1− θ)νk+1, θα+ (1− θ)νk−nU

}
+ 8δu, (65)

and for k ≥ nU + r, there holds

E ≤
2
[
2δu + [α(1 + ρ)δs − 2δu + (1− α)]θ

]
1−min{θ + (1− θ)νk+1, θα+ (1− θ)νk−nU

, (1− θ)νk+1−r−nU
}
+ 8δu. (66)
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Proof. By taking γ = 0, i.e. α = 1, and k ≤ nU in Proposition A.1, we reach the bound in (20).

Besides, by Proposition 5.2, we have

∥B∗∥F ≤ 1/λk

≤ 1/max
{
θ + (1− θ)νnL+k−1, (1− θ)νk, θα+ (1− θ)νnL+k−r

}
≤ 1/max

{
θ + (1− θ)νnL+k−1, (1− θ)νk, θ + (1− θ)νnL+k−r

}
≤ 1/max

{
(1− θ)νk, θ + (1− θ)νnL+k−r

}
.

A.5. Proof of Theorem 5.5

Proof. By taking nU = 0 and k > r in Proposition A.1, we reach the bound in (21).

Besides, by Proposition 5.2, we have

∥B∗∥F ≤ 1/λk ≤ 1/(1− θ)νk.

A.6. Proof of Theorem 5.6

To prove Theorem 5.6, we first derive the following generalization bound for spectral contrastive pretraining under label
noise inspired by the proofs of Theorem 4.1 in HaoChen et al. (2021). We note that the form seems to be the same as that of
Theorem 4.1 in HaoChen et al. (2021), but the underlying distribution of positive samples is different since we include the
label similarity into consideration.

Proposition A.2. For some κ > 0, assume ∥f∥∞ ≤ κ for all f ∈ F and x ∈ X . Let f∗
pop ∈ F be a minimizer of the

population loss L(f). Given a random dataset of size n, let f̂emp ∈ F be a minimizer of empirical loss L̂n(f). Then, with
probability at least 1− ε over the randomness of data, we have

L(f̂emp) ≤ L(f∗
pop) + c1 · R̂n/2(F) + c2 ·

(√
log 2/δ

n
+ ε

)
, (67)

where constants c1 ≲ k2κ2 + kκ and c2 ≲ kκ2 + k2κ4.

Proof. Inspired by the proofs of Theorem D.8 in HaoChen et al. (2021), for f̂ ∈ argminf :X→Rk L̂n(f) such that L(f̂) ≤
minf :X→Rk L(f) + ϵ0, there holds

Ê ≤ min
1≤k′≤k

(
2ϕŷ

1− λk′+1
+

4k′ϵ0(
λk′ − λk+1

)2)+ 8δu. (68)

According to Proposition 5.2, we have for nU = 0 and k ≥ r,

(1− θ)νk+1 ≤ λk+1 ≤ min{θ + (1− θ)νk+1, θα+ (1− θ)νk, (1− θ)νk+1−r}. (69)

By k′ ≤ k, there holds λk′ > λk+1, and thus we have

λk′ − λk+1 ≥ (1− θ)νk′ −min{θ + (1− θ)νk+1, θα+ (1− θ)νk, (1− θ)νk+1−r} (70)

Here we without loss of generality assume 1 ≤ k′ ≤ k + 1− r to ensure that (70) ≥ 0. Then pluging (62), (69), and (70)
into (68), we finish the proof.

18



Rethinking Weak Supervision in Helping Contrastive Learning

B. Additional Experiments
B.1. Algorithms for Joint Training

Joint Training for Semi-supervised Learning. For semi-supervised contrastive learning, both labeled and unlabeled
data are inputs of LSimCLR, that is, the unsupervised contrastive loss LSimCLR is calculated based on all samples (denoted
as {xi}ni=1). The supervised contrastive loss LSupCon is calculated based only on the labeled samples (without loss of
generality, we denote the labeled samples as {(xi, yi)}nL

i=1). We show the procedures for semi-supervised contrastive
learning in Algorithm 1.

Algorithm 1 Joint Training for Semi-supervised Learning

Input: Labeled data {(xi, yi)}nL
i=1; unlabeled data {xi}ni=nL+1; parameter θ.

Initialize: Encoder f .
repeat

Compute SupCon loss on the labeled data without using labels {(xi, yi)}nL
i=1;

Compute SimCLR loss on all data {xi}ni=1;
Update encoder f according to the joint training loss (1−θ) 1

nL

∑nL

i=1 LSupCon(f(xi), yi)+θ 1
n

∑n
i=1 LSimCLR(f(xi));

until Converge.
Output: Encoder f .

Note that in Section 4.2, it seems that the unlabeled data is used in computing the SupCon loss, but this is not true. We
include the unlabeled samples in the label similarity graph only for the convinience of mathematical formulations. In fact, as
we view the unlabeled samples as having unique class labels, this formulation does not affect the selection of positive pairs
and therefore does not affect the calculation of the SupCon loss.

Joint Training for Noisy Label Learning. For joint training contrastive learning with label noise, the LSupCon loss is
calculated based on the noisy-labeled samples (xi, ỹi)

n
i=1, and the LSimCLR loss is calculated based on all samples without

using their labels. We show the procedures for joint training contrastive learning under label noise in Algorithm 2.

Algorithm 2 Joint Training for Noisy Label Learning

Input: Noisy labeled data {(xi, ỹi)}ni=1; parameter θ.
Initialize: Encoder f .
repeat

Compute SupCon loss on the (noisy) labeled data {(xi, ỹi)}ni=1;
Compute SimCLR loss on all data without using labels {xi}ni=1;
Update encoder f according to the joint training loss (1−θ) 1n

∑n
i=1 LSupCon(f(xi), ỹi)+θ 1

n

∑n
i=1 LSimCLR(f(xi));

until Converge.
Output: Encoder f .

B.2. Algorithmic Comparisons with Similar Methods

Islam et al. (2021) and Chen et al. (2022) adopt similar methods as ours, but focus on different aspects. Specifically, Islam
et al. (2021) and Chen et al. (2022) empirically investigate the transferability of the joint training of SimCLR ad SupCon,
whereas ours focuses on theoretically analyzing the performance of their joint training under linear probing. We discuss the
connections and differences as follows.

Islam et al. (2021) finds that the combination of SimCLR and SupCon significantly improves transfer learning performance
over Cross-Entropy. Chen et al. (2022) investigates the problems of coarse-to-fine transfer learning by adding a weighted
class-conditional InfoNCE loss and a class-conditional autoencoder to SupCon. Similar to our results, according to Tables
2 and 3 of Islam et al. (2021) and Table 3 of Chen et al. (2022), the transfer learning performance of the combination of
SupCon and InfoNCE (or class-conditional InfoNCE) is comparable to but has no significant improvement over the winner
of SupCon and SimCLR. In addition, the robustness investigated in these two papers is conceptually different from ours.
The robustness in Islam et al. (2021) is to image corruptions and the robustness in Chen et al. (2022) measures how well an
algorithm can recover hidden subgroups in an unsupervised setting, whereas our manuscript investigates the robustness to
label corruptions (label noise).
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B.3. Transfer Learning Performances

We conduct additional experiments to evaluate the representation quality with the transfer learning performance on
downstream tasks including detection, segmentation, and fine-tuning. We evaluate transfer learning performance of models
pretrained on TinyImageNet-200 with SimCLR, SupCon, and Mix. All models are pretrained under the settings of Section
6.1. For Mix, we set θ = 0.2. For SupCon and Mix, the models are pretrained under noise rate γ ∈ {20%, 40%, 60%, 80%}.
We list the results as follows. The best results are marked in bold and the second best marked in underline.

Detection. Object detection is fine-tuned on PASCAL VOC 07+12 dataset. The detector is Faster R-CNN. All models are
fine-tuned for 12 epochs. We evaluate the models by the default VOC metric of AP50.

Table 2: Performance comparisons of object detection.

γ 20% 40% 60% 80%

SimCLR 65.3 65.3 65.3 65.3
SupCon 68.5 66.9 66.2 67.0

Mix 66.9 65.5 63.8 63.2

Segmentation. Segmentation is fine-tuned on Pascal VOC 12 dataset. The model is DeeplabV3. All models are fine-tuned
for 20,000 iterations. We evaluate the models by mean IoU.

Table 3: Performance comparisons of segmentation.

γ 20% 40% 60% 80%

SimCLR 36.61 36.61 36.61 36.61
SupCon 49.07 47.58 46.57 42.47

Mix 40.33 38.14 33.66 34.33

Fine-tuning. We finetune the pretrained models on the labeled CIFAR-10 data. The weights of the linear classifier used to
fine-tune the encoder network are initialized to zero. On CIFAR-10, models are fine-tuned for 90 epochs. All results are
reported on the standard CIFAR-10 test set and are summarized in the following table.

Table 4: Performance comparisons of fine-tuning.

γ 20% 40% 60% 80%

SimCLR 68.01 68.01 68.01 68.01
SupCon 71.35 67.46 61.62 49.03

Mix 70.01 66.89 63.86 55.38

As shown in the Tables 2, 3, and 4, the performance of joint training (Mix) is no better than the winner of SimCLR and
InfoNCE across all noise rates, which is similar to the conclusion on linear probing discussed in Section 6.4.
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