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Abstract

Dataset Distillation is a newly emerging area that
aims to distill large datasets into much smaller
and highly informative synthetic ones to acceler-
ate training and reduce storage. Among various
dataset distillation methods, trajectory-matching-
based methods (MTT) have achieved SOTA per-
formance in many tasks, e.g., on CIFAR-10/100.
However, due to exorbitant memory consumption
when unrolling optimization through SGD steps,
MTT fails to scale to large-scale datasets such as
ImageNet-1K. Can we scale this SOTA method
to ImageNet-1K and does its effectiveness on CI-
FAR transfer to ImageNet-1K? To answer these
questions, we first propose a procedure to exactly
compute the unrolled gradient with constant mem-
ory complexity, which allows us to scale MTT to
ImageNet-1K seamlessly with ∼ 6x reduction in
memory footprint. We further discover that it is
challenging for MTT to handle datasets with a
large number of classes, and propose a novel soft
label assignment that drastically improves its con-
vergence. The resulting algorithm sets new SOTA
on ImageNet-1K: we can scale up to 50 IPCs (Im-
age Per Class) on ImageNet-1K on a single GPU
(all previous methods can only scale to 2 IPCs on
ImageNet-1K), leading to the best accuracy (only
5.9% accuracy drop against full dataset training)
while utilizing only 4.2% of the number of data
points - an 18.2% absolute gain over prior SOTA.

1. Introduction
In this paper, we study the problem of dataset distillation,
where the goal is to distill a large dataset into a small set
of synthetic samples, such that models trained with the
synthetic samples can achieve competitive performance
compared with training on the whole dataset (Wang et al.,
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2018). Different from core-set selection (Wolf, 2011; Re-
buffi et al., 2017; Castro et al., 2018), synthetic samples
are learned freely in the continuous space instead of being
selected from the original dataset, so they often achieve
better performance in the regime with higher compression
rates. Due to the importance of compressing a large dataset
into smaller ones, many algorithms have been proposed
in the past few years, including Gradient Matching (Zhao
& Bilen, 2021b), Distribution Matching (Zhao & Bilen,
2021a), KIP (Nguyen et al., 2021) and Matching Training
Trajectories (MTT) (Cazenavette et al., 2022). Recently, a
line of methods based on matching trajectory has demon-
strated state-of-the-art performance on smaller datasets (Cui
et al., 2022; Cazenavette et al., 2022): When using only 50
synthetic images per class which yields a 100x compression
rate, MTT only incurs 13.4% accuracy drop compared to
training on the whole CIFAR-10 dataset.

Despite achieving state-of-the-art performance, MTT can-
not scale to large datasets due to its huge GPU memory
requirement (Zhou et al., 2022; Cazenavette et al., 2022;
Cui et al., 2022). This is fundamentally due to the objec-
tive function of MTT, which unrolls T SGD updates with
synthetic images and matches the resulting weights with a
reference point (obtained by training on the original dataset).
Since this objective function unrolls T optimization steps,
back-propagating requires expanding and storing T gradient
computational graphs in GPU memory and is prohibitive in
large-scale problems. For instance, unrolling T = 30 steps
on CIFAR-10 requires 47GB GPU memory (Cazenavette
et al., 2022) with IPC 50, and thus it runs out of memory
when scaling to ImageNet-1K. This has become the main
issue when scaling MTT to large problems.

In this paper, we propose a memory-efficient version of
MTT, which only requires storing a single gradient compu-
tational graph even when unrolling T steps. This reduces the
GPU memory complexity of MTT with respect to number
of unrolled steps from linear to constant, while achieving
an identical solution and with only marginal computational
overhead. This is done by a novel procedure to cache and
rearrange the gradient computation of the trajectory match-
ing loss. Equipped with the proposed method, we are able
to scale MTT to ImageNet-1K with 1, 2, 10, 50 IPCs. In
the literature, there exists only one most recent paper that
scales to ImageNet-1K with IPC up to 2, but it encounters
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memory and runtime issues (Section 4.2) when scaling to
larger IPCs (Zhou et al., 2022).

When applying memory-efficient MTT to ImageNet-1K,
we observe extremely slow convergence with sub-optimal
performance when assigning hard labels to the synthetic
images. We hypothesize that the missing ingredient is to
use soft labels for synthesizing samples when dealing with
a large number of classes, as soft labels allow information
sharing across different classes. This is also observed in
FrePo (Zhou et al., 2022), which jointly optimizes labels
and synthetic images. However, allowing labels to be freely
learned also makes the inner optimization of our matching-
based method harder to solve, resulting in only marginal
performance gains. To overcome this issue, we propose a
soft label assignment (SLA) method that directly leverages
the existing set of reference points (teacher models) in MTT
for label assignment. Concretely, at every iteration, we pass
the synthetic images to the sampled teacher model, and
directly use its generated soft labels to guide the training
of synthetic images. The proposed SLA is train-free and
introduces zero hyperparameters. Empirically, the resulting
algorithm significantly outperforms the original MTT on
ImageNet-1K. Our contributions can be summarized below:

• We propose a novel method to reduce the memory
usage of MTT from O(T ) to O(1), where T is the
matching steps in MTT. This allows MTT to seamlessly
scale to large datasets such as ImageNet-1K.

• We found assigning soft labels to synthetic images is
crucial when scaling to datasets with a large number of
labels (e.g., ImageNet-1K). However, naively learning
soft labels works poorly for MTT. To overcome this
issue, we propose Soft Label Assignment (SLA) - a
novel hyperparameter-free method that directly injects
soft labels into MTT from its reference models.

• By combining the above-mentioned innovations, our
method, codenamed TESLA (TrajEctory matching
with Soft Label Assignment), outperforms state-of-
the-art results under 1 and 2 IPCs on ImageNet-1K.
Further, TESLA is the first in the field that scales to
ImageNet-1K with IPC=10 and 50, 25X times larger
than the next competitor.

2. Related Work
The dataset distillation problem was first formally proposed
by (Wang et al., 2018), where the goal is to compress a large
dataset into a small set of synthetic samples. Although the
compression stage could be computationally intensive, the
distilled synthetic set can be used in multiple applications
such as continuous learning (Wang et al., 2018; Zhao et al.,
2020a), federated learning (Zhou et al., 2020; Xiong et al.,
2022) and neural architecture search (Zhao & Bilen, 2021b;
Wang et al., 2021). Many data distillation algorithms have

been proposed in the past few years, and they can be roughly
categorized into two types: matching-based approaches and
kernel-based approaches.

Matching-based Approaches: (Zhao et al., 2020a; Zhao
& Bilen, 2021b) propose to generate synthetic datasets by
matching gradients between two surrogate models trained
on distilled dataset and the real dataset. However, matching
gradient requires high memory usage and computation time,
so (Zhao & Bilen, 2021a) further proposes to match the
features generated by the surrogate model. Other recent
works (Kim et al., 2022; Deng & Russakovsky, 2022; Lee
et al., 2022) focus on learning lower-resolution synthetic
images and upsampling, which can be applied to most of
the existing methods and thus are orthogonal to our work.

Recently, (Cazenavette et al., 2022) proposed a data dis-
tillation method based on Matching Training Trajectories.
This method achieves state-of-the-art performance on all the
medium-sized datasets (e.g., CIFAR-10, CIFAR-100) and
furthermore, according to DC-BENCH (Cui et al., 2022),
MTT outperforms other works on not only accuracy but
also transferability and stability (under various kinds of aug-
mentations and IPC settings). The idea of MTT and its
scalability issues will be discussed in the next section.

Kernel-based Approaches: Dataset distillation is intrinsi-
cally a bi-level optimization problem, where the inner opt-
mization computes the model parameters given the synthetic
dataset, and the outer optimization optimizes the synthetic
dataset to minimize the loss of the resulting model. Inspired
by the Neural Tangent Kernel (NTK), (Nguyen et al., 2020;
2021) use kernel ridge regression with NTK to obtain a
closed form solution for the inner problem, and thus re-
ducing the original bi-level optimization into a single-level
optimization problem. This method, known as KIP, requires
thousands of GPU hours due to the NTK computation. To re-
duce the computational cost, FrePo (Zhou et al., 2022) only
considers the neural network parameters of the last layer
as learnable while keeping other parameters fixed. With
this approximation, FrePo is able to obtain a closed form
solution of ridge regression. Although FrePo is faster than
KIP, it still requires storing all computational graphs and a
heavy matrix inversion operation. Therefore it has difficulty
scaling to larger IPCs.

3. Background
3.1. Matching Training Trajectories

Matching Training Trajectories (MTT) (Cazenavette et al.,
2022) proposes to generate the synthetic dataset by di-
rectly matching the model parameters trained using syn-
thetic datasets with those trained on real datasets, which
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leads to the following loss function:

L = ∥θ̂t+T − θ∗t+M∥22/∥θ∗t − θ∗t+M∥22. (1)

Here θ∗t represents the model parameter trained on real
images at step t. Starting from θ∗t , θ̂t+T denotes the model
parameter trained on the synthetic dataset after T steps
and θ∗t+M denotes the model parameter trained on the real
dataset after M steps. The goal of MTT is to have models
trained on synthetic dataset with T steps match the same
results with teacher models trained from much more M
steps on real data and usually T ≪ M . We assume the
model is updated by the standard SGD rule as below, where
β is the student model learning rate:

θ̂t+i+1 = θ̂t+i − β∇ℓ(θ̂t+i; X̃i). (2)

Here X̃i is a batch of (potentially augmented) synthetic
images sampled from synthetic dataset X̃(See Appendix
Figure 6 for an illustration).

3.2. Scability of the current MTT method

Although MTT achieves state-of-the-art performances on
small datasets, it fails to scale to real-world large datasets
such as ImageNet-1K similar to most existing condensation
methods (Zhao & Bilen, 2021b;a; Nguyen et al., 2020; 2021;
Wang et al., 2022). The poor scalability significantly limits
its practicality.

Before presenting our method, we start by demonstrating
that the bottleneck of MTT’s scalability lies in its unrolled
gradient computation. To show this, we expand the MTT
loss function defined in Equation (1) as follows. θ∗t and
θ∗t+M in the denominator are all from pretrained model
trajectories, thus they can be treated as constants. Unrolling
T steps of SGD update leads to

θ̂t+T = θ∗t − β∇θℓ(θ
∗
t ; X̃0)− β∇θℓ(θ̂t+1; X̃1)− ...

− β∇θℓ(θ̂t+T−1; X̃T−1). (3)

Plugging this back into Equation (1), it becomes

∥θ̂t+T − θ∗t+M∥22 =

∥θ∗t − β

T−1∑
i=0

∇θℓ(θ̂t+i; X̃i)− θ∗t+M∥22. (4)

To minimize L, MTT needs to take the derivative of Equa-
tion (4) w.r.t. synthetic images. This involves computing
and storing the computation graphs for T high order gradient
terms, where T is the length of the trajectory. As the dataset
size increases, the number of steps to train a model (trajec-
tory length) also increases linearly, assuming everything else
stays the same. As a result, the GPU memory requirement
for optimizing MTT loss becomes extremely large on

larger datasets. Also naively reducing/fixing matching step
length leads to suboptimal performance, as redundant infor-
mation can be encoded into multiple images (Cazenavette
et al., 2022).

4. Our proposed method
In this section, we will discuss how to handle the scalablity
issue of MTT, and propose our method: TrajEctory match-
ing with Soft Label Assignment (TESLA).

4.1. MTT with constant memory

In this subsection, we present a computationally efficient
way to resolve the scalability issue of MTT while obtaining
the same solution. Surprisingly, we found that with a careful
rearrangement of the computation, the memory complex-
ity of MTT can be reduced from linear to constant w.r.t.
the number of trajectory matching steps - storing only one
computational graph. Note that our approach does not
introduce any approximation – the gradient computed by
our method is exactly identical to the original one computed
by back-propagating the entire loss. We have also empiri-
cally verified that the proposed approach leads to identical
updates as the original unrolled version of MTT.

As we are computing the squared error of student and
teacher model, Equation (4) can be further expanded as

∥θ̂t+T − θ∗t+M∥22 = 2β(θ∗t+M − θ∗t )
T (

T−1∑
i=0

∇θℓ(θ̂t+i; X̃i))

+β2∥
T−1∑
i=0

∇θℓ(θ̂t+i; X̃i)∥2 + C, (5)

where C = ∥θ∗t − θ∗t+M∥22 is a constant so can be ignored
for gradient computation. It can be noticed that each term
in the first summation only involves the gradient of a single
batch, so their gradients can be calculated sequentially with-
out maintaining N computational graphs. Only the second
term ∥

∑T−1
i=0 ∇θℓ(θ̂t+i; X̃i)∥2 involves information from

multiple batches together.

Backpropagating from MTT loss to a mini-batch Com-
puting the gradient with respect to {X̃i}T−1

i=0 leads to

∂∥θ̂t+T − θ∗t+M∥22
∂X̃i

=2β(θ∗t+M − θ∗t )
T ∂

∂X̃i

∇θℓ(θ̂t+i; X̃i)

+ 2β2GT ∂

∂X̃i

∇θℓ(θ̂t+i; X̃i), (6)

where G =
∑T−1

i=0 ∇θℓ(θ̂t+i; X̃i). Our key finding of this
expansion is as follows: since G can be precomputed in
MTT (1st for-loop in Algorithm 1) while updating θ̂, the
only computation graph required for computing (6) is the
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Figure 1: Illustration of trajectory matching with soft label assignment (TESLA). Our method differs from MTT in two
aspects: 1). The constant memory computation module calculates the exact trajectory matching loss as MTT but with
constant memory complexity. 2). The train-free Soft-Label Assignment (SLA) module leverages the pretrained teacher to
distill soft labels to the synthetic data points.

gradient on batch X̃i: ∇θℓ(θ̂t+i; X̃i). As the computation
graph of ∇θℓ(θ̂t+i; X̃i) is not required in the derivative of
any other batch X̃j ̸=i, it can be released right after use.
Therefore, the memory complexity of computing MTT loss
becomes independent of the step t, thus constant w.r.t. T .

Backpropagating from a mini-batch to synthetic im-
ages To further backpropagate from a mini-batch to the
synthetic images, we need to define the connections be-
tween batches {X̃i}T−1

i=0 and synthetic images {xj}nj=1. As-
sume each batch i contains B samples denoted as X̃i =
[X̃i,1, . . . , X̃i,B ] (concatenation of B vectors) and for all
b = 1, . . . , B, X̃i,b = xπ(i,b) where π(i, b) indicate which
data point is sampled as the b-th instance in the i-th batch.
To propagate gradients to synthetic images, we have

∂∥θ̂t+T − θ∗t+M∥22
∂xj

=
∑

(i,b):π(i,b)=j

∂∥θ̂t+T − θ∗t+M∥22
∂X̃i,b

. (7)

We can see that (7) is essentially doing gradient accumu-
lation: whenever we obtain the gradient to a batch X̃i, we
accumulate that gradient to xj if xj ∈ X̃i. This process does
not require storing any computation graphs for the backward
pass. And since we only need to store one accumulated gra-
dient vector for each synthetic image, the memory is also
constant w.r.t. T .

Since both (6) and (7) do not require maintaining all T
computational graphs of {∇θℓ(θ̂t+i; X̃i)}T−1

i=0 , the overall
memory complexity is constant with respect to T . As
a result, we can compute the gradient to all the synthetic
images with constant memory, at the cost of computing
MTT loss consecutively over each batch. In practice, we
found that this consecutive computation incurs negligible
runtime overhead, as the total cost is almost identical to the
original MTT computation (see Figure 3).

4.2. Memory complexity v.s. other methods

In this section, we discuss our method’s GPU memory usage
analytically and compare it with other methods. We focus
on comparing our method with the original MTT, as well as
FrePo, the only existing method that scales to ImageNet-1K
under limited IPCs (up to 2). We also discuss about other
bi-level optimization methods in A.2.

In the following discussion, we use T to denote SGD steps
to match trajectories and X/X̃ to denote the whole real
and synthetic dataset respectively. X̃i ∼ X̃ then represents
a batch of data X̃i sampled from entire distilled dataset.
For simplicity, we further make a moderate approximation
that the memory footprint of the computation graph scales
linearly w.r.t. the batch size1, and use G to denote the com-
putation graph size for a single input image.

v.s. MTT: As MTT has to store the computation graphs
for the entire matching trajectory, its memory consump-
tion can be written as O(T |X̃i|G) (Equation (4)). For a
predefined batch size |X̃i|, T increases linearly w.r.t. the
dataset size, which significantly limits the MTT’s scalability.
In contrast, our method retains a memory complexity of
O(|X̃i|G), which is independently of T thanks to the loss
decomposition presented in Equation (6).

v.s. FrePo: We also compare our methods with FrePo - the
previous SOTA on ImageNet-1K with IPC 1 and 2. FrePo
learns the synthetic images by optimizing the following loss:

L(X̃,X) =
1

2
∥Yt −Kθ

XX̃
(Kθ

X̃X̃
+ λI)−1Ỹ ∥22 (8)

Kθ
XX̃

= f(X, θ)f(X̃, θ)T , Kθ
X̃X̃

= f(X̃, θ)f(X̃, θ)T ,

where f(X, θ) maps X to the latent feature in the last hidden
layer of a network parameterized by θ. Noticably, the second

1This is not strictly the case since some components of the
backward graph are independent to batch size, but the scaling law
for the rest of the graph is roughly linear.

4



Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory

term in Equation (8) is the analytical solution to the inner
optimization, hence it uses full batch (Zhou et al., 2022). It
can be seen that FrePo’s loss function involves the Gram
matrix Kθ

X̃X̃
∈ R|X̃|×|X̃|, which is computed from feeding

all synthetic images into the model. As a result, FrePo not
only incurs quadratic complexity w.r.t. the synthetic dataset
size, but also requires storing the computation graphs of
the entire synthetic dataset in one pass. Its overall memory
consumption can thus be written as O(|X̃|Gfrepo + |X̃|2)2.
For ImageNet-1K with IPC 50, there are 50, 000 synthetic
images, which becomes computationally prohibitive to run
given its memory complexity. Moreover, in terms of run-
time, FrePo’s matrix inversion operation also incurs an extra
cubic runtime overhead: O(|X̃|3), whereas our method does
not involve any superlinear terms.

4.3. Soft labels

Using learned soft labels for synthetic images is a commonly
adopted technique in kernel-based distillation methods like
FrePo. Concretely, labels of the synthetic dataset are treated
as a learnable parameter that can be jointly optimized with
synthetic images. Compared with one-hot hard labels, soft
labels allow information to flow across classes, thereby
increasing the compression efficiency. As a result, it is
shown to be critical to the performance of FrePo on datasets
with large number of labels such as ImageNet-1K, especially
under low IPCs. For example, FrePo reports 7.5% test
accuracy on ImageNet IPC=1 with soft labels, compared
with only 1.6% using hard labels.

The failure of hard labels can also be observed when scaling
matching-based MTT to ImageNet-1K: we found that using
hard labels on our memory-efficient MTT also leads to poor
results (0.7% under IPC=1). However, while kernel-based
methods benefit greatly from label learning, it only shows
marginal gains in our case (Section 5.4). We conjecture that,
although learnable labels bring extra flexibility, updating
the labels alongside with synthetic images X̃ and model
weight θ̂ also makes the inner optimization of MTT more
challenging to solve.

To unleash the power of soft labels for MTT, we introduce a
novel train-free method for assigning soft labels to synthetic
images. Recall that the goal of MTT is to match the parame-
ters of the student model trained on synthetic images to the
teacher model trained on real images. Therefore, we can
directly leverage the pre-trained teacher models to generate
soft labels. Concretely, at every iteration, after sampling a
trajectory of a teacher model, we pass the synthetic image
to the teacher model, store the generated soft labels, and use
these labels in the gradient computation of Equation (3) for
the student model’s updates. The gradients computed from

2For a single image, the computation graph of FrePo is slightly
smaller than ours since we back-propagate through all layers.

synthetic images and their soft labels will then be used to
form the MTT loss. Our method can be viewed as a form
of knowledge distillation (Hinton et al., 2015), where the
knowledge is distilled from the teacher model to the student
model through the generated soft labels. Therefore, it not
only helps with learning synthetic images, but also enriches
the information condensed into the synthetic dataset.

The proposed Soft Label Assignment (SLA) requires no
additional training and extra hyperparameters. The only
design choice is which teacher model checkpoint to use for
label assignment. We discuss two options below:

Teacher Model @ Target Step: Since our method samples
a section of the teacher model’s trajectory at every iteration,
it is natural to use the teacher model at the target matching
step (i.e. θ∗t+M ) to generate soft labels. This option is
intuitive, as our objective for a single iteration is to match the
teacher model at the sampled target step. Empirically, SLA
using target-step teacher model achieves remarkably strong
performance, leading to 7% to 13.4% absolute accuracy
gain on ImageNet-1K across different IPCs.

Teacher Model @ Last Epoch: Since all teacher models
are pre-trained prior to optimizing synthetic images, one
may wonder whether we can always use the fully-trained
teacher models to generate soft labels. Although a fully-
trained teacher model outperforms its intermediate check-
points, it could also be far away from the sampled trajec-
tory where the matching actually occurs. As a result, the
generated soft labels might not be suitable for guiding the
matching process. Indeed, empirically we found that the
performance of SLA using fully-trained teachers is much
worse than that of target-step teacher (Figure 4). Therefore,
we use the first option for all main experiments.

The proposed algorithm, TrajEctory matching with Soft
Label Assignment (TESLA), which combines the memory-
efficient gradient computation of trajectory matching loss
and the soft label assignment method, is summarized in Al-
gorithm 1 and Figure 1.

5. Experimental Results
5.1. Experiment setup

Experiment Settings: We evaluate TESLA on 3 datasets
including CIFAR-10/100 (Krizhevsky et al., 2009) and
ImageNet-1K (Russakovsky et al., 2015) (Appendix A.3).
On CIFAR-10/100, we follow other methods and learn
1/10/50 image(s) per class. For ImageNet-1K, we resize
it to 64×64 resolutions following (Zhou et al., 2022). We
learn 10/50 images per class together with 1 and 2 that are
reported by previous works. For the surrogate model, we
use the same ConvNet architecture as DSA/DM/MTT. The
model’s convolutional layer consists of 128 filters with ker-
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Algorithm 1 TrajEctory matching with Soft Label
Assignment (TESLA)

Input: f : teacher model; Θ : teacher model’s trajecto-
ries; K: number of iterations; T : number of matching
steps; β: learning rate for student model; α: learning rate
for the synthetic images.
for iter = 1 . . . K do

Sample θ∗t and θ∗t+M ∈ Θ, set G = 0, θ̂t = θ∗t
Initialize Ỹ = f(θ∗t+M ; X̃) {Soft Label Assignment}
for i = 1, . . . , T do

Compute gi = ∇θℓ(θ̂t+i; X̃i)

Update θ̂t+i = θ̂t+i−1 − βgi; G = G+ gi
end for
for i = 1, . . . , T do

Compute gi = ∇θℓ(θ̂t+i; X̃i)

Compute ∂∥θ̂t+T−θ∗
t+M∥2

2

∂X̃i
based on gi and Equa-

tion (6)
∂∥θ̂t+T−θ∗

t+M∥2
2

∂xπi,b
+=

∂∥θ̂t+T−θ∗
t+M∥2

2

∂X̃i,b
for all b

end for
Update xj using ∂∥θ̂t+T−θ∗

t+M∥2
2

∂xj
for all sampled j

end for

nel size 3× 3 followed by Instance normalization(Ulyanov
et al., 2016), RELU activation and an average pooling layer
with kernel size 2× 2 and stride 2.

Following MTT, we apply ZCA whitening on CIFAR-
10/100. On ImageNet-1K, we don’t apply any preprocessing
techiniques. Simiar to MTT, we apply the same DSA (Rad-
ford et al., 2015; Goodfellow et al., 2016; Zhao et al., 2020b)
augmentation during training and evaluation. When the
dataset is simple and doesn’t contain many classes such as
CIFAR-10/100, soft label is not needed (Zhou et al., 2022).
We find soft label most effective on ImageNet-1K. See Ap-
pendix A.12 for detailed hyperparameters.

Evaluation and baselines: Following prior works (Zhao &
Bilen, 2021b;a; Cazenavette et al., 2022; Zhou et al., 2022;
Cui et al., 2022), we evaluate the distilled datasets by train-
ing five randomly initialized models on them, and report the
mean and standard deviation of their accuracy on the real test
set. For baseline methods, we directly list numbers from
their original paper when they are available. Since most
prior methods do not conduct experiments on ImageNet-1K,
we try our best to apply them on ImageNet-1K. Otherwise,
we mark them as absent in Table 1 and Table 2. More de-
tails can be found in Appendix A.10. For KIP, we use their
open-sourced dataset to measure the performance since their
original work uses a 1024-wide model for evaluation com-
pared to the 128-wide model for other methods and has an
extra convolutional layer. FrePo uses a model that doubles
the number of filters when the feature map size is halved

while other works use the same number of filters for all
convolutional layers (Zhao & Bilen, 2021b;a; Cazenavette
et al., 2022), thus the model used by FrePo has a lot more
parameters3 than other methods. We still report FrePo’s
original results due to the lack of open-sourced code and
publicly available dataset.

5.2. Empirical results
We compare TESLA against the random baseline and previ-
ous SOTA methods including DSA (Zhao & Bilen, 2021b),
DM (Zhao & Bilen, 2021a), KIP (Nguyen et al., 2021),
FrePo (Zhou et al., 2022) and the original MTT. The results
are presented in Table 1. On smaller datasets, our method
outperforms prior arts with the same model architecture.
On ImageNet-1K, TESLA outperforms FrePo and DM with
IPC 1 and 2. On 10 and 50 IPCs where all existing methods
fail to scale, TESLA only incurs 16% and 5.9% accuracy
drop compared to training with the whole ImageNet-1K
dataset while using only 0.83% and 4.2% of its training
dataset size. This is an 18.2% accuracy improvement to the
prior art (Zhou et al., 2022).

5.3. Training cost analysis
As discussed in Section 4.1, a key benefit of our method over
MTT is constant memory consumption w.r.t. the matching
steps, with only marginal runtime overhead. In this section,
we empirically benchmark and compare the memory and
runtime of our methods against MTT4.

We first compare the GPU memory consumption between
our method and MTT. For this experiment, we keep every-
thing else the same between two methods, and only vary
the matching steps. The results are shown in Figure 2 (The
numerical results can be found in Appendix A.11). The
memory consumption of the original MTT increases lin-
early with the number of synthetic steps, while it remains
constant for our method. This observation aligns with our
theoretical analysis in Section 4.2. In principle, the constant
memory reduction allows us to scale to arbitrarily large
IPCs. We proceed to test the runtime overhead, alongside
memory consumption across different dataset5. For this ex-
periment, we fix the synthetic training step to 50 and batch
size to 100. The results are summarized in Figure 3 (See Ap-
pendix A.11 for numerical results). On CIFAR-100, our
method obtains ∼ 5x memory reduction over MTT, while
only introduces ∼ 27% overhead runtime. On ImageNet-
1K, TESLA obtains ∼ 6x memory reduction with only
∼ 2% extra time6 compared to MTT.

322.6M trainable parameters from FrePo compared to 2.5M
trainable parameters from other methods on a 4-layer ConvNet.

4FrePo is only compared analytically due to lack of open-
source code.

5We don’t measure it on CIFAR-10 because the synthetic
dataset is too small even with IPC 50

6MTT’s runtime on ImageNet-1K is estimated since MTT is
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Table 1: Test accuracies of models trained on synthetic dataset.

Dataset IPC Random DSA DM KIP1 FrePo2 MTT TESLA(Ours)3 Whole Dataset

CIFAR10
1 15.4±0.3 36.7±0.8 31.0±0.6 40.6±1.0 (49.9±0.2) 46.8±0.7 46.3±0.8 48.5±0.8

86.0±0.110 31.0±0.5 53.2±0.8 49.2±0.8 47.2±0.7 (62.7±0.3) 65.5 ±0.6 65.3±0.7 66.4±0.8
50 50.6±0.3 66.8±0.4 63.7±0.5 57.0±0.4 (68.6± 0.2) 71.7±0.2 71.6±0.2 72.6±0.7

CIFAR100
1 5.3±0.2 16.8±0.2 12.2±0.4 12.0±0.2 (15.7±0.2)* 27.2±0.4* 24.3±0.3 24.8±0.4

56.7±0.210 18.6±0.25 32.3±0.3 29.7±0.3 29.0±0.3 (28.3±0.1) 41.3±0.2* 40.6±0.4 41.7±0.3
50 34.7±0.4 42.8±0.4 43.6±0.4 - 44.3±0.2* 47.7±0.2 47.9±0.3

ImageNet-1K

1 0.5±0.1 - 1.5±0.1 - 7.5±0.3* - 7.7±0.2*

33.8±0.32 0.9±0.1 - 1.7±0.1 - 9.7±0.2* - 10.5±0.3*

10 3.6±0.1 - - - - - 17.8±1.3*

50 15.3±2.3 - - - - - 27.9±1.2*

* Soft labels are used when table entries are marked with *.
1 KIP’s performance is measured with the dataset released by the author. Performances in quotas are from the original paper under different settings.
2 FrePo uses a different model with much more parameters. We still mark FrePo result as bold if it outperforms other methods.
3 Our performances are achieved using slightly different hyperparameters than MTT, see Appendix A.12.

Entries marked as absent are due to scability issues. See Appendix A.10 for detailed reasons.

Table 2: Test accuracy on ConvNet versus transferred to other architectures. All methods are evaluated with 10 IPCs.

CIFAR-10 CIFAR-100 ImageNet-1K
ConvNet ResNet18 ViT ConvNet ResNet18 ViT ConvNet ResNet18 ViT

Random 31.0±0.5 29.6±0.9 26.2±0.5 18.6±0.3 15.8±0.2 14.1±0.2 3.6±0.1 1.4±0.1 3.2±0.0
DSA 53.0±0.4 42.1±0.6 31.9±0.4 32.2±0.4 21.9±0.4 19.6±0.2 - - -
DM 47.6±0.6 38.2±1.1 34.4±0.5 29.2±0.3 18.7±0.5 17.1±0.3 - - -
KIP 47.2±0.4 38.8±0.7 15.9 ±1.1 29.0±0.3 20.1±0.5 12.1±0.7 - - -
MTT 65.3±0.7 46.1±1.4 34.6±0.6 40.6±0.4 26.8±0.6 20.4±0.2 - - -
Ours 66.4±0.8 48.9±2.2 34.8±1.2 41.7±0.3 27.1±0.7 21.0±0.3 17.8±1.3 7.7±0.1 11.0±0.2
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Figure 2: GPU memory usage comparison between MTT
and TESLA. MTT scales linearly w.r.t. the number of match-
ing steps, whereas our method uses constant memory. Re-
sults are measured on CIFAR100 with batch size 100 under
varying matching steps.

5.4. Ablation study on soft labels

We conduct two ablation studies on ImageNet-1K to com-
pare the effectiveness of soft labels. First, we study our
method with soft labels and hard labels and show the results
in Table 3. Our method with soft labels outperforms hard

OOM under our settings. See Appendix A.8
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Figure 3: GPU memory and runtime comparison between
MTT and TESLA on different datasets. Results are mea-
sured with a batch size of 100 and 50 matching steps.

labels by a large margin, e.g. 7% on IPC 1 and 13.4% on
IPC 10, showing the effectiveness of soft labels. We proceed
to investigate several other soft label strategies as follows.

Label Learning: In this experiment, we study the strategy
of learning labels instead of generating them from teacher
models. We initialize the pre-softmax logits so that the
probability after softmax is close to one-hot (Appendix A.7).
The results are plotted in Figure 4. While learning labels
do slightly improve the performance, the margin of gain
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Table 3: Ablation study on testing accuracy (%) using hard
vs soft label on ImageNet-1K at 1500 iterations.

IPC 1 2 10 50

Hard label 0.7±0.1 1.1±0.1 4.4±0.3 18.1±1.5
TESLA 7.7±0.2 10.5±0.3 17.8±1.3 27.9±1.2

is far less compared with those reported on kernel-based
methods such as FrePo and KIP. The algorithm still fails
to update the synthetic dataset effectively, even with the
extra flexibility of the learned labels. Note that we also
experiment with different label learning strategies, such
as directly initializing and optimizing post-softmax labels
(hence allowing each label to move beyond 0-1 range), but
the results are similar.

Target (Ours) vs Last Epoch: We also study soft labels
generated by the teacher model at the target step versus the
last epoch. It’s natural to think that a better-trained model
will capture more training data statistics, thus generating bet-
ter soft labels. However, we find that this doesn’t work with
trajectory matching. As shown in Figure 4, the algorithm
fails to learn effectively with last epoch parameters.

We found that soft label assignment benefits synthetic im-
age learning. To show this, we study the effect of soft
label assignment technique alone, by fixing the synthetic
images(X̃). Then we measure the impact of soft labels(Ỹ )
produced by the teacher model with parameter θ∗t+M . On
ImageNet-1K IPC 1, we achieve state-of-the-art perfor-
mances by iteratively setting θ∗t+M as parameters from one
of the first 9 epochs7 of the teacher model (SLA step in Algo-
rithm 1). In the ablation study, we randomly select 1 image
per class and generate their labels using teacher models
from epoch 0 to epoch 9. The results are shown in Figure 5.
It can be seen that around 5.3% accuracy can be achieved by
initializing the labels using teacher models without updating
synthetic images. And our method is able to achieve around
7.7% testing accuracy by integrating soft labels with our
memory-efficient implementation of MTT.

5.5. Cross-Architecture generalization

Following previous works (Zhao & Bilen, 2021a;
Cazenavette et al., 2022; Zhou et al., 2022; Cui et al., 2022),
we evaluate the transferability of our condensed dataset in
training new architectures unseen in the synthetic dataset
generation phase. The experiment is conducted on CIFAR-
10, CIFAR-100 and ImageNet-1K under 10 IPCs. Besides
the baseline vanilla ConvNet model, we report performance
on ResNet18 and ViT (Dosovitskiy et al., 2020; Cui et al.,
2022). As shown in Table 2, our method transfers well

7Same as MTT, we always sample θ∗t+M from teacher trajecto-
ries after a full epoch. One epoch contains multiple SGD steps
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Figure 4: Ablation study on different label strategies. Y-axis
shows the maximum accuracy achieved until that iteration.
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Figure 5: Ablation study on performance of SLA without
updating synthetic images. Top flat line shows the perfor-
mance of TESLA baseline.
across datasets and models, outperforming previous meth-
ods by a sizable margin. This shows that the proposed
method can be empirically effective in distilling generaliz-
able information into the synthetic dataset. We are not able
to get FrePo’s performances due to the lack of open-sourced
code and publicly available distilled dataset.

6. Conclusion
We present a novel method to reduce the previous SOTA:
MTT’s heavy memory cost from O(T ) to O(1) with neg-
ligible run-time overhead. We also propose soft label as-
signment to guide the matching process of model training
trajectories. By combining the two, we are able to scale
dataset distillation to ImageNet-1K with IPC 10 and 50 for
the first time, achieving SOTA performance. Moverover,
our distilled dataset transfer well to across different archi-
tectures, such as ViT. We hope our method can pave the way
for future works to explore and expand dataset distillation
methods on large-scale real-world datasets.

Limitation Despite having constant memory cost with re-
spect to the number of unrolled steps, our method still re-
quires storing some checkpoints of the teacher model, sim-
ilar to the original MTT. Removing the requirement of a
teacher model will be an interesting future research direc-
tion to pursue. Further, the study of dataset distillation is
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in the very early stage so it remains important to close the
performance gap to the full model.
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A. Appendix
A.1. Bi-level optimization

Dataset distillation is originally done through bi-level optimization(Wang et al., 2018; Zhao et al., 2020a; Zhao & Bilen,
2021b; Cazenavette et al., 2022). Suppose we have a dataset D = {X,Y }, the goal of dataset distillation is to get a subset
S = {X̂, Ŷ } where |S| ≪ |D| such that the following goals can be achieved E(x,y)∼PDLθ(x, y) ≃ E(x̂,ŷ)∼PSLθ̂(x̂, ŷ) .
Here L is a loss function. θ and θ̂ are the parameters generated by using the original dataset and the distilled dataset. It can
naturally be divided into a bi-level optimization process where the inner loop updates θ̂ = argmin

θ̂

Lθ̂(x̂, ŷ) and the outer

loop computes S∗ = argmin
S

Mθ̂(S,D). Here M is a surrogate function that’s aimed to identify the difference between S

and D. For example, (Zhao et al., 2020a) tries to match the training gradients generated by using S and D, in (Cazenavette
et al., 2022), the training trajectories are used.

A.2. Complexity of other distillation methods

In the main text, we focus on the complexity analysis of FrePo and MTT. Here we discuss the complexity of other methods.
(Wang et al., 2018; Zhao et al., 2020a; Zhao & Bilen, 2021b) also uses bi-level optimization. However, compared to MTT
and FrePo, they achieve lower performances and cannot scale to large datasets. (Zhao & Bilen, 2021a) takes another
approach by matching the distributions of synthetic dataset with real dataset. The method is fast due to its single level of
optimization. However, it suffers from great accuracy loss when applying to large datasets (Table 1).

A.3. Datasets

On 3 datasets including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1K (Russakovsky et al., 2015).
CIFAR-10/100 includes 50,000 training and 10,000 testing images in 32×32 resolution from 10 and 100 classes respectively.
ImageNet-1K is a standard large-scale dataset consists of 1,000 classes with 1,281,167 training and 50,000 testing images.
We resize ImageNet-1K images to 64×64 resolutions following (Zhou et al., 2022). We do not evaluate our methods on
toy datasets such as MNIST (LeCun et al., 1998) or Fashion-MNIST(Xiao et al., 2017) as the performances of different
methods on MNIST-variants are too close and we target large datasets.

A.4. Data preprocessing

ZCA whitening is first used in KIP. We reimplement the author’s custom ZCA in order to evaluate its performance through
the publicly released dataset. However, for the ZCA preprocessing in our work, we follow the same Kornia (Riba et al.,
2019) ZCA as the original MTT work. We also follow the same ZCA settings as MTT. On ImageNet-1K, we don’t apply
ZCA at any of the IPCs.

A.5. Models

we use the same ConvNet architecture as DSA/DM/MTT. The model’s convolutional layer consists of 128 filters with
kernel size 3× 3 followed by instance normalization(Ulyanov et al., 2016), RELU activation and an average pooling layer
with kernel size 2 × 2 and stride 2. The original KIP uses a larger model with a width of 1024 for evaluation compared
to 128 used by other methods and it has one more conv layer than the model used by other methods. FrePo uses another
different model that doubles the number of filters when the feature map size is halved. Also batch normalization is used by
FrePo instead of instance normalization. A 3-layer ConvNet is used for CIFAR-10/100 and a 4-layer ConvNet is used for
ImageNet-1K.

A.6. Hardwares

All of our experiments are run using one NVIDIA A6000 GPU with 49GB of memory. When measuring the memory
consumption used by the original MTT, if it doesn’t fit into one GPU, we use two NVIDIA A6000 GPUs just for measuring
purpose.
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Figure 6: Illustration of matching training trajectories(MTT).

A.7. Label learning

In our experiment with label learning, we consider the following 2 implementation options. Firstly we try to initialize labels
using one-hot float vectors. Then we directly feed the one-hot vector to the surrogate model and use back-propagation
to update the labels. In this scenario, we observe that the classes probabilities will sum up to an arbitrary number after
being updated. This causes the cross-entropy loss function used by the surrogate model to be unstable. We observe poor
performance by following this implementation.

The second implementation is used in our experiment in Figure 4. Instead of initializing the labels with class probabilities
that sum up to 1, we initialize it with logits. In our case, we set the class index bit to 10 and the rest to 0. Then before
feeding it into the loss function, we apply a softmax operation to convert logits to class probabilities. The algorithm now is
able to learn stably. And we noticed the class weight shift from the class index bit to other classes. However, as mentioned
in the main text that it’s still not able to learn effectively because of the large label space.

We also consider using different loss functions other than cross entropy. For example, FrePo uses MSE loss in all its
experiments. However, we also notice poor performances. As mentioned in (Zhou et al., 2022), cross-entropy loss usually
outperforms MSE loss which aligns with our observations.

A.8. Training cost analysis

We show the runtime and memory analytically in the main text in Section 4.2 and empirically in Figure 2 and Figure 3.
Here we include the numerical results in Appendix A.11 and Appendix A.11. Note that on ImageNet-1K, the memory
usage of MTT is acquired by running it on 2 NVIDIA RTX A6000 GPUs, each of which has 49GB of memory. For MTT’s
runtime on ImageNet-1K, it’s estimated by observing linearity between batch size and runtime. It can be easily seen that our
memory cost is constant with respect to the number of synthetic steps. From Appendix A.11 we can see that, our algorithm
uses only one fifth of MTT’s memory with only 27% more time8. Thus our algorithm is able to easily scale to larger datasets
with large IPCs.

8Although our method only computes the first order gradient twice, it’s fast and memory efficient compared to the meta gradient
computation w.r.t synthetic images which is only computed once.

12



Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory

Figure 7: Learning curve for student model learning rate

Table 4: Peak memory usage comparison on CIFAR-100 between MTT and ours using batch size 100. The units are in MB.
Matching step means how many gradient descent steps to run before performing model training trajectory matching.

matching step
1 10 20 30 40 50 60 70 80 90 100

MTT 2961 5555 8431 11329 14197 17093 19965 22867 25737 28607 31469

Ours 3155 3405 3405 3405 3643 3647 3653 3661 3895 3905 3913

The results are measured using one NVIDIA A6000 GPU.

A.9. Augmentation

We use the same DSA augmentation as other works (Zhao & Bilen, 2021b; Cazenavette et al., 2022; Zhou et al., 2022). Unlike
FrePo which only applies augmentation at evaluation stage, we apply data augmentation at both training and evaluation
stage. Similar to previous work such as MTT, we observe better performances. We also try different augmentations such as
Autoaugment (Cubuk et al., 2018) and Randaugment (Cubuk et al., 2020) besides DSA during evaluation, however, we
usually observe downgraded performs.

A.10. Competitors

In Table 1, we ar not able to get the performance of some methods. We list the reasons here. For DSA, we are not able to get
the performances on ImageNet-1K because of memory constraints. For DM, we are only able to get the performances for
IPC 1 and 2. We have to perform early stopping when the testing accuracy plateaus because it takes 5 minutes to perform
each iteration and the original number of iterations is set to 20,000 by the author. DM gets OOM error when setting IPC to
10 on ImageNet-1K. For KIP, the work is not open-sourced. The author only released distilled datasets on CIFAR-10 with
IPC 1,10, 50 and CIFAR-100 with IPC 1 and 10. For FrePo, as it’s a recent work, there is no open-sourced code or publicly
released dataset yet. Therefore, we report the numbers from its original work. Also as reported by the authors, FrePo is not
able to scale to TinyImageNet with IPC 50 and ImageNet-1K with IPC 10.

A.11. Learning learning rate

We also notice that learning the student model learning rate is also extremely helpful in generating the synthetic datasets.
We show an example figure of learning rate change for ImageNet-1K IPC 1. It can be seen from Figure 7 that as the training
progresses, the learning rate will keep increasing. Under our settings, we set its initial values to 0.01. After 1000 iterations,
the learning rate goes up to 0.02. We notice that this not only stabilizes the training process, but also improves the testing
accuracy when evaluating the distilled datasets.
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Table 5: Memory and runtime for MTT and ours. The results are measured using batch size 100 and 50 matching steps. The
memory is the peak memory used and the runtime is measured for 10 iterations(one iteration includes 50 matching steps).
Memory diff is calculated by dividing MTT memory by our memory. Time diff is calculated by dividing our time by MTT
time.

MTT memory Our memory memory diff MTT time Our time time diff

CIFAR-100 17.1±0.1GB 3.6±0.1GB 4.75X 11.5±0.5sec 14.5±0.5sec 1.25X
ImageNet-1K 79.9±0.1GB 13.9±0.1GB 5.75X 45.0±0.4sec 46.0±0.8sec 1.02X

The results are measured using one NVIDIA A6000 GPU.

A.12. Hyperparameters

To facilitate the reproduce of our work, we list all the hyperparameters used in our experiments in this table. We use slightly
different hyperparameters on CIFAR-10/100 as listed in Appendix A.12 than the original MTT while keeping everything
else the same such as model architectures and augmentations. Theoretically, MTT should have the same performances as us
on CIFAR-10/100 with smaller IPCs where batch is not needed.

Table 6: Hyperparameters used to get the distilled dataset.

Dataset Model IPC Matching Steps Teacher Epochs Max Start Epoch Batch Size ZCA

CIFAR-10 ConvNetD3
1 50 2 3 - Y

10 30 2 20 - Y
50 30 3 40 - N

CIFAR-100 ConvNetD3
1 20 3 20 - Y

10 15 3 30 - N
50 50 2 40 100 Y

ImageNet-1K ConvNetD4

1 10 3 6 100 N
2 15 3 10 100 N

10 20 3 10 500 N
50 100 3 25 500 N

A.13. Example distilled image

We show example distilled images for the 3 dataset used in this work for easier references. For CIFAR-10, we show 10
images per class, for CIFAR-100, we show 1 image per class and for ImageNet-1K, we show 1 image per class for the 1K
classes. (more pages after this paragraph)
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Figure 8: CIFAR10 IPC 10

15



Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory

Figure 9: CIFAR100 IPC 1
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Figure 10: ImageNet-1K IPC 1, Class ID[0:99]
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Figure 11: ImageNet-1K IPC 1, Class ID[100:199]
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Figure 12: ImageNet-1K IPC 1, Class ID[200:299]
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Figure 13: ImageNet-1K IPC 1, Class ID[300:399]

20



Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory

Figure 14: ImageNet-1K IPC 1, Class ID[400:499]
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Figure 15: ImageNet-1K IPC 1, Class ID[500:599]
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Figure 16: ImageNet-1K IPC 1, Class ID[600:699]
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Figure 17: ImageNet-1K IPC 1, Class ID[700:799]
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Figure 18: ImageNet-1K IPC 1, Class ID[800:899]
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Figure 19: ImageNet-1K IPC 1, Class ID[900:999]
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