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Abstract
Transformer-based detection and segmentation
methods use a list of learned detection queries to
retrieve information from the transformer network
and learn to predict the location and category of
one specific object from each query. We empiri-
cally find that random convex combinations of the
learned queries are still good for the correspond-
ing models. We then propose to learn a convex
combination with dynamic coefficients based on
the high-level semantics of the image. The gener-
ated dynamic queries, named modulated queries,
better capture the prior of object locations and
categories in the different images. Equipped with
our modulated queries, a wide range of DETR-
based models achieve consistent and superior per-
formance across multiple tasks including object
detection, instance segmentation, panoptic seg-
mentation, and video instance segmentation.

1. Introduction
Object detection is a fundamental yet challenging task in
computer vision, which aims to localize and categorize ob-
jects of interest in the images simultaneously. Traditional
detection models (Ren et al., 2015; Cai & Vasconcelos,
2019; Duan et al., 2019; Lin et al., 2017b;a) use complicated
anchor designs and heavy post-processing steps such as Non-
Maximum-Suppression (NMS) to remove duplicated detec-
tions. Recently, Transformer-based object detectors such as
DETR (Carion et al., 2020) have been introduced to simplify
the process. In detail, DETR combines convolutional neural
networks (CNNs) with Transformer (Vaswani et al., 2017)
by introducing an encoder-decoder framework to generate a
series of predictions from a list of object queries. Follow-
ing works improve the efficiency and convergence speed
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Figure 1. Comparison of DETR-based detection models integrated
with and without our methods on MS COCO (Lin et al., 2014) val
benchmark. ResNet-50 (He et al., 2016) is used as the backbone.

of DETR with modifications to the attention module (Zhu
et al., 2021; Roh et al., 2021), and divide queries into po-
sitional and content queries (Liu et al., 2022; Meng et al.,
2021; Wang et al., 2022; Zhang et al., 2022). This paradigm
is also adopted for instance/panoptic segmentation, where
each query is associated with one specific object mask in
the decoding stage of the segmentation model (Cheng et al.,
2021a; Dong et al., 2021; Cheng et al., 2021b; Hu et al.,
2021; Wang et al., 2021d).

The existing DETR-based detection models always use a
list of fixed queries, regardless of the input image. The
queries will attend to different objects in the image through
a multi-stage attention process. Here, the queries serve as
global priors for the location and semantics of target objects
in the image. In this paper, we would like to associate the de-
tection queries with the content of the image, i.e., adjusting
detection queries based on the high-level semantics of the
image in order to capture the distribution of object locations
and categories in this specific scene. For example, when the
high-level semantics shows the image is a group photo, we
know that there will be a group of people (category) inside
the image and they are more likely to be close to the center
of the image (location).

Since the detection queries are implicit features that do not
directly relate to specific locations and object categories
in the DETR framework, it is hard to design a mechanism
to change the queries while keeping them within a mean-
ingful “query” subspace to the model. Through an empir-
ical study, we notice that convex combinations of learned
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queries are still good queries to different DETR-based mod-
els, achieving similar performance as the originally learned
queries (See Section 3.2). Motivated by this, we propose
a method to generate dynamic detection queries, named
modulated queries, based on the high-level semantics of
the image in DETR-based methods while constraining the
generated queries in a sequence of convex hulls spanned
by the static queries. Therefore, the generated detection
queries are more related to the target objects in the image
and stay in a meaningful subspace. We show the superior
performance of our approach combined with a wide range
of DETR-based models on MS COCO (Lin et al., 2014),
CityScapes (Cordts et al., 2016) and YouTube-VIS (Yang
et al., 2019b) benchmarks with multiple tasks, including ob-
ject detection, instance segmentation, and panoptic segmen-
tation. In Figure 1, we show the performance of our method
on object detection combined with two baseline models.
When integrated with our proposed method, the mAP of re-
cent detection models DAB-Deformable-DETR (Liu et al.,
2022) can be increased by 1.6%. With fewer modulated
queries, our method can still achieve better performance
than baseline models on both Deformable-DETR and DAB-
Deformable-DETR.

2. Related Works
Transformers for object detection. Traditional CNN-
based object detectors require manually designed compo-
nents such as anchors (Ren et al., 2015; Cai & Vasconcelos,
2019; Girshick, 2015; He et al., 2017) or post-processing
steps such as NMS(Neubeck & Van Gool, 2006; Hosang
et al., 2017; Rothe et al., 2015). Transformer-based detec-
tors directly generate predictions for a list of target objects
with a series of learnable queries. Among them, DETR (Car-
ion et al., 2020) first combines the sequence-to-sequence
framework with learnable queries and CNN features for
object detection.

Following DETR, multiple works (Chen et al., 2022; Zhu
et al., 2021; Roh et al., 2021; Jia et al., 2022; Zhang et al.,
2022; Liu et al., 2022) were proposed to improve its conver-
gence speed and accuracy. Deformable-DETR (Zhu et al.,
2021) and Sparse-DETR (Roh et al., 2021) replace the self-
attention modules with more efficient attention operations
where only a small set of key-value pairs are used for calcu-
lation. Conditional-DETR (Tian et al., 2020) changes the
queries in DETR to be conditional spatial queries, which
speeds up the convergence process. SMCA-DETR (Gao
et al., 2021) introduces pre-defined Gaussian maps around
the reference points. Anchor-DETR (Wang et al., 2022) gen-
erates the object queries using anchor points rather than a
set of learnable embeddings. DAB-DETR (Liu et al., 2022)
directly uses learnable box coordinates as queries which can
be refined in the Transformer decoder layers. DN-DETR

(Li et al., 2022) improves the convergence speed of DETR
by introducing noises to the ground truths and forcing the
Transformer decoder to reconstruct the bounding boxes.
DINO (Zhang et al., 2022) and DN-DETR (Li et al., 2022)
introduce a strategy to train models with noisy ground truths
to help the model learn the representation of the positive
samples more efficiently.

Recently, Group-DETR (Chen et al., 2022) and HDETR
(Jia et al., 2022) both added auxiliary queries and a one-
to-many matching loss to improve the convergence of the
DETR-based models. They still use static queries which
does not change the general architecture of DETR. All these
Transformer-based detection methods use fixed initial de-
tection queries learned on the whole dataset. he queries will
attend to different objects in the image through a multi-stage
attention process. Without the global context, the queries
might attend to regions that do not contain any objects or
search for categories that do not exist in the image, which
may limit the model’s performance. In contrast, we propose
to modulate the queries based on the image’s content, which
generates more effective queries for the current image.

Transformers for object segmentation. Besides object
detection, Transformer-based models are also proposed for
object segmentation tasks including image instance segmen-
tation (He et al., 2017; Wang et al., 2020a; Bolya et al., 2019;
Wang et al., 2020b; Bolya et al., 2020; Cao et al., 2020),
panoptic segmentation (Kirillov et al., 2019; Wang et al.,
2021a; Zhang et al., 2021; Xiong et al., 2019) and video
instance segmentation (VIS) (Yang et al., 2019b; Hwang
et al., 2021; Liu et al., 2021a; 2019). In DETR (Carion et al.,
2020), a mask head is introduced on top of the decoder out-
puts to generate the predictions for panoptic segmentation.
Following DETR, ISTR (Hu et al., 2021) generates low-
dimensional mask embeddings, which are matched with the
ground truth mask embeddings using Hungarian Algorithm
for instance segmentation. SOLQ (Dong et al., 2021) uses a
unified query representation for class, location, and mask.

Besides image object segmentation, researchers have begun
to investigate object segmentation in video domains (Wang
et al., 2021d; Wu et al., 2022; Thawakar et al., 2022; Yang
et al., 2022; Hwang et al., 2021). VisTR (Wang et al., 2021d)
extends DETR from the image domain to the video domain
by introducing an instance sequence matching and segmen-
tation pipeline for video instance segmentation. SeqFormer
(Wu et al., 2022) utilizes video-level instance queries where
each query attends to a specific object across frames in the
video. MSSTS-VIS (Thawakar et al., 2022) introduces a
multi-scale spatial-temporal split attention module for video
instance segmentation.

Recently, multiple works (Cheng et al., 2021a; Jain et al.,
2022; Cheng et al., 2021b; Liang et al., 2023) pay atten-
tion to unified frameworks for object segmentation tasks in
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Model DAB-DETR Deformable-DETR Mask2Former
r = 2 r = 4 r = 2 r = 4 r = 2

Convex Combination 37.9(±0.10) 30.4(±0.20) 35.0(±0.20) 24.2(±0.05) 41.2(±0.10)
Non-convex Combination 37.0(±0.10) 29.5(±0.10) 32.6(±0.25) 24.0(±0.10) 40.7(±0.45)
Averaged Combination 37.0 28.4 32.9 22.5 40.9
Queries sampled randomly 39.7(±0.05) 33.9(±0.15) 39.8(±0.30) 28.1(±0.30) 41.7(±0.10)

Table 1. Comparison of pretrained detection models DAB-DETR (Liu et al., 2022) and Deformable-DETR and segmentation model
Mask2Former (Cheng et al., 2021a) with different queries. The shown metrics are box mAP for detection and mask mAP for segmentation.
ResNet-50 is used as the backbone and models are evaluated on MS COCO val.

both image and video domains. Cheng et al. (2021b) present
MaskFormer, a straightforward mask classification model. It
predicts binary masks linked to global class labels, simplify-
ing semantic and panoptic segmentation tasks and achieving
impressive empirical outcomes. By extending MaskFormer,
Mask2Former (Cheng et al., 2021a) introduces masked at-
tention to extract localized features and predict output for
panoptic, instance, and semantic segmentation in a unified
framework. These Transformer-based models follow the
general paradigm of DETR and use fixed queries regardless
of the input.

Dynamic deep neural networks. Dynamic deep neural net-
work (Han et al., 2021) aims at adjusting the computation
procedure of a neural network adaptively in order to reduce
the overall computation cost or enhance the model capacity.
Slimmable networks (Yu et al., 2018; Yu & Huang, 2019;
Li et al., 2021) introduce a strategy to adapt to multiple de-
vices by simply changing channel numbers without the need
for retraining. Dynamic Convolution (Chen et al., 2020)
proposes a dynamic perceptron that uses dynamic attention
weights to aggregate multiple convolution kernels based on
the input features. Similar to dynamic convolution, Cond-
Conv (Yang et al., 2019a) introduces an operation named
conditionally parameterized convolutions, which learns spe-
cialized convolutional kernels for each individual input.

On object detection, Dynamic R-CNN (Zhang et al., 2020)
proposes a new training strategy to dynamically adjust the
label assignment for two-stage object detectors based on
the statics of proposals. Dynamic-DETR (Li et al., 2021)
introduces a dynamic attention module to DETR that dy-
namically adjusts attention according to factors such as the
importance of scale to improve the performance on small
objects and convergence speed. Cui et al. (2022) proposes
to train a single detection model which can adjust the num-
ber of proposals based on the complexity of the input im-
age. TF-Blender (Cui et al., 2021; Cui, 2022a; Cui & Yang,
2023; Cui, 2022b) simplifies the feature aggregation process
for video object detection by using a dynamic number of
frames to enhance the object representations. Wang et al.
(2021c) introduces a Dynamic Transformer to determine
the number of tokens according to the input image for effi-
cient image recognition, by stacking multiple Transformer
layers with increasing numbers of tokens. SODAR (Wang

et al., 2021b) focuses on instance segmentation based on
a one-stage SOLO model (Wang et al., 2020a;b) for better
performance. It improves the final segmentation quality by
leveraging the rich neighboring information with a learning-
based aggregation method. This model cannot be directly
applied to other models, such as DETR-based models. GC-
Net (Cao et al., 2019) is designed for long-range dependency
modeling in traditional convolutional networks. It simplifies
the Non-Local Network (NLNet) by only considering the
global context in the attention block.

Both SODAR and GCNet deal with CNN-based model back-
bones, which are different from the Transformer encoder-
decoder structure in the DETR framework. We believe our
method can shed light on dynamic model designing in the
Transformer paradigm. In contrast to the existing work,
we explore generating dynamic queries for a wide range of
DETR-based models using the same framework. Our focus
is not to reduce the computation cost of DETR-based mod-
els, but to improve the model performances with queries
more related to the content of each individual image.

3. Methodology
3.1. Preliminary

We first summarize the inference process of the existing
Transformer-based models for a series of tasks, including
object detection, instance segmentation, and panoptic seg-
mentation, as the following Equation:

Y = Nt (Ndec (Nenc (F ) ,Q)) . (1)

For the object detection task, given the input image I ,
multi-scale features F are extracted from the backbone net-
work and then fed into a Transformer encoder Nenc. After
processing the features with multiple encoder layers, the
output features are fed into a Transformer decoder Ndec to-
gether with n randomly initialized query vectors Q ∈ Rn×f ,
where n and f denote the number of queries and length of
each query respectively. Each query can be a feature vec-
tor (Carion et al., 2020; Zhu et al., 2021), or a learned
anchor box (Liu et al., 2022). The outputs of Ndec are then
fed into a task head Nt to generate the final predictions
Y = {(bi, ci) , i = 1, 2, . . . , n}, where bi, ci represent the
bounding boxes and their corresponding categories of the
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(a) (b)

Figure 2. The framework of the proposed method. (a) Model pipeline with dynamic query combinations. The step with the dashed line is
only used in training. (b) Illustration of generating modulated queries from basic queries given combination coefficients.

detected objects. Then, the predictions are matched with the
ground truths Y ⋆ using the Hungarian Algorithm (Carion
et al., 2020) to generate a bipartite matching. Then, the final
loss is computed based on this bipartite matching:

L = LHungarian (Y ,Y ⋆) . (2)

For the segmentation tasks, the final predictions are updated
to Y = {(bi, ci,mi) , i = 1, 2, . . . , n}, where mi denotes
the predicted masks for different object instances. Since
there is no direct correspondence of the predictions with
the ground truth annotations, a bipartite matching is also
computed to find the correspondence of the predictions and
the ground truths Y ⋆. The final loss is then computed based
on the matching. In some models such as Mask2Former
(Cheng et al., 2021a), there will be no Transformer encoder
Nenc to enhance the feature representations, while the other
computational components follow the same paradigm.

3.2. Fixed Query Combinations

Though some existing works analyze the contents of the
queries for the decoder, such as Conditional-DETR (Tian
et al., 2020) and Anchor-DETR (Wang et al., 2022), they
always exam each query individually. To the best of our
knowledge, there is no work studying the interaction be-
tween the queries in Q. Here, we would like to explore
what kind of transformations conducted between the learned
queries still generate “good” queries. If we compute the
average of a few queries, is it still an effective query? If we
use different types of linear transformations, which would
be better to produce good queries?

We conduct experiments to analyze the results of queries
generated by different perturbations from the original
queries. The procedure of the experiments is as fol-
lows: given a well-trained Transformer-based model, the
initial queries for the decoder are denoted as QP =

{
qP
1 , q

P
2 , . . . , q

P
n

}
∈ Rn×f . The first type of perturba-

tion uses linear combinations of the original queries. We
first separate the n queries into m groups, where each group
has r = n

m queries and generates one new query. Then, we
initialize the combination coefficients W ∈ Rm×r, where
wij ∈ W is the coefficient used for the i-th group, j-th
queries, denoted as qP

ij , to generate a group of new queries
QC = {qC

1 , q
C
2 , . . . , q

C
m} ∈ Rm×f . The process can be

summarized as:

qC
i =

r∑
j=1

wijq
P
ij , (3)

We use three settings to evaluate the impact of different
coefficients in Equation 3, namely Convex Combination,
Non-convex Combination, and Averaged Combination:

In Convex Combination, qC
i is within the convex hull of

qP
ij , j = 1, 2, . . . , r. The combination coefficients wij are

randomly initialized using uniform distribution in [−1, 1]
and then passed through a softmax function to satisfy the
criteria: wij ≥ 0,

∑r
j=1 wij = 1.

For Non-convex Combinations, wij are initialized in the
same way as those in the convex combination, and the sum
of wij is forced to be 1. However, there is no guarantee on
its range and wij can be negative values. For Averaged Com-
bination, we generate qC

i by averaging qP
ij , j = 1, 2, . . . , r.

As a baseline, we evaluate the model on m queries randomly
sampled from QP . The experiments are conducted on MS
COCO benchmark (Lin et al., 2014) for object detection, and
instance segmentation, using DAB-DETR (Liu et al., 2022),
Deformable-DETR (Zhu et al., 2021) and Mask2Former
(Cheng et al., 2021a), with ResNet-50 (He et al., 2016) as
the backbone. The results are summarized in Table 1.

From Table 1, we notice that Convex Combination achieves
the best results among all the compared settings except
the baseline. Convex Combination only degenerates
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Backbone Method mAP AP0.5 AP0.75

ResNet-50

Conditional-DETR (Tian et al., 2020) 40.9 61.7 43.3
DQ-Conditional-DETR 42.0↑1.1 63.3↑1.6 44.2↑0.9
SMCA-DETR (Gao et al., 2021) 41.0 61.5 43.5
DQ-SMCA-DETR 42.1↑1.1 63.3↑1.8 44.9↑1.4
DAB-DETR (Liu et al., 2022) 42.1 63.1 44.6
DQ-DAB-DETR 43.7↑1.6 64.4↑1.3 46.6↑2.0
Deformable-DETR (Zhu et al., 2021) 46.2 65.0 49.9
DQ-Deformable-DETR 47.0↑0.8 65.5↑0.5 50.9↑1.0
DAB-Deformable-DETR (Liu et al., 2022) 48.1 66.4 52.0
DQ-DAB-Deformable-DETR 49.7↑1.6 68.1↑1.7 54.2↑2.2

Swin-Base

Deformable-DETR (Zhu et al., 2021) 50.9 70.5 55.3
DQ-Deformable-DETR 53.2↑2.3 72.8↑2.3 57.7↑2.4
DAB-Deformable-DETR (Liu et al., 2022) 52.7 71.8 57.4
DQ-DAB-Deformable-DETR 53.8↑1.1 72.8↑1.0 58.6↑1.2

Table 2. Comparison of existing DETR-based object detectors with/without our proposed methods integrated on MS COCO val split.

slightly compared with learned queries on DAB-DETR and
Mask2Former. In addition, the performance of Convex
Combination only has very small variances across different
models, proving that convex combinations of the group-wise
learned queries are naturally high-quality object queries for
different Transformer-based models on both detection and
segmentation tasks. n is set to 300 for detection models and
100 for Mask2Former. We run each experimental setting 6
times to compute the variance.

3.3. Dynamic Query Combinations

From the previous section, we learn that fixed convex com-
binations of learned queries can still produce a reasonable
accuracy compared to the learned queries. In this section,
we propose a strategy to learn dynamic query combinations
for the Transformer-based models instead of randomly gen-
erating the coefficients wij for query combinations. Our
model predicts their values according to the high-level con-
tent of the input. Thus, each input image will have a distinct
set of object queries fed into the Transformer decoder.

To generate dynamic queries, a naive idea is to generate the
queries directly from the input features F . This method
will increase the number of parameters dramatically, caus-
ing it difficult to optimize and inevitably computationally
inefficient. To verify this, we conduct an experiment on
Deformable-DETR (Zhu et al., 2021) with ResNet-50 as
the backbone. We replace the original randomly initialized
queries with those generated by a multi-layer perceptron
(MLP), which transforms the image feature F to Q. With
50 epochs, the model only achieves 45.1% mAP, which is
lower than the original model with 46.2%.

Inspired by the dynamic convolution (Chen et al., 2020;
Yang et al., 2019a), which aggregates the features with
multiple kernels in each convolutional layer, we propose

a query modulation method. We introduce two types of
queries: basic queries QB ∈ Rn×f and modulated queries
QM ∈ Rm×f , where n,m are the number of queries and
n = rm. Equation 3 is updated as:

qM
i =

r∑
j=1

wD
ijq

B
ij , (4)

where WD ∈ Rm×r is the combination coefficient matrix
and wD

ij ∈ WD is the coefficient for the i-th group, j-
th query in QB , denoted as qB

ij . To guarantee our query
combinations to be convex, we add extra constraints to the
coefficients as wD

ij ≥ 0,
∑r

j=1 w
D
ij = 1.

We use an example here to illustrate how to divide the ba-
sic queries into multiple groups. The basic queries are
represented as QB = {qB

0 , qB
1 , qB

2 , qB
3 , qB

4 , qB
5 , qB

6 , qB
7 }

and r = 4. We divide the basic queries in sequential or-
der. Therefore, qB

0 , qB
1 , qB

2 , qB
3 is used to generate qM

0

and qB
4 , qB

5 , qB
6 , qB

7 is used to generate qM
1 . wD

0 ∈ R4

is used to weighted average qB
0 , qB

1 , qB
2 , qB

3 to generate
qM
0 ∈ Rf while wD

1 ∈ R4 is used to weighted average
qB
4 , qB

5 , qB
6 , qB

7 to generate qM
1 ∈ Rf . We did not conduct

experiments to study the effects of different divisions. Since
the basic queries are randomly initialized and are jointly
learned with the modulated queries, we believe the results
will not change significantly with a different division.

In our dynamic query combination module, the coefficient
matrix WD is learned based on the input feature F through
a mini-network, as:

WD = σ (θ (A (F ))) , (5)

where A is a global average pooling to generate a global
feature from the feature map F , θ is an MLP, σ is a soft-
max function to guarantee the elements of WD satisfy the
convex constraints. Here we try to make the mini-network
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Method Backbone Panoptic Instance

PQ APTh
pan mIoUpan mAP AP0.5

Mask2Former (Cheng et al., 2021a) ResNet-50 62.1 37.3 77.5 37.4 61.9
DQ-Mask2Former 63.2↑1.1 38.2↑0.9 78.7↑1.2 38.5↑1.1 63.2↑1.3

Mask2Former (Cheng et al., 2021a) Swin-Base 66.1 42.8 82.7 42.0 68.8
DQ-Mask2Former 67.0↑0.9 43.7↑0.9 83.7↑1.0 43.0↑1.0 69.6↑0.8

Table 3. Comparison of Mask2Former and DQ-Mask2Former on panoptic and instance segmentation tasks on CityScapes val split.

Methods Backbone mAP

Mask R-CNN (He et al., 2017) ResNet-50 35.4
QueryInst (Fang et al., 2021) 39.8

Mask2Former(Cheng et al., 2021a) ResNet-50 43.7
DQ-Mask2Former 44.4↑0.7

Mask2Former (Cheng et al., 2021a) Swin-Base 46.7
DQ-Mask2Former 47.6↑0.9

Table 4. Comparison of existing instance segmentation approaches
and DQ-Mask2Former on MS COCO val split.

as simple as possible to show the potential of using modu-
lated queries. This attention-style structure happens to be a
simple and effective design choice.

During the training process, we feed both QM and QB to
the same decoder to generate the corresponding predictions
Y M and Y B as follows,

Y M = Nt

(
Ndec

(
Nenc (F ) ,QM

))
Y B = Nt

(
Ndec

(
Nenc (F ) ,QB

))
(6)

The final training loss is then updated to

L = LHungarian
(
Y M ,Y ⋆

)
+ βLHungarian

(
Y B ,Y ⋆

)
(7)

where β is a hyperparameter. During the inference, only
QM is used to generate the final predictions Y M while the
basic queries QB are not used. Therefore, the computa-
tional complexity increases for our models are negligible
compared to the original DETR-based models. The only
difference in the computation is that we have an additional
MLP and a convex combination to generate the modulated
queries. Therefore, the role of modulated queries in our
model is exactly the same as the fixed object queries in the
original models.

4. Experiments
To evaluate the effectiveness of our proposed methods, we
first conduct experiments on a series of tasks, including
object detection, instance segmentation, panoptic segmenta-
tion, and video instance segmentation with different DETR-
based models. Then we conduct several ablation studies
to investigate the impact of different hyperparameters in
our model for a better analysis. Finally, we visualize the

dynamic query combinations to show the effectiveness of
our model.

4.1. Experiment Setup

Datasets. For the object detection task, we use MS COCO
benchmark (Lin et al., 2014) for evaluation, which contains
118, 287 images for training and 5, 000 for validation. For
instance and panoptic segmentation, besides the MS COCO
benchmark (80 “things” and 53 “stuff” categories), we also
conduct experiments on the CityScapes (Cordts et al., 2016)
benchmark (8 “things” and 11 “stuff” categories) to validate
the effectiveness of our proposed method. For the video
instance segmentation task, YouTube-VIS-2019 (Yang et al.,
2019b) is used for evaluation. For experiments on video in-
stance segmentation, we pretrain our models on MS COCO
and finetune them on the training set of YouTube-VIS-2019.

Evaluation metrics. For panoptic segmentation, the stan-
dard PQ (panoptic quality) metric (Kirillov et al., 2019)
is used for evaluation. For instance segmentation (image
or video) and object detection, we use the standard mAP
(mean average precision) metric for evaluation. For VIS,
mAP and AR (average recall) on video instances are the
evaluation metrics. We observe around 0.8 mAP fluctua-
tions in performance and we report the results reproduced
based on the officially released code in this section.

Implementation details. The query ratio r used to generate
the combination coefficients is set to 4 by default. β is set
to be 1. θ is implemented as a two-layer MLP with ReLU
as nonlinear activations. The output size of its first layer is
512, and that of the second layer is the length of WD in
corresponding models. For detection models, we use 300
modulated queries and 1200 basic queries if not specified
otherwise. For the baseline models used for comparison, we
use 300 queries as the original implementation by default.
For instance segmentation and panoptic segmentation mod-
els, we use 100 modulated queries and 400 basic queries for
Mask2Former. For video instance segmentation, we use 100
modulated queries and 400 basic queries for Mask2Former
and 300 modulated queries, and 1,200 basic queries for Se-
qFormer. For the baseline models, we use 100 queries for
Mask2Former on image segmentation tasks, 100 queries
for Mask2Former on video instance segmentation, and 300
queries for SeqFormer on video instance segmentation. The
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Methods Backbone PQ PQth

UPSnet (Xiong et al., 2019) ResNet-50 42.5 48.6
DETR (Carion et al., 2020) 43.4 48.2

Mask2Former (Cheng et al., 2021a) ResNet-50 51.9 57.7
DQ-Mask2Former 52.6↑0.7 58.9↑1.2

Mask2Former (Cheng et al., 2021a) Swin-Base 55.1 61.0
DQ-Mask2Former 55.7↑0.6 61.8↑0.8

Table 5. Comparison of existing panoptic segmentation approaches with DQ-Mask2Former on MS COCO val split.

comparison is based on the fairness principle that the same
number of queries are used as input to the transformer de-
coders of our model and the baseline. During inference, the
only added computational cost of our method compared to
the baselines is the mini-network to produce the modulated
queries.

4.2. Main Results

Object detection. We evaluate our proposed methods with
the DETR-based models Deformable-DETR (Zhu et al.,
2021), SMCA-DETR (Gao et al., 2021), Conditional-DETR
(Tian et al., 2020), DAB-DETR and DAB-Deformable-
DETR (Liu et al., 2022) with ResNet50 (He et al., 2016)
for object detection on the MS COCO benchmark. We also
experiment with Deformable-DETR and DAB-Deformable-
DETR on Swin-B(Liu et al., 2021b) to further evaluate
the performance of our method on more powerful back-
bones. For a fair comparison, we run the original model
integrated with and without our proposed modulated queries
using the same experimental settings. The models equipped
with our dynamic query combinations are denoted as DQ-
Deformable-DETR, DQ-SMCA-DETR, DQ-Conditional-
DETR, DQ-DAB-DETR, and DQ-DAB-Deformable-DETR,
respectively. The results are shown in Table 2. From Table
2, when integrated with our proposed method, mAP can be
improved consistently by at least 0.8% for all the models
listed in the table. For DAB-Deformable-DETR, the mAP
can be improved by 1.6% with ResNet50 backbone and
1.1% with Swin-Base backbone. For Deformable-DETR,
the mAP can be improved significantly by 2.3% with the
Swin-Base backbone. This proves the benefit of our method
with different backbones. Note that models with modulated
queries only have negligible increased computation cost
compared to the original models.

Instance/panoptic segmentation. Mask2Former(Cheng
et al., 2021a) is a recent state-of-the-art model that can be
used for different segmentation tasks with a unified model
architecture. We compare Mask2Former with/without our
modulated queries for image instance and panoptic seg-
mentation tasks on the MS COCO (Lin et al., 2014) and
CityScapes benchmarks. The model plugged with modu-
lated queries is named DQ-Mask2Former. The results are

shown in Table 3, Table 4, and Table 5, respectively.

For instance segmentation (Table 4), our model DQ-
Mask2Former achieves consistent improvement across dif-
ferent metrics compared to the original Mask2Former. For
example, the performance on mAP is improved by around
0.8% on both MS COCO. For panoptic segmentation, as
shown in Table 5, DQ-Mask2Former again significantly
outperforms Mask2Former (Cheng et al., 2021a) across all
the evaluation metrics on both MS COCO and CityScapes.
Since panoptic segmentation is more challenging compared
with instance segmentation and object detection where both
semantic and instance segmentation tasks are required to
generate the final predictions, our model works less effec-
tively for panoptic segmentation compared to other tasks.

Video instance segmentation. Besides image tasks, we
also evaluate our method on the video instance segmentation
task. We evaluated our method based on two state-of-the-art
video instance segmentation methods Mask2Former (Cheng
et al., 2021a) and SeqFormer (Wu et al., 2022). Results are
shown in Table 6. It can be seen from Table 6 that when
integrated with our modulated queries, mAP, and AR of
Mask2Former are improved by at around 1.0% and the mAP
of SeqFormer is significantly boosted by 1.5%. Note the
additional computation cost is negligible with our modulated
queries.

4.3. Model Analysis

In this section, we conduct extensive experiments to analyze
the designs of our proposed method. By default, for the
object detection task, the number of modulated queries is set
to 300. For the segmentation tasks, the number of modulated
queries is set to 50 for a faster training pipeline, and r is set
to 4 for all the tasks.

Analysis of the number of queries. We use Deformable-
DETR and DAB-Deformable-DETR as baseline models to
study the effects of the number of queries on the perfor-
mance of object detection. We compare the baseline mod-
els with DQ-Deformable-DETR and DQ-DAB-Deformable-
DETR integrated with different numbers of queries as in
Figure 1. Note that we include the additional components of
our models in the FLOPs computation of the decoder. When
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Method Backbone mAP AP0.5 AP0.75

MaskTrack R-CNN (Yang et al., 2019b) ResNet-50 30.3 51.1 32.6
IFC (Hwang et al., 2021) 42.8 65.8 46.8

Mask2Former (Cheng et al., 2021a)

ResNet-50

46.4 68.0 50.0
DQ-Mask2Former 47.4↑1.0 69.2↑1.2 51.0↑1.0
SeqFormer (Wu et al., 2022) 47.4 69.8 51.8
DQ-SeqFormer 49.0↑1.6 71.5↑1.7 53.0↑1.2

Mask2Former (Cheng et al., 2021a) Swin-Base 59.5 84.3 67.2
DQ-Mask2Former 61.3↑1.8 86.1↑1.8 68.6↑1.4

SeqFormer (Wu et al., 2022) Swin-Large 59.3 82.1 66.4
DQ-SeqFormer 61.2↑1.9 84.1↑2.0 68.0↑1.6

Table 6. Comparison of existing video instance segmentation approaches with DQ-Mask2Former and DQ-SeqFormer on YouTube-VIS-
2019 val split.

β mAP AP0.5 AP0.75 APS APM APL

0.0 45.6 64.1 49.4 27.2 49.1 60.5
0.5 46.4 65.0 50.3 28.1 49.2 62.6
1.0 47.0 65.5 50.9 28.8 50.1 62.2

Table 7. Analysis of β using DQ-Deformable-DETR (ResNet-50
as the backbone) on the MS COCO benchmark with different
settings.

integrated with our method, even by reducing the number
of modulated queries from 300 to 100, the mAPs of DQ-
Deformable-DETR and DQ-DAB-Deformable-DETR are
still better than the baseline models with 300 queries. We are
also able to reduce the computation cost of the decoders of
Deformable-DETR and DAB-Deformable-DETR by about
14% and 24% by using our method with 100 queries, re-
spectively. However, we do not observe significant speedup
using our method with fewer queries mainly because the
main computation costs are from the backbones and the
transformer encoders.

Analysis of the number of training epochs. In Figure 3
(a), we show the impact of the number of training epochs
on a sample model DQ-Deformable-DETR together with
the original Deformable-DETR. From the figure, the mAP
of DQ-Deformable-DETR is always better than that of the
original Deformable-DETR at different epochs on the MS
COCO benchmark. At early 30 epochs, DQ-Deformable-
DETR achieves a more significant performance gain com-
pared to Deformable-DETR compared with later epochs.

Analysis of β. We analyze the impact of the scale of β on
models equipped with our modulated queries. We conduct
experiments using Deformable-DETR with ResNet-50 as
the backbone of the MS COCO benchmark with different
values of β. Results are shown in Table 7. As shown in
the table, when β is set to be 0, where no loss is directly
computed with the prediction from the basic queries, the per-
formance drops by 2.4% compared to the original setting. In
this case, the basic queries are not necessarily proper queries

for the detection model, which will affect the quality of the
modulated queries produced by them. The performance can
be improved by increasing the value of β. Empirically we
find β = 1 is a good choice to balance the scale of losses
between the basic and modulated queries.

Analysis of query ratio. We use DQ-Deformable-DETR
(Zhu et al., 2021) to analyze the performance of our pro-
posed methods with different query ratios 2, 4, and 8, as
in Figure 3 (b). From the figure, using 4 as the query ratio
achieves the best performance for DQ-Deformable-DETR
with 300 modulated queries. However, other query ratio
choices still generate better accuracies than the original
Deformable-DETR, which validates the effectiveness and
robustness of our method.

Non-modulated ablation. Our model uses additional train-
ing queries (the basic queries) compared to the baselines.
Here we conduct an ablative study on the factor of addi-
tional training queries. We train the model with two unre-
lated groups of queries with Deformable-DETR (1200/300
queries) and Mask2Former (400/100 queries), as Table 8.
The first group has the same number as our basic queries
while the second group has the same number as our modu-
lated queries. Only the second group is used in inference.
From the table, models with the two unrelated groups pro-
duce similar results as the baselines. In contrast, our pro-
posed method with modulated queries achieves significant
improvement in the two models. This proves that the im-
provement of our model is not simply due to more queries
in training on DETR-based models.

Analysis of speed. The proposed method needs to apply
forward passes in two branches for the basic queries and
the modulated queries in the training phase of the model,
which increases the computation cost. Here, we report the
training time and inference speed of our model compared
to the baseline with Deformable-DETR (ResNet-50) and
Mask2Former (ResNet-50) in Table 9. The training time is
based on 8 NVIDIA A100 GPUs and the inference FPS is
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(a) (b)
Figure 3. Analysis of the impact of the number of epochs and query ratios on the performance.

Method mAP AP50 AP75

Deformable-DETR 46.2 65.0 49.9
Deformable-DETR† 46.5 64.9 50.5
DQ-Deformable-DETR 47.0 65.5 50.9

Mask2Former 43.7 65.5 46.9
Mask2Former† 43.9 65.8 47.2
DQ-Mask2Former 44.4 66.3 47.6

Table 8. Comparison with two groups of unrelated queries. † de-
notes two groups of unrelated queries.

Model Training Time Inference FPS

Deformable-DETR ∼ 61 GPU hours 13.3
DQ-Deformable-DETR ∼ 69 GPU hours 13.1
Mask2Former ∼ 71 GPU hours 5.4

DQ-Mask2Former ∼ 80 GPU hours 5.2
Table 9. Comparison of the training/inference time with and with-
out our proposed methods integrated.

tested on a single TITAN RTX GPU. From the table, our
method only increases the training time slightly compared
to the baselines. The reason is that the major computation
cost of DETR-based models comes from the backbones
and transformer encoders that only need to be forwarded
once for the two branches. During inference, the FPS of
DQ-Deformable-DETR and DQ-Mask2Former are slightly
reduced by less than 4% due to the extra computation of the
mini-network to produce the modulated queries.

Visualization of WD. Since WD is conditioned on the
high-level content of the image, we conjecture that images
with similar scenes or object categories may have similar
WD parameters. We choose 200 images from the validation
set of MS COCO and compute their WD from DQ-DAB-
DETR with 300 queries. The resulting WD are first flat-
tened into vectors and then projected onto a two-dimensional
space using t-SNE (Van der Maaten & Hinton, 2008). We
visualize the projected WD parameters along with their cor-
responding input images as Figure 4. We can see that some
object categories tend to be clustered. For example, we can

Figure 4. t-SNE visualization of WD on 200 images from MS
COCO val. Zoom in to see details.

see a lot of transportation vehicles in the top right corner of
the figure, and wild animals tend to be in the lower part of
the figure, which indicates that the model uses some high-
level semantics of the image to produce the combination
coefficients.

5. Conclusion
In this paper, we propose to use dynamic queries depending
on the input image to enhance DETR-based detection and
segmentation models. We find that convex combinations
of learned queries are naturally high-quality object queries
for the corresponding models. Based on this observation,
we design a pipeline to learn dynamic convex combinations
of the basic queries, adapting object queries according to
the high-level semantics of the input images. This approach
consistently improves the performance of a wide range of
DETR-based models on object detection and segmentation
tasks. The gain of our model is agnostic to the different
designs of the Transformer decoders and different types of
object queries. We believe this approach opens the door to
designing dynamic queries and creates a new perspective
for Transformer-based models.
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