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Abstract
We study the problem of adaptively identifying
patient subpopulations that benefit from a given
treatment during a confirmatory clinical trial. This
type of adaptive clinical trial has been thoroughly
studied in biostatistics, but has been allowed only
limited adaptivity so far. Here, we aim to relax
classical restrictions on such designs and inves-
tigate how to incorporate ideas from the recent
machine learning literature on adaptive and on-
line experimentation to make trials more flexible
and efficient. We find that the unique charac-
teristics of the subpopulation selection problem
– most importantly that (i) one is usually inter-
ested in finding subpopulations with any treat-
ment benefit (and not necessarily the single sub-
group with largest effect) given a limited budget
and that (ii) effectiveness only has to be demon-
strated across the subpopulation on average – give
rise to interesting challenges and new desider-
ata when designing algorithmic solutions. Build-
ing on these findings, we propose AdaGGI and
AdaGCPI, two meta-algorithms for subpopula-
tion construction. We empirically investigate their
performance across a range of simulation scenar-
ios and derive insights into their (dis)advantages
across different settings.

1. Introduction
The existence of treatment effect heterogeneity across sub-
groups of patients poses a challenge to both the success
of clinical trials testing the effectiveness of treatments and
the quality of treatment decisions in clinical practice when
prescribing a drug that has been proven to be effective only
for the average population [1–3]. Examples for such het-
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erogeneity are ubiquituous in practice and include differ-
ences in treatment responses in cancer patients with specific
mutations [4], pyschiatric patients with different forms of
depression [5] and stroke patients [6]. Motivated by this, the
problem of discovering treatment effect heterogeneity us-
ing logged experimental or observational data has received
much attention in the recent machine learning (ML) litera-
ture [7], resulting in the adaptation of many supervised ML
methods for post-hoc effect estimation [8–12]. The active
counterpart to this problem, i.e. designing experiments (clin-
ical trials) to actively discover subpopulations that respond
well to a treatment, has received only limited attention in
the ML literature thus far but is the focus of this paper.

The biostatistics literature on adaptive clinical trials, on the
other hand, has proposed and extensively studied the use
of so-called adaptive enrichment designs, which allow to
change both enrolment criteria and the null hypothesis to be
tested in a clinical trial based on interim data (see e.g. [1, 2]
and Appendix A.1 for an overview). In such designs, the
degree of adaptivity and flexibility is usually quite limited
as the ability to adapt features is commonly restricted to a
few pre-specified interim analysis points and the number of
subgroups is often very small (most often set to exactly two).

In this paper, we consider a new approach to designing such
adaptive enrichment trials and investigate whether and how
it is possible to make them more flexible and efficient by
adapting tools that were originally developed to solve pure
exploration1 multi-armed bandits [13] and other adaptive
experiments problems in the recent ML literature. We find
that the problem of constructing subpopulations from sub-
groups in which a treatment has any positive effect most
closely resembles the good arm identification (or threshold-
ing bandit) problem studied in e.g. [14–19] as there is no
need to limit treatment prescription to the single subgroup
with largest effect [20]. Nonetheless, we argue that there
are additional unique characteristics of our problem that
may change how algorithmic solutions should be designed:
(i) clinical trials operate under constraints on both budget

1Note that, as further discussed in Appendix A.2, we focus on
adapting ideas from the literature on purely explorative bandits,
which do not trade off exploration with exploitation and are thus
very different from prototypical explore-exploit bandit problems.
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and confidence, (ii) budget is very limited compared to e.g.
online advertising settings, (iii) effectiveness only has to be
demonstrated across a subpopulation on average and (iv)
required control of false discovery and power is stricter and
more nuanced. Note that solutions for problems with some
of these characteristics could be of independent interest in
applications beyond the clinical trial context: e.g. (i) and
(ii) may appear whenever one is looking to find any (single)
good candidate, solution or arm with high confidence as
fast as possible, while (iii) appears when one only needs
to identify a collection of arms that works well on average.

Contributions. We study the problem of adaptive identifica-
tion of patient subpopulations that benefit from a treatment
during a clinical trial through a ML lens. Note that our fo-
cus in this paper lies not primarily in developing novel ML
methodology, but rather in formalizing and understanding
our clinical trial problem and its inherent challenges as a
novel ML problem, then allowing us to explore how to best
adapt existing solutions to our setting. In doing so, we hope
to introduce relevant ML communities to a new application,
through showcasing that this area is full of new ML prob-
lems, demanding constraints and interesting methodological
challenges. We make three main contributions:
(1) Problem formalization and understanding: We fo-
cus on formalising, contextualizing and understanding the
population identification problem and its inherent chal-
lenges as a ML problem. We discover two possible for-
mulations of the problem which differ in terms of their
characteristics and investigate how these give rise to dif-
ferent desiderata when designing algorithmic solutions.
(2) Two new meta-algorithms: Building on these insights
and ideas from the ML literature on adaptive experiments,
we then propose a solution in form of a meta-algorithm
for each scenario (see Fig. 1).(3) Empirical Insight:
We empirically investigate and provide insight into the
(dis)advantages of either formulation and their solution
through a range of simulation studies. Albeit not our primary
objective, we believe that some of these empirical insights
could be of independent interest to researchers studying the
problem of good arm identification in a small sample regime.

2. Problem Setup
Throughout, we adopt problem setting and notation similar
to [3]. Thus, we wish to run a clinical trial to establish effi-
cacy of a novel drug (T) relative to an established control (C)
in patient population Ω0. We assume further that Ω0 is made
up of K disjoint and prespecified subgroups Ω1, . . . ,ΩK

where Ω0 = ∪j≤KΩj , across which efficacy may be ex-
pected to differ, e.g. due to known biological pathways or
evidence from earlier trials. Let θj denote the treatment’s
effect (relative to control) within subgroup j, and let πj

denote the prevalence of subgroup j in the population.

Figure 1. Overview of the two problem formulations and pro-
posed solutions. (A) The adaptive good subgroup identification
(AdaGGI) algorithm finds individual subgroups with treatment
benefit through successive discovery. (B) The adaptive good com-
posite subpopulation (AdaGCPI) algorithm finds a composite sub-
population by successively removing the subgroup with smallest
effect until a positive average treatment effect is discovered.

Goal. To ensure success of the clinical trial, we aim to
adaptively construct a composite subpopulation composed
of a subset S ⊆ K = {1, . . . ,K} of the full population with
ΩS = ∪i∈SΩi, in which the treatment is effective on aver-
age (if any exists); we refer to such subpopulations as good:

Definition 2.1. (Good Subpopulation) A subpopula-
tion S ⊆ K is a good subpopulation iff θS =∑

i∈S
πi∑

j∈S πj
θi > 0.

Generally, to maximise patient benefit, we would like to
identify the largest subpopulations in which the treatment
is effective – i.e. if θi>θj>0, we prefer Sij = {i, j} over
Si = {i} even though θSij < θSi .

Null hypotheses and problem types. We consider a null
scenario of no treatment effect, i.e. θ0 = 0, giving rise to
two types of problems and associated null hypotheses. In
Sec. 3, we first identify individual good subgroups, i.e. find
subgroups for which we can reject the null hypothesis

H0j : θj = 0 (1)

for the one-sided alternative Haj : θj > 0. Clearly, when
composing a subpopulation by including only subgroups in
which the individual null hypotheses have been rejected, i.e.
Sa = {j : θj > 0}, the subpopulation as a whole will have
positive effect too, i.e. θSa > 0. We refer to this problem as
the Good subGroup Identification (GGI) problem.

Often, clinical trials are not powered to detect effects in
subgroups seperately; instead (when more than two sub-
groups are considered), the focus is set on demonstrating
average effectiveness across a subpopulation as in [3]. We
therefore consider a second setting in Sec. 4: here, we wish
to identify a composite subpopulation S for which we can
prove that the treatment is effective on average, i.e. reject

H0S : θS = 0 (2)
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for the one-sided alternative HaS : θS > 0. We refer to this
problem as the Good Composite subPopulation Identifica-
tion (GCPI) problem. Note that the underlying requirement
is strictly weaker than in the GGI problem as rejecting H0S
does not require rejecting H0j for every j ∈ S.

Familywise error rate control. Regulatory agencies usu-
ally require the familywise error rate (FWER), i.e. the
probability of a Type 1 error, to be controlled in clinical
trials [21]. Formally, the FWER of an algorithm A for the
set of problem instances P under consideration is defined as

FWER(A;P) = supρ∈P Pρ(A rejects a true null hypothesis)

and FWER-control at the level of α ∈ (0, 1) requires that
FWER(A;P) ≤ α. Further, we can write

FWERGGI(A;P) ≤ supρ∈P
∑K

j=1Pρ(A rejects true H0j)

FWERGCPI(A;P) ≤ supρ∈P
∑

S⊆K
Pρ(A selects S and rejects true H0S)

Minimum relevant effect. Clinical trials also aim to avoid
Type 2 error (failure to detect a true positive effect). As the
sample size needed to differentiate θ0=0 from θj>0 scales
as θ−2

j , trials often introduce a minimum clinically relevant
difference θmin>θ0=0 which a trial should be powered to
detect [22]. Thus, while not a hard requirement like FWER
control, we aim to ensure that P(H0S′ is not rejected |θS=
θmin)≤β for at least some S ′⊂S .

Mode of environment interaction and data structure.
Throughout, we assume the stylized setting of an unlim-
ited stream of patients available for recruitment from each
subgroup, where outcomes are revealed to the algorithm
immediately; we discuss possible extensions to more real-
istic scenarios in Appendix B. That is, at every time step
t ∈ {1, . . . , B}, where 2B is the total patient budget of
the trial, the algorithm selects a subgroup Jt ∈ K to enrol
two patients from, which are then randomly assigned to
one of each treatment and control arm. This gives rise to
control and treated outcome Y C

t , Y T
t ∈ Y , which could be

continuous (Y = R) or binary (Y = {0, 1}), and produces
a dataset of tuples Dt = {(Jt′ , Y C

t′ , Y
T
t′ }t′≤t. We denote by

Ni(t) =
∑

t′≤t 1{Jt′ = i} and NS(t) =
∑

t′≤t 1{Jt′ ∈
S} the number of patient pairs enrolled from a subgroup or
a subpopulation by time t, respectively.

Estimators & Inference. Given randomization and as-
suming no interference between patients, we have that
θj = E[Y T

t −Y C
t |Jt = j], so that we can estimate treatment

effects simply as

θ̂j,Nj(t) =
∑t

t′=1
1{Jt′=j}(Y T

t′ −Y C
t′ )

Nj(t)
(3)

Whenever all subgroups i in a subpopulation S were drawn
according to their relative prevalence πi∑

j∈S πj
, we can also

estimate θ̂S,NS(t)=
∑t

t′=1
1{St′∈S}(Y T

t′ −Y C
t′ )

NS(t) . Note that the

θ̂j,Nj(t) will generally not be unbiased for θj as the Jt were
selected in a data-adaptive manner (see e.g. [23, 24]).

Finally, standard approaches to statistical inference will
generally not be valid when experiments are stopped adap-
tively, and we need to account for possible bias due to
continuous monitoring of experiments. To retain the abil-
ity to perform valid inference, we therefore also assume
that we have access to some always-valid confidence in-
tervals [25]; that is, similar to [26] we rely on existence
of some function ϕ(t, δ) which satisfies for any δ ∈ (0, 1)

that P(∩∞
t=1{|θ̂S,t − θS | ≤ ϕ(t, δ)})≥1−δ. Our proposed

meta-algorithms allow the use of any user-specified func-
tion ϕ(t, δ). As discussed further in Appendix C, we follow
[26] in our experiments and instantiate it using Thm. 8
of [27] which shows that for mean-zero σ2

p-(sub)gaussian

variables Xs, P(∃t ∈ N :
∑t

s=1 Xs

t >

√
2σ2

pζ(t,δ)

t ) ≤ δ for
ζ(t, δ)=log(1/δ)+3 log log(1/δ)+(3/2) log log(et/2) and

δ ≤ 0.1. We can use
√

2σ2
pζ(t,δ)

t as ϕ(·, ·) in our experi-
ments due to the fact that (i) the difference between two
σ2-(sub)gaussian variables is 2σ2-(sub)gaussian and (ii)
Bernoulli variables are 1

4 -subgaussian. Note that generally
subgaussianity is satisfied by e.g. bounded (and centered)
outcomes Y . Given that many medical outcomes and lab
tests have bounded credible ranges, we therefore consider
subgaussianity of outcomes to be a very reasonable assump-
tion in this context.

3. Good Subgroup Identification
We begin by studying the good subgroup identification
(GGI) problem as it appears more closely related to prob-
lems studied in the recent ML literature. Recall that the
GGI problem focusses on finding members of the set Ha =
{j : θj > 0}, subject to FWER-α-control and budget 2B.

Related work. If θj was the mean of a bandit arm (in-
stead of a subgroup treatment effect), GGI resembles prob-
lems that have been studied in the pure exploration litera-
ture as thresholding bandit [14–17], good arm identifica-
tion (GAI) [18, 19] and hypothesis testing using bandits
[26, 28].2 In addition to the difference in target of inter-
est, a major difference between existing formulations and
our problem are the constraints placed on an ideal solution.
Unlike our problem, classical pure exploration problems
usually operate either under a fixed budget or a fixed confi-
dence constraint: For example, in [14]’s thresholding bandit,
which aims to classify all arms as above or below a thresh-
old, the fixed confidence setting requires all classifications

2More typical exploration problems, e.g. best arm identification
(e.g. [29–31]) are less relevant as our interest lies no in finding the
group with the best response to a drug [20]; see also Appendix A.
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(both above and below the threshold) to be correct with
fixed confidence δ, while the fixed budget setting aims for
the highest confidence in all classifications given a certain
budget. All of [18, 19, 26, 28] study a similar fixed con-
fidence setting. Finally, [32] is the only ML work we are
aware of that studies good subgroup discovery in a clin-
ical trial context – they propose a Bayesian MDP-based
design optimizing patient recruitment given a fixed budget
but do not control Type I error rate of discoveries, which
conceptually resembles a fixed-budget-only GAI setup.

3.1. Problem Characteristics and Design Considerations
in the GGI Problem

Unique characteristics of the GGI objective. Discov-
ery in a clinical trial is usually subject to both a budget
and FWER constraint (i.e. a fixed confidence constraint
on each discovery). Thus, instead of identifying all good
arms either under a fixed budget while maximising confi-
dence as in [14] or with fixed confidence while minimizing
budget as in [18, 26], we aim to maximise the number of
arms that can be discovered with fixed confidence given a
budget – which is a combination of the fixed confidence
and fixed budget setting that are usually considered sepa-
rately. Additionally, the available budget is usually very
limited in clinical trials relative to e.g. online advertising
applications commonly considered in the bandit literature.
Due to both ethical and financial considerations, clinical
trials usually operate in small sample regimes – confirma-
tory phase 3 sample sizes usually lie between 300-3000
patients [33], which is orders of magnitude smaller than
sample sizes considered in the ML literature. Finally, the
distinction (or asymetry) between both confidence α and
power 1− β, and null threshold θ0 and minimum relevant
effect θmin is usually not found in e.g. GAI problems.

Design considerations. The unique characteristics of the
GGI objective give rise to a number of desiderata while
designing algorithms: First, there is a need to focus on
promising groups, as budget is limited and to meet our ob-
jective it is not necessary to make a judgement about all
subgroups immediately. Thus we should focus our attention
on subgroups that look promising and leave subgroups with
effects that are hard to distinguish from the null for last
(this is the opposite strategy to thresholding bandit solutions
[14–16] that focus explicitly on the arms that are hardest
to identify3). Second, we may wish to limit the degree
of exploration and explore only so long until a promising
good subgroup has been identified (this is unlike a best arm
identification problem where relative quality of an arm mat-
ters which needs substantially more exploration to identify).

3If identifying all good groups is desired, it matters how fast
the last (most difficult) group is found; while our goal to identify
many good groups quickly necessitates early focus on ‘easier’ ones.

Algorithm 1 AdaGGI
Require: α, β∈(0, 1), θmin>0, budget B, initial samples n0,

sampling rule E , identification rule I, removal ruleR
1: Initialise: AKn0 = K; ∀j ∈ K, sample n0 times,

set DKn0 = {(St′ , Y
C
t′ , Y

T
t′ }t′≤Kn0

2: for t ∈ {Kn0 + 1, B} do
3: Choose subgroup Jt = E(Dt−1,At−1) to enrol,

set Dt = Dt−1 ∪ (St, Y
C
t , Y T

t )
4: Identify good subgroups St = St−1 ∪ I(Dt, α),

set At = K \ St
5: Remove bad groups: At=K \ R(Dt, θmin, β)
6: If At = ∅, Output: True if |SB |>0, SB
7: end for
8: Output: True if |SB |>0, SB

Third, we may want to focus on null hypotheses closest
to rejection, recognizing that for a successful trial, reject-
ing one null hypothesis at level α is better than having
two hypotheses only close to rejection upon termination.

The backbones of the fixed confidence algorithms for iden-
tifying good bandit arms with mean above a threshold pro-
posed in [18, 19, 26, 28] do lend themselves to be adapted to
our combined fixed confidence - fixed budget setting: these
algorithms sequentially move arms from the active set under
exploration to a passive (output) set containing all good arms
identified with fixed confidence thus far, and could in princi-
ple solve our fixed budget setting by simply stopping testing
additional arms once the budget is reached. Below, we
discuss this approach and our modifications in more detail.

3.2. AdaGGI: A Meta-algorithm for Good Subgroup
Identification

We propose AdaGGI, an Adaptive Good subGroup
Identification meta-algorithm, presented in Alg. 1. As
described in detail below, each iteration consists of (i) choos-
ing a subgroup Jt to enrol using an exploration (sampling)
strategy E , (ii) subsequently screening for new good sub-
groups using an α-dependent identification criterion I and
(iii) removal of any groups demonstrating no minimum ben-
efit using a (β, θmin)-dependent removal criterion R.

Sampling strategies E: Finding good arms fast. The
established choice for sampling (exploration) strategy E
in the GAI literature [18, 19, 26] appears to be to use an
optimistic upper-confidence bound (UCB) approach, i.e.

EUCB(Dt−1,At−1)=arg max
j∈At−1

θ̂j,Nj(t−1)+ϕ(Nj(t−1), α)

However, this strategy does not necessarily exploit accu-
mulated knowledge by repeatedly sampling a subgroup
whose null is close to being rejected; in fact, as ϕ(t, δ)
shrinks with increasing t, we suspect that EUCB may en-
courage frequent switching between subgroups when the
effects in multiple good subgroups are similar which may

4



Adaptive Identification of Populations with Treatment Benefit in Clinical Trials

lead to no null being rejected when budget is very limited.

Therefore, we explore the use of two new sampling strate-
gies for this problem. As we discuss below, identification us-
ing I(·) will rely on the criterion 1{θ̂j,Nj(t)−ϕ(Nj(t), ϵ) >
0} for some ϵ ∈ (0, 1); therefore, sampling according to the
best lower confidence bound (LCB) would correspond to se-
lecting arms that appear most promising for early identifica-
tion, i.e. be more exploitative. Thus, we also consider using

ELCB(Dt−1,At−1) = arg max
j∈At−1

θ̂j,Nj(t−1)−ϕ(Nj(t−1), α)

Because this strategy conversely may risk getting stuck
on a subgroup which only appeared good early on,
we consider a final strategy ELUCB(Dt−1,At−1) =
ELCB(Dt−1,At−1) ∪ EUCB(Dt−1,At−1), allowing enrol-
ment from two subgroups whenever sampling according to
UCB and LCB disagree (thus t increases by 2).

Identification criterion: Ensuring FWER control. Our
identification criterion needs to ensure that FWERGGI ≤
α by adjusting for the fact that we perform multiple hy-
pothesis tests. As we consider only a moderate number of
subgroups K, we rely on a simple Bonferroni correction
here and use

IK
BF (Dt, α) = {j ∈ K : θ̂j,Nj(t) − ϕ(Nj(t),

α

K
) > 0}

which controls FWER as∑
j∈K:θj=0

P(∩∞
t=1{θ̂j,t − θj > ϕ(t,

α

K
)} ≤ K

α

K

To create tighter confidence bounds in settings where
many null hypotheses are false and recycling α from pre-
viously rejected hypotheses is thus possible, one could
implement more sophisticated strategies based on the
adapted Benjamini-Hochberg procedure from [26], or other
α-investing approaches such as those discussed in [34].

Removal criterion: Focusing on significant effects. We
employ removal criterion

Rfut(Dt, θmin, β)={j∈K : θ̂j,Nj(t)+ϕ(Nj(t), β)<θmin}

This ensures that subgroups can be removed early for futility
while power to detect a clinically relevant effect is preserved.
Note that this ensures that the burden of proof to discard
a bad subgroup can be much lower than what is needed
to identify it as good. This differs from the recent GAI
literature, where arms are either discarded and accepted
using the same threshold/confidence [18] or not discarded
at all [19, 26].

4. Good Composite Subpopulation
Identification

Instead of finding good subgroups separately as before, we
now move to the Good Composite subPopulation Identi-

fication (GCPI) problem which considers finding a good
composite subpopulation directly, i.e. finding S ⊆ K such
that θS =

∑
i∈S

πi∑
j∈S πj

θi > 0. Intuitively, this should be
easier to solve – i.e. we would expect a smaller sample size
to be required for a trial to be successful: given S, rejec-
tion of H0S is a strictly weaker requirement than rejecting
all constituent elementary null hypotheses separately and it
should be possible to share statistical strength (i.e. exploit
larger sample size) across subgroups contained in S.

Related work. Most work from the adaptive enrichment
clinical trial literature appears to solve a simplified version
of the GCPI problem, where K = {1, 2} and initially pa-
tients from both subgroups are enrolled. At either a single
(e.g. [2, 35, 36]) or multiple (e.g. [6, 37]) prespecified in-
terim analysis points it is then possible to discontinue either
subgroup, where decisions are usually based on precalcu-
lated (normal) stopping boundaries. The setting considered
in [3] is most similar to our setup as no restrictions are
placed on K: here, the choice of subgroups to include in
the selected subpopulation S is fixed at the first interim
analysis and all subsequent analyses allow only early termi-
nation of the entire subpopulation based on efficacy/futility
error-spending boundaries which are calculated based on
the assumption that all θj ≥ 0 (i.e. negative effects are not
allowed). From a bandit perspective, the GCPI problem
can be interpreted as a generic combinatorial bandit prob-
lem [38, 39], where each subpopulation could be seen as a
super-arm; however, to the best of our knowledge no exist-
ing solutions exploit the idea of sharing statistical strength
across arms by pooling samples and solutions derived from
e.g. [38, 39] would therefore resemble our GGI solution.

4.1. Unique Problem Characteristics and Design
Considerations in the GCPI Problem

Unique characteristics of the GCPI objective. Relative to
GGI, we consider two additional features key to the GCPI
problem: On the one hand, the weaker requirement of identi-
fication of a positive average effect should make it possible
to share statistical strength across subgroups, which may
make the problem easier. On the other hand, while the GGI
problem has only K subgroups with associated hypotheses
to consider, the subpopulation construction problem is com-
binatorial and there are 2K possible subpopulations and
null hypotheses, possibly making the problem harder.

Design considerations. While the need to identify single
groups fast in the GGI problem led us to consider highly non-
uniform sampling schemes, the possibility to share statistical
strength across subgroups in the GCPI problem makes suc-
cessive elimination algorithms [29, 40], which uniformly
sample all subgroups that have not yet been eliminated for
futility, a more attractive alternative: intuitively speaking,
if all subgroups had exactly the same (positive) effect, uni-
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Algorithm 2 AdaGCPI
Require: α, β ∈ (0, 1), θmin > 0, budget B,

identification rule I, removal ruleR
1: Initialise: A1 = K, set D0 = ∅, t = 0
2: while t < B do
3: Sample each j∈At, obtain D′={j, Y C

t+j , Y
T
t+j}j∈At ,

set t← t+ |At|, update Dt with D′.
4: Test for positive effect in current population I(Dt, α):

if detected, Output: True, At

5: Remove bad groups: At = K\R(Dt, θmin, β) and remove
their samples from Dt

6: If At = ∅, Output: False, ∅
7: end while
8: Output: False, ∅

formly allocating samples across all groups would lead to
rejection of the full population composite null hypothesis us-
ing the same expected number of samples that the GGI prob-
lem would need to identify a a single group. Note that such
potential efficiency of successive elimination in the GCPI
problem stands in stark contrast to what has been observed
for the best arm identification problem, where UCB-style al-
gorithms empirically dominate successive elimination algo-
rithms which are too wasteful in that context (see e.g. [41]).
Further, successive elimination has the inherent advantage
that it substantially limits the number of subpopulations
(and associated null hypotheses) the algorithm will consider:
if subgroups are irreversibly eliminated one-by-one, an al-
gorithm will consider at most K (nested) subpopulations.

4.2. AdaGCPI: A Meta-algorithm for Good Composite
Subpopulation Identification

To solve the GCPI problem, we propose AdaGCPI, an
Adaptive Good Composite subPopulation Identification
meta-algorithm, as formalized in Algorithm 2. At each
time step t, the algorithm proceeds by uniformly sam-
pling all subgroups in the active set At by enroling two
patients from each. For ease of presentation we assume
equal sized subgroups (πj = 1

K ) here but note that this
could easily be avoided by sampling (with replacement)
K indices from the active set according to the subgroup
prevalence πj/

∑
i∈At

πi. We then apply an identifica-
tion criterion I that tests for evidence of an average posi-
tive subpopulation effect across the active set. Upon suc-
cess, the algorithm terminates; when evidence is not sta-
tistically significant, removal criterion R checks whether
groups should be eliminated before enrolment continues.
We discuss identification and removal criterion in turn below.

Identification criterion: Ensuring (approximate) FWER
control. A full Bonferroni-style adjustment would require
the significance level to be adjusted by 2K , the number of
hypotheses that could potentially be tested. As we only
select at most K hypotheses for testing in practice, this ad-

justment is clearly overly conservative. If the K hypothesis
tests were independent4, we could use

IK
BF (Dt, α) = 1{θ̂At,NAt (t)

− ϕ(NAt
(t),

α

K
) > 0}

Clearly, they are not independent as datasets used for testing
overlap, so identification using IK

BF will not lead to exact
FWER control. However, between selection and testing of a
new hypothesis, at least |At| new samples accrue (and often
many more), so any dependence decreases due to the online
data collection. In experiments (Appendix D), we observe
that FWER-α seems to hold empirically when using IK

BF ,
so we rely on it in our implementations.

Removal criterion: Exploiting subgroup and subpop-
ulation signals. Using criterion Rfut(Dt, θmin, β) as in
AdaGGI, we remove individual subgroups for futility if their
individual effects are insufficient. In addition, we exploit
full subpopulation information by realising that the event
Ft = 1{θ̂At,NAt (t)

+ ϕ(NAt(t), β) < θmin} provides evi-
dence that at least one subgroup has no sufficient treatment
effect. Thus, if Ft is true, we remove the empirically worst
subgroup through the rule Rpop-fut(Dt,At, θmin, β) =

argminj∈At
θ̂j,Nj(t−1) − ϕ(Nj(t− 1), α) if Ft else ∅.

5. Experiments
5.1. Stylized Simulations: Understanding the

(Dis)advantages of Different Strategies

Setup: In this section, we consider a stylized simulation
setup to gain insight into the (dis)advantages of different
sampling strategies and algorithms. Only here we assume
that we observe a treatment effect signal Y θ

t ∼ N (θJt
, 1)

directly; this also ensures that all our observations immedi-
ately generalize to the good arm identification problem.
We consider K = 10 groups, πj = 1

K ,∀j ∈ K and
let θmin = 0.5, α = 0.05, β = 0.1. In the main re-
sults presented in Fig. 2, we let θk ∈ {θb, θg}, where
θb = 0 and θg = 0.5 unless stated otherwise, and vary
ng = |{j : θj ≥ 0.5}|. Throughout, we do not restrict bud-
get and report tstop, the stopping time of the algorithm (i.e.
the time when all subgroups are classified as good or not),
as well as tid,jgood and tid,jbad , the time taken to identify the jth

good group and to discard the jth bad group, respectively;

4To gain further intuition, let TS denote whether hypothesis HS
is selected for testing at any time, and RS whether it is rejected. Us-
ing an argument adapted from the discussion of discard-spending
in [34], we note that FWER ≤ E[

∑
S:θS≤0 TSRS ] by Markov’s

inequality. Further, E[
∑

S:θS≤0 TSRS ] =
∑

S:θS≤0 E[RS |TS =

1]P (TS = 1). If the data used to determine hypothesis selec-
tion TS was independent of that used to determine rejection RS ,
we would have that E[RS |TS = 1] = E[RS ] = P(∩∞

t=1{θ̂S −
θS ≥ ϕ(t, α

K
)}) ≤ α

K
so that E[

∑
S:θS≤0 TSRS ] ≤

α
K
E[
∑

S:θS≤0 TS ] ≤ α
K
K as at most K hypotheses will be tested.
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Figure 2. Results describing time until (A) termination, (B&C) identification of good groups and (D&E) removal of bad groups (1000
replications). (A): Time to termination tstop by # of good groups ng . (B&C): # of good group identifications over time, for ng=4 (B)
and ng=8 (C). (D&E): # of removals of bad groups over time, for ng=2 (D) and ng=6 (E).

doing so allows us to understand what the algorithm would
have identified given any budget. We compare AdaGGI with
different sampling strategies – EUCB , ELCB and ELUCB as
discussed in Sec. 3.2, as well as two baselines (discussed
further in Appendix A.2): Eunif , which uniformly sam-
ples groups that have not yet been identified, and EAPT ,
which corresponds to [14]’s thresholding bandit solution –
to AdaGCPI with different removal strategies (Rfut and
Rfut+Rpop-fut). Some existing bandit algorithms arise as
special cases of AdaGGI for the various sampling strategies
we consider (see Appendix A.2.1). We discuss insights in
turn below and present additional results in Appendix D.

Natural stopping times. In Fig. 2A, we investigate how
long it would take the different algorithms to select/discard
all subgroups (arms) for different ng. First, we observe
that the sampling strategy of AdaGGI has no impact on
the stopping time; this is expected as identification of the
final/worst group determines tstop. Second, the total time
to termination increases as ng increases for AdaGGI be-
cause the identification criterion is stricter than the removal
criterion. Third, AdaGCPI(Rfut), which is identical to
AdaGGI(Eunif ) except for the subpopulation-based iden-
tification criterion, performs identically to AdaGGI when
ng ≤ 1 but begins to terminate earlier when ng increases
as sample size can be shared across ng ≥ 2 good sub-
groups. Finally, AdaGCPI(Rfut + Rpop-fut) terminates
fastest throughout, as it shares statistical strength across
subgroups both when discarding and accepting subgroups;
thus, the more homogeneous the population (ng close to 0
or 10) the faster it terminates.

Time to identify the jth good group. In Fig. 2B&C, we
investigate when the different algorithms make good group
discoveries, for ng = 4, 8. When comparing algorithms, we
find that AdaGGI generally makes the first discovery before
AdaGCPI, as AdaGCPI makes all discoveries at the same
time (yet this often happens before AdaGGI even makes its
second discovery). When comparing sampling strategies
within AdaGGI, major differences become visible. (Non-
adaptive) uniform sampling now clearly appears suboptimal;
as expected, the thresholding approach EAPT , focussing

on the groups hardest to distinguish from the threshold,
performs even worse. Within the other adaptive strategies,
ELCB indeed makes the first discoveries faster than EUCB in
this setting, as the latter will unnecessarily switch between
good groups as upper bounds cross (because the underlying
means are identical); as expected, ELUCB lies inbetween.

If the good groups were to exhibit quantitatively very differ-
ent effects, the group with the largest θj should need least
samples to be discovered – thus we would expect UCB-type
strategies that haven proven successful in best arm identi-
fication [31] to be advantageous in this context. In Fig 3,
we therefore further investigate the relative performance of
sampling strategies when altering the underlying simulation:
when the means in good groups are very different (Scen. 1:
θ1 = 0.5, θ2 = 1; θj = 0, j > 2) the relative performance
indeed reverses. With more good arms and less spacing
between means (Scen. 2: θj = 0.5 + 0.5

7 (j−1), j ≤ 8;
θj = 0, j > 8), this difference becomes less pronounced.
In Appendix D, we additionally investigate how sampling
strategies compare when outcome variance is known to
differ across groups, and find that ELCB can dominate
as it intrinsically makes use of the fact that arms with
lower variance need less samples to be identified, while
EUCB may erroneously focus on groups with high variance.

Time to discard the jth bad group. In Fig. 2D&E, we
investigate when the different algorithms discard groups
that do not appear good. First, we observe that, un-
surprisingly, AdaGCPI – an algorithm operating by suc-

Figure 3. Good group identifications over time for two additional
scenarios.
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Figure 4. (A): Avg. number of missed groups by ng . (B& C): Avg.
|S| by ng , for θb= 0,−0.5.

cessive elimination – discards groups much faster than
AdaGGI (with the exception of AdaGGI(EAPT ), which
essentially acts like a more aggressive elimination algo-
rithm due to its focus on the threshold). Second, we
observe that AdaGCPI(Rfut + Rpop-fut) indeed benefits
from the population-based elimination criterion as groups
are discarded faster esp. when ng small, which is when
the population-based removal criterion will be met earlier.
Third, we note that uniform sampling leads to faster elimi-
nation than (L)UCB-based sampling, which is expected as
the latter actively avoid sampling groups that appear bad.
Perhaps more surprisingly, LCB sampling leads to similarly
fast discarding of the first bad groups, which we attribute to
LCB being more likely to continue sampling from a group
that has already been sampled often.

Incorrectly classified groups. Finally, we consider whether
subgroups are (in)correctly classified as good. First, we note
that, as we show in Appendix D, Type I error is not only
controlled at level α but essentially 0 throughout (even when
we remove the Bonferroni correction); we attribute this to
the used anytime confidence intervals being unnecessarily
conservative as t<<∞ here. Second, in Fig. 4A, we observe
that good groups are seldomly missed by either algorithm
(again, likely due to conservativeness of the bounds, the
rate lies far below β ∗ ng); only AdaGCPI occasionally
removes a good group with the aggressive removal crite-
rion Rpop-fut. Third, in Fig. 4B, we observe interesting
differences in groups without effect that are included in the
selected subpopulation S (note: for AdaGCPI, this does not
necessarily constitute a Type I error as long as θS>0). As
AdaGGI identifies groups individually, |S|≈ng throughout,
while AdaGCPI allows free-riding of groups without effect
on the larger effects of other groups, i.e. |S|>ng , especially
when ng is large, which leads to dilution of the effect on
the full subpopulation but retains the average positive effect
estimate. In Fig. 4C we set θb =−0.5 instead of 0, and
observe that this behavior ceases when groups contribute
sufficiently large negative effects.

5.2. Application: Simulating a Clinical Trial

Finally, we apply our methods to a clinical trial setup. Be-
cause ground truth treatment effects are never observed in

Table 1. Results of 1000 simulated trials: Prop. of successful trials,
avg. size of discovered subpopulation and, as prop. of budget:
Avg. time to termination and avg. time to identification of the first
good and bad group.

Scenario: θ Method %Succ. |S| tstop
B

t1g
B

t1b
B

A:[0, 0, 0] GSDS 2.6 0.04 0.74 0.5
AdaGGI 0 0 0.64 0.24
AdaGCPI 0 0 0.49 0.23

B:[−0.2, 0, 0.2] GSDS 99.3 1.19 0.64 0.64 0.5
AdaGGI 97.9 0.98 0.63 0.46 0.38
AdaGCPI 95 1.04 0.61 0.61 0.15

C:[0, 0.1, 0.3] GSDS 100 2.03 0.50 0.50 0.50
AdaGGI 99 1.00 0.55 0.29 0.59
AdaGCPI 89 2.28 0.89 0.55 0.44

D:[0.2, 0.2, 0.2] GSDS 100 2.98 0.50 0.5
AdaGGI 99.8 2.27 0.94 0.36
AdaGCPI 99.8 2.99 0.37 0.37

E:[0.3, 0.3, 0.3] GSDS 100 3 0.5 0.5
AdaGGI 100 3 0.49 0.16
AdaGCPI 100 3 0.17 0.17

real data, papers on adaptive clinical trials (and the litera-
ture on treatment effect estimation more generally [42])
usually have to resort to simulation studies to evaluate
the quality of their algorithms (e.g [3, 32]), where simu-
lations are often semi-synthetic in that they are designed
to reflect some qualities of real data. Here, we do so by
building off the simulation setting presented in Section 6
of [3], which is in turn motivated by the I-SPY 2 breast
cancer trial for neoadjuvant therapies [43]. We consider 3
equal sized subgroups with unknown treatment effect vec-
tor θ = [θ1, θ2, θ3] and as [3] let θmin = 0.2, α = 0.025
and β = 0.1. Their setup considers binary outcomes
(Y C

j ∼ B(µ0,j), Y
T
j ∼ B(µ0,j + θj)); in Appendix D we

also consider normal outcomes. Using their budget calcu-
lations we set a budget of B = 800 pairs of patients. We
compare AdaGCPI and AdaGGI to [3]‘s proposed GSDS
procedure as a baseline, which is structured similarly to
AdaGCPI but (i) allows only na (preprespecified) interim
analyses (in their study and here na=2, allowing a single
interim analysis halfway), (ii) selects and fixes subpopula-
tion S at the first interim analysis and (iii) relies on explic-
itly calculated normal error-spending boundaries. GSDS
and the simulation are further described in Appendix C.

The original experiment in [3] has θ ≈ [0, 0.05, 0.1], i.e.
all θj < θmin, so that none of the designs are powered to
detect any effect; indeed we find that across 1000 replica-
tions GSDS declares the trial successful 67% of the time,
while AdaGGI and AdaGCPI5 declare success only in 13%
and 7% – a direct consequence of our designs discarding
effects below the minumum clinically relevant θmin. To
gain more interesting insights into relative performance, we
therefore consider five scenarios with varying θ in Table 1.

5We focus on comparison with GSDS and use Sec. 5.1’s overall
best versions, AdaGGI(ELCB) and AdaGCPI(Rfut+Rpop-fut),
as AdaGGI and AdaGCPI; full results are in Appendix D.
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We observe that GSDS generally has more power to detect
smaller effects. This is not surprising because (i) GSDS does
not automatically discard groups below θmin and (ii) the
used anytime confidence intervals in both our algorithms
are, as discussed above, overly conservative – especially
when compared to the exact normal confidence bounds
used in GSDS. Nonetheless, compared to our fully adap-
tive approaches, GSDS suffers from its rigidity (i.e. being
restricted to pre-specified interim analysis points). In Sce-
narios B-D, it is apparent that both AdaGGI and AdaGCPI
can make judgements about a single subgroup much before
GSDS’ first scheduled interim analysis (as before, AdaGGI
generally finds the first good group faster, while AdaGCPI
discards the first bad subgroup faster). In Scenarios A&E,
where outcomes are extreme (all θj = 0 and θj > θmin,
respectively), the advantage of the flexibility of AdaGCPI
relative to GSDS is most obvious, as, due to the lack of
restriction on analysis points, AdaGCPI can terminate much
earlier than the first scheduled interim analysis of GSDS.

In summary, we thus find that our algorithms can outperform
GSDS in some scenarios because they are much less con-
strained in terms of when they can terminate. At the same
time, their performance in other scenarios is limited by the
used anytime confidence intervals ϕ(·, ·), which are less
tight than the exact normal intervals used in GSDS. Inves-
tigating the use of other confidence intervals to instantiate
our meta-algorithms would thus be an interesting avenue for
future work.

6. Conclusion
We investigated how to adaptively identify patient subpop-
ulations with treatment benefit during a clinical trial using
ideas from ML, and proposed two problem formulations
and associated meta-algorithms with different characteris-
tics. We highlighted that the elimination-based AdaGCPI
algorithm generally terminates using fewer samples, but
may include subgroups that have no true benefit from treat-
ment in the selected subpopulation if other groups have a
sufficiently positive effect. Using AdaGGI, which discovers
individual subgroups, this can generally be avoided – if one
is willing to use substantially more samples. As we discuss
further in Appendix B, we believe that the formalization of
the population identification problem presented in this paper
opens up many interesting avenues for future ML research
in this context. In particular, we believe there is great poten-
tial for extending our setting to incorporate further practical
requirements – e.g. allowing for delayed feedback or discov-
ery of (not pre-specified) subgroups – and theoretical anal-
ysis of the considered algorithms and sampling strategies.

Societal Impact. There is a clear (ethical) tradeoff when de-
ciding between algorithms to use in practice: AdaGCPI has
the advantage that it may allow to bring a novel treatments

to larger audiences faster and, due to uniform enrolment,
does not give (arbitrary) preference to a single subgroup
– but it may lead to prescription recommendations that in-
clude subgroups without effect. Conversely, AdaGGI has
the advantage that it will recommend treatment only in truly
good subgroups, yet highly non-uniform enrolment may
lead to fairness concerns (e.g. due to the randomness in
deciding which equally good group to recruit first) and trials
may require much larger sample sizes and hence delay the
release of a potentially life-saving treatment. [44] discusses
similar issues for enrichment designs more generally.

Further, we note that the choice of using of adaptive trial
designs instead of conventional non-adaptive trials is always
highly situational [45]. There are definitely cases where one
may want to continue to rely on conventional trial designs –
e.g. applications where there are very large delays between
patient enrolment and realisation of outcomes. There are,
however, also cases in which adaptivity can be expected
to be beneficial (it is sometimes even argued that adaptive
designs are the only ethically permissible experimental de-
signs, see e.g. [46] for a discussion). We therefore believe
that adaptive enrichment designs like ours would be of most
value in applications where high between-subgroup variabil-
ity of effectiveness is expected.
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A. Appendix A: Additional Literature Review
A.1. Extended review of adaptive clinical trial literature on enrichment designs

Below, we discuss in some more detail the clinical trials literature on adaptive enrichment trials which allow discontinuation
of subgroups and changes of the population (and hence hypothesis) under consideration in a clinical trial. We focus here on
designs where the subgroups under investigation are prespecified; subgroup discovery in the presence of single or multiple
biomarkers is covered in e.g. the literature on so-called adaptive signature designs. [47–50]. For a broader review of
adaptive enrichment designs, refer to [1].

[20] (Section 6) describe a generic two-stage enrichment design with K subpopulations that are not necessarily disjoint (as
in our case) or nested, which allows for selection of an arbitrary population j∗ after the first stage, after which recruitment
is focussed on j∗ and the hypothesis to be tested is H0j∗, where error is controled through application of closed testing
procedures [51]. [52] also consider two-stage trials under different types of restrictions with multiple nested subpopulations
determined by biomarker interactions.

[35, 36, 53] all consider a setting where one can either consider the full population or a single pre-specified subpopulation
of heightened interest; at an interim analysis it is to be decided whether to continue with the full population or within the
subpopulation only (or not at all). These designs differ in both the rules for population selection and the hypothesis tests
used, but all rely on closed testing principles. [2] empirically compares some of these and other approaches for population
selection and hypothesis testing in the adaptive enrichment problem with two subpopulation and a single interim analyses.

[6] also considers a setting where either the full population or a single promising subgroup is of interest, however, instead of
only one interim analysis the trial has multiple analyses where the trial can be stopped for efficacy/futility in either the full
population or the subgroups based on normal stopping boundaries. Finally, [3] propose a design ([54] discuss a multistage
design analogous to theirs) that is most closely related to our AdaGCPI approach, where the main differences lie in that (i)
[3] fix the selected subpopulation after the first stage and (ii) exact probability boundaries are calculated for termination. We
describe [3]’s proposed GSDS procedure in more detail in Appendix C.

The most relevant related work from the ML literature that we are aware of is [32]; they also consider adaptive recruitment to
discover all good subgroups and do so using a Bayesian MDP-based design that learns by optimizing an objective function
that trades off Type I and II error given a limited budget. As such, type I error is neither controlled nor is multiplicity
considered, making this approach (objective) conceptually, i.e. abstracting away specific implementation choices, most
similar to good arm identification and thresholding bandits under a fixed budget (only) setting. Finally, [55] recently
considered subpopulation selection in adaptive clinical trials but for portfolio-level management of trials rather than the
sample-by-sample decisions we consider here.

A.2. Extended contextualization of the GGI and GCPI problems within bandit literature

GGI and GCPI are closely related to multi-armed bandit problems as one can interpret each considered subgroup as an arm
and their (unknown) treatment effect as the mean reward of that arm. Typically, the goal in a bandit problem is to maximize
the rewards of all arms that are “played” (e.g. [56]). Since the mean rewards are unknown initially, this requires striking
a balance between exploring arms to gain information about their rewards and exploiting arms that appear to have high
rewards. In our setting, this conventional objective would have corresponded to maximizing the benefit received by all
patients recruited into the trial. Instead, we focus on what is known as pure exploration in the bandit literature, where the
rewards of played arms do not matter except for that of a singular arm identified at the end [13, 38, 57, 58].

Different purely-exploratory objectives have been considered in the multi-armed bandit literature. Best arm identification
(BAI) problems aim to identify the arm (or the top-K arms) with the largest mean reward (e.g. [29]). Here, the success can
be measured via the reward gap between the identified arm and the true best arm. In the fixed budget setting, the goal is to
maximize the probability of the identified arm indeed being the best given a fixed budget of samples [30, 59, 60], while in
the fixed confidence setting, the goal is to minimize the number of samples necessary to guarantee a fixed level of confidence
[30, 31, 61–66]. Good arm identification (GAI) problems (sometimes called pure exploration in thresholding bandits) aim
to identify arms with mean rewards that are higher than a pre-specified threshold. These problems too can be considered
either in fixed budget [14, 17, 67] or fixed confidence [18, 19] settings.

GGI is essentially a type of GAI problem but it requires both the budget as well as the confidence in each identified arm
being good to be fixed, and given those constraints, aims to identify as many good arms as possible. In existing formulations

13



Adaptive Identification of Populations with Treatment Benefit in Clinical Trials

Table 2. Comparison of pure exploration problems. GGI and GCPI uniquely require both the budget as well as the confidence to be fixed,
and aim to identify as many suitable arms as possible within those constraints. In contrast, other problems aim to identify all suitable
arms, which is only possible with the more relaxed constraint of either just the budget or just the confidence being fixed. FB and FC stand
for fixed budget and fixed confidence respectively.

Problem Ref. Type of
arms identified

Number of
arms identified Budget Confidence Formulation

BAI [29] Best arms
i∗ = argmaxi θi

Top-K arms
Variable Variable minimize θi∗ − θı̂∗

BAI w/ FB [60] Fixed (T ) Maximized maximize P(̂ı∗(T ) = i∗)
BAI w/ FC [66] Minimized Fixed (1− δ) minimize T s.t. P(̂ı∗(T ) ̸= i∗) ≤ δ

GAI w/ FB [14] Good arms
I = {i : θi > ξ} All good arms Fixed (T ) Maximized maximize P(Î(T ) = I)

GAI w/ FC [19] Minimized Fixed (1− δ) minimize T s.t. P(Î(T ) ̸= I) ≤ δ

GGI (Ours) Good arms
I = {i : θi > ξ} Maximized Fixed (T ) Fixed (1− δ)

w.r.t. type I error maximize |Î(T )| s.t. P(Î(T ) \ I ̸= ∅) ≤ δ

GCPI (Ours)
Good composite arms
I : 1

|I|
∑

i∈I θi > ξ Maximized Fixed (T ) Fixed (1− δ) maximize |Î(T )| s.t. P
(

1

|Î(T )|

∑
i∈Î(T ) θi ̸> ξ

)
≤ δ

of GAI, the aim is usually to identify all good arms, which is only possible with the more relaxed constraint of either just the
budget or the confidence being fixed (but not both at the same time). GCPI is similar to GGI in that it too requires both the
budget and the confidence to be fixed but it only aims to identify a collection of arms that are good on average6 rather than
arms that are all individually good. Table 2 formally compares GGI and GCPI with the existing pure exploration problems.

A.2.1. HOW EXISTING PURE EXPLORATION SOLUTIONS ARISE AS SPECIAL CASES OF ADAGGI

One of the main goals of this paper is to formalize, contextualize and understand the trial population identification problem
as a pure exploration bandit problem. Because our paper considers a new problem formulation, there – to the best of our
knowledge – are no off-the-shelf solutions from the bandit literature that have already solved this exact problem. Therefore,
this paper studies how to apply and adapt solutions proposed for related problems and empirically investigates how different
approaches work in our context.

To do so, we study very generic meta-algorithms, which give rise to adaptations of some existing combinatorial bandit
solutions as special cases, allowing for fair comparison of different approaches. Note that both the thresholding bandit
and good arm identification (GAI) are combinatorial bandit instances and their specific problem formulations are closer to
our problem setting than generic combinatorial bandits, making their solutions more likely to perform well in our context.
Below, we discuss in detail how GAI algorithms, thresholding bandits and a generic combinatorial bandit solution arise as
variations of AdaGGI and can thus be seen as ‘bandit baselines’ in our experiments.

GAI algorithms – AdaGGI(EUCB) As outlined in Section 3, the GAI algorithms proposed in [18, 26] proved most
suitable to adapt to our setting and thus share a very similar backbone to AdaGGI. The main conceptual differences to
existing implementations lies in that (i) they exclusively rely on UCB-sampling and (ii) have no [26] or a stricter [18]
removal criterion. The special case EUCB could thus be seen as a GAI-bandit baseline with adapted removal criterion.
Adaptation of the removal criterion to allow discarding of groups without clinically relevant effect greatly improves those
algorithms with respect to stopping time; the original criteria lead to infinite running times when ‘bad’ group effects are
exactly zero (as in our experiments).

Thresholding bandit – AdaGGI(EAPT ) Another approach that could be adapted to our setting is [14]’s thresholding
bandit solution. Because the thresholding bandit problem aims at correctly classifying all arms as either good or bad
using a fixed budget, [14]’s Anytime Parameter-free Thresholding (APT) algorithm tries to equalize the confidence in the
classification of all arms by ensuring that Nj(t)(θ̂j,Nj(t) − θ0)

2 is constant across arms. This corresponds to a sampling
strategy EAPT (Dt−1,At−1) = argminj∈At−1

√
Nj(t− 1)(θ̂j,Nj(t−1) − θ0) with θ0 = 0 in our setup. Conceptually, this

will lead to sampling the groups that are furthest from being identified – this is the opposite strategy to what ELCB tries
to accomplish and cannot be expected to perform well in our context. Because the original paper [14] focusses on a fixed

6[68] also consider a GAI problem involving weighted averages over collections of subgroups in a population, but there, the viable
collections and weights are fixed and not part of the optimization problem, which is very different from the GCPI problem where the
collections are optimized over.
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budget only setting, it is lacking some form of identification and removal criterion. We therefore instantiate it using the
AdaGGI backbone and simply use EAPT as the sampling strategy.

Generic combinatorial bandit baseline – AdaGGI(Eunif ) Finally, we consider adapting more generic combinatorial
bandit solutions, which generally aim to optimize some objective over collections of arms. Here, we consider [69]’s
Combinatorial Upper Confidence Bound (CUCB) algorithm in more detail as it permits straightforward adaptation to our
setting. The general setting considered in [69] allows to play a super-arm S at each time t, and their algorithm assumes
existence of an oracle that outputs the optimal S whenever provided with the underlying distributions of all arms; in
the GAI setting this simply picks all arms whose means exceed the threshold. The algorithm proceeds by constructing
upper confidence bounds θ̃j,t = θ̂j,Nj(t−1) + ϕ(Nj(t − 1), β) on the means of all arms, and then applies the oracle
to the θ̃j,t, outputting a super-arm St to sample. In our context, this would sample all arms for which it holds that
θ̂j,Nj(t−1)+ϕ(Nj(t−1), β) > θ0. Note that this essentially corresponds to AdaGGI with removal criterion Rfut(Dt, θ0, β)
instead of Rfut(Dt, θmin, β), and uniform sampling of the active set. As discussed above, setting θmin ̸= θ0 can only
improve the algorithm’s performance; thus AdaGGI(Eunif ) – i.e. simple uniform sampling of the active set – corresponds to
a straightforward adaptation of the CUCB algorithm to our setting.

B. Appendix B: Possible Extensions and Future Work
We believe that this paper opens up many interesting avenues for future research; natural next steps lie in (i) extending
the setting under consideration to incorporate more realistic problem features and (ii) further studying and improving
components of the algorithms.

Extending the setting. Multiple modifications to the data generating process might lead to a more realistic setting and
interesting research problems at the same time:

• Considering batched (grouped) observations: In practice, it might be operationally difficult to collect and reveal
individual patient responses as they come in; instead it might be more easily feasible to release patient responses in
batches or groups as is commonly done in group sequential designs [70]. AdaGCPI could directly accommodate
this: instead of recruiting |At| patient pairs uniformly and evaluating the subpopulation immediately, a larger batch of
patients could be recruited (uniformly from the active set) before using the updated dataset for testing the hypothesis.
Doing the same for AdaGGI may not be optimal, as – because the original sampling strategies are deterministic –
one would then have to recruit an entire batch of patients from the same subgroup, which may explore insufficiently.
Instead, sampling strategies that resemble Thompson sampling [71, 72] – i.e. strategies that are random and recruit
patients proportionally to the probability of their subgroup being good – may be more suited to this scenario.

• Allowing delayed feedback: Another difficulty likely to be encountered in practice, particularly when considering
time-to-event data or other long term outcomes, might be that not all outcomes of previously recruited patients are
available when making the next recruitment decision. The biostatistics literature has investigated how one can use
available short term outcomes that are indicative of the long term outcomes in such scenarios [73], while the bandit
literature has developed approaches for decision making under delayed feedback [74]; it would be interesting to
investigate how to incorporate either into our framework.

• Incorporating covariates and discovering subgroups: An interesting extension to the setting considered here would
be to make use of any other patient information (context) that may be available, e.g. prognostic information that may
explain some baseline variation likely to exist in practice and hence improve precision of estimators (as in e.g. [75]).
When no subgroups are pre-specified, one may also make use of such information to discover subgroups that differ
in their treatment response through so-called adaptive signature designs [47–50]; investigating how to better use ML
tools to efficiently discover such subgroups may be a natural next step.

Analyzing problem settings and algorithms. We believe that a number of our empirical findings both motivate further
theoretical analyses and suggest that improvements to our implementations may be possible:

• Comparing problem complexity of GGI and GCPI theoretically: Our experiments confirmed the intuition that
the GCPI problem can be easier (faster) to solve than the GGI problem, especially when subgroups are close to
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homogeneously all good or bad. It would be an interesting avenue for future work to confirm and analyze this
theoretically.

• Comparing sampling strategies theoretically: Our experiments also confirmed the intuition that, depending on the
underlying problem structure, different (non-uniform) sampling strategies are better at discovering (the first) good arm
fast, and it would thus be interesting to formally derive scenarios in which either UCB or LCB strategies could be
expected to have an advantage.

• Improving the used confidence intervals: We observed in our experiments that the ϕ(·, ·) that we used seemed to
create overly conservative confidence intervals in our settings. One possibility to improve this may be to rely on the
fact that usually B << ∞ and to therefore construct alternatives that instead of allowing for infinitely many peeks at the
data, allow only L ≤ B decision points which may lead to less necessity to be conservative.

• Explicitly incorporating budget in sampling and elimination strategies: Finally, we note that it may be an
interesting avenue for future work to develop a removal criterion RBudget that forces early removal of a subgroup,
either permanently from AdaGCPI whenever it is expected that there is insufficient budget left to prove treatment
effectiveness with confidence α in the current subpopulation (this would be the case if the average effect in the
current subpopulation is likely too low to do so; more aggressively removing the subgroups that appear worst may be
appropriate in this context) or temporarily from consideration for sampling in AdaGGI. Alternatively, one could also
investigate new multi-stage meta-algorithms with an initial more exploratory stage and a later more exploitative stage,
where the number of samples allocated to each stage or the transition between stages would depend on budget.

C. Appendix C: Experimental Details
C.1. Stylized simulations (Section 5.1)

All data was generated according to the setup described in Section 5.1: There are K = 10 groups, πj = 1
K ,∀j ∈ K and

outcomes are normally distributed according to N (θk, 1), where σ2 = 1 is assumed known. In the main results presented
in Fig. 2, we let θk = 0.5 for k ≤ ng and θk = 0 for k > ng, for ng ∈ {0, . . . , 10}. In Fig. 4, we set bad means equal to
−0.5, and in Fig. 3 we let good means vary between 0.5 and 1 by setting them equal to θj=0.5 + 0.5

ng−1 (j−1), j ≤ ng .

For all algorithms we set θmin = 0.5, α = 0.05, β = 0.1 and n0 = 1. As Y θ is assumed normally distributed with known

variance σ2 = 1, we use ϕ(t, δ) =
√
2log(1/δ)+3 log log(1/δ)+(3/2) log log(et/2))

t as in [26]. Note that we can use this for both
AdaGGI and AdaGCPI as all outcomes in any subpopulation are distributed equally under the null hypothesis (regardless of
subgroup, under the null hypothesis all outcomes are distributed according to N (0, 1)).

C.2. Simulated trials (Section 5.2)

In Section 5.2, we use a modified version of the experiment in section 6 of [3], which is in turn motivated by the I-SPY
2 breast cancer trial for neoadjuvant therapies [43]. The assumed end point of interest is the occurrence of pathologic
complete response (pCR), [3] assume this to follow a Bernoulli distribution where for the controls Y C ∼ B(0.4) for all
subgroups while the outcomes in treated individuals can differ across subgroups as Y T

j ∼ B(0.4 + θj). As [3] we consider
3 subgroups, for simplicity we assume them to be equal sized (πk = 1

3 ) here. In addition to the Bernoulli setting from the
main text, we also consider an additional setting with normally distributed outcomes in Appendix D (with known σ2 = 1)
i.e. Y C

j ∼ N (0, 1), Y T
j ∼ N (θj , 1),∀j ∈ [3].

As [3] we let θmin=0.2, α=0.025 and β=0.1. For our algorithms we additionally let n0 = 5 due to the higher variance
induced by considering a difference between random variables now. As the difference between two normal random variables

with variance σ2 is normal with variance 2σ2, we use ϕ(t, δ) = 2
√

log(1/δ)+3 log log(1/δ)+(3/2) log log(et/2))
t for the normal

outcomes, and, as bernoulli variables are 1
4 subgaussian, we use ϕ(t, δ) =

√
log(1/δ)+3 log log(1/δ)+(3/2) log log(et/2))

t for the
difference between binary outcomes.

Description of GSDS. We now briefly formally describe the group sequential design for subgroups (GSDS) proposed
in [3]. The design requires: a pre-specified number of interim analyses na, a test statistic Yj(t) and associated Fisher
information Ij(t), a desired significance level α and power 1− β. ⊣ is used to calculate stopping boundaries {(lp, up)}na

p=1

for each interim analysis. β is used to calculate a maximum information level Imax, which is in turn used to determine the
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sample size. The algorithm proceeds as follows: at the first interim analysis at time t1, a subpopulation is selected through
exclusion of all bad subgroups: S∗ = {j ∈ K : Yj(t1)

√
Ij(t1) > l1}. If YS∗(t1)

√
IS∗(t1) > u1, the trial terminates

immediately for efficacy; otherwise the trial continues and at all na − 1 subsequent stages, the trial is terminated for efficacy
if YS∗(tk)

√
IS∗(tk) > uk and terminated for futility if YS∗(tk)

√
IS∗(tk) < lk.

Budget calculation. We follow the example in [3] who calculate that for a two stage trial with α = 0.025, β = 0.1 and
θmin = 0.2, we have (l1, u1) = (0.7962, 2.7625) and l2 = u2 = 2.5204 and Imax = 1495.5.

In their example with binary outcomes, if we let b denote the number of pairs of recruited patients7, and p̂C , p̂T the observed
binary proportions in each group, we have that

Y = p̂T − p̂C and I =
b

2p̃(1− p̃)
(4)

where p̃ is the average response rate and is conservatively set to 0.5. Solving Imax for b yields a (rounded) budget B = 800
pairs of patients.

Similarly, when doing the same for normal outcomes with known variance σ2, if we let µ̂C , µ̂T denote the means in treated
and control arm, we have

Y = µ̂T − µ̂C and I =
b

2σ2
(5)

and with σ2 = 1 this yields a rounded budget of B = 3000.

D. Appendix D: Additional Results
D.1. Additional simulation results (Sec 5.1)

D.1.1. IDENTIFICATIONS: COMPLETE RESULTS

In Fig. 5, we present results capturing time until identification of each good group for ng ∈ {2, 4, 6, 8, 10} (only
ng = 4, 8 are presented in the main text). In Fig. 6, we present results capturing time until removal of each bad group for
ng ∈ {0, 2, 4, 6, 8} (only ng = 2, 6 are presented in the main text). These results reflect the same insights as those presented
in the main text, both in terms of comparing algorithms and in terms of comparing sampling strategies.

Figure 5. Results describing identification of good groups over time, for ng ∈ {2, 4, 6, 8, 10}; avg. across 1000 replications.

D.1.2. TYPE I ERROR

In Fig. 7 we plot Type I errrors committed over 1000 simulation runs, both with and without Bonferroni correction. (Note
that a Type I error is defined as any null hypothesis being incorrectly rejected; for AdaGGI this includes any single subgroup
being incorrectly declared good, while for AdaGCPI this would mean that the selected subpopulation S does not have a
positive average effect.) We make multiple interesting observations: First, with Bonferroni correction, all identification
criteria are clearly overly conservative – incorrect rejections only happen when all groups are bad, and even then this lies
much below the used α = 0.05. Second, this is not primarily due to the conservativeness of the Bonferroni correction, but
due to the conservativeness of the used anytime confidence interval: even when we remove the Bonferroni correction, all

7We believe there is a typo in Sec. 6 of [3], so that n should denote the number of pairs of patients, and not patients. We have adapted
budget calculations accordingly
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Figure 6. Results describing removal of bad groups over time, for ng ∈ {0, 2, 4, 6, 8}; avg. across 1000 replications.

Type 1 errors remain below (10− ng) ∗ α (in fact, they even lie below α). Finally, we note that the approximate Bonferroni
correction we chose for AdaGCPI therefore does not appear to be problematic; in the plot without any correction we also
observe that AdaGCPI does not seem to be more likely to commit a Type I error than AdaGGI even without any correction
(despite the number of hypotheses that could potentially be tested being exponential versus linear in K).

Figure 7. Type 1 error (runs with any incorrectly rejected null hypothesis) by ng across 1000 replications. Identification with Bonferroni
correction (left) and without (right).

D.2. Additional simulation scenarios

Varying means We present additional results on the setting presented in Fig. 3 of the main text: for ng ∈ {2, . . . , 10}
we let θj = 0.5 + 0.5 j−1

ng−1 for j ≤ ng and θj = 0 otherwise. As discussed in the main text, we observe that the relative
performance of sampling strategies changes in this setting: ELCB generally performs worse than EUCB here; with increasing
ng and hence decreasing spacing between the good means, this effect reduces.

Figure 8. Results describing identification of good groups over time, for ng ∈ {2, 4, 6, 8, 10} for a setting with varying means; avg.
across 1000 replications.

Different variances Next we consider how changing variance affects the performance of the different sampling algorithms.
In the Fig. 9(a), we compare the original setting with ng = 10 and σ2 = 1 for all groups to one where the means are the
same but σ2

j = 1+ j−1
ng

grows across groups. In the right Fig. 9(b), we compare the original setting with ng = 5 and σ2 = 1

for all groups to one where σ2 = 2 for the bad groups, while σ2 = 1 for the good groups. We observe that identification
times worsen across the board in both settings, but that the time increase for the first identifications for EUCB is much larger
than that for ELCB in absolute terms – most likely because UCB-style algorithms may erroneously enrol groups with larger
variance as the UCB will generally be higher for these groups.
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(a) ng = 10 (b) ng = 5

Figure 9. Results describing identification of good groups over time, for ng = 10 with variances possibly increasing across groups (left)
and ng = 5 with possibility for higher variance in bad groups (right)

D.3. Additional clinical trial simulation results (Sec 5.2)

Finally, we present additional clinical trial simulation results, which include more versions of the two algorithms and an
additional setting with normal outcomes, in Table 3. We observe that the results with normal outcomes are largely in
line with the results with binary outcomes. The relative performance of AdaGGI using different sampling strategies and
AdaGCPI using different removal rules is also in line with what has been observed in Sec. 5.1 in the main text; in particular,
ELCB continues to dominate unless there is one group with a much better effect than others in which case E(L)UCB works
better, and the addition of Rpop-fut has the largest effect on AdaGCPIs performance whenever there is no effect across all
groups.
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Binary Normal
θ Method %Succ. |S| tstop

B

t1g
B

t1b
B

%Succ. |S| tstop
B

t1g
B

t1b
B

A:[0, 0, 0] GSDS 2.6 0.04 0.74 0.5 2.4 0.04 0.75 0.51
AdaGGI(ELCB) 0 0 0.64 0.24 0 0 0.69 0.25
AdaGGI(EUCB) 0 0 0.63 0.53 0 0 0.69 0.60
AdaGGI(ELUCB) 0 0 0.64 0.48 0 0 0.69 0.54
AdaGGI(Eunif ) 0 0 0.63 0.35 0 0 0.70 0.40
AdaGCPI(Rfut) 0 0 0.64 0.36 0 0 0.69 0.39
AdaGCPI
(Rfut +Rpop-fut) 0 0 0.49 0.23 0 0 0.54 0.26

B:[−0.2, 0, 0.2] GSDS 99.3 1.19 0.64 0.64 0.5 97.9 1.18 0.68 0.68 0.5
AdaGGI(ELCB) 97.9 0.98 0.63 0.46 0.38 96.6 1 0.69 0.52 0.57
AdaGGI(EUCB) 98 0.98 0.63 0.48 0.51 96.4 0.96 0.69 0.52 0.8
AdaGGI(ELUCB) 98.4 0.98 0.63 0.48 0.52 96.7 0.97 0.68 0.51 0.57
AdaGGI(Eunif ) 96 0.96 0.64 0.61 0.15 90.2 0.90 0.70 0.64 0.16
AdaGCPI(Rfut) 96 1.05 0.63 0.62 0.15 91.9 0.994 0.68 0.66 0.16
AdaGCPI
(Rfut +Rpop-fut) 95 1.04 0.61 0.61 0.15 92 0.97 0.67 0.65 0.16

C:[0, 0.1, 0.3] GSDS 100 2.03 0.50 0.50 0.50 100 1.98 0.51 0.51 0.5
AdaGGI(ELCB) 99 1.00 0.55 0.29 0.59 79 0.87 0.93 0.34 0.57
AdaGGI(EUCB) 100 1.09 0.90 0.25 0.81 100 1.08 0.93 0.29 0.87
AdaGGI(ELUCB) 99.9 1.08 0.90 0.26 0.83 100 1.06 0.93 0.29 0.85
AdaGGI(Eunif ) 99.6 1.06 0.91 0.45 0.53 98.5 1.03 0.96 0.65 0.59
AdaGCPI(Rfut) 99.3 2.28 0.55 0.55 0.53 97.7 2.25 0.6 0.59 0.47
AdaGCPI
(Rfut +Rpop-fut) 89 2.28 0.55 0.55 0.44 0.98 2.26 0.59 0.59 0.46

D:[0.2, 0.2, 0.2] GSDS 100 2.98 0.50 0.5 100 2.97 0.5 0.5
AdaGGI(ELCB) 99.8 2.27 0.94 0.36 99.7 2.06 0.96 0.4
AdaGGI(EUCB) 93.8 2.02 0.94 0.53 91.4 1.81 0.96 0.53
AdaGGI(ELUCB) 95.9 2.07 0.94 0.51 93.5 1.83 0.96 0.54
AdaGGI(Eunif ) 83 1.76 0.94 0.65 75.1 1.48 0.96 0.65
AdaGCPI(Rfut) 99.7 2.97 0.37 0.37 99.7 2.99 0.41 0.41
AdaGCPI
(Rfut +Rpop-fut) 99.8 2.99 0.37 0.37 99.7 2.98 0.41 0.4

E:[0.3, 0.3, 0.3] GSDS 100 3 0.5 0.5 100 3 0.5 0.5
AdaGGI(ELCB) 100 3 0.49 0.16 100 3 0.53 0.18
AdaGGI(EUCB) 100 3 0.49 0.25 100 3 0.53 0.26
AdaGGI(ELUCB) 100 3 0.49 0.24 100 3 0.53 0.26
AdaGGI(Eunif ) 100 3 0.49 0.33 100 3 0.53 0.34
AdaGCPI(Rfut) 100 3 0.17 0.17 100 3 0.18 0.18
AdaGCPI
(Rfut +Rpop-fut) 100 3 0.17 0.17 100 3 0.18 0.18

Column legend: (1) %Succ. : prop. of trials which found a significant effect in some group. (2) |S|: Average size
of discovered subpopulation S. (3) tstop/B: Average algorithm termination time (as prop. of budget). (4) t1g/B:
Average time it took to identify the first good arm (as prop. of budget). (5) t1b/B: Average time it took to discard the
first bad arm (as prop. of budget).

Table 3. Results for simulated clinical trials with binary outcomes (left) and normal outcomes (right) using different treatment effect
vectors θ; averaged across 1000 replications.
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