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Abstract
Personalized treatment effect estimates are often
of interest in high-stakes applications – thus, be-
fore deploying a model estimating such effects in
practice, one needs to be sure that the best can-
didate from the ever-growing machine learning
toolbox for this task was chosen. Unfortunately,
due to the absence of counterfactual information
in practice, it is usually not possible to rely on
standard validation metrics for doing so, leading
to a well-known model selection dilemma in the
treatment effect estimation literature. While some
solutions have recently been investigated, sys-
tematic understanding of the strengths and weak-
nesses of different model selection criteria is still
lacking. In this paper, instead of attempting to de-
clare a global ‘winner’, we therefore empirically
investigate success- and failure modes of differ-
ent selection criteria. We highlight that there is
a complex interplay between selection strategies,
candidate estimators and the data used for com-
paring them, and provide interesting insights into
the relative (dis)advantages of different criteria
alongside desiderata for the design of further illu-
minating empirical studies in this context.

1. Introduction
Applications in which the causal effects of treatments (or
actions, interventions & policies) are of interest are ubiqui-
tous in empirical science, and personalized effect estimates
could ultimately be used to improve decision making in
many domains, including healthcare, economics and mar-
keting. Machine learning (ML) has shown great promise
in providing such personalized effect estimates (Bica et al.,
2021), and the ML literature on the topic has matured over
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the last five years: a plethora of new methods for estimating
conditional average treatment effects (CATE) have been pro-
posed recently, including method-agnostic so-called meta-
learner strategies that could be implemented using any ML
prediction method (Künzel et al., 2019; Nie & Wager, 2021;
Kennedy, 2020; Curth & van der Schaar, 2021b) as well
as adaptations of specific ML methods (Shalit et al., 2017;
Alaa & van der Schaar, 2018; Wager & Athey, 2018) to the
treatment effect estimation context.

Personalized treatment effect estimates, crucially, are of-
ten of interest in safety-critical applications, particularly in
medicine and policy making. Thus, prior to use in prac-
tice we would like to ensure that we have selected a ML
estimator from this vast toolbox that is trustworthy and out-
puts the best possible estimates. While this sounds like
a straightforward requirement, it remains a big hurdle in
practice: because of the fundamental problem of causal in-
ference (Holland, 1986), ground truth treatment effects are
usually not available to perform standard model validation,
and alternative solutions need to be considered to overcome
this model selection dilemma. As we discuss below, despite
recent proposals of new model selection strategies and re-
cent empirical studies comparing different strategies, we
believe that there is still a general lack of understanding
of the (dis)advantages of different strategies and how they
are entangled with underlying data-generating processes
(DGPs) – which we aim to provide in this work.

Related work. Despite its practical relevance, the prob-
lem of model selection for heterogeneous treatment effect
estimation has received only very limited attention so far
(this stands also in stark contrast to the plethora of new
estimators proposed in recent years, see Appendix B for
an overview). An intuitive and often applied solution is to
rely on a simple prediction-type validation and evaluate a
model’s performance in predicting the observed (factual)
outcome associated with the factual treatment instead of
evaluating the quality of the effect estimate. More targeted
alternatives have recently been developed: Rolling & Yang
(2014) propose to construct approximate effect validation
targets by matching the nearest treated and control units
and comparing their outcomes, Nie & Wager (2021) high-
light that their R-learner objective could also be used for
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model selection, Saito & Yasui (2020) similarly propose
the use of a criterion that corresponds to Kennedy (2020)’s
meta-learner objective and Alaa & Van Der Schaar (2019)
propose to rely on influence functions to de-biase plugin
estimates. We are aware of two independent benchmark-
ing studies that compare (subsets of) such criteria: Schuler
et al. (2018) find that the R-learner objective performs best
overall, while Mahajan et al. (2022) find that no criterion
dominates all others over all datasets considered (and in
particular do not find the R-learner objective to perform
remarkably), which highlights to us that there is much room
for understanding of the relative strengths but also relative
weaknesses of different selection criteria.

Contributions. In this paper, we focus on building sys-
tematic understanding of the (dis)advantages of different
model selection criteria. Note that therefore our aim is not
to propose new methodology, but rather to establish under-
standing and insight into the tools already available in the
literature. We believe that this is one of the most crucial and
necessary next steps for this community in order to enable
actual adoption of personalized treatment effect estimators
in practice, and may inspire further methodological research
to fill gaps highlighted by this understanding. In doing so,
we make three contributions:

1. We develop intuition for a highly complex selection prob-
lem: we shine light on its inherent challenges, provide
structure to existing work by presenting a classification
of existing criteria, and use these insights to derive hy-
potheses for their relative performance.

2. We present desiderata for experimental design that en-
able us to disentangle the complex forces at play in this
problem: we advocate for better experiments that allow
to systematically investigate the interplay between DGP,
candidate estimators and selection criteria through re-
liance on data-generating processes with interesting axes
of variation and more transparent reporting practices.

3. We provide new insights into the CATE model selection
problem through an empirical investigation of the suc-
cess and failure modes of existing criteria, and conclude
that no existing selection criterion is globally best across
all experimental conditions we consider. Next to high-
lighting some performance trends across the different
types of selection criteria, we mainly focus on investigat-
ing i) congeniality biases between candidate estimators
and selection criteria imbued with similar inductive bi-
ases in their construction and ii) what factual selection
criteria can(not) achieve. We find that i) selection crite-
ria relying on plug-in estimates of treatment effects are
likely to favor estimators that resemble their plug-ins,
while in selection criteria relying on pseudo-outcomes
such congeniality biases are less pronounced, and that
ii) factual selection sometimes underperforms not only
because it cannot evaluate all types of CATE estimators,

but also because it is not well-targeted at effect estimates.

2. Problem Setting
We consider the by now standard CATE estimation setup
within the potential outcomes framework (Rubin, 2005).
That is, we assume access to a dataset consisting of n i.i.d.
tuples (X,A, Y ), where Y is an outcome of interest, X
consists of pre-treatment covariates and A ∈ {0, 1} is a
binary treatment (action, intervention or policy), which is
assigned according to some (often unknown) propensity
π(x) = P(A = 1|X = x). We assume that conceptually
each individual is a priori associated with two potential
outcomes (POs) Y (a), a ∈ {0, 1}, capturing outcome un-
der either treatment a, however, we observe only the out-
come associated to the treatment A actually received, i.e.
Y = Y (A), We can thus naturally define an individual-
ized treatment effect through the (unobserved) PO contrast
Y (1)−Y (0). We focus on estimating the conditional av-
erage treatment effect (CATE) τ(x), i.e. the expected PO
difference for an individual with covariates X = x:

τ(x) = E[Y (1)− Y (0)|X = x] = µ1(x)− µ0(x) (1)

where µa(x) = E[Y (a)|X = x]. To ensure that effects are
identifiable and nonparametrically estimable from observa-
tional data, we rely on the standard ignorability assumptions
(Rosenbaum & Rubin, 1983):

Assumption 2.1 (Ignorability.). (i) Consistency. For an
individual with treatment assignment A, we observe the
associated potential outcome, i.e. Y = Y (A). (ii) Uncon-
foundedness. There are no unobserved confounders, so that
Y (0), Y (1) |=A|X . (iii) Overlap. Treatment assignment is
non-deterministic, i.e. π(x) ∈ (0, 1).

Then, E[Y (a)|X = x] = E[Y |X = x,A = a] so that ob-
served statistical associations have a causal interpretation.

2.1. CATE Estimation Strategies

A plethora of strategies for estimating CATE have been pro-
posed in the recent literature. One strand of this work has
recently relied on the meta-learner framework of Künzel
et al. (2019), where a meta-learner provides a ‘recipe’ for
estimating CATE using any arbitrary1 ML method M. Due
to their ease of implementation with different underlying
ML methods, existing theoretical understanding and cor-
respondence to the model selection strategies discussed in
the following section, we focus on the problem of choosing
between such meta-learners in this paper.

Following Curth & van der Schaar (2021b) we distinguish
between (i) indirect estimation strategies, which estimate

1as opposed to adaptation of specific ML methods proposed in
another stream of work, as discussed further in Appendix B.
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CATE indirectly by outputting estimates µ̂a(x) of the PO re-
gressions and then setting τ̂ = µ̂1(x)−µ̂0(x), and (ii) direct
estimation strategies which output an estimate τ̂(x) directly
without outputting PO estimates as byproducts. Künzel et al.
(2019) discuss two indirect learners: a T-learner strategy,
where the training data is split by treatment group and M is
trained independently (twice) on each sample to output two
regressors {µ̂0(x), µ̂1(x)}, and a S-learner strategy, where
the treatment indicator A is simply appended to X so that
M can be trained a single time using covariates (X,A) and
outputting a single estimated function µ̂(x, a) that can be
used to impute both POs. Because the latter formulation
can lead to implicit regularization of CATE (Schuler et al.,
2018) (as any heterogeneous effect has to be represented
by learned interaction terms of X and A), we also include
an extended version (ES-learner) which is trained on the
covariates (X,X ∗A,A) explicitly.

Alternatively, there exist direct estimators that output an
estimate of the CATE only by relying on estimates of (some
of) the nuisance parameters η = (µ0(x), µ1(x), π(x))
obtained in a pre-processing step using ML method M.
Most such strategies, in particular, X-learner (Künzel et al.,
2019), the DR-learner (Kennedy, 2020) and RA- and PW-
learner (Curth & van der Schaar, 2021b), rely on a pseudo-
outcome approach where, using plug-in nuisance estimates
η̂, one constructs a pseudo outcome for which it holds that
E[Yη|X = x] = τ(x) for ground truth nuisance parameters
η, and then regresses Yη̂ on X using M to give an estimate
τ̂(x). Nie & Wager (2021)’s R-learner is similar in spirit but
relies on a modified loss function instead. These multi-stage
estimation procedures have recently gained popularity in
the literature because they have good theoretical properties
(Curth & van der Schaar, 2021b), are more robust (Kennedy,
2020) and have been observed to perform better across a va-
riety of scenarios than vanilla S- and T-learner individually
(Nie & Wager, 2021).

3. CATE Model Selection: Understanding
Challenges and Existing Strategies

We study the problem of selecting an estimator from a set of
CATE estimators T ={τ̂1(·), . . . , τ̂K(·)}, containing differ-
ent meta-learner+ML method combinations, that minimizes
the precision of estimating heterogeneous effects (PEHE)
(Hill, 2011), the root-mean-squared error of estimating the
underlying effect function over a test-set of size n:

arg min
τ̂k∈T

Eoracle
τ (τ̂k) =

√√√√ 1

n

n∑
i=1

(τ(Xi)− τ̂k(Xi))2

This metric is an oracle metric because it cannot be evalu-
ated in practice – making the CATE model selection problem
highly nontrivial. Below, we therefore provide an in-depth

discussion of the inherent challenges of this problem, and
then establish a classification of model selection criteria that
have been proposed to overcome these challenges.

3.1. What makes CATE model selection challenging?

Challenge 1: Lack of supervised signal for the individ-
ual treatment effect. Due to the fundamental problem
of causal inference (Holland, 1986), i.e. the fact that we
can only either observe Y (0) or Y (1) for any one indi-
vidual, the true supervised target label Y (1) − Y (0) for
estimation of E[Y (1)− Y (0)|X = x] = τ(x) is not avail-
able for model selection through a standard held-out vali-
dation approach. This lack of supervised label is also the
issue that motivated the construction of the direct meta-
learners for estimation of effects using pseudo-outcomes
(Kennedy, 2020; Curth & van der Schaar, 2021b), but
it results in another challenge for model selection: even
though direct estimation of effects is possible, it is not
possible to compare multiple direct estimators on basis of
their output τ̂k(x) using observed data only because there
is no natural outcome to validate τ̂k(x) against directly.

Challenge 2: Confounding leads to covariate shift be-
tween treatment groups. One straightforward option to
validate estimators using factual (observed) outcomes only
is to simply evaluate them based on their outcome predic-
tion ability; i.e. to use Yi − µ̂Ai

(Xi) for validation. This,
however, is only an option for evaluating indirect learners
because it requires an output µ̂a(x). Even when one is will-
ing to restrict attention only to indirect learners to make
use of a factual evaluation strategy, a remaining inherent
challenge is that evaluating µ̂a(x) only on individuals with
A = a observed inherently suffers from covariate shift
whenever π(x) is not constant because treatment is not as-
signed completely randomly. This too is a challenge also
when estimating effects (Shalit et al., 2017).

Challenge 3: Selection for good PO estimation and
CATE estimation may not be the same. Finally, even
when selecting only among indirect learners and in absence
of covariate shift, in finite samples the estimator with the
best performance on estimating (potential) outcomes might
not do best at estimating CATE. It is clear that when models
are correctly specified and unlimited data is available, per-
fectly estimating the POs will immediately lead to perfect
CATE estimates. However, when data is limited and/or the
model is misspecified, this might lead to a trade-off between
estimating the POs well and estimating their difference2.

2To see this, note that when comparing an indirect estima-
tor µ̂1

a(x) = {µ1(x) + ϵ̃1(x), µ1(x) − ϵ̃1(x)} to an estimator
µ̂2
a(x) = {µ1(x) + ϵ̃2(x), µ1(x) + ϵ̃2(x)} with estimation errors

ϵ̃1(x) < ϵ̃2(x) for all x, the MSE of estimating the POs will be
lower for estimator µ̂1

a(x) – yet its estimation error on CATE will
be 2ϵ̃1(x) for every x while estimator µ̂2

a(x) with worse estimation
on the POs will have CATE estimation error 0.
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3.2. Categorizing model selection criteria

To overcome the challenges discussed above, numerous
alternative model selection criteria have been used or pro-
posed in related work. Below, we establish a classification
of existing model selection criteria into three categories
based on their most salient characteristics: we consider
factual (prediction) criteria, plug-in surrogate criteria and
pseudo-outcome surrogate criteria. We provide a conceptual
overview of the three types of strategies in Fig. 1. Overall,
we consider a similar set of model selection criteria as the
(union of) the benchmarking studies presented in Schuler
et al. (2018); Mahajan et al. (2022)3.

1. Factual (prediction) criteria. First, as discussed in
the previous section, a possible way of evaluating models
τ̂k(x) that also output a pair of regressors {µ̂k

0(x), µ̂
k
1(x)}

is to rely on a simple prediction loss considering only the
observed potential outcome

Efact
Y (τ̂k) =

√√√√ 1

n

n∑
i=1

(Yi − µ̂k
Ai
(Xi))2

In order to correct for possible covariate shift, this can
also be transformed into an importance weighted criterion
Efact,w
Y using a propensity score estimate in w(Xi, Ai) =

Ai(π̂(Xi))
−1 + (1−Ai)(1− π̂(Xi))

−1.

2. Plug-in surrogate criteria. To actually evaluate esti-
mates τ̂k(x) directly one is thus forced to construct surro-
gates for CATE. One way of doing so is by fitting a new
CATE estimator τ̃(x) on held-out data and using this to
compare against the estimates:

Eplug
τ̃ (τ̂k) =

√√√√ 1

n

n∑
i=1

(τ̃(Xi)− τ̂k(Xi))2

For implementation of this criterion, any CATE estimator
could be used – thus trying to select the best plug-in estima-
tor may potentially lead us in a circle and back to the prob-
lem we are originally trying to solve. Related work (Alaa
& Van Der Schaar, 2019; Mahajan et al., 2022) considered
only indirect estimators (S and T-learners) as a plug-in sur-
rogate criterion – possibly because it is possible to choose
between those factually – but we note that technically any
estimator, including direct ones, could be used as τ̃(x).

3Schuler et al. (2018), predating publication of most model
selection papers, miss some of the plug-in and pseudo-outcome
criteria. Mahajan et al. (2022) only do not consider factual (pre-
diction) criteria, which we consider of major interest as discussed
in the following section. We only drop policy value criteria, i.e.
those optimizing the derived treatment policy 1{τ̂k(x) > 0}, from
consideration, both because we focus on PEHE and because these
criteria were shown to underperform even when evaluated in terms
of policy value (Schuler et al., 2018).

Figure 1. Conceptual overview of the considered selection criteria.

3. Pseudo-outcome surrogate criteria. Finally, one could
make use of the same pseudo-outcome based strategy that
underlies the direct learners: given auxiliary nuisance esti-
mates η̃ = (µ̃0(x), µ̃1(x), π̃(x)) obtained from the valida-
tion data using ML method M, one can construct pseudo-
outcomes Yη̃ for which it holds that for ground truth nui-
sance parameter η, E[Yη|X = x] = τ(x) and – instead
of using them as regression outcomes as in the learners
themselves – one can use them as validation targets in

Epseu
Yη̃

(τ̂k) =

√√√√ 1

n

n∑
i=1

(Yη̃ − τ̂k(Xi))2

which is reasonable because the conditional mean
E[Yη̃|X = x] minimizes the MSE Epseu

Yη̃
(·)2 in expectation.

Use of the doubly robust pseudo-outcome,

YDR,η̃ =

(
A

π̂(X)
− (1−A)

1− π̂(X)

)
Y+[(

1− A

π̂(X)

)
µ̂1(x)−

(
1− 1−A

1− π̂(X)

)
µ̂0(X)

]
which is what the direct meta-learner known as the DR-
learner (Kennedy, 2020) is based on, gives rise to the se-
lection criterion proposed in Saito & Yasui (2020). We
note here that it would also be possible to use the other
meta-learner pseudo-outcomes discussed in Curth & van der
Schaar (2021b) for this purpose, e.g. the singly-robust
propensity-weighted YPW,η̃ =

(
A

π̂(X) −
(1−A)
1−π̂(X)

)
Y . We

also consider Rolling & Yang (2014)’s matching based
model selection strategy to fall into this category. In
this case Ymatch,η̃ = (2Ai − 1)(Yi − ÑN1−Ai

(Xi)) where
ÑNa(X) is the nearest neighbor of X in treatment group a;
this essentially corresponds to the pseudo-outcome associ-
ated with the RA-learner of Curth & van der Schaar (2021b),
implemented using 1-NN regression to estimate the nuisance
parameters µ̂a(x). We also put Alaa & Van Der Schaar
(2019)’s influence function based criterion, which we dis-
cuss in Appendix C, into this category. Finally, the R-learner
objective of Nie & Wager (2021), which requires an estimate
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of the treatment-unconditional mean µ(x) = E[Y |X = x],
relies on a similar idea4 and can also been used for the se-
lection task (Nie & Wager, 2021), resulting in the criterion

Epseu
R (τ̂k) =

√√√√ 1

n

n∑
i=1

(Yi−µ̃(Xi)−τ̂k(Xi)(Ai−π̃(Xi)))2

4. Demystifying the Model Selection Dilemma
Having established a high-level classification of model selec-
tion strategies, we can now build intuition and hypothesize
about their expected (dis)advantages based on their inher-
ent characteristics (Sec. 4.1). These expectations lead to
numerous interesting research questions, which we believe
can only be disentangled by designing carefully controlled
experiments – a feature that we would argue related work
has neglected so far. Therefore, we then move to discuss
design principles for construction of empirical studies of the
CATE model selection problem (Sec. 4.2), which we will
then apply in our experiment section.

4.1. Comparing model selection criteria: expectations
on advantages and disadvantages

Combining on our high-level overview of different strategies
for CATE model selection with the previously discussed
challenges, we argue that every class of criteria comes with
their own inherent (dis)advantages.

Factual (prediction) criteria. We believe that factual cri-
teria could be very appealing for use in practice because –
at least the unweighted Efact

Y – does not require estimates
of any nuisance parameters and only relies on observed
data; this means that there is no additional overhead and
its results could be considered trustworthy in the sense that
there is no dependence on possibly misspecified or biased
nuisance estimates. However, such criteria mainly evaluate
the performance in terms of estimation of the POs, which, as
discussed above, may wrongly prioritize good fit on the POs
over good CATE fit – while the latter cannot be measured
at all. This last point, crucially, also means that the factual
criterion cannot evaluate all types of methods, excluding all
direct estimators in particular, and therefore has to select
among a smaller set Tindirect ⊂ T of all possible estima-
tors – potentially missing out on the estimators with the best
performance by construction.

Plug-in surrogate criteria. Plug-in surrogate criteria have
the clear advantage over factual criteria that they can evalu-
ate all types of estimators and are targeted at the outcome
of interest (i.e. the CATE). Yet, because a plug-in estimate

4Epseu
R can be rewritten in pseudo-outcome form as

YR,η̃ = Yi−µ̃(Xi)
Ai−π̃(Xi)

if combined with weights (Ai − π̃(Xi))
2 to be

used in the sum inside the RMSE (Knaus et al., 2021).

τ̃(x) is needed, this introduces additional potential for esti-
mation error or variance. Further, τ̃(x) could be any CATE
estimator, thus choosing a good plugin τ̃(x) leads us back to
the dilemma we were initially trying to overcome. Finally,
we believe that such surrogate criteria may also suffer from
a phenomenon we will refer to as congeniality bias: they
may advantage CATE estimators τ̂k(x) that are structurally
similar to their plug-in estimator τ̃(x). Even though τ̂k(x)
and τ̃(x) should be fit on different data folds, we expect
that a plug-in criterion τ̃(x) may still prefer estimators im-
bued with similar inductive biases. That is, we expect that
e.g. a criterion using plug-in surrogate τ̃(x) implemented
using linear regression may favor CATE estimators τ̂k(x)
similarly relying on linear regressions (over estimators im-
plemented using other methods M), and one relying on an
S-learner surrogate τ̃(x) may have a preference for selecting
S-learners τ̂k(x). Here, we borrow the term ‘congeniality
bias’ from the psychology literature, where it is used to indi-
cate that individuals may have a systematic preference for in-
formation consistent with current beliefs (Hart et al., 2009).

Pseudo-outcome surrogate criteria. We expect these crite-
ria to share the advantages, and some of the disadvantages of
the plug-in criteria (namely the need to estimate additional
parameters, and resulting possibility for increased error or
variance). Because they do not use a final τ(x) estimate but
only a pseudo-outcome Yη̃, we expect that they might be
less likely to suffer from congeniality bias, but could still
favor estimators with similar inductive biases, e.g. direct
estimators trained on the same pseudo-outcome.

4.1.1. RESULTING RESEARCH QUESTIONS.

This paper was motivated by many of the interesting re-
search questions outlined below that naturally follow from
the discussion above, none of which we believe have been
addressed in related work– we believe that this is a result
of the fact that the focus so far has been on establishing
global best performance of some criterion. Instead, we are
interested in understanding scenarios in which there could
be performance differences of competing criteria, in the
hope that this will help practitioners in choosing the right
criterion in their specific application. In particular, we are
interested in exploring three questions in depth in this paper:
• Q1. When do which selection criteria work better or

worse? If there are systematic patterns, do they parallel
those observed for the different estimation strategies in
prior work?

• Q2. Do surrogate selection criteria truly suffer from con-
geniality bias as expected? Are there differences between
the different types?

• Q3. What and when do we lose out on by relying on
factual validation Efact

µa
? Does it matter that we restrict

the estimator pool? Does it matter that we are optimizing
for the wrong target?
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4.2. Establishing desiderata for experimental design

As outlined above, we believe that there are many very in-
teresting questions to explore in this CATE model selection
dilemma. Existing empirical studies that we are aware of
– both those proposing new model selection criteria (Alaa
& Van Der Schaar, 2019; Saito & Yasui, 2020) and those
benchmarking existing ones (Schuler et al., 2018; Mahajan
et al., 2022) – have mainly focused on the question ‘what
strategy works best globally?’, and have taken a black-box
approach in doing so: by considering opaque datasets for
benchmarking, by considering a large inextricable set of es-
timators to select from and by mainly reporting on averages
across a number of different DGPs.

It has recently been highlighted that the benchmarking prac-
tices in the ML CATE estimation literature more generally
have many shortcomings (Curth et al., 2021), especially
the reliance on single semi-synthetic datasets5 that encode
very specific problem characteristics in their DGP, without
discussing the effect of these choices. We therefore believe
that it is crucial to carefully design controlled experimental
environments that allow to disambiguate the effects that dif-
ferent components of a DGP may have on selection criterion
performance. Below we discuss desiderata for designing
an empirical study that allows for the insight into model
selection performance we seek, which we use to design an
empirical study in the following section.

1. Use DGPs with interesting ‘experimental knobs’. To
gain systematic understanding of when different selection
criteria work well, we need to be able to systematically vary
the underlying experimental characteristics – as suggested
by Dorie et al. (2019) we therefore design simulations that
enable turning of important ‘experimental knobs’. In pursuit
of interesting insights into relative performance of selection
criteria, we will therefore choose to investigate axes that
have been shown to matter for estimator performance itself
as well as others that we would expect to matter.

2. Examine the performance of candidate estimators in
T . To understand when different selectors perform well, we
believe that it is important to first establish how the underly-
ing candidate estimators in T perform. All related work that
we are aware of skip this step, yet we consider it crucial be-
cause the performance of different selection strategies may
be deeply entangled with the performance of the underlying
estimators: if, for example, there is congeniality between
selectors and estimators, and/or a specific type of estimator
is advantaged on a specific dataset, then the corresponding
selector may perform well by construction.

5Note that, due to the lack of Y (1)−Y (0) in real data it is
generally necessary to simulate outcomes in experiments to allow
for known ground truth; most existing benchmark datasets are semi-
synthetic in that they use real covariates but simulate outcomes.

3. Analyze how and when performance of selection cri-
teria varies. Finally, once DGPs are constructed and es-
timators examined, we aim to analyze the performance of
the selection criteria in detail. That is, we wish to explicitly
understand how the relative performance of selectors varies
as an experimental knob is turned. In many related works
this is not possible as results are reported as averages across
many different settings (Alaa & Van Der Schaar, 2019; Ma-
hajan et al., 2022), obfuscating possible interesting insights
into systematic performance differences.

5. Empirical Study
Setup. In this section, we conduct an empirical study
comparing CATE selection criteria following the three steps
outlined above. Throughout, we rely on two ML-methods
M to instantiate all meta-learners and selection criteria:
Extreme Gradient Boosted Trees (Chen & Guestrin, 2016)
(GB) and linear regressions with ridge penalty (LR). We
chose these two because they encode very different inductive
biases, and allow us to give insights into performance differ-
ences between very flexible versus rigid models. Whenever
propensity score estimates are needed, we estimate these
using logistic regressions. As meta-learners to choose be-
tween, we consider (indirect) S-, T- and ES-learners and
the (direct) DR- and R-learner. As selection criteria we
consider Efact

Y (factual), Eplug,ES
τ̃ , Eplug,T

τ̃ , Eplug,DR
τ̃ &

Eplug,R
τ̃ (surrogate plug-in) and Epseudo,DR

Yη̃
& Epseudo,R

Yη̃

(surrogate pseudo-outcome) in the main text, further results
using criteria that generally performed worse can be found
in Appendix D.1. Implementation details6 can be found in
Appendix C.

5.1. Step 1: Designing an insightful DGP.

We build a DGP loosely inspired by the setup used in Curth
& van der Schaar (2021a): we similarly make use of the
covariates X of the ACIC2016 dataset (Dorie et al., 2019),
and simulate our own outcomes and treatment assignments
for greater transparency and control. We begin by binarizing
all continuous covariates at randomly sampled cutoff points,
obtaining processed covariates X∗, and then use them in a
linear model for µ0(·), including up to third-order interac-
tion terms of X∗, while τ(·) is simply linear in X∗. This
setup includes 3 main experimental knobs:
1. CATE complexity. Our first experimental knob is ρ ∈

{0, .1, .3}, the proportion of non-zero coefficients of in-
puts in τ(·), controlling the complexity (sparsity) of τ(·)
– this was used in Curth & van der Schaar (2021a) and
shown to matter for relative performance of estimators.

2. Misspecification. Second, we introduced a transforma-
tion of covariates deliberately because it allows us to

6Code to replicate all experiments is available at https://
github.com/AliciaCurth/CATESelection
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explore the effects of model (mis)specification. That is,
whether algorithms (estimators and selection criteria) are
given X or X∗ as input Xinput is the second experimen-
tal knob we consider: when given the original data X ,
this implicitly favors tree-based models like GB (this
DGP mimics splits in decision trees) because a LR can-
not fully recover X∗ and hence not learn the patterns in
either τ(·) or µ0(·). Even when given the transformed
data X∗ as Xinput, a simple LR cannot fit the POs µa(·)
due to the higher order interaction terms; however, the
treatment effect itself is linear in X∗ and could hence be
fit with a LR if we observed Y (1)− Y (0).

3. Confounding. Third, we compare confounded to ran-
domized settings, where only in the former treatments
are assigned based on variables that enter µ0(·). In the
main text, the propensity score logits are linear in Xinput

and can hence be consistently estimated with logistic re-
gressions in all settings. We consider additional settings
with other propensities in Appendix D.4, where we also
consider the effect of imbalance in treatment group sizes
(whereas the main text has equal group sizes).

We vary ρ on the x-axis of our plots, which we split into
four setups based on characteristics 2 and 3: Setup A is
unconfounded and estimators & selectors get X as input,
Setup B is unconfounded and estimators & selectors get X∗

as input, Setup C is confounded and estimators & selectors
get X as input and Setup D is confounded and estimators &
selectors get X∗ as input. A more formal description of the
DGP can be found in Appendix C. Further, throughout we
split training data of size n into ntrain = 2n

3 for training of
all estimators and nval =

n
3 to be used by the selection cri-

teria, and use an independent test-set of size ntest = 500 to

evaluate a criterion by the test-set PEHE of its selected best
model. We use n = 1000 + 500 as a default, but also con-
sider the effect of having more (n = 2000 + 1000) or less
(n = 500 + 250) data available in Appendix D.2. Every ex-
periment is repeated for 20 random seeds, across which we
report means and standard errors (SEs). Finally, we present
additional results using the standard ACIC2016 and IHDP
benchmarks in Appendix E, where we also outline why we
believe they allow for less interesting analyses – highlight-
ing further that careful design of DGPs was important to
gain interesting insights.

5.2. Step 2: Examine performance of candidate
estimators

Here, we briefly examine the performance of the underlying
learners themselves in Fig. 2. We include an oracle that is
trained directly on the (usually unknown) τ(Xi) to provide
a lower bound on error due to misspecification (in particular,
this highlights that in setup A and C, LRs cannot capture
the CATE well while GBs could). We see that there are
indeed interesting performance differences across learners
and settings, meaning that no single learner, estimation strat-
egy or ML method consistently dominates all others. As
expected, R- and DR-learner show good performance espe-
cially when CATE is relatively simple. T- and ES-learners
perform worst for ρ = 0, but relatively better for ρ large; the
opposite is true for S-learners. Note that the performance
of the LR S-learner is particularly poor for ρ > 0 because it
can only learn a constant treatment effect (i.e. it is severely
misspecified for ρ > 0). In Appendix D.4, we addition-
ally consider imbalanced treatment group sizes and find
that this worsens mainly the performance of the R-learner.
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kind of estimator is chosen when the true best estimator is not chosen, across all settings considered.

5.3. Step 3: Towards understanding the performance of
different selection criteria

We are now ready to examine the performance of the dif-
ferent model selection criteria: In Fig. 3 we present results
of different criteria choosing between all 10 learner-method
combinations. For legibility, we report performance in terms
of ∆PEHEfact, the difference between the test-PEHE of
any given selector and the factual choice (lower is better,
negative means better than factual).

Q1: General performance trends. In Fig. 3, we observe
that across all selectors, most performance differences and
gains relative to factual performance are observed when i)
treatment is randomized and the treatment effect is complex
(ρ large in A&B), ii) there is confounding and the treatment
effect is simple (ρ small in C&D) and iii) LRs are misspec-
ified for the POs but not CATE (B& D). We observe that
the performance of the plug-in criteria often follows the
performance of their underlying methods (i.e. comparing
the trends in Figs. 2 and 3). Further, the plug-in criteria
based on ES- and T-learner generally perform the worst,
especially when implemented using LRs. In setups C &
D, the plug-in surrogate based on the R-learner works well
when CATE complexity is low, but not when it is high –
mimicking the pattern of the underlying estimator observed
in the previous section. The pseudo-outcome criteria ap-
pear to perform best overall, with the R-pseudo-outcome
often performing most similarly to the oracle selector. Note
also that while the plug-in criteria based on indirect learn-
ers deteriorate substantially when misspecified (LR in Se-
tups A & C), the pseudo-outcome criteria still perform well
even when implemented using a misspecified model (LR).

Q2. Congeniality bias. Next we examine whether there
is evidence for congeniality bias – i.e. whether plug-in or
pseudo-outcome surrogate criteria appear to inherently favor
estimators with similar inductive biases as the strategy used
to provide a validation target. We propose to measure this by
calculating the proportion of times an (i) estimation strategy

or (ii) underlying ML method is selected by a validation
criterion whenever it does not identify the best estimator
(intuitively, we make this distinction because whenever an
estimator is the oracle choice, selecting it should not be
considered biased).7 In Appendix D.3, we present a similar
plot without making this distinction.

In Fig. 4 (top) we investigate congeniality between selection
criteria and estimator strategy (i.e. R-, DR-, S-, ES- or
T-learner, implemented using either ML method), pooled
across all settings of Fig. 3. We observe that there is clear
evidence for congeniality bias between some of the plug-in
criteria and their corresponding learning strategy; this is
most pronounced for the criteria relying on indirect learners,
the plug-in S-learner and ES-learner in particular. The plug-
in criterion based on the R-learner also clearly suffers from
this, while the DR-plug-in criterion exhibits less of this
behavior. The pseudo-outcome criteria overall display less
pronounced preference for their own strategy, with the LR-
implementations of pseudo-outcome R- and DR-criteria
giving least evidence for such congeniality bias overall.

In Fig. 4 (bottom) we then investigate congeniality bias be-
tween selection criteria and estimator method (i.e. LR or GB,
used with any estimation strategy). Also here we observe
clear evidence for congeniality biases in almost all criteria:
LR- (GB-)based criteria appear to prefer learners imple-
mented using LR (GB). The only exception appears to be

7More formally, we investigate how often a selector Ej chooses
the best estimator τ̂∗ that minimizes the true (unobservable) PEHE
Eoracle
τ and, if not this top choice τ̂∗, which other type of estimator

is chosen. That is, in Fig. 4, we measure using the leftmost bar
labeled ‘best’ how often the correct best estimator is chosen –i.e.
P̂ (argminτ̂k Ej(τ̂k)= τ̂∗) = 1−αEj , where αEj is the error-rate
of the selector – , and other bars measure the proportion of times
any specific type of estimator τ̂l ̸= τ̂∗ is chosen whenever Ej does
not make the right choice. If some type of estimator is chosen
disproportionately often – i.e. if P̂ (argminτ̂k Ej(τ̂k) = τ̂l|τ̂l ̸=
τ̂∗) = 1− αEj>>

αEj

|T | – we consider this evidence that the selec-
tor Ej may be biased towards choosing estimators of the type τ̂l.
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Figure 5. Relative performance of different selection criteria when choosing between indirect learners only. Left: Plotting
∆PEHEfact, the difference between the test-PEHE of the factual choice and the model selected by any given selection criterion. Right:
Plotting ∆RMSEµ

fact, the difference between the average RMSE of estimating the potential outcomes using the factual choice and the
model selected by any given selection criterion. (In both, lower is better and negative means better than factual.)

the LR-pseudo-outcome selectors, who actually select GB
learners more often; this may partially explain their good rel-
ative performance compared to the other LR-based selectors.

Q3. What do we lose through factual evaluation? Finally,
we consider the question of why we see in Fig. 3 that so
many selectors using surrogates for the treatment effect can
outperform factual selection in some scenarios. One pos-
sible explanation would be the exclusion of direct learners
from the candidate pool available to Efact

Y – however, as can
be seen in Fig. 2, there is often some indirect learner that
matches performance of a direct learner. Two alternative
explanations we wish to test would be i) the presence of
covariate shift due to confounding and ii) the incorrect focus
of factual selection on performance in terms of estimating
the POs. We can test i) by including an importance weighted
factual selector, and ii) by restricting the candidate estimator
pool available to all selectors to Tindirect (i.e. excluding R-
and DR-learner from the estimator pool).

In Fig. 5(left) we observe that i) does not seem to be the
case as weighted and unweighted factual selection perform
identically (one possible explanation for this is that none
of the considered indirect estimators perform an internal
covariate shift correction themselves). Considering ii) we
do however observe that indeed both oracle and pseudo-
outcome selectors appear to select different (better) indirect
estimators than Efact

Y , also in the absence of covariate shift
(more saliently in Setup B). In Fig. 5(right), we show that
these, in turn, indeed perform worse in terms of estimating
the POs themselves, a trade-off that we expected in Sec. 4.

6. Conclusion
We studied the CATE model selection problem and focused
on building understanding of the (dis)advantages of different
model selection strategies – using factuals, plug-in surro-
gates or pseudo-outcome surrogates – that have been used
or proposed in recent work. Instead of attempting to declare
a global ‘winner’, we empirically investigated success- and
failure modes of different strategies – and in doing so found
that there are scenarios where factual selection can be appro-
priate but also scenarios where pseudo-outcome surrogate

approaches are likely to perform better (only plug-in surro-
gate approaches seemed likely to underperform throughout).
We hope that some of the insights presented here will give
a starting point for practitioners able to identify how the
likely characteristics of their own application translate to
the scenarios we considered – for this purpose we include
an additional digest of our findings in form of a Q&A with
an imaginary reader in Appendix A. We also highlighted
that there is a complex interplay between selection strate-
gies, candidate estimators and the DGP used for testing –
congeniality bias is likely to arise when the inductive biases
of estimators and selection strategies align. By doing so,
we also hope to have demonstrated to the community the
need to conduct more simulation studies relying on carefully
constructed DGPs to allow to disentangle different forces at
play in this problem, enabling more nuanced analyses.

Limitations. Finally, note that we do not claim our results
to be complete: to allow for interesting and nuanced insights,
we needed to restrict our attention to specific questions and
candidate estimators. We believe that there are a plethora
of interesting questions to explore in this area, of which we
only made an initial selection to serve as a starting point for
discussion. It would, for example, be an interesting next step
to consider how different criteria fare at selection between
other classes of estimators, e.g. the method-specific neural-
network-based estimators extending the work of Shalit et al.
(2017), or, at a more microscopic level, at hyperparameter-
tuning for any specific method. While our experimental
results are limited to answering some of the questions we
found most intriguing, we hope that the desiderata for ex-
perimental design that we discuss and implementations that
we provide will allow future research to easily expand to
further questions and associated DGPs.
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Appendix
This Appendix is structured as follows: In Appendix A we provide an additional overview of key takeaways in form of
a Q&A with an imaginary reader. In Appendix B we present an additional literature review discussing CATE estimators
proposed in the recent ML literature. Appendix C discusses experimental details, and Appendix D presents additional results
of the empirical study presented in the main text. Appendix E presents results on additional datasets.

A. Takeaways: A Q&A discussing the key insights from this paper with an imaginary reader
We studied the CATE model selection problem and focussed on building understanding of the (dis)advantages of different
model selection strategies – using factuals, plug-in surrogates or pseudo-outcome surrogates – that have been used or
proposed in recent work. Instead of attempting to declare a global ‘winner’, we empirically investigated success- and failure
modes of different strategies in the hope that some of the insights presented here will give a starting point for practitioners
able to identify how the likely characteristics of their own application translate to the scenarios we considered. For this
purpose and because our results may be extensive to digest, we present a light discussion of takeaways in form of a Q&A
with an imaginary reader below.

Disclaimer: as we emphasized above, our results do not and cannot cover all possible scenarios. We answer the questions
below based on our own empirical studies as well as intuition we built throughout the paper, but note that these conclusions
are based only on the limited (yet nuanced) scenarios we were able to consider.

• Q: So what is the best model selection criterion? A: There are no magic bullets (yet?!).
• Q: Fine. What are good candidates then? A: This appears to depend on your data, but overall we found pseudo-outcome

surrogates and factual selection to perform well in different scenarios.
• Q: Let me tell you something about my data then. I have confounded data. What should I do? A: We observed in

experiments that especially when the treatment effect is simple and data is confounded, pseudo-outcome criteria using
the R- or DR-objective perform much better than other criteria. When the treatment effect is a more complex function,
factual criteria appear to perform better.

• Q: What if I have unconfounded data from a clinical trial? A: When data is unconfounded and models are correctly
specified, we found that the selection criterion has slightly less influence. Only in the setting (B) where the treatment
effect is a much simpler function than the POs we observed some improvements in using other criteria – in this case
both plug-in and pseudo-outcome surrogates performed better as ρ increased.

• Q: I expect the treatment effect heterogeneity to be relatively less pronounced than heterogeneity in outcomes regardless
of treatment (there is much more prognostic rather than predictive information). What should I do? A: Pseudo-outcome
surrogates, especially the R-learner objective, appear to work very well in this scenario.

• Q: I expect the opposite – treatment effects are likely a very complex function of characteristics – what does that mean
for me? In this case, using any surrogates may introduce more noise than they help (especially when datasets are small
and confounded); it may be advisable to rely on factual validation in this case.

• Q: I would prefer to rely on factuals for validation because I trust that the most as it doesn’t require me to estimate any
additional parameters. What do I lose out on? A: We observed that using factual evaluation can be worse in some
scenarios both because it means that you can only evaluate a smaller set of estimators and because it targets the wrong
objective – this particularly seems to matter when the POs are very complex relative to CATE.

• Q: What is this “congeniality bias” you were referring to? A: We consider congeniality bias the issue that surrogate
validation targets may advantage CATE estimators τ̂k(x) that are structurally similar to the used surrogate, due to
being imbued with similar inductive biases. The term itself is usually used in the psychology literature to indicate that
individuals may have a systematic preference for information consistent with current beliefs (Hart et al., 2009).

• Q: I see! Which type of selection criteria suffer from this the most? A: In our experiments we found that plug-in
surrogate selection criteria appear to suffer from this more than pseudo-outcome selection criteria.

• Q: This is all very insightful – but you do not cover an aspect of model selection I would be interested in. Do you have
any advice for me to design my own empirical study investigating this question? We agree that there are many more
interesting questions and hope to expand on these in the future! In Section 4.2 we present desiderata for insightful
experiment design if you want to design your own – and we will also release our code in the future, which is set up in
such a way to allow plug-and-play with new selection criteria and datasets!
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B. Additional Literature Review
B.1. Further CATE estimation strategies.

In the main text we focussed on one of two prominent streams in the CATE estimation literature, namely the one relying on
so-called meta-learners that can be easily implemented using any ML prediction method, as originally proposed by Künzel
et al. (2019) and later extended by Nie & Wager (2021); Kennedy (2020); Curth & van der Schaar (2021b).

Many methods proposed recently within the ML literature, however, belong to a second stream of literature focussed on
adapting specific ML methods to the CATE estimation context. This literature has overwhelmingly relied on indirect
estimation strategies, proposing models that learn to make unbiased predictions of outcome under each treatment (so that
CATE can be estimated as thei difference). Very popular in this literature, as originally proposed by Johansson et al. (2016);
Shalit et al. (2017) and later extended in e.g. Johansson et al. (2018); Hassanpour & Greiner (2019a;b); Assaad et al. (2021);
Curth & van der Schaar (2021a;b) has been the use of neural networks to learn a shared representation Φ(x) that is then used
by two treatment-specific output heads ha to estimate µ̂a(x) = ha(Φ(x)). In this framework, covariate shift arising due to
confounding is usually addressed by addition of a balancing regularization term penalising the discrepancy in distribution
of Φ(x) between treatment groups (Shalit et al., 2017) and importance weighting (Johansson et al., 2018; Hassanpour &
Greiner, 2019a; Assaad et al., 2021). Other work has investigated the use of Gaussian Processes (Alaa & van der Schaar,
2018), GANs (Yoon et al., 2018), VAEs (Louizos et al., 2017; Wu & Fukumizu, 2021) and deep kernel learning (Zhang
et al., 2020) for PO estimation.

The statistics and econometrics literatures, on the other hand, next to the meta-learner strategies discussed in the main text,
have mainly relied on tree-based methods, most prominently using S-learner style BART (Hill, 2011) and direct estimators
in the form of causal trees (Athey & Imbens, 2016) and causal forests (Wager & Athey, 2018; Athey et al., 2019; Hahn et al.,
2020).

B.2. Further model selection strategies.

The model selection strategies discussed in the main text, i.e. those proposed and/or studied in Rolling & Yang (2014);
Nie & Wager (2021); Saito & Yasui (2020); Alaa & Van Der Schaar (2019); Schuler et al. (2018); Mahajan et al. (2022)
all use the given observational data to estimate model performance directly, imputing only some nuisance parameters or
surrogate targets. A separate strand of literature (Schuler et al., 2017; Athey et al., 2021; Parikh et al., 2022), which we
did not consider further here, suggests to instead validate causal inference models by learning a generative model from the
observational dataset at hand and use it to simulate multiple test datasets that share some characteristics with the dataset of
interest but have known treatment effect that can be used to compare treatment effect estimates of candidate estimators. The
estimator found to perform best on such generated datasets should then be used on the real data (Schuler et al., 2017; Athey
et al., 2021; Parikh et al., 2022). Finally, other interesting model selection problems exist in the treatment effect estimation
context, e.g. the question of how to choose the best first stage nuisance estimators for multi-stage treatment effect estimators
considered in Cui & Tchetgen (2019).

C. Experimental Details
C.1. Implementation details

All code is written in python in sklearn-style to allow for modularity and ease of reuse. All code is available at https:
//github.com/AliciaCurth/CATESelection as well as the vanderschaar-lab repository https://github.
com/vanderschaarlab.

Underlying ML methods

• For linear regressions (LR) with ridge (l2) penalty, we use RidgeCV as implemented in sklearn
(Buitinck et al., 2013); this allows us to automatically implement a sweep over ridge penalties λ ∈
{10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104} whenever LR is used as a subroutine in any meta-learner (to estimate
µ(x), µ0(x), µ1(x), or τ(x)).

• For extreme gradient boosted trees (GB), we use the XGBRegressor as implemented in the xgboost python
package (Chen & Guestrin, 2016). Whenever GB is used as a subroutine in any meta-learner, we use sklearn’s
5-fold GridSearchCV to perform a sweep over all combinations of learning rate ∈ {.1, .3}, max depth
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∈ {1, 3, 6} and n estimators ∈ {20, 100}, which are hyperparameters that we observed to have an impact on all
learners.

• Finally, for logistic regressions that used to estimate propensity scores π(x) we use the sklearn implementation
LogisticRegressionCV, allowing us to sweep over regularization parameters λ ∈ {10−5, 10−3, 10−2, 10−1, 1}
whenever it is used.

Note that we reoptimize hyperparameters as part of all subroutines M, which means they are chosen anew for every
meta-learner in every seed of every experiment.

Meta-learners Given a ML-method M, implemented as discussed above, we train the different meta-learners as follows:

• S-learner: Append A to X to give X ′ = (X,A). Call M.fit(X ′, Y ).
• Extended S-learner (ES-learner): Append A and A ∗X to X to give X ′ = (X,A ∗X,A). Call M.fit(X ′, Y ).
• T-learner: Separate data by treatment indicator. Call M.fit(X[A == a], Y [A == a]) for each treatment group
a ∈ {0, 1}

• DR-learner: Call T-learner to get estimates of µa(x). Fit propensity estimate by calling M.fit(X,A). Use these
estimates to compute pseudo-outcome YDR,η̃ as specified in the main text. Call M.fit(X,YDR,η̃). (Note: we also
tested using 5-fold cross-fitting as suggested by Kennedy (2020) to ensure consistency, but did not find this to improve
performance).

• R-learner: Fit propensity estimate as in DR-learner. Fit unconditional mean estimate µ(x) by calling
M.fit(X,A). Compute pseudo-outcome YR,η̃ = Yi−µ̃(Xi)

(Ai−π̃(Xi)
and weights βi = (Ai − π̃(Xi))

2. Call
M.fit(X,YR,η̃,sample weight = β). (Note: we also tested using 5-fold cross-fitting as suggested by Nie
& Wager (2021) to ensure consistency, but did not find this to improve performance).

Selection criteria All selection criteria are computed by solely considering validation data. For plug-in surrogate criteria,
the strategies discussed above are used on the validation data to compute a plug-in estimate of the treatment effect.

For the pseudo-outcome surrogate criteria, we perform 5-fold cross-fitting to avoid correlation between nuisance estimates
and outcomes; that is we split the validation data into 5 folds, and use only the 4 folds a data-point is not in to impute their
pseudo-outcome.

While not presented in the main text, in Appendix D.1 we also computed pseudo-outcome surrogates using the PW-pseudo
outcome YPW,η̃ =

(
A

π̂(X) −
(1−A)
1−π̂(X)

)
Y and the matching pseudo outcome of Rolling & Yang (2014), computed by finding

the nearest neighbor in Euclidean distance. We also computed the Alaa & Van Der Schaar (2019)’s influence function
validation criterion, we amounts to selecting τ̂k(x) that minimizes

YIF = (1−B)τ̃(x)2 +BY (τ̃(x)− τ̂(x))−D ∗ (τ̃(x)− τ̂k(x))
2 + τ̂k(x)

2 (2)

with D = A − π̃(x), B = 2AC−1 and C = π̃(1 − π̃) and τ̃(x) is a T-learner estimate. All nuisance parameters are
estimated using 5 fold cross-estimation.

C.2. Data-generating process (DGP)

We build on the DGP used in (Curth & van der Schaar, 2021a) for our experiments. The main differences lie in that we
a) randomly binarize the data to consider the effect of misspecification, b) consider higher order interactions to make
differences between CATE and the POs more salient and c) also induce confounding.

We also use the covariate data from the Collaborative Perinatal Project provided8 for the first Atlantic Causal Inference
Competition (ACIC2016) (Dorie et al., 2019) and process all covariates according to the transformations used for the
competition9. The original dataset has d = 58 covariates, of which we exclude the 3 categorical ones. Of the remaining 55
covariates, 5 are binary, 27 are count data and 23 are continuous. Because we found that the existing binary and count data
are very sparse, we instead decided to randomly binarize variables, by choosing a random observed value in each column
and keep only the 23 continuous columns to resulting in a new input dataset X∗ used to create a DGP that mimics a decision
tree. (Note that, while not used for outcome simulation, all other columns remain part of Xinput given to estimators and
selection criteria, so all estimators have to also learn to distinguish informative from uninformative columns.)

8This can be retrieved from https://jenniferhill7.wixsite.com/acic-2016/competition
9We use the code at https://github.com/vdorie/aciccomp/blob/master/2016/R/transformInput.R
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Similar to Curth & van der Schaar (2021a), we then use the input data in a linear model with interaction terms:

Yi = c+

d∑
j=1

βjX
∗
j +

d∑
j,l

βj,lX
∗
jX

∗
l +

d∑
j,l,k

βj,l,kX
∗
jX

∗
l X

∗
k +

d∑
j,l,k

βj,l,k,mX∗
jX

∗
l X

∗
kX

∗
m +Ai

d∑
j=1

γjXj + ϵi (3)

where ϵi ∼ N(0, .1), βj ∼ B(.3) and γj ∼ B(ρ). We include each variable randomly into one first, second and third-order
interaction term, for which we then simulate coefficient β· ∼ B(.2). We chose for each coefficient to be binary to avoid
large variances in the scale of POs and CATE across different runs of a simulation, such that RMSE remains comparable
across runs.

We then simulate confounding by assigning treatment according to a propensity score π(x) = expit(ξZ(Xinputβ)) where
Z(·) denotes standardisation across the simulation data and β is the linear coefficient from eq. 3, ensuring that all variables
are true confounders. Note also that Xinput –i.e. the data as observed by estimators and selectors – enters the propensity
score, ensuring that a logistic regression is always correctly specified for estimating the propensity score. We experiment
with further settings in Appendix D.4.

The three main experimental knobs under consideration are thus CATE complexity ρ, confounding strength ξ and estimator
& selector access to input data X versus X∗. In our experiments we always vary ρ ∈ {0, .1, .3} and define settings:

• A: Continuous input data Xinput = X , no confounding ξ = 0
• B: Binarized input data Xinput = X∗, no confounding ξ = 0
• C: Continuous input data Xinput = X , no confounding ξ = 3
• D: Binarized input data Xinput = X∗, no confounding ξ = 3

D. Additional Results Using the Main DGP
D.1. Additional selection criteria

In Fig. 6 we additionally show performance of matching, two further pseudo-outcomes (PW- and RA-pseudo-outcomes
considered in Curth & van der Schaar (2021b)), influence function (IFs) and weighted factual validation (wFactual)
not presented in the main text. We excluded them in the main text for legibility and because they did not present any
improvements over factual selection (if anything they usually performed worse).

Figure 6. ∆PEHEfact, the difference between the test-PEHE of any given selection criterion and the factual choice (lower is better,
negative means better than factual), for different selection criteria, implemented using linear regressions (LR) and extreme gradient
boosting (GB) across 4 different settings, including additional criteria: RA- & PW-pseudo-outcomes, matching, influence function (IFs)
and weighted factual validation (wFactual) not presented in the main text. Here, the complexity of τ(x) increases in ρ. Shaded area
indicates one SE.
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D.2. Additional sample sizes

0 .2

0
.5

PE
H

E f
ac

t

Setup A: LR

0 .2

Setup A: GB

0 .2

Setup B: LR

0 .2

Setup B: GB

0 .2

Setup C: LR

0 .2

Setup C: GB

0 .2

Setup D: LR

0 .2

Setup D: GB

Factual T (plug) ES (plug) R (plug) DR (plug) R (pseudo) DR (pseudo) Oracle Selector

(a) n = 500 + 250
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(b) n = 1000 + 5000 (reproduced from main text)
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Figure 7. Relative performance of different selection criteria at multiple sample sizes. Plotting ∆PEHEfact, the difference between
the test-PEHE of the factual choice and the model selected by any given selection criterion (lower is better, negative means better than
factual) implemented using linear regressions (LR) and extreme gradient boosting (GB).
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Figure 8. Investigating the presence of congeniality bias between selection criteria and estimators: Estimation strategies (top) and
ML methods (bottom). Measuring the proportion of times a specific estimator is chosen, across all settings considered in the main text.
Note that, different from Fig. 4, we measure the absolute proportion of time any estimator is chosen in this Figure (instead of how often
an estimator-type is chosen when a mistake is made as in the main text).

D.3. Additional congeniality plots

In Fig. 8, we present the absolute number of times any estimator type is chosen by any selection criterion – this is different
from from Fig. 4 in the main text, which focussed on the types of estimators that are chosen when a selector makes an error.
While congeniality is much more obvious when we consider only the errors made by selectors, some of the congeniality
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patterns disucssed in the main text are also clearly reflected in Fig. 8.

D.4. Additional settings with other propensities

Imbalance. In Figs. 9 and 10 we investigate the effects of adding imbalanced treatment group sizes by re-scaling treatment
assignment propensities. Instead of balanced marginal treatment propensity π = 0.5 considered in the main text, we now
assign treatment with marginal propensity π = .2 so that there are substantially more control than treatment units. In Fig. 9,
in terms of underlying learners, we observe that the most salient difference is that the R-learner now performs relatively
worse at large effect heterogeneity. In Fig. 10, we find that in the imbalanced setting there is much less improvement
over factual selection in the confounded settings with small ρ, which is where in the balanced settings there were most
performance gains.
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Figure 9. Error in CATE estimation (PEHE) for the different candidate estimators in T , without treatment-group imbalance (top)
and with imbalance (bottom). All learners are implemented using linear regressions (LR) and extreme gradient boosting (GB), and
considered across 4 different settings where the complexity of τ(x) increases in ρ. Shaded area indicates one SE.

Other propensity specifications. In Figs. 11 and 12, we investigate further variation on the used propensity score
specification. In particular, note that as discussed in Appendix C, we ensured that the propensity score is always correctly
specified using a logistic regression on Xinput. As a by-product, this means that in Setup C considered in the main text, π is
a function of X and µ is a function of X∗, while in Setup D, both π and µ are functions of the binarized (observed) X∗ and
hence more aligned. Here, we therefore consider two additional setups where π is a function of the version of the covariates
that is not observed (i.e. X∗ for Setup C*, where estimators are given X , and X for Setup D*, where estimators are given
X∗). This could be expected to affect the results in two ways: on the one hand, in the new setup C* and D*, propensity
score estimators are misspecified, which could negatively affect estimators and selectors relying on those. On the other hand,
note that in the old setup D and the new setup C*, π and µ depend on the same transformation of the covariates X∗, while in
the old setup C and the new setup D*, π and µ do not depend on the same transformation of the covariates – in D and C*,
propensity scores and outcomes are more aligned, which generally makes estimation harder.

In Figs. 11 and 12, we observe that the second effect appears to outweigh the first: especially when using misspecified
models (LRs in setups C and C*), for both the candidate estimators and the selection criteria, we observe that aligning π
and µ more (i.e. moving from setup C to C*) deteriorates their performance – regardless of whether a propensity score
actually needs to be estimated (e.g. the performance of S- and T-learners, which do not include propensity estimates, also
deteriorates).
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Figure 10. Relative performance of different selection criteria without treatment-group imbalance (top) and with imbalance
(bottom). Plotting ∆PEHEfact, the difference between the test-PEHE of the factual choice and the model selected by any given selection
criterion (lower is better, negative means better than factual) implemented using linear regressions (LR) and extreme gradient boosting
(GB). Each criterion gets access to T , i.e. the complete pool of 10 candidate estimators whose performance is shown in Fig. 9 above. We
consider 4 different settings, where the complexity of τ(x) increases in ρ. Shaded area indicates one SE.
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Figure 11. Error in CATE estimation (PEHE) for the different candidate estimators in T , for confounded settings with different
propensity score specifications.
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Figure 12. Relative performance of different selection criteria, for confounded settings with different propensity score specifica-
tions.

E. Additional Datasets: IHDP and ACIC2016
For completeness, we repeat the experiments conducted in Curth et al. (2021) who highlighted some problems with the
use of the ACIC2016 and IHDP datasets in the current CATE estimation literature, in particular the lack of regard for the
underlying structural characteristics of these datasets (the setting of experimental knobs they are ‘biased’ towards). With
this in mind, we repeat the same experiments from the main text using the setups discussed in Curth et al. (2021); for details
refer to their paper.

In particular, note that the original IHDP dataset as constructed by Hill (2011) has a very complex treatment effect function,
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likely advantaging indirect learners. Curth et al. (2021) construct a modified version where the POs remain complex but
the treatment effect is simply linear, now possibly advantaging direct learners. Additionally, Curth et al. (2021) study 3
(numbers 2, 26 and 7) of the 77 settings of the ACIC2016 competition (Dorie et al., 2019): these differ only in the ‘CATE
complexity’, where setting 2 has no heterogeneity, 26 has some and 7 is very heterogeneous – setting similar expectations
for relative performance. The IHDP dataset is very small already, with a total size of 747 so we retain the original train
test split and split the training data 2/3 to 1/3 for training and validation, as before. The ACIC2016 dataset use the same
underlying covariates as our simulations, thus we consider the same three sample size settings. Finally, note that Curth
et al. (2021) observed very high variance in absolute RMSE across settings even when using the same estimation strategy.
To stabilize results we therefore report relative RMSE (RMSE(method)/RMSE(baseline)) where the baseline for all
selection criteria remains factual selection, and the baseline for learners on IHDP is T-LR and T-GB on ACIC2016 (the
respective best performing T-learners).

Comparing underlying learner performance. We report relative performance of the underlying learners in Table E. We
observe that the relative performance of underlying learners is as expected on both datasets and mimics what was shown in
Curth et al. (2021): direct learners have an advantage on the DGPs with simpler CATE, while T-learners have an advantage
on the settings with complex CATE. We also observe that the R-GB learner generally performs worse than in the main text
even at low CATE complexity, which may be due to the imbalance in treatment group sizes in all datasets.

Table 1. Relative PEHE of underlying learners on the IHDP and ACIC settings. Averaged across all 100 simulations for IHDP, and across
10 each for ACIC.

Setting Oracle-GB Oracle-LR S-GB S-LR ES-GB ES-LR T-GB T-LR DR-GB DR-LR R-GB R-LR

Original IHDP 0.58 0.78 1.58 2.58 1.54 1.58 1.14 1.00 1.25 1.11 2.60 1.65
Modified IHDP 0.05 0.00 0.85 0.46 1.07 1.24 1.35 1.00 0.94 0.67 4.46 1.54
ACIC 2, n=750 0.00 0.00 0.31 0.32 0.52 0.92 1.00 1.10 0.64 0.46 1.06 0.31
ACIC 2, n=1500 0.00 0.00 0.37 0.15 0.53 0.84 1.00 1.08 0.67 0.40 0.91 0.29
ACIC 2, n=3000 0.00 0.00 0.50 0.20 0.69 0.93 1.00 1.04 0.49 0.47 1.33 0.31
ACIC 26, n=750 0.59 1.07 1.12 1.61 1.04 1.26 1.00 1.28 0.94 1.26 1.24 1.27
ACIC 26, n=1500 0.58 1.32 1.20 2.03 1.08 1.57 1.00 1.47 0.91 1.46 1.22 1.47
ACIC 26, n=3000 0.58 1.55 1.20 2.41 1.03 1.74 1.00 1.71 0.95 1.70 1.40 1.72
ACIC 7, n=750 1.10 1.27 1.15 1.71 1.08 1.47 1.00 1.44 0.95 1.46 1.37 1.44
ACIC 7, n=1500 0.68 1.56 1.23 2.20 1.10 1.75 1.00 1.71 1.01 1.77 1.43 1.74
ACIC 7, n=3000 0.64 1.74 1.25 2.54 1.09 1.93 1.00 1.90 0.99 1.91 1.57 1.91

Comparing selector performance. We report relative performance of selectors in Table E. Relative selector performance
on IHDP is largely as expected, except that pseudo R- and DR-criterion perform worse than expected on the modified setting,
while the plug-in criteria perform better. It is difficult to pinpoint an origin for this, because the IHDP dataset also has i) a
much larger control than treated population, ii) limited overlap and iii) very small sample size. Results on the ACIC datasets
are also mixed; here we observe improvements over factual selection mainly for the smallest datasets and when CATE is
simple (setting 2). It is possible that this is partially due to the fact that no method is able to fit the DGP particularly well
with high heterogeneity, seeing as oracle selector performance is only marginally better than factual selection in settings 26
and 7. Note that these ACIC simulations also have limited overlap and imbalances between treatment and control group. We
hope that this discussion highlights why we deemed it necessary to construct our own DGPs: Because all these forces are
deeply entangled in existing datasets, it is extremely difficult to use them to disambiguate the effects of different factors on
performance.
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Table 2. PEHE of model selection metrics relative to factual selection on the IHDP and ACIC settings. Averaged across all 100 simulations
for IHDP, and across 10 each for ACIC.

Setting Oracle Factual S-GB S-LR ES-GB ES-LR T-GB T-LR PlugDR
GB

PlugDR
LR

PlugR
GB

PlugR
LR

PseuDR
GB

PseuDR
LR

PseuR
GB

PseuR
LR

Original IHDP 0.91 1.00 1.53 2.57 1.53 1.43 1.02 1.02 1.12 1.10 1.81 1.63 1.03 1.03 1.10 1.11
Modified IHDP 0.58 1.00 0.91 0.71 0.97 1.36 0.85 0.79 0.77 0.76 3.32 1.91 1.07 1.01 1.36 1.38
ACIC 2, n=750 0.45 1.00 2.38 6.86 2.38 5.10 3.11 3.99 3.20 0.78 5.57 2.45 3.50 5.80 4.50 4.56
ACIC 2, n=1500 0.35 1.00 0.54 1.13 0.98 0.90 2.27 1.83 2.08 1.29 2.31 0.51 2.70 2.80 2.16 2.74
ACIC 2, n=3000 0.35 1.00 0.62 0.39 1.12 1.57 4.16 1.79 2.96 1.04 3.42 1.55 4.83 4.94 4.48 4.21
ACIC 26, n=750 0.91 1.00 1.20 1.65 1.12 1.27 0.95 1.23 0.97 1.26 1.11 1.31 1.00 0.96 0.95 0.96
ACIC 26, n=1500 0.88 1.00 1.25 2.00 1.16 1.48 0.90 1.41 0.93 1.46 1.30 1.46 0.98 1.00 0.94 1.00
ACIC 26, n=3000 0.86 1.00 1.25 2.46 1.08 1.79 1.00 1.78 1.01 1.78 1.27 1.77 1.06 1.08 1.12 1.09
ACIC 7, n=750 0.85 1.00 1.34 1.65 1.12 1.38 0.90 1.35 0.90 1.32 1.21 1.46 0.90 0.90 0.88 0.91
ACIC 7, n=1500 0.94 1.00 1.24 2.13 1.20 1.72 1.00 1.66 1.03 1.66 1.35 1.78 0.99 1.04 1.08 1.07
ACIC 7, n=3000 0.98 1.00 1.23 2.53 1.12 1.91 0.99 1.89 1.05 1.92 1.25 1.99 0.98 1.04 1.08 1.04
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