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Abstract
The bulk of existing research in defending
against adversarial examples focuses on de-
fending against a single (typically bounded ℓp-
norm) attack, but for a practical setting, ma-
chine learning (ML) models should be robust
to a wide variety of attacks. In this pa-
per, we present the first unified framework for
considering multiple attacks against ML mod-
els. Our framework is able to model differ-
ent levels of learner’s knowledge about the test-
time adversary, allowing us to model robust-
ness against unforeseen attacks and robustness
against unions of attacks. Using our frame-
work, we present the first leaderboard, MultiRo-
bustBench (https://multirobustbench.
github.io), for benchmarking multiattack
evaluation which captures performance across
attack types and attack strengths. We evaluate
the performance of 16 defended models for ro-
bustness against a set of 9 different attack types,
including ℓp-based threat models, spatial trans-
formations, and color changes, at 20 different
attack strengths (180 attacks total). Additionally,
we analyze the state of current defenses against
multiple attacks. Our analysis shows that while
existing defenses have made progress in terms of
average robustness across the set of attacks used,
robustness against the worst-case attack is still a
big open problem as all existing models perform
worse than random guessing.

1. Introduction
For safety-critical applications, it is important that machine
learning (ML) models are robust against test-time adver-
saries. These test-time adversaries can potentially use mul-
tiple (and unforeseen) attack types, motivating the need to
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study multiattack robustness. Several works (Maini et al.,
2020; Tramèr & Boneh, 2019; Croce & Hein, 2020a; Dai
et al., 2022; Jin & Rinard, 2020; Laidlaw et al., 2021; Hsi-
ung et al., 2022a) design defenses for multiattack robust-
ness, but these works lack a unified evaluation framework:
these works utilize different small sets of attacks and at-
tack strengths. The lack of a standardized benchmark for
evaluating multiattack robustness is an obstacle to under-
standing and improving upon the current progress made by
the community towards multiattack robustness.

To improve our understanding of current progress in multiat-
tack robustness, we introduce MultiRobustBench (available
at multirobustbench.github.io), which provides
a leaderboard for multiattack robustness based on two new
metrics that we introduce: competitiveness ratio (CR) and
stability constant (SC). CR measures how close the robust
accuracy of a defense on each attack type is to the robust ac-
curacy of the best performing model for each specific attack
type. SC measures robustness degradation across attacks of
different strengths. Our benchmark evaluates 16 defended
models based on a set of 9 different attacks across 20 levels
of attack strengths (180 attacks total, 2880 evaluations over-
all), making it the largest multiattack evaluation to date. Our
benchmark allows us to draw important insights on the state
of research in multiattack robustness; specifically, we find
that while existing research has made progress on average
robustness over this set of attacks, all existing defenses per-
form worse than random guessing in worst-case multiattack
robustness.

Our contributions are as follows:

We introduce an adversarial game framework for mul-
tiattack robustness. This framework unifies previously
studied settings such as robustness against unions of known
attacks and robustness against unforeseen attacks by intro-
ducing knowledge sets which capture mismatch in threat
models used during training and test-time. Using this frame-
work, we define a taxonomy of settings in multiattack ro-
bustness.

We introduce metrics (competitiveness ratio and stabil-
ity constant) for measuring multiattack performance.
Competitiveness ratio (CR) can be interpreted as an aggre-
gated percentage representing how close the accuracy of the
defense is to the accuracy of the best performing models,
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(a) Clean accuracy vs CRind-avg
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(c) Average single-CRind-avg

Figure 1: State of current defenses. Figures (a) and (b): Clean accuracy and CR of existing techniques on our leaderboard
in terms. Each marker represents a single defense and the marker shape/color represents the types of attacks used by the
defense during training (Klearner). Figure (c): CRind-avg taken across each attack type averaged across all 16 defenses.

while stability constant (SC) measures how much robust-
ness changes when switching to a different attack strengths.
We introduce 2 different variants of CR, one for measur-
ing average multiattack robustness (CRind-avg) and one for
measuring worst case multiattack robustness CRind-worst.

Using our proposed metrics, we provide a leaderboard
containing evaluations of existing defenses targeting mu-
liattack robustness. Our leaderboard evaluates existing
models on a wide variety of attacks including bounded ℓp
norm attacks, color changes (Laidlaw et al., 2021), spatial
transformations (Xiao et al., 2018), elastic attacks, JPEG
attacks (Kang et al., 2019), and bounded LPIPS attacks
(Laidlaw et al., 2021). Our leaderboard also provides fea-
tures such as performance visualizations, which can be a
useful diagnostic tool for understanding weaknesses of indi-
vidual defenses.

We analyze the state of current defenses for multiattack
robustness. We find that while current models have decent
performance in terms of average case robustness across mul-
tiple (imperceptible) attacks, there is significant room for
improvement in terms of worst-case performance. Addi-
tionally, using our metrics, we analyze how factors such as
architecture size, use of additional training data, and number
of training epochs influence multiattack robustness.

Overall, benchmarks have the potential to revolutionize ML
by enabling comparable research and highlighting an open
research problem for our community. We hope that our
benchmark inspires research in multiattack robustness and
accelerates the development of stronger defenses.

2. Prior Work
Adversarial robustness. Prior works have demonstrated
a vulnerability of existing ML models: imperceptible per-
turbations during test-time can cause models to misclassify

(Szegedy et al., 2014). These imperceptible perturbations
can be of many different types including norm-bounded per-
turbations, small spatial transformations (Xiao et al., 2018),
color changes (Laidlaw & Feizi, 2019), and their composi-
tions (Hsiung et al., 2022b). Although a variety of attack
types exist, the majority of current research in adversarial ro-
bustness focuses on defending models against perturbations
that are bounded in ℓ2 or ℓ∞ norm. Adversarial training
(Madry et al., 2018; Zhang et al., 2019; Gowal et al., 2020),
a popular defense framework in which the model is trained
with adversarial examples, has been mainly studied for ℓp ro-
bustness. For example, prior works have studied the impact
of architecture size (Wu et al., 2021; Huang et al., 2021),
early stopping (Rice et al., 2020), and additional training
data (Carmon et al., 2019; Rebuffi et al., 2021; Gowal et al.,
2021; Sehwag et al., 2021) on robustness on the ℓ∞ and
ℓ2 attacks used during adversarial training. However, it is
unclear how applicable these findings and defenses are in
practice, where the adversary can potentially use multiple
attacks which might not be known in advance to the de-
fender. In our work, we find that general trends observed for
robustness against single (known) attacks do not necessarily
hold for multiattack robustness.

Multiattack robustness. Several prior works have studied
robustness against multiple attacks. One line of works fo-
cuses on improving robustness against the union of known
attacks (typically the union of ℓp-balls) (Maini et al., 2020;
Tramèr & Boneh, 2019; Croce & Hein, 2020a; Madaan et al.,
2020). Another line of works looks at defending against
attacks that are not used during training (Laidlaw et al.,
2021; Dai et al., 2022; Jin & Rinard, 2020). We provide a
framework that unifies both of these research directions and
provides metrics and a leaderboard for benchmarking these
defenses.

Benchmarking adversarial robustness. RobustBench
(Croce et al., 2020) is a standardized benchmark for ad-
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versarial robustness which provides leaderboards for ℓ∞
and ℓ2 robustness measured via AutoAttack (Croce & Hein,
2020b). CARBEN (Hsiung et al., 2022b) is a benchmark for
measuring robustness against compositions of ℓ∞ attacks
with global spatial transformations (i.e. rotation) and global
color shifts (i.e. hue shift). These global transformations
are weaker than existing attacks like StAdv (Xiao et al.,
2018) and ReColor (Laidlaw & Feizi, 2019) which optimize
over pixels, making it unclear how well evaluations from
CARBEN reflect true multiattack robustness.

As a research community, we lack a standardized bench-
mark that accurately reflects robustness against multiple
attacks. Current works in multiattack robustness deploy
different methods for evaluating the performance of their
defense, such as reporting accuracies for different sets of
attacks or using custom metrics (such as mUAR (Kang et al.,
2019)) for measuring performance. To standardize evalua-
tion for multiattack robustness, we introduce a leaderboard
which ranks existing defenses for multiattack robustness
based on metrics motivated by our proposed framework for
multiattack robustness. Our leaderboard also provides per-
formance visualizations (Appendix F) for each defense so
that researchers can understand the weaknesses of existing
defenses in detail, which can potentially lead to improve-
ments in the direction of multiattack robustness.

3. Robustness against multiple attacks
We begin by first providing a framework for modeling prob-
lems in multiattack robustness. We then discuss goals in
multiattack robustness and metrics for measuring it.

Notations We use D = X×Y to denote the data distribution
where X is the support of the images and Y is the support
of the labels. We use Dtrain to denote the training set with
data sampled from D in an i.i.d. manner. We will refer to
the defense as a learning algorithm which we will denote
with A. We use H to denote the hypothesis class used by A
(ie. A outputs a function h ∈ H).

3.1. A unified adversarial game framework for
modeling robustness against multiple attacks

While prior works have studied problems relating to ro-
bustness against multiple attacks (Tramèr & Boneh, 2019;
Maini et al., 2020; Croce & Hein, 2020a; Laidlaw et al.,
2021; Dai et al., 2022; Jin & Rinard, 2020; Hsiung et al.,
2022a), these works have studied specific instances of mul-
tiattack robustness (i.e. robustness against unions of known
threat models, unforeseen attack robustness), but have not
provided a unified framework for modelling problems in
multiattack robustness. In this section, we propose a uni-
fied framework for multiattack robustness by providing an
adversarial game formulation.

We begin by introducing a perturbation function which maps
inputs to adversarial examples.

Definition 3.1 (Perturbation Function). Let C : X → 2X

define the constraint of the adversary and ℓ : Y ×Y → R be
a loss function. A perturbation function PC : X×Y ×H →
X maps input and hypothesis to adversarially perturbed
versions of the input:

PC(x, y, h) = argmax
x′∈C(x)

ℓ(h(x), y)

To capture multiattack settings such as robustness against
unforeseen attacks where the learner does not know what
type of attacks are present during test time, we introduce a
knowledge set.

Definition 3.2 (Knowledge Set). A knowledge set Klearner
is a set of perturbation functions. We say that the defender
is restricted to knowledge set Klearner if the learning algo-
rithm optimizes model selection by using information about
perturbation functions only within Klearner.

The learner and attacker knowledge sets allow us to model
robustness against multiple perturbations as an adversarial
game:

Definition 3.3 (Adversarial Game for Multiple Attacks).
1. Environment specifies a robustness threshold γ and

specifies a (possibly infinite) set K of perturbation
functions that can occur during test-time. The environ-
ment also specifies the learner’s knowledge set Klearner
where |Klearner| ≤ |K|.

2. The learner then chooses learning algorithm A
and obtains model h = A(Dtrain,Klearner). Here,
A(Dtrain,Klearner) denotes that the learning algorithm
is restricted to using information about perturbation
functions within Klearner.

3. If errmulti(h;K)
minh∗∈H errmulti(h∗;K) ≤ γ, then the learner wins and

A produces a model that is close to optimal against K.
Otherwise the attacker wins.

The definition of errmulti and relationship between K and
Klearner can lead to different forms of robustness against
multiple attacks.

Relationship between K and Klearner. The relationship
between K and Klearner leads to different settings for ro-
bustness against multiple attacks. The setting where K =
Klearner models the commonly studied setting where the
learner knows the attacks used during evaluation in advance
and can optimize their model directly with respect to those
attacks. For example, works studying robustness against
unions of ℓp attacks (Tramèr & Boneh, 2019; Maini et al.,
2020; Croce & Hein, 2020a) fall under this category. We
call the setting where K = Klearner the full knowledge set-
ting. We note that when |K| = 1, the adversarial game for
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multiple attacks reduces to the adversarial game for a single
attack.

When K ̸= Klearner, there is a mismatch between the attacks
that the learner is aware about and can use for the learning
algorithm. We call this the knowledge mismatch setting.
The types of mismatches can be divided into several cases:
1) K ∩Klearner = ∅, 2) K ∩Klearner ̸= ∅.

The first case represents settings where the learner has no
knowledge of the true space of attacks. An example of this is
if the adversary is constrained to using patch attacks, while
the learner is under the impression that there will only be
imperceptible attacks at test-time so Klearner consists of a
selection of imperceptible attacks (ie. bounded ℓp attacks).
We call this the setting of no knowledge.

The second case represents settings where the learner knows
only a subset of attacks that will be used during test-time.
We call this setting the partial knowledge setting and con-
tains the problem of unforeseen attacks. An example of this
is when the test-time adversary is restricted to attacks that
do not change a human’s classification of the image, but the
learner does not know how to model the full space of these
attacks and is aware of only a subset of those attacks (ie.
bounded ℓp attacks). For the task of image classification,
the setting of learner knowledge models a more realistic
learning setting compared to the full knowledge since we
would like our model to be robust against attacks developed
in the future. The partial knowledge setting is also more
realistic in comparison to the no knowledge setting for im-
age classification since existing known attacks are also valid
attacks that can be used the adversary during test-time.

In Appendix A, we categorize existing defenses against
multiple attacks into full, partial, and no knowledge settings.

Definition of errmulti. Choosing the definition of err for
multiple attacks also leads to different problems in mul-
tiattack robustness. For example, if the learner knows
the distribution P(K) of frequency at which attacker
chooses each attack in K, then this can be modeled with
errmulti-exp(h;K) := EP∼P(K)err(h;P ). The learner can
also consider using the worst case error across all P ∈ K as
a measure of multiattack performance: errmulti-max(h;K) :=
maxP∈K err(h;P ).

Another possibility is to let γ be a vector of length equal to
the number of perturbation functions in K and letting errmulti
output a vector of errors with respect to each individual
perturbation P ∈ K (ie. errmulti-ind := [err(h;P )]P∈K). In
this case, the learner only wins the game if the losses on each
individual attack lies within the corresponding robustness
threshold in the vector γ. errmulti-ind allows us to model the
problem of achieving robustness against the union of attacks
in K while also allowing us to specify how much tradeoff
in performance across attacks we are willing to tolerate.

3.2. Metrics for evaluating multiattack robustness

Using the adversarial game formulation in Definition 3.3, we
now design metrics which aggregate accuracy across each
individual attack into a single number. In this section, we
discuss two potential criteria that we would like to achieve
when designing a good defense: 1) competitive performance
and 2) stability across attack difficulty and introduce the
metrics we use for measuring each criterion.

Competitive performance across attacks. In the multi-
attack adversarial game formulation in Definition 3.3, we
saw that the objective of the learner is to choose a learn-
ing algorithm which allows the learner to obtain a model h
whose performance is competitive with the best model in
the hypothesis set with respect to the choice of errmulti. We
introduce a family of metrics which we call competitiveness
ratio (CR), which measures how close h is to the best model
in the hypothesis set.

Definition 3.4 (Competitiveness Ratio (CR)). Let
acc∗multi(K) := 1 − minh∗∈H errmulti(h

∗;K) and
accmulti(h,K) := 1 − errmulti(h;K). Then, the com-
petitiveness ratio (CR) of a defended model h is given by:

CR(h;K) = 100× accmulti(h,K)

acc∗multi(K)
(1)

In practice, we approximate acc∗ through adversarial train-
ing and will discuss this in more depth in Section 4.1. We
note that CR can be used in all knowledge settings since
metrics are taken with respect to K which can differ from
Klearner. Using different definitions of errmulti leads to differ-
ent variants of CR.

For example, if we use errmulti-ind as the multi-attack error
function, then CR compares each attack within K to the
best accuracy on that specific attack. We can then aggregate
all of these scores by either taking the expectation or worst
case, leading to the following variants of CR:

Definition 3.5. (CRind-avg and CRind-worst) For a single P ∈
K, let acc∗(P ) := 1−minh∈H err(h;P ) and acc(h, P ) :=
1− err(h;P ). Then,

CRind-avg(h;K) := 100× EP∼P(K)

[
acc(h, P )

acc∗(P )

]
(2)

CRind-worst(h;K) := 100× min
P∈K

acc(h, P )

acc∗(P )
(3)

We discuss using other choices for errmulti in Appendix E.

For choices of errmulti, high CR indicates that the model h
is closer to optimal with regards to our chosen definition
of errmulti. When K contains only attacks of the same type
(ie. ℓ2 perturbations) at different strengths (ie. radii of
ℓ2 ball), we call this metric single-CR. When K contains
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other attack types. Comparing single-CR values for a set
of attacks allow us to understand whether there are some
specific attack types that the model performs poorly on.

Stability across attack strength. As discussed in Section
3.1, there can exist a knowledge mismatch between K and
Klearner. For example, Klearner can ℓ2 perturbations with
radius up to 0.50 while K contains ℓ2 perturbations with
radius up to 0.51. In this case, another goal of the learner is
to have a graceful degradation of robustness in the vicinity
of attacks in Klearner: since 0.51 is close to 0.50, we should
not see a drastic difference in robustness from Klearner to K.

We now define an attack strength function, which measures
difficulty of attacks. We will then use this definition to
define stability, which is our criterion for measuring smooth
degradation of robustness across attacks of similar difficulty.

Definition 3.6 (Attack strength function). An attack
strength function s : K → R+ maps perturbation func-
tions in attack set K to a number representing the difficulty
of the attack. For example, if K contains a single attack
type at different perturbation sizes ϵ, we can consider s to
output the value of ϵ corresponding to the attack. As another
example, with multiple attack types, we can consider an
attack strength function s(P ) = minh∈H err(h;P ).

Using the attack strength function definition, we now define
stability across perturbations.

Definition 3.7 (Stability across perturbations). A model h
is (L,α)-locally stable across perturbations with respect to
attack strength function s if we have that for all P1 ∈ Klearner
and P2 ∈ K such that |s(P1)− s(P2)| ≤ α, |acc(h, P1)−
acc(h, P2)| ≤ L|s(P1)− s(P2)|. Equivalently, for a given
α and model h, we can compute the corresponding constant
L, which we call the stability constant (SC) as follows:

Lα(h) = max
P1∈Klearner,P2∈K
|s(P1)−s(P2)|≤α

P1 ̸=P2

|acc(h, P1)− acc(h, P2)|
|s(P1)− s(P2)|

(4)

In the above definitions of stability and SC, since α repre-
sents the difference in difficulty between attacks, we are
interested in the regime of small α. Ideally, we would like
SC to be small at small values of α, since that would sug-
gest robust performance does not change much for attacks
of similar difficulty.

4. Description of MultiRobustBench
Using CR and SC introduced in Section 3.2, we provide
a leaderboard that ranks existing defenses against multi-
ple adversarial perturbations in order to standardize evalua-
tion of defenses against multiple attacks. Our leaderboard

also provides visualizations of performance across individ-
ual attack types for researchers to analyze and understand
strengths and weaknesses of their defenses. This leader-
board is available at https://multirobustbench.
github.io/.

4.1. Evaluation Setup

Restrictions Similar to RobustBench (Croce et al., 2020),
we focus on models that have a fully deterministic forward
pass, nonzero gradients, and no optimization loop in the for-
ward pass. Given that the bulk of attacks used in benchmark-
ing are white-box attacks, our evaluations may be inaccurate
for any model which does not satisfy these requirements.

Attack Space The space of attacks K which do not visu-
ally change the class of the original image is infinite, so it
is important to define a subset of these attacks to use for
evaluation. For benchmarking, we consider 9 different at-
tack types at 20 different attack strengths (ϵ). We provide
detailed descriptions of each attack and range of ϵ used per
attack in Appendix C.

• Bounded ℓp attacks We consider ℓ1, ℓ2, and ℓ∞ attacks.
To measure robustness, we use apgd-t and fab-t from the
AutoAttack package (Croce & Hein, 2020b). We restrict
to using this subset of attacks to reduce evaluation time
(since we evaluate a total of 60 ℓp attacks per model).

• Color shift For leaderboard rankings, we consider pixel-
wise color shifts via ReColor attacks (Laidlaw & Feizi,
2019).

• Spatial transformations For leaderboard rankings, we
consider small shifts in pixel positions using StAdv at-
tacks (Xiao et al., 2018).

• UAR attacks (Kang et al., 2019) Kang et al. (2019) intro-
duced a set of attacks for measuring unforeseen robustness
including elastic, Linf JPEG, and L1 JPEG attacks. We
incorporate these 3 attacks into our benchmark.

• Bounded LPIPS attacks (Laidlaw et al., 2021) Laidlaw
et al. (2021) introduced 2 attacks (PPGD and LPA) based
on LPIPS distance (Zhang et al., 2018), which is a more
perceptually aligned distance metric than ℓp norms. For
evaluation, we measure robustness against LPIPS attacks
by taking the accuracy against the union of PPGD and
LPA attacks.

Approximating optimal single attack accuracy. In Sec-
tion 3.2, we defined CR in terms of optimal single attack
accuracy acc∗(P ). In practice, we do not know these opti-
mal values, so we approximate these by using the accuracies
of ResNet-18 models that are trained using adversarial train-
ing directly on to attack of interest P . We choose to use
ResNet-18 models for training efficiency and use the ro-
bust accuracy averaged over 3 runs for acc∗(P ). We note
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Figure 2: Top three entries on our leaderboard for average case multiattack robustness on CIFAR-10

Figure 3: Top three entries on our leaderboard for worst case multiattack robustness on CIFAR-10

that by using ResNet-18 accuracies for acc∗(P ), our met-
rics are also able to capture improvements in multiattack
performance due to changes in architecture.

Attack strength function. In Section 3.2, we defined SC
in terms of an attack strength function. For our leaderboard,
we choose to use the error of a ResNet-18 model trained
directly on the attack as the attack strength function. For
computing SC as in Definition 3.7, we use α = 3%.

4.2. Leaderboard

We provide 2 leaderboards for the CIFAR-10 dataset, one
for average case performance, which ranks defenses based
on CRind-avg, and one for worst case performance, which
ranks defenses based on CRind-worst. Our leaderboard con-
tains evaluations for 16 pretrained models, all of which use
training-based defenses, including techniques for training
on unions of ℓp norms (Maini et al., 2020; Tramèr & Boneh,
2019; Madaan et al., 2020), training with novel threat mod-
els (Laidlaw et al., 2021), regularization based approaches
(Jin & Rinard, 2020; Dai et al., 2022), and ℓp norm adversar-
ial training (Madry et al., 2018; Zhang et al., 2019; Rebuffi
et al., 2021). We include details of the models present on
the leaderboard in Appendix D. We note that these models
are trained with either ℓ2 attacks with ϵ = 0.5, ℓ∞ attacks
with ϵ = 8

255 , LPIPS attacks with ϵ = 1, or the union of
ℓ1, ϵ =

2000
255 , ℓ2, ϵ = 128

255 and ℓ∞, ϵ = 8
255 attacks.

We compute ranks based on the set of attacks described in
4.1. We note that none of the models evaluated use all the
attacks in our evaluation set, so all models are evaluated
for performance in a partial knowledge or no knowledge
setting. The top 3 entries on each leaderboard are shown in
Figure 2 and Figure 3. Our leaderboard site also provides
features such as performance visualizations. We discuss

these further in Appendix F.

5. Analysis
Using our proposed metrics and leaderboard evaluations,
we now analyze the performance of existing techniques for
multiattack robustness (specifically under a partial or no
knowledge setting). Additionally, since some entries on our
leaderboard utilize larger architecture size and additional
training data, we separately study the impact of these factors
on CR and stability to provide deeper insights as to how
these design choices influence multiattack robustness.

5.1. Evaluating existing techniques for robustness
against multiple perturbations

To understand the performance of existing defenses for mul-
tiattack robustness, we plot clean accuracy, CRind-avg, and
CRind-worst across defenses in Figure 1.

Average case vs worst case multiattack performance. In-
terestingly, we find that while many defenses can reach high
values of CRind-avg (the highest being 67.76), the scores for
CRind-worst are much lower (the highest being 3.30). This
suggests that for all existing defenses, there are some at-
tacks (which may lie outside of the learner knowledge set)
that can significantly reduce the accuracy of the defended
model. Thus, for the task of robustness against the worst-
case imperceptible attack, designing defenses that a robust
to multiple attacks is a significant open problem for the re-
search community. This trade-off between clean accuracy
and robust accuracy has been noted in prior works (Tsipras
et al., 2019; Zhang et al., 2019; Tramèr & Boneh, 2019).

Clean accuracy vs average case multiattack performance.
From Figure 1a, we find that some existing defenses achieve
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Figure 4: Impact of architecture size. Figures (a) and (b): Clean accuracy vs CR for models trained with PAT (Laidlaw
et al., 2021) (LPIPS threat model). Results are averaged over 3 trials and error bars are shown. Higher values of CR indicate
better performance. Figure (c): SC computed for models of each architecture. Lower SC indicates better performance.
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Figure 5: Impact of number of training epochs. CR and SC over epoch for models trained using PAT (Laidlaw et al.,
2021) (LPIPS threat model). The red line indicates the average over 3 runs while the grey band highlights indicate 1 standard
deviation from the mean. Higher values of CR and lower values of SC indicate better performance.

both high clean accuracy and high CRind-avg. Interestingly,
we find that the 2 best models in terms of CRind-avg and clean
accuracy ((Madaan et al., 2020) with robust self-training
and (Rebuffi et al., 2021) with ℓ2 threat model) both incorpo-
rate additional training data which suggests that additional
training data may improve average performance over attacks
tested. Overall, we find that CRind-avg are uncorrelated; for
example, the rank 4, 5, and 6 models in terms of CRind-avg
(models using LPIPS threat model (Laidlaw et al., 2021;
Dai et al., 2022) and no knowledge (Jin & Rinard, 2020))
have the lowest clean accuracies out of all defenses present
on the leaderboard.

Clean accuracy vs worst-case multiattack performance.
From Figure 1b, we observe that the models with highest
CRind-worst also have the lowest clean accuracy, which differs
from trends observed for CRind-avg. We note that the models
achieving the top 3 CRind-worst scores are in fact the rank 4,
5, and 6 models in terms of CRind-avg. The state of current
defenses in CRind-worst also suggests that there may be some
trade-off between worst-case multiattack performance and
clean accuracy.

CR across individual attacks. In Figure 1c, we plot single-
CRind-avg (CR computed across individual attack types) av-
eraged over all 16 defenses. We find that out of all attack

types, attacks that spatially perturb pixels (elastic attacks
and StAdv attacks) are generally the most challenging to
defend against. In fact, the best performing model on elastic
attacks can only achieve single-CRind-avg score of 38.48 for
elastic attacks. Meanwhile, for StAdv attacks, the highest
single-CRind-avg score is 50.35. We note that these scores are
not obtained by the top 3 models ranked by CRind-avg, and
are obtained by rank 7 ((Rebuffi et al., 2021) with ℓ∞ threat
model) and rank 6 ((Laidlaw et al., 2021)) respectively. This
suggests that designing defenses that have improved perfor-
mance on elastic and StAdv attacks can improve the state of
current defenses for multiattack robustness.

5.2. Understanding the impact of architecture size,
additional training data, and early stopping on
multiattack robustness

While all evaluated models on our leaderboard use training-
based defenses which can be applied to any architecture
and training dataset, the entries differ in choice of architec-
ture, use of additional training data, and number of training
epochs used. To investigate the impact of how these factors
influence multiattack robustness, we train ResNet models
using adversarial training with 3 different threat models
(LPIPS with radius 0.5 (Laidlaw et al., 2021), ℓ∞ with
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Figure 6: Impact of additional training data. Figure (a):
Clean accuracy and CR for ResNet-18 models trained using
PAT (Laidlaw et al., 2021) (LPIPS threat model). Higher
CR indicates better performance. Results are averaged over
3 trials and error bars are shown. Figure (c): SC computed
for models with and without additional training data. Lower
SC indicates better performance.

radius 8
255 and ℓ2 with radius 0.5) and analyze CRind-avg,

CRind-worst, and SC of trained models. We present results
for LPIPS threat model in this section and provide corre-
sponding analysis for ℓ∞ and ℓ2 threat models in Appendix
H.3.1. Details about experimental setup are available in
Appendix G. We note that to reduce computational cost, we
evaluate ℓ∞ and ℓ2 robustness using PGD and ℓ1 robustness
using APGD-CE (Croce & Hein, 2020b) instead of running
APGD-T and FAB-T attacks as done for leaderboard evalu-
ations, so CR scores present in this section are not directly
comparable to those on the leaderboard.

Impact of architecture size. We present results on the
impact of architecture size on CR and SC in Figure 4. We
find that out of the architectures tested (ResNet-18, ResNet-
34, ResNet-50, ResNet-101), smaller architectures (ResNet-
18 and ResNet-34) generally have higher clean accuracy
and higher CR compared to ResNet-50 and ResNet-101.
While previous studies (Gowal et al., 2020) demonstrated
that larger architecture can improve robust performance for
ℓp robustness, we find that this is not always the case for
multiattack robustness (even with ℓp training as shown in
Appendix H.3.1). The higher CR values suggest that these
smaller models have better generalization to unseen attacks
while larger models are more likely to overfit to seen attack
types. We find that SC is also on average lower for smaller
architectures which indicates that smaller architectures have

less change in robust accuracy across attack types.

Impact of number of epochs. We present results on the
impact of number of training epochs on CR and SC in Fig-
ure 5. We observe that while CRind-avg generally increases
over training epochs, CRind-worst decreases over epochs, in-
dicating that average robustness increases, but worst-case
robustness does not. This suggests that while more training
improves average performance across the set of tested at-
tacks, there may be a few attacks in this set for which more
training degrades performance. When we investigate this
further, we find that for all attacks except for elastic attacks,
CRind-worst increases over epochs. In Appendix H.2.2, we
plot the CRind-worst for each attack type and investigate the
impact of including elastic attacks in training. The trend in
worst-case robustness is also reflected by Figure 5c which
shows that SC increases over training epochs, meaning there
is a large drop in robustness when evaluated on unseen at-
tacks.

Impact of additional training data. We now investigate the
impact of using additional (synthetic) training data. Specifi-
cally, we incorporate the 1M DDPM samples from (Gowal
et al., 2021) for CIFAR-10 into training. We present results
on the impact of additional data on CR and SC in Figure 6.
From Figure 6a, we find that for CRind-avg, using additional
data significantly improves clean accuracy and CR scores,
suggesting that the extra training data can improve aver-
age robustness across attacks. In fact, we achieve SOTA
CRind-avg (69.14) when compared to other models on the
leaderboard. For worst-case performance (CRind-worst), we
find that CR with and without extra data is comparable. This
suggests that while on average extra data helps, extra data
does not uniformly improve performance across all attacks.
In Appendix H.2.3, we plot the impact of additional data on
CRind-worst for each attack type. Similar to the overall trend
for CRind-worst, we find that extra training data does not have
much impact on stability; Figure 6b shows that the SCs are
comparable with and without extra data.

6. Limitations, Discussion, and Conclusion
The need for a benchmark is imperative to better understand
and standardize the progress in multiattack robustness. In
our benchmark, we introduce new metrics (CR and SC)
and a leaderboard which ranks models based on a set of
180 attacks using these metrics. Currently, our leaderboard
contains 16 models, and as new defenses for multiattack
robustness are proposed, we plan to update it with new
defenses. Additionally, as new attack types and stronger
attacks are introduced, we plan to incorporate these into our
evaluation pipeline.

One challenge with our benchmark is the runtime of evalua-
tion, which makes it very computationally expensive to eval-
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uate large architectures and large-scale image datasets, such
as ImageNet. Future improvements in attack efficiency can
improve the scalability of our evaluation pipeline. Currently,
our leaderboard only contains evaluations for CIFAR-10;
the future, we hope to include additional leaderboards for
other image datasets.

Our benchmark and analyses highlight the weaknesses of
current defenses on the task of worst-case multiattack robust-
ness; in particular, we find that no defense can outperform
random guessing. In addition, we demonstrate that trends
for single (known) attack robustness do not necessarily hold
for the multiattack robustness. We hope that our benchmark
inspires future research in multiattack robustness.
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A. Categorization of existing defenses against multiple attacks
We now categorize existing defenses for multiattack robustness into the different knowledge settings explored and provide a
brief description of each defense.

A.1. Full Knowledge

The works under the full knowledge category generally study the problem of achieving robustness against unions of attacks
(typically ℓp norms).

AVG and MAX training (Tramèr & Boneh, 2019) Tramèr & Boneh (2019) propose 2 methods for adversarial training
with a set of different attack types. In both methods, for every training example, the learner generates adversarial examples
with respect to all attacks in the set. With AVG training, the loss used for backpropagation is taken to be the average of
losses across this set of adversarial examples, while with MAX training, the loss is taken to be the maximum loss over the
set of adversarial examples. Since these techniques are targeted towards robustness against the same set of attacks as used
during training, this defense is designed as a defense with full knowledge.

Multiple steepest descent (MSD) (Maini et al., 2020) Maini et al. (2020) improve upon the MAX training algorithm from
Tramèr & Boneh (2019) specifically for robustness against union of ℓ1, ℓ∞, and ℓ2 norm attacks. For these norms, adversarial
examples are generally obtained through multiple steps of gradient-based optimization (PGD). Instead of applying 3 rounds
of PGD to obtain ℓ1, ℓ∞, and ℓ2 attacks and then taking the maximum loss for backpropagation, MSD unrolls the PGD
steps and at each step of PGD chooses the the PGD update with respect to the norm that maximizes the loss after the update.
This technique also falls under the category of full knowledge because during evaluation, the models are tested on the same
attacks as used during the training process.

Stochastic adversarial training (SAT) (Madaan et al., 2020) Madaan et al. (2020) propose stochastic adversarial training
(SAT), where to achieve robustness against a set of attacks, for each input an attack from that set is chosen at random. The
authors then combine this with a regularization which enforces similar distributions of prediction probabilities for clean
inputs, adversarial examples, and noisy inputs, with noise generated through their proposed meta-noise generator (MNG).
Since this technique also sees all the attack types in training as during evaluation, this defense also falls under the full
knowledge setting.

A.2. Partial Knowledge

In practice, there can be mismatch between the attacks used by the learner and attacks used during test-time by the adversary,
which motivates studying the partial knowledge setting. Recently, two works have begun investigating defending in the
partial knowledge attacks. In general, the problem of defending against unforeseen attacks falls under this category.

Perceptual adversarial training (Laidlaw et al., 2021) Laidlaw et al. (2021) propose a adversarial training technique
called perceptual adversarial training (PAT) which uses attacks that are based on LPIPS metric. LPIPS (Zhang et al., 2018) is
a distance metric that is based on distances between feature maps when images are passed through a trained neural network
(ie. AlexNet) and has been demonstrated to be more perceptually aligned than ℓp distance metrics. Laidlaw et al. (2021)
show that models trained using PAT can exhibit nontrivial robustness against ℓp attacks, ReColor attacks (Laidlaw & Feizi,
2019), and StAdv attacks (Xiao et al., 2018). Since these attacks were not used during training, this defense falls under the
partial knowledge setting.

Variation regularization (Dai et al., 2022) Dai et al. (2022) propose a regularization technique called variation regularization
for reducing drop in robust accuracy to unseen threat models. This regularization technique any two perturbed inputs from
the train-time threat model have similar predicted logits. They, then combine this regularization method with adversarial
training methods (such as PAT and PGD adversarial training) and evaluate the regularized model on attacks such as ℓp
attacks, ReColor attacks (Laidlaw & Feizi, 2019), and StAdv attacks (Xiao et al., 2018), which are outside of the train-time
threat model. Thus, this technique falls under the category of partial knowledge.

A.3. No Knowledge

Manifold regularization (Jin & Rinard, 2020) Currently, to the best of our knowledge Jin & Rinard (2020) is the only
defense which utilizes no knowledge of the test-time threat model. Jin & Rinard (2020) propose using two regularization
terms with standard training, one which reduces the hamming distance of activation patterns between perturbed images
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and one that reduces the ℓ2 Lipschitz constant of the network. The perturbations used for regularization are not adversarial,
instead they are random. They show that their technique is able to achieve nontrivial ℓ∞, ℓ2, and LPIPS robustness. Since
adversarial examples are not used during training, this defense falls under the no knowledge category.

B. Comparison to Existing Evaluation Methods
Previous works in multiattack robustness generally utilize 4 different approaches for evaluating robustness. In this section,
we discuss these techniques and compare our evaluation method to these techniques.

Accuracy on individual attack types Most works in multiattack robustness report robust accuracy on individual attacks at
some chosen attack strength ϵ. For example, works on adversarial training with multiple ℓp norms (Madaan et al., 2020;
Maini et al., 2020; Tramèr & Boneh, 2019) report robust accuracies for the ℓp attacks used during training. While this is
approach provides the most information about robustness on individual attacks, typically these numbers are reported for
only a few attack types at a single attack strength per attack type. In our work, we evaluate 9 different attack types with
20 levels of attack strength leading to a larger scope in evaluation. In our performance visualizations (See Appendix F),
we also allow users to see the CR computed across individual attack types so that users are still able to understand relative
performance across each attack type.

Accuracy on the union of different attacks Another commonly reported value is the accuracy across the union of different
attack types, which is obtained by considering an image incorrectly classified if any of the attacks in the attack set succeed.
While this metric is a good approximation of worst case robustness, this metric is commonly reported for only a few attack
types at a single attack strength per attack type. This metric is also does not take into account the inherent difficulty of each
attack which can bias scores. For example, consider a setting where one attack P in the evaluation set is inherently more
difficult than the rest and the best model for this attack can do no better than random guessing. In this case, we would always
expect the union accuracy to be highly biased by P and always have value less than 1

K where K is the number of classes.
Our metric CRind-worst addresses this bias by weighting the robust accuracy of the defense by 1

acc∗(P ) .

Average accuracy across attacks Another value reported by papers in multiattack robustness is average accuracy across
attacks. For example, Laidlaw et al. (2021) report average accuracy across unseen attacks to demonstrate improved
robustness against unseen attacks. Similar to union accuracy, this metric can also be biased by attack difficulty. Our metric
CRind-avg addresses this bias by weighting the robust accuracy of the defense by 1

acc∗(P ) .

mUAR metric (Kang et al., 2019) Kang et al. (2019) introduce a metric called mUAR for evaluating robustness against
unseen attacks. Specifically, this value is defined as follows:

Definition B.1 (mUAR (Kang et al., 2019)). Let K be a set of different attack types P . Let acc(h, P, ϵ) denotes the robust
accuracy of defended model h using attack P with attack strength ϵ. Let acc∗(P, ϵ) denote the best accuracy obtainable
from a model in H. For each Pi ∈ K, i ∈ {1...|K|}, let Ei be a corresponding set of attack strengths. Then, for a model h,

UAR(h, P, E) = 100×
∑

ϵ∈E acc(h, P, ϵ)∑
ϵ∈E acc∗(P, ϵ)

(5)
mUAR(h) =

1

|K|

|K|∑
i=1

UAR(h, Pi, Ei) (6)

From the definition of UAR, for a single attack type the aggregated robust accuracies across attack strengths ϵ are weighted
by the aggregate best accuracy attainable, which addresses the problem of bias from evaluated across different values of ϵ.
However, when considering multiple attacks mUAR weights the scores of each attack equally, so this score can be still be
biased by the difficulties of each attack type. In comparison, our CR metrics are weighted across different attack types as
well. We also note that by using a different definition of multiattack error and using a single attack type in our evaluation set,
we can obtain the UAR metric from CR (see Appendix E for more discussion).

CARBEN (Hsiung et al., 2022b) (Hsiung et al., 2022b) propose a benchmark for measuring compositional robustness
called CARBEN. In CARBEN evaluates models by optimizing the attack order of a set of attacks at a single attack
strength (specifically ℓ∞, hue, saturation, rotation, brightness, contrast) and reporting the robust accuracy of the model after
performing that sequence of attacks. In general, we find that hue, saturation, rotation, brightness, and contrast attacks are
much weaker than existing (and less perceptible) attacks such as StAdv and ReColor, so the accuracies from the CARBEN
benchmark does not reflect multiattack robustness well. Additionally, we evaluate on multiple attack strengths for each
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attack and use CR metrics due to potential bias from using accuracy.

C. Description of Attacks Used and Evaluation Procedure
In this section, we describe in more depth the attacks used by the benchmark and evaluation procedure for computing CR
and stability scores. We include samples of each attack at the strengths evaluated in Figure 7

C.1. Attack descriptions

ℓp attacks The most commonly studied form of robustness is robustness to ℓp attacks, mainly ℓ1, ℓ2, and ℓ∞ attacks.
AutoAttack (Croce & Hein, 2020b) is a commonly used package for evaluating the robustness which includes a combination
of 3 white box attacks (APGD-CE, APGD-T, and FAB-T) and a black box attack (Square). Since we evaluate at 20 different
attack strengths for each attack type, we evaluate with only the APGD-T and FAB-T attacks to reduce evaluation time. For
ℓ1 attacks, we evaluate with attack strength ϵ ∈ (0, 30] in increments of 1.5. For ℓ2 attacks, we evaluate with ϵ ∈ (0, 2.5] in
increments of 0.125. For ℓ∞ attacks, we evaluate with ϵ ∈ (0, 0.1) in increments of 0.005.

Spatial transformation attacks For the leaderboard, we measure robustness to spatial transformations using StAdv attack
(Xiao et al., 2018). This attack generates adversarial examples by optimizing for a per pixel flow field f , where fi corresponds
to the displacement vector of the ith pixel of the image. This flow field is obtained by solving argminf ℓadv(x, f)+τℓflow(f)
where ℓadv is the CW objective (Carlini & Wagner, 2017) and ℓflow is a regularization term that controls the smoothness of
the change. τ is a hyperparameter controlling regularization strength. For StAdv attacks, we evaluate with ϵ ∈ (0, 0.1] in
increments of 0.005 and set τ = 0.0025/ϵ.

Outside of StAdv attacks, we also allow users to see robust accuracies for attacks that apply global spatial transformations
including affine warp and perspective warp (though these are not included in the leaderboard ranking as the attacks are much

easier than StAdv). An affine warp is a transformation captured by a matrix of the form Maffine =

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

0 0 1

 and

the pixel coordinates of the resulting image is obtained by multiplying Maffine to each pixel coordinate vector (x, y, 1)T .
Affine transformations capture translations, rotations, scaling, and shear. To generate adversarial affine transformations, we
use PGD to optimize over Maffine and apply an ℓ∞ constraint to Maffine. For affine attacks, we use ℓ∞ bounds in range (0,
0.1) with increments of 0.005. Perspective warps capture more transformations than affine warps and can be parameterized

by a matrix Mperspective =

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 1

. We apply the same method to optimize over Mperspective and apply an ℓ∞

constraint. For perspective attacks, we use ℓ∞ bounds in range (0, 0.002) with increments of 0.0001.

Color shift attacks For the leaderboard, we measure robustness to color shifts via ReColor attacks (Laidlaw & Feizi, 2019).
The approach to generating ReColor attacks is similar to the objective of StAdv attacks: argminf ℓadv(x, f) + τℓflow(f),
where f now models a function that maps between colors and ℓflow(f) is a regularization term that ensures that neighboring
pixels will have colors changed in a similar manner. For ReColor attacks, we evaluate with ϵ ∈ (0, 0.1] in increments of
0.005 and set τ = 0.0036/ϵ.

We also allow users to see evaluations for global color changes including hue shifts, brightness changes, contrast changes,
and saturation changes (but these scores are not used for computing leaderboard ranking as they are much weaker attacks
than ReColor). All of these color changes can be parameterized by a single scalar parameter, and we use PGD to optimize
this parameter as in Tsai et al. (2022). For hue and saturation attacks, we consider changes in the parameter from (0, 0.5]
with increments of 0.025. For brightness, we consider changes from (0, 0.3] with increments of 0.015, and for contrast, we
consider changes from (0, 0.5] with increments of 0.025.

UAR attacks (Kang et al., 2019) Kang et al. (2019) propose a set of attacks for evaluating unforeseen robustness including
attacks such as elastic attacks, ℓ1 JPEG attacks, ℓ∞ JPEG attacks, snow, fog, and Gabor attacks. Of these attacks, elastic
attacks, ℓ1 JPEG attacks, and ℓ∞ JPEG attacks are targeted towards the CIFAR-10 dataset, so we incorporate these attacks
into leaderboard ranking. Elastic attacks are a spatial attack based off of StAdv where the flow field f is obtained by
smoothing a vector W by a Gaussian kernel and optimizing over W under the constraint that ||W ||∞ ≤ ϵ. For elastic
attacks, we consider ϵ ∈ [0, 1) in increments of 0.05. ℓ1 (or ℓ∞) JPEG attacks optimize for ℓ1 (or ℓ∞) bounded adversarial
examples in the JPEG-encoded space of compressed images. For ℓ1 JPEG attacks, we consider ℓ1 bounds in range (0, 20] in
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Figure 7: Samples of all attacks at each attack strength ϵ used in evaluation.
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increments of 1. For ℓ∞ JPEG attacks, we consider ℓ∞ bounds in range (0, 0.2] in increments of 0.01.

While they are not included in leaderboard ranking, we allow users to see the scores for snow, fog, and Gabor attacks on the
leaderboard site. For snow attacks, we provide evaluations for attack strengths in range (0, 0.1) in increments of 0.005. For
fog attacks, we provide evaluations for attack strengths in range (0, 50) in increments of 2.5. For gabor attacks, we provide
evaluations for attack strengths in range (0, 10) in increments of 0.5.

Bounded LPIPS attacks Laidlaw et al. (2021) LPIPS distance (Zhang et al., 2018), is a distance metric based on distances
between feature maps of trained models (ie. AlexNet) and has been shown to be more perceptually aligned than ℓp metrics.
Laidlaw et al. (2021) introduce 2 attacks, perceptual PGD (PPGD) and Lagrange perceptual attack (LPA) based on this
distance. PPGD optimizes for adversarial examples in a way that is analogous to PGD: at each iteration, an optimal first
order step is taken and then projected so that it lies in the LPIPS bound. LPA moves the distance constraint into the objective
function via Lagrangian relaxation. For evaluation, we measure robustness against LPIPS attacks by taking the accuracy
against the union of PPGD and LPA attacks based off of AlexNet architecture. We consider attacks of LPIPS bound in range
(0, 0.5] in increments of 0.025.

C.2. Additional evaluation details

In this section, we describe additional details about how we perform metric computations.

Training models for approximating optimal single attack accuracy To approximate optimal single attack accuracy, for
each attack, we train 3 ResNet-18 models using adversarial training. We also train a set of 3 models with standard training
(no attack). For ℓ1 threat model, we train using adversarial examples generated via APGD (Croce & Hein, 2021). For ℓ2 and
ℓ∞ threat models, we use PGD-adversarial training. For LPIPS threat model, we use perceptual adversarial training (PAT)
which uses a fast approximation to the LPA attack Laidlaw et al. (2021). For all other threat models, we the same attack
generation method during training as used for evaluation as described in the previous section. For all threat models (with the
exception of ℓ1 threat model which uses settings from Croce & Hein (2021) and UAR attacks which use default settings
from Kang et al. (2019)), we use 20 iterations to find adversarial examples with step size ϵ/18. We train all models with
batch size of 256 for 100 epochs and evaluate the model saved at the epoch which achieves highest robust accuracy on the
test set. We train models using SGD with initial learning rate of 0.1. Learning rate drops to 0.01 after half of the training
epochs and drops to 0.001 after 3/4 of the training epochs.

Robust accuracy evaluation For evaluating robust accuracy, with the exception of ℓp attacks and UAR attacks which
use default evaluation setups from Croce & Hein (2020b) and Kang et al. (2019) respectively, we use 20 iterations to
optimize over adversarial examples for non-LPIPS threat models and 40 iterations to optimize over adversarial examples for
LPIPS threat model. To obtain robust accuracies at multiple epsilon per attack type, we perform robustness evaluations in a
binary search manner to find the smallest perturbation size at which the model misclassifies each image. We aggregate this
information across the entire test set to find the robust accuracy at each value of epsilon.

Metric computation For computing CRind-avg and CRind-worst, we follow Definition 3.5 and take K to be the set of 180
attacks described in C.1 (9 attacks at 20 different values of ϵ each) with 1 additional attack representing no attacker (ϵ = 0).
For CRind-avg, we assume that the distribution over all attacks is uniform.

For computing stability constant, we consider Klearner to include attack strength ϵ from 0 (no attack) to the ϵ that is used by
the defense that fall within the 20 values of ϵ that we used for evaluating robust accuracy. For example, if a defense uses
ℓ2 threat model with strength 0.5, and in our evaluation procedure for ℓ2, we evaluate with ϵ ∈ (0, 2.5] in increments of
0.125, we would consider Klearner to contain no attack (ϵ = 2) and ℓ2 attacks with ϵ ∈ {0.125, 0.25, 0.375, 0.5}. We then
follow the equation in Definition 3.7 with α = 3%. We note that we found that both reducing α to 1% and increasing α
generally does not influence the SC of defended models. The only defense whose SC changed as a result of changing α
was (Jin & Rinard, 2020) for which Klearner does not contain any attacks (outside of ϵ = 0), for which decreasing α to 1%
reduces stability constant to 0 due to few acc∗ values that lie in the viscinity of standard training clean accuracy. We choose
3% to ensure that Jin & Rinard (2020) and other future defenses which may also be based on standard training will still have
a value for SC for comparison.
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D. Defenses Present on Leaderboard
Overall, we evaluate a total of 16 different models. All defenses use one of the follow training threat models: no attack
(standard training), ℓ2 with ϵ = 128

255 , ℓ∞ with ϵ = 8
255 , (AlexNet) LPIPS with ϵ = 1, a combination of ℓ1 with ϵ = 2000

255 , ℓ2
with ϵ = 128

255 , and ℓ∞ with ϵ = 8
255 . We describe the entries present on our leaderboard below:

• Single attack adversarial training approaches: Since adversarial training with ℓ2 and ℓ∞ is commonly studied, we include
2 entries (one with ℓ2 attacks, and one with ℓ∞ attacks) for PGD adversarial training (Madry et al., 2018) and 2 entries
for TRADES adversarial training (Zhang et al., 2019) (one with ℓ2 attacks, and one with ℓ∞ attacks). All 4 of these
entries use ResNet-18 architecture. Prior works have improved on the performance of ℓ2 and ℓ∞ through the use of
additional synthetic data. One of these approaches is (Rebuffi et al., 2021) which is currently the top performing approach
on RobustBench (Croce et al., 2020). We include entries for two WRN-28-10 trained using (Rebuffi et al., 2021) (one
with ℓ∞ threat model and the other with ℓ2 threat model). The pretrained models for Rebuffi et al. (2021) models are
available through RobustBench.

• Multiple attack adversarial training approaches: We also include entries for multiple defenses trained with a combination
of ℓ1 with ϵ = 2000

255 , ℓ2 with ϵ = 128
255 , and ℓ∞ with ϵ = 8

255 . These include 2 models using the training approach from
Madaan et al. (2020) (one which uses additional data via robust self-training (Carmon et al., 2019) and one that does not
use additional data), 1 model using the AVG approach in Tramèr & Boneh (2019), 1 model using the MAX approach in
Tramèr & Boneh (2019), and 1 model using MSD from Maini et al. (2020). These models are available through the code
repository for Madaan et al. (2020) here. These models all use WRN-28-10 architecture.

• Variation regularization (Dai et al., 2022): Dai et al. (2022) propose variation regularization which can be applied on top
of any train-time threat model. We include 3 leaderboard entries for this defense, one using ℓ∞ threat model, one using ℓ2
threat model, and one using LPIPS threat model. The ℓ∞ and ℓ2 models both use ResNet-18 architecture while the LPIPS
model uses ResNet-50 architecture. These models are available through the code repository for Dai et al. (2022) here.

• Perceptual adversarial training (PAT) (Laidlaw et al., 2021): We include an entry for PAT with the AlexNet-based LPIPS
attacks. This model uses ResNet-50 architecture and is available through the code repository for Laidlaw et al. (2021)
here.

• Manifold regularization (Jin & Rinard, 2020): Jin & Rinard (2020) propose a regularization technique that can be applied
on top of standard training and does not use adversarial examples to compute. We include a leaderboard entry for manifold
regularization. This model uses ResNet-18 architecture. The pretrained model is available here.

E. Additional CR Definitions
In the main body of the paper, we focused mainly on using errmulti-ind as the multiattack error when defining CR. Additionally,
we can consider using errmulti-exp and errmulti-max which leads to 2 new definitions of CR:

CRexp(h;K) = 100×
EP∼D(K)acc(h, P )

EP∼D(K)acc∗(P )
(7)

CRmax(h;K) = 100× minP∈K acc(h, P )

minP∈K acc∗(P )
(8)

We note that for CRexp(h;K), when D(K) is uniform and K contains only attacks of the same type, we obtain the UAR
metric proposed by Kang et al. (2019).

For leaderboard rankings, we opted to use the errmulti-ind definitions of CR since more clearly compares robust accuracy on
each specific attack to the corresponding robust accuracy of the optimal, making these metrics more interpretable, while
CRexp and CRmax both compare aggregates across all defense accuracies and across all optimal accuracies. We find that
CRexp and CRmax both lead to higher scores relative to CRind-avg and CRind-worst respectively. We also find that ranking by
CRexp maintains the rankings of the top 3 best performing models compared to CRind-avg. For CRmax, we find that the set of
top 3 best performing models stays the same, but the rankings are reversed compared to CRind-worst.
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F. Additional Leaderboard Features
While the scores present on the leaderboard allow us to easily compare the performance of defended models for multiattack
robustness, it is hard to understand failure points of specific defenses by looking at the score alone. To this end, we provide
additional features that allow users to have a more in depth understanding of model performance.

Figure 8: Sample performance visualizations provided on our leaderboard website.

User controls Since some defenses are designed for robustness against a union of specific attack types, we allow users
to control the types of attacks used in attack set K used when computing metrics. We note that leaderboard rankings,
however, are independent of user selection since the goal of the leaderboard is to reflect performance across a diverse set of
imperceptible attacks.

Performance Visualizations While metrics like CR and stability are useful for ranking and comparing the performance
of different defenses, it is difficult to understand specific weaknesses of existing defenses, which may make it difficult
to improve upon existing techniques. For example, a defense may systematically fail on a particular attack type, but
since CR and stability aggregate performance across multiple attack types, they are unable to convey this. To address
this, our leaderboard allows users to generate performance visualizations for specific defenses and compare performance
visualizations for up to 5 different defenses. We provide 4 types of performance visualizations: (1) a graph of the accuracy
of the defense on each tested perturbation type against the accuracy of adversarial training directly on that perturbation type,
(2) graphs of robust accuracy across attack strength ϵ for each perturbation type tested, (3) a bar chart of CR-in compared to
CR-out (4) a bar chart of single-CR values computed for each perturbation type tested. Examples of these visualizations are
shown in Figure 8.

G. Experimental Setup for Adversarially Trained Models
To understand the impact of factors such as architecture size, additional data, and number of training epochs on multiattack
performance, we train our own set of models using adversarial training on 3 different threat models: ℓ2 (with radius ϵ = 0.5),
ℓ∞ (with ϵ = 8

255 ), and LPIPS (with ϵ = 0.5). For ℓ∞ and ℓ2 threat models, we train using 20 iterations of PGD with step
size ϵ/18. For LPIPS threat model we use PAT with 20 iterations for Fast LPA to find adversarial examples (Laidlaw et al.,
2021). For all experiments, we train 3 trials. We train models using SGD with initial learning rate of 0.1. Learning rate
drops to 0.01 after half of the training epochs and drops to 0.001 after 3/4 of the training epochs. For all evaluations, we
use the same set of attacks as described in Apendix C.1, but for ℓ∞ and ℓ2 attacks, we use 10 step PGD to find adversarial
examples (with step size ϵ/8), and for ℓ1 attacks we use APGD (Croce & Hein, 2021).

Architecture experiments We train ResNet-18, ResNet-34, ResNet-50, and ResNet-101 models with batch size 256 for 100
epochs and evaluate at the model saved at the epoch achieving the highest robust accuracy on the test set.

Extra training data experiments We train ResNet-18 models with and without extra 1M (synthetic) training data from
Gowal et al. (2021). Models are trained in batches of 150 samples from the original training set and 350 samples from
the extra training data. We train for 100 epochs and evaluate at the model saved at the epoch achieving the highest robust
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accuracy on the test set.

Training epoch experiments We train ResNet-18 models with batch size of 256 for 200 epochs and save a copy of the
model every 5 epochs. We evaluate on this set of saved models.

H. Additional Analysis
H.1. Stability of existing defenses

Since the computation of stability depends on the choice of Klearner for fair comparison, we should compare models which
use the same threat model during training. In Table 1, we organize defenses present on our leaderboard by train-time threat
model and report their corresponding stability constants. We note that the only model missing from Table 1 is model using
the manifold regularization defense from Jin & Rinard (2020) as it is the only model that does not use adversarial examples
during training.

Defense Stability Constant
Dai et al. (2022) 1801.00

Rebuffi et al. (2021) 2056.50
Zhang et al. (2019) 2164.00
Madry et al. (2018) 2309.50

(a) ℓ∞

Defense Stability Constant
Rebuffi et al. (2021) 457.71

Dai et al. (2022) 904.71
Zhang et al. (2019) 940.29
Madry et al. (2018) 1110.00

(b) ℓ2

Defense Stability Constant
Dai et al. (2022) 4947.00

Laidlaw et al. (2021) 5823.00

(c) LPIPS

Defense Stability Constant
Madaan et al. (2020) (no RST) 1494.00

Maini et al. (2020) 1803.00
Madaan et al. (2020) (RST) 1901.25

Tramèr & Boneh (2019) (MAX) 2145.00
Tramèr & Boneh (2019) (AVG) 2502.00

(d) ℓ1, ℓ2, ℓ∞

Table 1: Stability constants of models present on the leaderboard

We note that of all defenses tested, the defense from Dai et al. (2022) is specifically designed for improving stability (which
Dai et al. (2022) refers to as unforeseen generalization gap), and we find that for ℓ∞, ℓ2, and LPIPS threat models, the model
using Dai et al. (2022) outperforms the corresponding baseline ((Madry et al., 2018) for ℓ∞ and ℓ2 norms and (Laidlaw
et al., 2021) for LPIPS).

H.2. CRind-worst per attack type analysis for LPIPS trained models

In this section, we present computed CRind-worst values across individual attack types for LPIPS trained models in Section
5.2.

H.2.1. IMPACT OF ARCHITECTURE SIZE

In Figure 9, we plot the impact of architecture size on CRind-worst for each attack type. For StAdv and ReColor attacks, we
find that CRind-worst seems inversely correlated with accuracy and larger architectures tend to have higher CRind-worst for those
threat models. For all other threat models, we observe that smaller architectures have better performance, which matches our
observations in Section 5.2.

H.2.2. IMPACT OF NUMBER OF TRAINING EPOCHS

In Figure 10, we plot the impact of number of training epochs on CRind-worst per attack. We find that for LPIPS threat model
(which is used during training), after about 100 epochs, additional training decreases CR on LPIPS attacks. This suggests
that after 100 epochs, the model starts to overfit on the training dataset. For other threat models (except elastic attack), we
find that CR is generally the highest at the last epoch of trining. For elastic attacks, we find that CR drops during training.

To see if incorporating elastic attacks into training changes the observed trend, we also incorporate elastic attacks with
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(g) ℓ1-JPEG
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(i) Elastic

Figure 9: Impact of architecture size on CRind-worst per attack type for models trained using LPIPS threat model with ϵ = 0.5
(via FastLPA training (Laidlaw et al., 2021))

ϵ = 0.7 into training (along with the original LPIPS threat model). We train using the maximum of elastic and LPIPS losses
and provide plots in Figure 11. Interestingly, we do not observe much difference in training curves between including elastic
into training and not including elastic in training.

H.2.3. IMPACT OF EXTRA DATA

In Figure 12, we plot the impact of extra training data on CRind-worst per attack. We observe that for most attacks (LPIPS, ℓ1,
ℓ2, ℓ∞, ℓ1 JPEG and ℓ∞ JPEG), extra data improves CRind-worst. However, for some attacks, Specifically, StAdv, ReColor,
and Elastic attacks extra data does not improve CRind-worst. In fact, for StAdv and ReColor, the drop in performance after
incorporating extra data is significant. Additionally, we find that the aggregate CRind-worst trend for extra data observed in
Section 5.2 is dominated by elastic attack performance.

H.3. Additional results for adversarially trained models

In this section, we present results for training with ℓ∞, ℓ2 threat models, and the union of ℓ1, ℓ2, and ℓ∞ attacks via stochastic
adversarial training (Madaan et al., 2020) analogous to those present for LPIPS threat model in Section 5.2.

H.3.1. ANALYSIS OF MODELS TRAINED WITH ℓ∞ SOURCE THREAT MODEL

Impact of architecture size In figure 13, we plot the performance of ResNet-18, ResNet-34, ResNet-50, and ResNet-101
architectures in terms of CR, clean accuracy, and stability constant. From Figures 13a and 13b, we note that while larger
ResNet architectures (in particular ResNet-101) is able to achieve much higher clean accuracy, smaller architectures
(ResNet-18 and ResNet-34) are able to achieve higher CR score, suggesting that smaller architectures are more optimal for
multiattack robustness. Similarily, we find that these smaller architectures have smaller stability constant in Figure 13c,
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Figure 10: Impact of number of training epochs on CRind-worst per attack type for models trained using LPIPS threat model
with ϵ = 0.5 (via FastLPA training (Laidlaw et al., 2021))

suggesting that there is less of a performance drop when shifting to unseen attacks compared to larger architectures. This
trend matches what was observed for LPIPS threat model in Section 5.2.

Impact of additional training data In Figure 14, we plot CR, clean accuracy, and stability for ResNet-18 models trained
with and without additional (synthetic) training data. Similar to findings from Section 5.2, we find that additional data
improves both clean accuracy and CRind-avg. However, there is no significant change in performance in terms of CRind-worst.
This suggests, that while on average, extra data can improve performance across the set of tested attacks, this is not
necessarily the case for worst-case performance. We find that for ℓ∞ training, extra data does improve stability across
attacks (stability constant in Figure 13c significantly decreases with extra training data), suggesting that for ℓ∞ training,
using additional data can decrease the drop in performance to unforeseen attacks.

Impact of number of epochs In Figure 15, we plot the impact of number of training epochs on CR and stability. Similar
to trends for training with LPIPS threat model in Section 5.2, we find that longer training does improve average case
performance. For worst-case performance, we find that CRind-worst drops quickly within the first 50 epochs of training and
then stays relatively constant throughout the remainder of training. This makes sense because at initialization the model
is essentially randomly guessing so even on the worst-case attack, the model can still achieve about 10% robust accuracy.
However, as the model trains it becomes more vulnerable to the worst-case (and likely unseen attack) leading to a large drop
in worst-case robust accuracy, which causes CR to be near 0. Similar to training with LPIPS threat model, we also find that
stability constant increases during training, which suggests that as training continues, the drop in robustness between seen
and unseen threat models increases.
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Figure 11: Impact of number of training epochs on CRind-worst per attack type for models trained with LPIPS threat model at
ϵ = 0.5 and elastic threat model at ϵ = 0.7

H.3.2. ANALYSIS OF MODELS TRAINED WITH ℓ2 SOURCE THREAT MODEL

Impact of architecture size In Figure 16, we plot the CR, clean accuracy, and stability constant achieved by training
ResNet-18, ResNet-34, ResNet-50, and ResNet-101. Similar to trends for training with LPIPS and training with ℓ∞ threat
model, we find that smaller architectures (ResNet-18, ResNet-34) outperform larger models in terms of CR and stability
constant, suggesting that smaller models are better when it comes to multiattack robustness.

Impact of additional training data In Figure 17, we plot the clean accuracy, CR, and stability constant of ResNet-18
models trained with ℓ2 adversarial training. Similar to what we observed for ℓ∞ and LPIPS adversarial training, we find that
extra data significantly improves CRind-avg, suggesting that extra data improves average robust performance over the set
of attacks. However, we find that using additional data harms worst-case multiattack robustness: in Figure 17a, we find
that CRind-worst decreases after including additional data during training. This suggest that while on average robustness over
the set of attacks increases with additional data, additional data does not uniformly improve performance over all attacks.
Observing stability constant in Figure 17b, we find that extra data helps decrease tability constant, suggesting that models
trained with additional data exhibit less of a drop in robustness when evaluated on attacks outside of the ℓ2 threat model
which have similar difficulty.

Impact of number of epochs In Figure 18, we plot CR and stability constant over training epochs. Similar to trends
for LPIPS and ℓ∞ threat models, we find that more training generally increases CRind-avg, suggesting better average case
performance. Additionally, we find that CRind-worst drops quickly within the first 50 epochs of training and then remains
generally constant throughout the remainder of training. For stability, we find that stability constant gradually increases
throughout training suggesting that as training progresses, the drop in performance across threat models increases.
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H.3.3. ANALYSIS OF MODELS TRAINED WITH ℓ1 , ℓ2 , AND ℓ∞ THREAT MODELS

In this section we report results for training on the union of ℓ1, ℓ2, and ℓ∞ attacks via stochastic adversarial training (SAT)
(Madaan et al., 2020). For these experiments, we use the same training setup as used in (Madaan et al., 2020) where for
architecture size and additional data experiments we train for 30 epochs.

Impact of architecture size In Figure 19, we plot the CR, clean accuracy, and stability constant achieved by training
ResNet-18, ResNet-34, ResNet-50, and ResNet-101 models. Similar to trends for training with LPIPS and training with ℓ∞
threat model, we find that smaller architectures (ResNet-18, ResNet-34) outperform larger models in terms of CR (with
ResNet-34 performing best in CRind-avg and ResNet-18 performing best in CRind-worst) suggesting that smaller models are
better when it comes to multiattack robustness when training with the union of ℓ1, ℓ2, and ℓ∞ attacks. In terms of stability
constant, we do not see a significant trend across architecture size.

Impact of additional training data In Figure 20, we plot the clean accuracy, CR, and stability constant of ResNet-18
models trained on the union of ℓ1, ℓ2, and ℓ∞ attacks via stochastic adversarial training (Madaan et al., 2020). Similar
to what we observed for other threat models used with adversarial training, we find that extra data significantly improves
CRind-avg, suggesting that extra data improves average robust performance over the set of attacks. We also find that for this
threat model, extra data also improves CRind-worst, which differs from the trends observed for other threat models. There
does not seem to be a significant change to stability constant for this training procedure with extra data.

Impact of number of epochs In Figure 21, we plot CR and stability constant over training epochs. Similar to trends for
training on other threat models, we find that more training increases CRind-avg, suggesting better average case performance.
Additionally, we find that CRind-worst drops quickly within the first 10 epochs of training and then remains gradually decreases
throughout the remainder of training. For stability, we find that stability constant gradually increases throughout training
suggesting that as training progresses, the change in performance across threat models increases.
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Figure 12: Impact of extra training data on CRind-worst per attack type for models trained using LPIPS threat model with
ϵ = 0.5 (via FastLPA training (Laidlaw et al., 2021))

23



MultiRobustBench: Benchmarking Robustness Against Multiple Attacks

83.5 84.0 84.5 85.0 85.5 86.0
Clean accuracy

47

48

49

50

CR
in

d
av

g

ResNet-18

ResNet-50

ResNet-101

ResNet-34

(a) CRind-avg

83.5 84.0 84.5 85.0 85.5 86.0
Clean accuracy

0.000

0.025

0.050

0.075

0.100

CR
in

d
wo

rs
t ResNet-18

ResNet-50

ResNet-101
ResNet-34

(b) CRind-worst

ResNet-18 ResNet-34 ResNet-50 ResNet-101
0

500

1000

1500

2000

2500

3000

St
ab

ilit
y 

Co
ns

ta
nt

(c) Stability Constant

Figure 13: Impact of architecture size. Figures (a) and (b): Clean accuracy vs CR for models trained using PGD adversarial
training with ℓ∞ threat model with radius 8

255 . Results are averaged over 3 trials and error bars are shown. Higher values
of CR indicate better performance. Figure (c): SC computed for models of each architecture. Lower SC indicates better
performance.
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Figure 14: Impact of additional training data. Figure (a): Clean accuracy and CR for ResNet-18 models trained using
PGD adversarial training using PGD adversarial training with ℓ∞ threat model with radius 8

255 . Higher CR indicates better
performance. Results are averaged over 3 trials and error bars are shown. Figure (c): SC computed for models with and
without additional training data. Lower SC indicates better performance.
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Figure 15: Impact of number of training epochs. CR and SC over epoch for models trained with ℓ∞ threat model with
radius 8

255 . The red line indicates the average over 3 runs while the grey band highlights indicate 1 standard deviation from
the mean. Higher values of CR and lower values of SC indicate better performance.
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Figure 16: Impact of architecture size. Figures (a) and (b): Clean accuracy vs CR for models trained using PGD adversarial
training with ℓ2 threat model with radius 0.5. Results are averaged over 3 trials and error bars are shown. Higher values
of CR indicate better performance. Figure (c): SC computed for models of each architecture. Lower SC indicates better
performance.
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Figure 17: Impact of additional training data. Figure (a): Clean accuracy and CR for ResNet-18 models trained using
PGD adversarial training with ℓ2 threat model with radius 0.5. Higher CR indicates better performance. Results are averaged
over 3 trials and error bars are shown. Figure (c): SC computed for models with and without additional training data. Lower
SC indicates better performance.
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Figure 18: Impact of number of training epochs. CR and SC over epoch for models trained with ℓ2 threat model with
radius 0.5. The red line indicates the average over 3 runs while the grey band highlights indicate 1 standard deviation from
the mean. Higher values of CR and lower values of SC indicate better performance.
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Figure 19: Impact of architecture size. Figures (a) and (b): Clean accuracy vs CR for models trained using stochastic
adversarial training (Madaan et al., 2020). Results are averaged over 3 trials and error bars are shown. Higher values of
CR indicate better performance. Figure (c): SC computed for models of each architecture. Lower SC indicates better
performance.
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Figure 20: Impact of additional training data. Figure (a): Clean accuracy and CR for ResNet-18 models trained using
stochastic adversarial training (Madaan et al., 2020). Higher CR indicates better performance. Results are averaged over 3
trials and error bars are shown. Figure (c): SC computed for models with and without additional training data. Lower SC
indicates better performance.
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Figure 21: Impact of number of training epochs. CR and SC over epoch for models trained with stochastic adversarial
training (Madaan et al., 2020) The red line indicates the average over 3 runs while the grey band highlights indicate 1
standard deviation from the mean. Higher values of CR and lower values of SC indicate better performance.
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