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Abstract

Domain generalization (DG) aims to tackle the
distribution shift between training domains and
unknown target domains. Generating new do-
mains is one of the most effective approaches,
yet its performance gain depends on the distri-
bution discrepancy between the generated and
target domains. Distributionally robust optimiza-
tion is promising to tackle distribution discrep-
ancy by exploring domains in an uncertainty set.
However, the uncertainty set may be overwhelm-
ingly large, leading to low-confidence prediction
in DG. It is because a large uncertainty set could
introduce domains containing semantically dif-
ferent factors from training domains. To address
this issue, we propose to perform a moderately
distributional exploration (MODE) for domain
generalization. Specifically, MODE performs dis-
tribution exploration in an uncertainty subset that
shares the same semantic factors with the train-
ing domains. We show that MODE can endow
models with provable generalization performance
on unknown target domains. The experimental
results show that MODE achieves competitive per-
formance compared to state-of-the-art baselines.

1. Introduction
Deep neural networks (DNNs) have achieved exciting per-
formance on various tasks. The successes of DNNs heavily
depend on an underlying assumption that the training do-
mains and target domain share the same distribution. How-
ever, this assumption may not hold in some practical sce-
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narios, which leads to the failure of DNNs. To release this
assumption, researchers have studied a more practical learn-
ing setting called Domain Generalization (DG) (Muandet
et al., 2013; Ye et al., 2021; Shen et al., 2021). The goal of
DG is to train models using training domains such that these
models can generalize well in the unknown target domain
which shares the same semantics with the training domains.

To generalize well on the unknown target domains, previous
works introduce a domain generation strategy, enhancing the
performance of DNNs by generating new domains (Zhou
et al., 2020b;a; Wang et al., 2021; Xu et al., 2021). The
underlying intuition of this approach is that learning with
many generated domains could make DNNs robust against
domain shifts. However, it remains challenging how to con-
struct new domains to achieve a provable generalization
performance on target domains. Namely, it is challenging
to guarantee a mitigated distribution discrepancy between
the generated domains and target domains. Accordingly,
the generated domains may fail to promote generalizability
or even cause performance degradation of DNNs. The rea-
son lies in the fact that target domains are unknown in the
training process, leading to an uncontrollable distribution
discrepancy between the generated and the target domains.

Distributionally Robust Optimization (DRO) is a possible
strategy to tackle the distribution discrepancy between train-
ing and target domains (Csiszar, 1967; Namkoong & Duchi,
2016; Staib & Jegelka, 2019). The intuition of DRO is to ex-
tend one distribution to a distribution space, i.e., uncertainty
set, and uses the worst-case distribution in the uncertainty
set for model training (Sinha et al., 2018; Michel et al.,
2021; Mehra et al., 2022). By ensuring uniformly well
performance inside the uncertainty set around the training
domains, DRO can enlarge the influence of the training
domains and thus shrink the distribution discrepancy be-
tween training and test domains. Unfortunately, directly
employing DRO to DG has shown limited performance im-
provement in practice (Shen et al., 2021). The failure of
DRO may be related to the overwhelmingly large property
of the employed uncertainty set. Such a large uncertainty
set may introduce some unrelated domains containing se-
mantics inconsistently with training domains. Consequently,
models trained over the uncertainty set make decisions with
fairly low confidence, known as the low confidence issue
(Hu et al., 2018; Frogner et al., 2021; Shen et al., 2021).
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Figure 1. The left shows the causal relationship of data X , label
Y , semantic factor C and non-semantic factor S. The right shows
that data X are generated by an causal mechanism G with two
causes: semantic factor C and non-semantic factor S.

To fully unleash the potential of DRO in DG, we propose
to perform distribution exploration in an uncertainty subset,
which shares the same semantic factors with the training
domains, avoiding the exploration of semantically unre-
lated domains. The insight lies in that merely exploring the
semantically related subset could shrink the space of the
uncertainty set, mitigating the low confidence issue above.

Specifically, following prior works (Suter et al., 2019; Zhang
et al., 2020a; Mitrovic et al., 2021; Mahajan et al., 2021;
Zhang et al., 2022b; Veitch et al., 2021; Lv et al., 2022),
we assume that observed data X are generated by an causal
mechanism G with two causes: semantic factor C and non-
semantic factor S, i.e., X = G(S,C), where the label Y is
the effect of the semantic factor C. Built upon this assump-
tion, we can perform DRO on the subset of non-semantic
factor S, rather than on the original uncertainty set contain-
ing both semantic and non-semantic factors. Motivated by
this insight, we propose a novel approach moderately distri-
butional exploration (MODE) for domain generalization.

To support our approach, we develop a theoretical frame-
work that provides the generalization estimation of our learn-
ing principle and gives the risk estimation for the unknown
target domain. Empirically, we conduct extensive exper-
iments to verify the effectiveness of our approach. The
experimental results show that MODE achieves competitive
performance compared with the state-of-the-art baselines.

2. Related Work
2.1. Domain Generalization

Domain generalization aims to learn more generalized
knowledge from existing multiple source domains and fi-
nally test on the unknown target domain. Over the years,
great efforts have been made in many directions, such as
Invariant Representation (Chuang et al., 2020; Nguyen et al.,
2021; Xiao et al., 2021; Shi et al., 2022), Causal (Mahajan
et al., 2021; Mouli & Ribeiro, 2021; Lv et al., 2022), and
Optimization (Krueger et al., 2021; Zhang et al., 2021; Lei
et al., 2021; Gulrajani & Lopez-Paz, 2021). To general-
ize well on the unknown target domains, previous works
introduce a domain generation strategy, enhancing the per-

formance of DNNs by generating new domains. Shankar
et al. (2018) perturbs the input samples along the direction
of the most significant domain change while maintaining se-
mantics. Zhou et al. (2020a) trains a domain transformation
model to transform images to unseen domains by fooling a
domain classifier. Somavarapu et al. (2020); Borlino et al.
(2020) simply use a style transfer like AdaIN (Huang & Be-
longie, 2017) to argument data in style aspects to optimize
the model. Zhou et al. (2020b) train a data generator to
generate new domains using optimal transport to measure
the distribution divergence. Zhou et al. (2021a;b) achieves
style augmentation in the feature level by mixing the CNN
feature map’s mean and std between instances of different
domains. Li et al. (2022) focuses on addressing the uncer-
tain nature of domain shifts by modeling feature statistics
as uncertain distributions, which is also achieved through
the use of AdaIN, where non-semantic factors are replaced
with randomly chosen values from the modeled distributions.
Tang et al. (2021) address the problem of domain shift by
developing two simple and efficient normalization methods
that can reduce the non-semantic domain shift between dif-
ferent distributions, while Zhang et al. (2022a) jointly learns
semantic and variation encoders to disentangle the seman-
tic and non-semantic factors. Our approach explores the
non-semantic factor to create augmented samples, which to
some extent, is similar to approaches of data augmentation.

2.2. Distributionally Robust Optimization

Distributionally robust optimization is a promising approach
to tackle distribution discrepancy by exploring unknown do-
mains in a fixed uncertainty set (Sagawa et al., 2020). DRO
has developed plenty of approaches with different meth-
ods to measuring distribution discrepancy, such as Wasser-
stein distance (Sinha et al., 2018; Mehra et al., 2022), f -
divergence (Csiszar, 1967; Ben-Tal et al., 2013; Namkoong
& Duchi, 2016; Michel et al., 2021) and maximum mean
discrepancy (MMD) (Staib & Jegelka, 2019). Unfortunately,
employing DRO to DG has shown limited performance im-
provement in practice (Shen et al., 2021). (Hu et al., 2018;
Frogner et al., 2021; Shen et al., 2021) have pointed out that
in order to capture the unknown target domain, the uncer-
tainty set is often overwhelmingly large, leading the learned
model to make decisions with fairly low confidence in DRO.
Liu et al. (2021; 2022a) focuses on the low confidence prob-
lem, and use a Wasserstein distance is employed to deter-
mine the uncertainty set. Liu et al. (2022b) uses data geom-
etry to construct more reasonable and effective uncertainty
sets, while Qiao & Peng (2023) constructs the uncertainty
using the data topology. Our approach MODE tackles the
low confidence problem by performing distribution explo-
ration in a specific uncertainty subset (non-semantic factor)
and uses Wasserstein distance (Sinha et al., 2018; Mehra
et al., 2022) to measure the distribution discrepancy in DG.
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3. Learning Setups
Let X denote the feature space and Y = {1, . . . ,KY} de-
note the label space. We consider the training domains
DXlYl

(l = 1, ..., N ), N joint distributions defined over
X × Y , where Xl and Yl are random variables whose out-
puts are from X and Y , respectively. We also have a target
domain DXtYt

, a joint distribution defined over X × Y ,
shares the same semantics with training domains DXlYl

.

In this paper, we focus on domain generalization. The for-
mal definition of domain generalization is given as follows.

Problem 1. (Domain Generalization). Let DXlYl
(l =

1, ..., N ) and DXtYt
be training domains and unseen tar-

get domain, respectively. Given sets of samples called the
training data: for any l = 1, ..., N ,

TRl =
{(

x1
l , y

1
l

)
, . . . , (xnl

l , ynl

l )
}
∼ Dnl

XlYl
, i.i.d.,

the aim of domain generalization is to train a classifier f by
using the training data TRl, l = 1, ..., N such that, for any
test data x ∼ DXt

, f can classify x into the correct class.

Causal Assumption. Following prior works (Mitrovic et al.,
2021; Zhang et al., 2020a; Suter et al., 2019; Mahajan et al.,
2021; Zhang et al., 2022b; Lv et al., 2022; Nguyen et al.,
2022; Chen et al., 2022), we assume that the feature random
variables are generated by the following causal mechanism.
Let S and C be the non-semantic factor space and semantic
factor space, respectively. There exists an causal mechanism
G : S × C → X such that,

Xt = G(St, C) and Xl = G(Sl, C), ∀ l = 1, ..., N (1)

where Sl and St are random variables defined over the non-
semantic factor space S, and C is the random variable de-
fined over the semantic factor space C. In summary, Eq. (1)
means that the feature randoms X share the same semantic
C, but don’t share the non-semantic factors S.

Generally, one hopes that the non-semantic random variable
cannot affect the label random variable Y , which can be
determined only by the semantic C. Therefore, following
Mitrovic et al. (2021); Zhang et al. (2020a); Suter et al.
(2019); Mahajan et al. (2021); Lv et al. (2022); Nguyen et al.
(2022), we further assume that for any l = 1, ..., N ,

Y ← C and Yl = Yt = Y. (2)

Uncertainty Set and Non-semantic Space. To enhance
the diversity of training domains and preserve the semantics
among domains, the uncertainty set where we perform DRO
is defined in the following:

Ω = {Sα = Ψ(α, S1, . . . , SN ) : α ∈ A}, (3)

where A is a parametric space, Ψ is a function that could
generate random variables, Ω is a set of random variables
defined over S.

The non-semantic space w.r.t. Ω is defined in following:

SΩ =
⋃

Sα∈Ω

suppDSα , (4)

where DSα is the distribution w.r.t. random variable Sα.

Model and Risks. Here we introduce some necessary con-
cepts about models and risks. Denote fw : X → RK by the
model depending on the parameters w ∈ W , whereW is
the parameter space. Given a loss ℓ w.r.t. training domain
DXlYl

, the training domain risk w.r.t. the model fw is

Rl(w) = E ℓ (fw;Xl, Yl) = E ℓ (fw ◦G;Sl, C, Yl) , (5)

and the corresponding empirical risk w.r.t. fw is

R̂l(w) =
1

nl

nl∑
i=1

ℓ
(
fw;xi

l, y
i
l

)
. (6)

Lastly, the target domain risk w.r.t. fw is defined as follows:

Rt(w) = Eℓ (fw;Xt, Yt) = E ℓ (fw ◦G;St, C, Yt) . (7)

4. Learning Strategy
In this section, we introduce our main motivation and de-
velop a theoretical framework to support our insight and
guide the algorithm design.

4.1. Motivation

To generalize well on the unknown target domain, it is one
of the most effective strategies to generate new domains to
enhance the performance of DNNs (Zhou et al., 2020b;a;
Wang et al., 2021). There is an underlying intuition that
learning with many generated domains could make DNNs
robust against domain shifts. However, it remains challeng-
ing how to mitigate the distribution discrepancy between
the generated domains and target domains. Accordingly, the
generated domains may fail to promote generalizability or
even cause performance degradation of DNNs. The reason
is the invisibility of the target domain, which leads to an un-
measurable distribution discrepancy between the generated
and the target domain (Liang et al., 2021).

Distributionally Robust Optimization (DRO) is a possible
strategy to tackle distribution discrepancy (Sinha et al.,
2018; Mehra et al., 2022). This is because DRO extends one
distribution to a distribution space, i.e., uncertainty set, and
trains models with the worst-case distribution in the uncer-
tainty set. By ensuring uniformly well performance inside
the uncertainty set around the training domains, DRO can
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enlarge the influence of the training domains and thus shrink
the distribution discrepancy between training and test do-
mains. However, employing DRO to DG has shown limited
performance improvement in practice (Shen et al., 2021).
The failure of DRO may be related to the overwhelmingly
large property of the employed uncertainty set. Such a large
uncertainty set may introduce unrelated domains contain-
ing semantics inconsistently with training domains. Conse-
quently, models trained over the set can make decisions with
fairly low confidence, known as the low confidence issue
(Hu et al., 2018; Frogner et al., 2021; Shen et al., 2021).

4.2. Moderately Distributional Exploration

To fully unleash the potential of DRO in DG, we propose
moderately distributional exploration to perform distribu-
tion exploration MODE in an uncertainty subset, which
shares the same semantic factors with the training domains,
avoiding the exploration in the direction of semantics. The
insight lies in that merely exploring the semantically related
subset can shrink the space of the uncertainty set, mitigating
the low confidence issue.

The considered uncertainty subset is used for exploiting the
worst-case distribution, i.e., performing DRO on the subset
of non-semantic factor S, which can be captured as follows:

min
w∈W

RΩ(w) = min
w∈W

max
Sα∈Ω

E ℓ (fw ◦G;Sα, C, Y ) . (8)

In practical scenarios, it is challenging to exactly esti-
mate a distribution under DG scenarios, resulting in a re-
stricted searching capacity (more discussions are shown
in Appendix C). Therefore, we propose to explore the non-
semantic factor for each sample rather than for each domain:

min
w∈W

RSΩ(w) = min
w∈W

Emax
s∈SΩ

ℓ (fw ◦G; s, C, Y ) , (9)

where SΩ stands for the non-semantic space introduced in
Eq. (4) and C represents the semantic random variable. The
corresponding empirical risk R̂SΩ

(w) w.r.t. RSΩ
(w) is:

1∑N
l=1 nl

N∑
l=1

nl∑
i=1

max
s∈SΩ

ℓ
(
fw ◦G; s, cil, y

i
l

)
, (10)

where cil is the element of the semantic part of G−1(xi
l).

Besides the worst-case optimization, following previous
works (Zhou et al., 2020a;b; Xu et al., 2021), we further
introduce the empirical risk in our optimization. Namely,
both the exploited and original data are used for model
training with a parameter β used for trading off the risks:

min
w∈W

R̂β
λ(w) = (1− β)

N∑
l=1

λlR̂l(w) + βR̂SΩ
(w), (11)

where λ = [λ1, ..., λN ] ∈ ∆N are fixed weights.

4.3. Theoretical Insights of MODE

Here, we give a learning theory to provide theoretical sup-
port for our proposed learning strategy. The main conclu-
sions are summarized as follows:

• Theorem 1 shows that the empirical model given by Eq.
(11) can achieve consistent learning performance.

• Theorem 2 shows the risk estimation for the unknown
target domain w.r.t. the empirical model given by Eq. (11).

Before giving detailed theoretical results, we introduce
several necessary concepts. Specifically, we use notation
Rβ

λ(w) to represent the ideal form of R̂β
λ(w) in Eq. (11):

Rβ
λ(w) = (1− β)

N∑
l=1

λlRl(w) + βRSΩ
(w). (12)

To measure the distribution discrepancy between the two
domains, we use Optimal Transport Cost (Sinha et al., 2018;
Mehra et al., 2022) defined as follows:

Definition 1. (Optimal Transport Cost and Wasserstein-1
Distance (Villani, 2009; 2021)). Given a cost function c :
Z ×Z → R+ , the Optimal Transport Cost w.r.t. c between
two probability distances D and D′ is defined as:

Wc (D,D′) = inf
π∈Π(D,D′)

E(x,x′)∼πc (x,x
′) ,

where Π(D,D′) is the space of all couplings for D and
D′. Furthermore, if the cost c is a metric, then the Optimal
Transport Cost is also called the Wasserstein-1 distance.

Similar to Sinha et al. (2018), our results rely on the usual
covering number (Vershynin, 2018) for the model classes
F = {ℓ (fw; ·) : w ∈ W} to represent the complexity. Intu-
itively the covering numbers N (F , ϵ, L∞) is the minimal
number of L∞ balls of radius ϵ > 0 needed to cover the
model classes F , respectively. The rigorous definition on
covering number is given in the Appendix A.1.

We first show that our approach can achieve consistent learn-
ing performance under mild assumptions.

Theorem 1. (Excess Generalization Bound). Assume that
• 0 ≤ ℓ(fw;x, y) ≤Mℓ < +∞,

• S1, S2, ..., Sl are mutually independent,

• Sl ⊥⊥ C and Yl = Yt = Y ,∀l = 1, ...., N .

Let ŵ be the solution of Eq. (11), i.e.,

ŵ ∈ argmin
w∈W

R̂β
λ(w).

With the probability at least 1− 4e−t > 0 ,

Rβ
λ(ŵ)− min

w∈W
Rβ

λ(w) ≤ ϵβλ(n1, ..., nN ; t), (13)
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where ϵβλ(n1, ..., nN ; t) is equal to

(1− β)

N∑
l=1

b0Mℓλl√
nl

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ

+β
b1Mℓ√∑N

l=1 nl

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ

+2(1− β)

N∑
l=1

λlMℓ

√
2t

nl
+ 2βMℓ

√
2t∑N
l=1 nl

,

here b0 and b1 are uniform constants.

Under proper conditions, one can show that the bound (Eq.
(13)) can attained Õ(

∑N
l=1

λl√
nl
) + Õ( 1√∑N

l=1 nl

), i.e.,

Rβ
λ(ŵ)− min

w∈W
Rβ

λ(w) ≤ Õ(
N∑
l=1

λl√
nl

) + Õ( 1√∑N
l=1 nl

).

Corollary 1 in Appendix A.3 gives an example supporting
this claim. Next, the following theorem gives a learning
bound to estimate the unknown target domain risk.
Theorem 2. (Risk Estimation). Given the same conditions
in Theorem 1 and let ŵ be the solution of Eq. (11), i.e.,

ŵ ∈ argmin
w∈W

R̂β
λ(w).

If the cost function c(·, ·) : S × S → R+ is a continuous
metric and ℓ(fw ◦G; s, c, y) is Lc-Lipschitz w.r.t. c, i.e.,

|ℓ(fw ◦G; s, c, y)− ℓ(fw ◦G; s′, c, y)| ≤ Lcc(s, s
′),

then with the probability at least 1− 4e−t > 0 ,

Rt(ŵ)− min
w∈W

Rβ
λ(w)

≤(1− β)Lc

N∑
l=1

λlWc (DSt
, DSl

)

+βLc min
Sα∈Ω

Wc (DSt , DSα) + ϵβλ(n1, ..., nN ; t),

(14)

where ϵβλ(n1, ..., nN ; t) is introduced in Theorem 1.

The Trade-off of Ω. From Theorem 2, we can see that
the distribution discrepancy between the target distribu-
tion and distributions in distribution searching space can
hurt the network’s generalization ability due to the term
βLc minSα∈Ω Wc (DSt

, DSα). When Ω is large enough to
include DSt

, this term becomes 0. Although a larger Ω will
decrease this term, the approximate risk minw∈W Rβ

λ(w)
will be increased, which means that there is a trade-off
between these two terms about the choice of Ω.

The Trade-off of β. It can be observed that the increase of β
leads to the decrease of (1−β)Lc

∑N
l=1 λlWc (DSt

, DSl
)+

βLc minSα∈Ω Wc (DSt
, DSα). But β also determines the

value of minw∈W Rβ
λ(w) and ϵβλ(n1, ..., nN ; t), leading to

the trade-off of the choice of β in practice.

5. Realization of MODE
Motivated by our theoretical insights, we propose a real-
ization of MODE by using some existing style transfer ap-
proaches, which will be introduced below 1.

• Loss Functions. Following Li et al. (2017); Xu et al.
(2021), we use the cross entropy loss as ℓ.

• Algorithm Design. The key in algorithm design is the
implementation of the causal mechanism G. In practice,
we use Fourier-based transfer and AdaIN-based transfer to
construct G in our algorithm.

Other style transfer methods not introduced in this paper
can also be applied to our approach in the same way.

MODE-F: Fourier-based MODE. The Fourier-based trans-
fer (Xu et al., 2021) is considered able to separate the stylis-
tic information from the semantic information by using the
discrete Fourier transform to decompose the data x into its
amplitude A (x) and phase P (x). It is believed that the
phase information contains more high-level semantics and
is not easily affected by domain shifts (Oppenheim et al.,
1979; Oppenheim & Lim, 1981), which makes it possible to
create samples of different styles by mixing amplitudes.

In practice, we treat the amplitude A (x) as the non-
semantic factor S and treat the phase P (x) as the semantic
factor C. Following our approach, we explore A (x) corre-
sponding to the worst-case generated data fixing P (x).

Since Fourier-based transfer creates a new sample by mixing
amplitudes and maintaining the original phase, we have:

Âγ (α,x) = γ[α0A (x) +

M∑
l=1

αlA (xl)]

+ (1− γ)A (x) ,

(15)

Gγ(α,x) = iFFT
[
Âγ (α,x) ∗ e−j∗P(x)

]
, (16)

whereA (xl) , l = 1, · · · ,M are the amplitudes of M other
images and α ∈ ∆M+1. So that we could control the
direction of stylization by changing α = [α0, α1, · · · , αM ]
and control the degree of stylization by changing γ. More
details of Fourier-based MODE are shown in Appendix B.1.

MODE-A: AdaIN-based MODE. AdaIN (Huang & Be-
longie, 2017) is one of the representative methods of neural
style transfer. It uses the mean µ and std σ of feature map
output by the fixed encoder E to control style information
and trains a decoder D to restore the stylized image from
the feature map whose mean and std had been changed.

In practice, we treat these mean µ and std σ as the non-
semantic factor S and treat the normalized feature map as
the semantic factor C. Following our approach, by fixing

1Code: github.com/Rxsw/MODE.
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the normalized feature map, we explore µ and σ which
corresponds to the worst-case generated data.

Since AdaIN-based transfer creates a new sample by mixing
mean-std and maintaining the original normalized feature
map, we first calculate mixed mean and mixed std:

µ̃(α,x) = α0µ(E(x)) +

M∑
l=1

αlµ(E(xl)), (17)

σ̃(α,x) = α0σ(E(x)) +

M∑
l=1

αlσ(E(xl)), (18)

and then apply mixed mean and mixed std to the normalized
feature map and restore image by decoder D:

Z̃(α,x) = µ̃(α,x) + σ̃(α,x)
E(x)− µ(E(x))

σ(E(x))
, (19)

Gγ(α,x) = D(γZ̃(α,x) + (1− γ) E(x)), (20)

where E(xl), l = 1, · · · ,M are the feature map of M other
images and α ∈ ∆M+1. So that we could control the
direction of stylization by changing α = [α0, α1, · · · , αM ]
and control the degree of stylization by changing γ. More
details of AdaIN-based MODE are shown in Appendix B.2.

The Non-semantic Space SΩ. In each iteration, the non-
semantic space SΩ in Eq. (10) is defined as:

SΩ = {sα =

M∑
l=0

αlsl : α = [α0, ..., αM ] ∈ ∆M+1},

(21)
where sl is A (xl) in MODE-F and (µ,σ)l in MODE-A.

Update α. In each iteration, exploring the optimal α re-
quires multiple inner steps, leading the training time to
increase exponentially. To speed up the exploring process,
inspired by methods of adversarial attacks (Szegedy et al.,
2014; Goodfellow et al., 2015; Madry et al., 2018; Zhang
et al., 2020b), we use the gradient’s direction and fixed step
size µ to update α every time after generating augmented
data x̂ using Gγ :

αk = Normalize(αk−1 + µ sign(∇αℓ(fw; x̂k−1, y))),
(22)

where x̂k−1 = Gγ(α
k−1,x) and α ∈ ∆M+1.

• Stochastic Realization2. Algorithm 1 gives a stochas-
tic realization for MODE, where minibatch is randomly
sampled in each iteration. We first explore the worst-case
generated data by Maximization. Specifically, the value of
α is uniformly initialized and updated by Eq.(22) for K

2In practice, we set λ : {λl = nl/
∑N

i=1 ni, l = 1, · · · , N}
aforementioned in Eq. (11), which means that each sample in
different domains is given the same weight.

Algorithm 1 MODE
Input: training set, batch size n, number of inner steps
K, number of style provider M , step size µ, model archi-
tecture parametrized by w, hyperparameter β and γ, the
causal mechanism Gγ

Output: Robust model fw
Randomly initialize model fw, or initialize model with
pre-trained configuration
repeat

Read a mini-batch x = [x1, ...,xn], y = [y1, ..., yn]
from the training set
# Maximization: Exploration
for i = 1 to n (in parallel) do

Initialize α0, α1, · · · , αM as α0
i

Initialize x̂0
i ← Gγ(α

0
i ,xi)

for k = 1 to K do
# Inner Step
α̃k

i ← Eq.(22)
x̂k
i ← Gγ(α

k
i ,xi)

end for
end for
# Minimization: Update Model
R̂l(w) = 1

n

∑n
i=1 ℓ (fw;xi, yi)

R̂s(w) = 1
n

∑n
i=1 ℓ(fw; x̂K

i , yi)

w← w − lr∇w

[
(1− β)R̂l(w) + βR̂s(w)

]
until convergence

steps. After getting the final augmented data, we update the
model parameters w by Minimization which is one step of
minibatch gradient descent with R̂l(w), R̂s(w) and β.

6. Experiments
In this section, we demonstrate the superiority of our ap-
proach on several DG benchmarks.

6.1. Datasets

Following previous works (Zhou et al., 2020a; Huang et al.,
2020; Xu et al., 2021; Lv et al., 2022), we evaluate our ap-
proach on three standard DG benchmark datasets described
below. More results include VLCS (Torralba & Efros, 2011),
DomainNet (Peng et al., 2019) and Mini-DomainNet (Zhou
et al., 2021a) are given in the Appendix D.

Digits-DG (Zhou et al., 2020a) consists of 4 digit datasets:
MNIST (M) (LeCun et al., 1998), MNIST-M (M-M) (Ganin
& Lempitsky, 2015), SVHN (SV) (Netzer et al., 2011) and
SYN (SY) (Ganin & Lempitsky, 2015) which differ in font
style, color, and background. Following (Zhou et al., 2020a),
we randomly select 600 images of each class from each
domain, where 80% of the selected images are used for
training, and 20% are used for validation.
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Table 1. Leave-one-domain-out classification accuracies (in %) on PACS and Office-Home in ResNet18. The best and second-best results
are highlighted in bold and underlined, respectively. DRO† is the result of directly applying Group DRO (Sagawa et al., 2020) to DG.
CIRL† (Lv et al., 2022) is the result of reproducing using the authors’ official codes and following the same settings in the original papers.

Dataset PACS Office-Home
Methods A C P S Avg. A C P R Avg.

DeepAll (Zhou et al., 2020a) 77.6 76.8 95.9 69.5 79.9 57.9 52.7 73.5 74.8 64.7
Jigen (Carlucci et al., 2019) 79.4 75.3 96.0 71.4 80.5 53.0 47.5 71.5 72.8 61.2

MMD-AAE (Li et al., 2018b) 75.2 72.7 96.0 64.2 77.0 56.5 47.3 72.1 74.8 62.7
CrossGrad (Shankar et al., 2018) 79.8 76.8 96.0 70.2 80.7 58.4 49.4 73.9 75.8 64.4

DDAIG (Zhou et al., 2020a) 84.2 78.1 95.3 74.7 83.1 59.2 52.3 74.6 76.0 65.5
L2A-OT (Zhou et al., 2020b) 83.3 78.2 96.2 73.6 82.8 60.6 50.1 74.8 77.0 65.6
MixStyle (Zhou et al., 2021a) 83.0 78.6 96.3 71.2 82.3 58.7 53.4 74.2 75.9 65.5

MatchDG (Mahajan et al., 2021) 81.3 80.7 96.5 79.7 84.6 - - - - -
CICF (Li et al., 2021) 80.7 76.9 95.6 74.5 81.9 57.1 52.0 74.1 75.6 64.7

RSC (Huang et al., 2020) 83.4 80.3 96.0 80.9 85.2 58.4 47.9 71.6 74.5 63.1
FACT (Xu et al., 2021) 85.9 79.4 96.6 80.8 85.7 60.3 54.9 74.5 76.6 66.6
CIRL† (Lv et al., 2022) 85.5±0.2 79.6±0.3 96.1±0.5 82.7±0.3 86.0 58.6±0.2 55.4±0.1 73.8±0.3 75.1±0.1 65.7

DRO† (Sagawa et al., 2020) 82.5±1.3 79.1±1.0 95.1±0.2 78.5±1.2 83.2 52.8±0.3 49.2±0.6 67.6±0.4 70.8±0.5 60.1
MODE-F (ours) 84.5±0.6 80.4±0.8 95.5±0.2 82.2±0.7 85.7 57.7±0.1 54.0±0.4 73.9±0.2 76.1±0.3 65.4
MODE-A (ours) 84.4±0.9 81.9±0.9 95.2±0.3 85.8±0.3 86.9 60.1±0.8 57.3±0.6 74.2±0.5 76.0±0.2 66.9

Table 2. Leave-one-domain-out classification accuracies (in %) on
Digit-DG. The best and second-best results are highlighted in bold
and underlined, respectively.

Methods M M-M SV SY Avg.
DeepAll (Zhou et al., 2020a) 95.8 58.8 61.7 78.6 73.7
Jigen (Carlucci et al., 2019) 96.5 61.4 63.7 74.0 73.9

MMD-AAE (Li et al., 2018b) 96.5 58.4 65.0 78.4 74.6
CrossGrad (Shankar et al., 2018) 96.7 61.1 65.3 80.2 75.8

DDAIG (Zhou et al., 2020a) 96.6 64.1 68.6 81.0 77.6
L2A-OT (Zhou et al., 2020b) 96.7 63.9 68.6 83.2 78.1
MixStyle (Zhou et al., 2021a) 96.5 63.5 64.7 81.2 76.5

CICF (Li et al., 2021) 95.8 63.7 65.8 80.7 76.5
FACT (Xu et al., 2021) 97.9 65.6 72.4 90.3 81.6
CIRL (Lv et al., 2022) 96.1 69.8 76.2 87.7 82.5

MODE-F (ours) 98.5±0.1 72.7±0.1 73.2 ±0.6 91.1±0.4 83.9

PACS (Li et al., 2017) is an object recognition benchmark
designed for DG which consists of 9,991 images from 4
domains namely Photo (P), Art-painting (A), Cartoon (C),
Sketch (S) with large style discrepancy and has seven cat-
egories in each domain. For a fair comparison, we use the
training-validation-test split provided by (Li et al., 2017).

Office-Home (Venkateswara et al., 2017) consists of 15,500
images of 65 classes from four domains: Art (A), Clipart
(C), Product (P), Real-World (R), which differ in image
style and viewpoint. For a fair comparison, we use the
training-validation-test split same as Xiao et al. (2021).

6.2. Implementation Details

Following the commonly used leave-one-domain-out strat-
egy (Li et al., 2017; Xu et al., 2021), DG models are evalu-
ated using one domain, after training on the other domains.

Basic Details. For Digits-DG, we use the backbone intro-
duced by (Zhou et al., 2020b; Xu et al., 2021). All images
are resized to 32×32. Following Xu et al. (2021), we train
the network using an SGD optimizer with a learning rate of

0.05, batch size of 128, a momentum of 0.9, and weight de-
cay 5e-4 for 50 epochs. The learning rate is decayed by 0.1
every 20 epochs. We use random cropping in data augmenta-
tion. For PACS and Office-Home, following Li et al. (2017);
Xu et al. (2021), we use a pre-trained ResNet-18 backbone
(He et al., 2016), all images are resized to 224×224. We
train the network using SGD optimizer with learning rate
5e-4, momentum 0.9, and weight decay 5e-4. We train the
model for 80 epochs with batch size 16 and 50 epochs with
batch size 32, respectively. The learning rate is decayed
by 0.1 every 40 epochs. We use the standard augmentation
protocol in Li et al. (2017); Xu et al. (2021).

Method-specific Details. The hyperparameters of our ap-
proach: The number of inner steps K, inner step size µ, β,
γ, and The number of style providers M . The settings of
these hyperparameters are shown in Appendix D.4.

6.3. Experimental Results

Results on Digit-DG3. We show the Leave-one-domain-
out classification accuracies on Digit-DG in Table 2. It
can be observed that our approach achieves the highest
accuracy in most domains and the second-highest accuracy
in the remaining domain.4 In particular, in MNIST-M (M-
M), which has complex backgrounds and rich colors, our
approach exceeds the previous approach of state-of-the-art
by 2.7%, which proves the capability of our approach.

Results on PACS. We show the Leave-one-domain-out clas-
sification accuracies on PACS on Table 1. It can be ob-
served that our approach achieves the highest average accu-

3We only use the Fourier-based method MODE-F for Digit-DG,
since AdaIN could not process low-resolution images originally.
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racy. Our approach also exceeds Group DRO (Sagawa et al.,
2020) by 3% on average. In particular, in the most challeng-
ing domain Sketch (S), where the image is only composed
of simple lines without background, our approach exceeds
the previous approach of state-of-the-art by 3%.

Results on Office-Home. We show the Leave-one-domain-
out classification accuracies on Office-Home in Table 1.
It can be observed that our approach achieves the highest
average accuracy. Our approach also exceeds Group DRO
(Sagawa et al., 2020) by 6% on average. In particular, in the
Clipart (C), which is very similar to the domain Sketch in
PACS, we still get 1.9% better than the previous best result,
which proves that our approach has consistent performance.

6.4. Analytical Experiments

Number of Inner Steps K. Figure 2 is the average loss of
samples in different inner steps to the current model changes
with the number of epochs in a training process, and the
effect of the number of inner steps K. It shows that our
approach indeed finds samples with higher empirical risk
and with the increase in the number of inner steps, the final
accuracy also maintains the trend of generally increasing,
which proves the effectiveness of our approach.
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Figure 2. The left shows the average loss of augmented samples
in different inner steps changes with the number of epochs in a
training process. The right shows the effect of the number of inner
steps. All results are conducted on the PACS dataset with Sketch
(S) or Art-painting (A) as the unknown target domain.

Hyperparameter β and γ. Figure 3 show the final accu-
racies of different β and γ. Since γ controls the degree of
stylization, the change of γ can be viewed as a change of Ω.
It can be observed that there is a trade-off across the choices
of β. The best choice for β is between 0.2 and 0.4. We can
also observe that choosing a larger Ω (corresponds to larger
γ) would not always be better, which is consistent with our
theory Eq.(14). Some visualization results with too large Ω
are shown in Figure 6 and Figure 12.

Number of Style Provider M and Inner Steps K. Figure
4 shows the final accuracies of different β, number of style
provider M , and number of inner steps K. M determines
the number of styles that can be used in the exploration,
which may affect SΩ. It can be observed that there is also a
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Figure 3. Classification accuracies of different β and γ. The left
results are conducted on the PACS dataset with Art-painting (A)
as the unknown target domain; the right results are conducted with
Sketch (S) as the unknown target domain.
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Figure 4. Classification accuracies of different β, number of style
provider M and number of iterations K in inner optimization. The
left results are conducted on the PACS dataset with Art-painting
(A) as the unknown target domain; the right results are conducted
with Sketch (S) as the unknown target domain.

Figure 5. Visualization results of the normal exploration process,
where the semantic information is preserved when exploring non-
semantic factors. More results are shown in Appendix D.5.

trade-off across the choices of M . And in most cases, the
larger K results in better performance. More discussion is
in Appendix C.

Limitation. In our work, different methods to construct the
mechanism G have a great impact on the results. How to
find a better way to construct G remains to be explored.
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Figure 6. Visualization results of the exploration process with too
large Ω. The semantic information is lost during the exploration.

7. Conclusion
Generating new domains using these accessible training do-
mains is one of the most effective approaches in domain
generalization, yet their performance gain depends on the
distribution discrepancy between the generated domain and
the unknown target domain. The low-confidence issue hin-
ders the application of Distributionally robust optimization
to DG. To address this issue, we propose an approach called
MODE, which performs distribution exploration in an uncer-
tainty subset that shares the same semantic factors with the
training domains, and theoretically shows the convergence
guarantee toward the generalization performance on the un-
known target domain. Empirically, we conduct extensive
experiments to verify the effectiveness of our approach. We
hope that our work can inspire more ideas in the future.
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A. Proofs
A.1. Covering Number

We use the covering number for the model classes in our derivation. Here we give the formal definition.

Definition 2. (ϵ-covering (Vershynin, 2018)). Let (V, ∥ · ∥) be a normed space, Θ ∈ V , and B(·, ϵ) the ball of radius ϵ .
Then {V1, . . . , VN} is an ϵ-covering of Θ if Θ ⊂

⋃N
i=1 B (Vi, ϵ) , or equivalently, ∀θ ∈ Θ,∃i such that ∥θ − Vi∥ ≤ ϵ .

Upon our definition of ϵ -covering, covering number is the minimal number of ϵ-balls one needs to cover Θ .

Definition 3. (Covering Number (Vershynin, 2018)). N (Θ, ∥ · ∥, ϵ) = min{n : ∃ϵ-covering over Θ of size n} .

A.2. Proof of Theorem 1

Proof. We first recall the notations as follows:

Rβ
λ(w) = (1− β)

N∑
l=1

λlRl(w) + βRSΩ(w), (23)

R̂β
λ(w) = (1− β)

N∑
l=1

λlR̂l(w) + βR̂SΩ
(w), (24)

Rl(w) = E ℓ (fw ◦G;Sl, C, Y ) , (25)

R̂l(w) =
1

nl

nl∑
i=1

ℓ
(
fw;xi

l, y
i
l

)
, (26)

RSΩ
(w) = Emax

s∈SΩ

ℓ (fw ◦G; s, C, Y ) , (27)

R̂SΩ
(w) =

1∑N
l=1 nl

N∑
l=1

nl∑
i=1

max
s∈SΩ

ℓ
(
fw ◦G; s, cil, y

i
l

)
. (28)

Let w∗ be the solution of minw∈W Rβ
λ(w) . Then similar to Fang et al. (2020; 2022), we have

Rβ
λ(ŵ)−Rβ

λ (w∗) ≤ Rβ
λ(ŵ)− R̂β

λ(ŵ) + R̂β
λ(ŵ)−Rβ

λ (w∗) + R̂β
λ (w∗)− R̂β

λ (w∗)

≤ (1− β)

[
N∑
l=1

λlRl(ŵ)−
N∑
l=1

λlRl (w
∗)

]
+ β [RSΩ

(ŵ)−RSΩ
(w∗)]

− (1− β)

[
N∑
l=1

λlR̂l(ŵ)−
N∑
l=1

λlR̂l (w
∗)

]
− β

[
R̂SΩ(ŵ)− R̂SΩ (w∗)

]
= (1− β)

N∑
l=1

λl

[
Rl(ŵ)− R̂l(ŵ)

]
+ β

[
RSΩ

(ŵ)− R̂SΩ
(ŵ)

]
− (1− β)

N∑
l=1

λl

[
Rl (w

∗)− R̂l (w
∗)
]
− β

[
RSΩ

(w∗)− R̂SΩ
(w∗)

]
,

(29)

where R̂β
λ(ŵ)− R̂β

λ (w∗) ≤ 0.

12



Moderately Distributional Exploration for Domain Generalization

By Lemma 1 and Lemma 4, we have that with the probability at least 1− 2e−t > 0 ,

(1− β)

N∑
l=1

λl

[
Rl(ŵ)− R̂l(ŵ)

]
+ β

[
RSΩ(ŵ)− R̂SΩ(ŵ)

]
≤(1− β)

N∑
l=1

b0Mℓλl√
nl

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ

+β
b1Mℓ√∑N

l=1 nl

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ

+(1− β)

N∑
l=1

λlMℓ

√
2t

nl
+ βMℓ

√
2t∑N
l=1 nl

,

(30)

here b0 and b1 are uniform constants.

By Lemma 2 and Lemma 5, we have that with the probability at least 1− 2e−t > 0 ,

(1− β)

N∑
l=1

λl

[
Rl (w

∗)− R̂l (w
∗)
]
+ β

[
RSΩ (w∗)− R̂SΩ (w∗)

]
≤(1− β)

N∑
l=1

λlMℓ

√
2t

nl
+ βMℓ

√
2t∑N
l=1 nl

.

(31)

Combining Eqs. (29), (30) and (31), we have that with the probability at least 1− 4e−t > 0 ,

Rβ
λ(ŵ)− min

w∈W
Rβ

λ(w) ≤ ϵβλ(n1, ..., nN ; t) (32)

where

ϵβλ(n1, ..., nN ; t) =(1− β)

N∑
l=1

b0Mℓλl√
nl

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ

+β
b1Mℓ√∑N

l=1 nl

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ

+2(1− β)

N∑
l=1

λlMℓ

√
2t

nl
+ 2βMℓ

√
2t∑N
l=1 nl

,

(33)

here b0 and b1 are uniform constants.

A.3. Corollary 1

Corollary 1. Given the same conditions in Theorem 1, if

• ℓ(·;x, y) is L-Lipschitz w.r.t. norm ∥ · ∥, i.e., for any (x, y) ∈ X × Y , and w,w′ ∈ W ,

|ℓ(fw;x, y)− ℓ (fw′ ;x, y)| ≤ L ∥w −w′∥ , (34)

• the parameter spaceW ⊂ Rd′
satisfies that

diam(W) = sup
w,w′∈W

∥w −w′∥ < +∞, (35)
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With the probability at least 1− 4e−t > 0 ,

Rβ
λ(ŵ)− min

w∈W
Rβ

λ(w) ≤ ϵ̃βλ(n1, ..., nN ; t) (36)

where

ϵ̃βλ(n1, ..., nN ; t) = (1− β)

N∑
l=1

b0λl

√
Mℓ diam(W)Ld′

nl

+ βb1

√
Mℓ diam(W)Ld′∑N

l=1 nl

+ 2(1− β)

N∑
l=1

λlMℓ

√
2t

nl
+ 2βMℓ

√
2t∑N
l=1 nl

,

(37)

here b0 and b1 are uniform constants.

Proof. Similar to the proof of Theorem 1.

By Lemma 3 and Lemma 6, we have that with the probability at least 1− 2e−t > 0,

(1− β)

N∑
l=1

λl

[
Rl(ŵ)− R̂l(ŵ)

]
+ β

[
RSΩ

(ŵ)− R̂SΩ
(ŵ)

]

≤(1− β)

N∑
l=1

b0λl

√
Mℓ diam(W)Ld′

nl

+ βb1

√
Mℓ diam(W)Ld′∑N

l=1 nl

+ (1− β)

N∑
l=1

λlMℓ

√
2t

nl
+ βMℓ

√
2t∑N
l=1 nl

.

(38)

Combining Eqs. (29), (38) and (31), we have that with the probability at least 1− 4e−t > 0 ,

Rβ
λ(ŵ)− min

w∈W
Rβ

λ(w) ≤ ϵ̃βλ(n1, ..., nN ; t) (39)

where

ϵ̃βλ(n1, ..., nN ; t) = (1− β)

N∑
l=1

b0λl

√
Mℓ diam(W)Ld′

nl

+ βb1

√
Mℓ diam(W)Ld′∑N

l=1 nl

+ 2(1− β)

N∑
l=1

λlMℓ

√
2t

nl
+ 2βMℓ

√
2t∑N
l=1 nl

,

(40)

here b0 and b1 are uniform constants.
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A.4. Proof of Theorem 2

Proof. We first recall the notations as follows:

Rt(w) = Eℓ (fw;Xt, Yt) = E ℓ (fw ◦G;St, C, Y ) , (41)

Rl(w) = E ℓ (fw ◦G;Sl, C, Y ) , (42)

RSΩ
(w) = Emax

s∈SΩ

ℓ (fw ◦G; s, C, Y ) , (43)

Rβ
λ(w) = (1− β)

N∑
l=1

λlRl(w) + βRSΩ(w). (44)

Consider

Rt(ŵ)−Rβ
λ(ŵ) = (1− β)

N∑
l=1

λl(Rt(ŵ)−Rl(ŵ)) + β(Rt(ŵ)−RSΩ
(ŵ)). (45)

We have

Rt(ŵ)−Rl(ŵ) = E ℓ (fŵ ◦G;St, C, Y )− E ℓ (fŵ ◦G;Sl, C, Y ) ≤ LcWc (DSt
, DSl

) . (46)

We set the largest risk in Ω w.r.t. fw is

RΩ(w) = max
Sα∈Ω

Eℓ (fw ◦G;Sα, C, Y ) , (47)

where Ω stands for the uncertainty set introduced in Eq. (3).

We have

RΩ(w) ≤ RSΩ
(w), (48)

then

Rt(ŵ)−RSΩ(ŵ) ≤ Rt(ŵ)−RΩ(ŵ) = E ℓ (fŵ ◦G;St, C, Y )− max
Sα∈Ω

Eℓ (fŵ ◦G;Sα, C, Y ) . (49)

We set

SαM = argminSα∈ΩWc (DSt , DSα) , (50)

then

E ℓ (fŵ ◦G;St, C, Y )− max
Sα∈Ω

Eℓ (fŵ ◦G;Sα, C, Y ) ≤E ℓ (fŵ ◦G;St, C, Y )− Eℓ (fŵ ◦G;SαM
, C, Y )

≤LcWc

(
DSt , DSαM

)
= min

Sα∈Ω
LcWc (DSt , DSα) .

(51)

Combining Eqs. (45), (46), (49) and (51), we have

Rt(ŵ)−Rβ
λ(ŵ) ≤ (1− β)Lc

N∑
l=1

λlWc (DSt , DSl
) + βLc min

Sα∈Ω
Wc (DSt , DSα) . (52)

Then by Theorem 1, we complete this proof.
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A.5. Necessary Lammas

Lemma 1. If 0 ≤ ℓ(fw;x, y) ≤Mℓ , then with the probability at least 1− e−t > 0 , we have that for any w ∈ W

E(x,y)∼DXlYl
ℓ(fw;x, y)− 1

n

n∑
i=1

ℓ
(
fw;xi

l, y
i
l

)
≤ b0Mℓ√

n

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ+Mℓ

√
2t

n

(53)

,where b0 is a uniform constant.

Proof. Let

Xℓ(fw;·) = E(x,y)∼DX1Yl
ℓ(fw;x, y)− 1

n

n∑
i=1

ℓ
(
w;xi

l, y
i
l

)
. (54)

Then it is clear that

ES∼Dn
X1Y1

Xℓ(fw;·) = 0. (55)

By Proposition 2.6.1 and Lemma 2.6.8 in Vershynin (2018),∥∥Xℓ(fw;·) −Xℓ(fw′ ;·)
∥∥
Φ2
≤ c0√

n
∥ℓ(fw; ·)− ℓ (fw′ ; ·)∥L∞ , (56)

where ∥ · ∥Φ2
is the sub-gaussian norm and c0 is a uniform constant. Therefore, by Dudley’s entropy integral (Vershynin,

2018), we have

ES∼Dn
X1Y1

sup
w∈W

Xℓ(fw;·)

≤ b0√
n

∫ +∞

0

√
logN (F , ϵ, L∞)dϵ,

(57)

where b0 is a uniform constant and

F = {ℓ(fw; ·) : w ∈ W}. (58)

Note that

ES∼Dn
X1Y1

sup
w∈W

Xℓ(fw;·) ≤
b0√
n

∫ +∞

0

√
logN (F , ϵ, L∞)dϵ

=
b0√
n

∫ Mℓ

0

√
logN (F , ϵ, L∞)dϵ

=
b0√
n
Mℓ

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ

(59)

Then, similar to the proof of Lemma 2, we use the McDiarmid’s Inequality, then with the probability at least 1− e−t > 0 ,
for any w ∈ W ,

Xℓ(fw;)) ≤
b0√
n
Mℓ

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ+Mℓ

√
2t

n
. (60)

Lemma 2. If 0 ≤ ℓ(fw;x, y) ≤Mℓ , then for a fixed w0 ∈ W , with the probability at least 1− e−t > 0 ,

1

n

n∑
i=1

ℓ
(
w0;x

i
l, y

i
l

)
− E(x,y)∼DXlYl

ℓ (w0;x, y) ≤Mℓ

√
2t

n
. (61)
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Proof. By (Sinha et al., 2018), it is clear that

sup
wc(DX′ ,DXA)≤ρ

Ex∼DX′ ℓ (fw0
;x) = inf

γ≥0

[
γρ+ Ex∼DXA

ϕγ (w0;x)
]

(62)

Therefore, for each ϵ > 0 , there exists a constant γϵ ≥ 0 such that

γϵρ+ Ex∼DXA
ϕγϵ

(w0;x) ≤ sup
wc

(
DX′,DXA

)
≤ρ

Ex∼DX′ ℓ (fw0
;x) + ϵ.

(63)

Combining the above inequality and McDiarmid’s Inequality, then with the probability at least

1− exp

(
−ϵ20m
2M2

ℓOE

)
> 0, (64)

we have

Ex∼D̂XA
ϕγϵ

(w0;x) ≤ Ex∼DXA
ϕγϵ

(w0;x) + ϵ0 (65)

If we set t = ϵ20m/2M2
ℓ , then

ϵ0 = Mℓ

√
2t

m
(66)

Hence, with the probability at least 1− e−t > 0 , we have

γϵρ+ Ex∼D̂XA
ϕγϵ

(w0;x) ≤ sup
wc(DX′ ,DXA)≤ρ

Ex∼DX′ ℓ (fw0
;x) + ϵ+Mℓ

√
2t

m
, (67)

which implies that with the probability at least 1− e−t > 0 ,

sup
Wc(DX′ ,D̂XA)≤ρ

Ex∼DX′ ℓ (fw0 ;x) ≤ sup
Wc(DX′ ,DXA)≤ρ

Ex∼DX′ ℓ (fw0 ;x) + ϵ+Mℓ

√
2t

m
, (68)

because

γϵρ+ Ex∼D̂XA
ϕγϵ (w0;x) ≥ sup

Wc(DX′ ,D̂XA)≤ρ

Ex∼DX′ ℓ (fw0 ;x) (69)

By setting ϵ = Mℓ

√
2t/m and ρ = 0, we complete this proof.

Lemma 3. If

• 0 ≤ ℓ(fw;x, y) ≤Mℓ ;

• ℓ(·;x, y) is L-Lipschitz w.r.t. norm ∥ · ∥, i.e., for any (x, y) ∈ X × Y , and w,w′ ∈ W ,

|ℓ(fw;x, y)− ℓ (fw′ ;x, y)| ≤ L ∥w −w′∥ , (70)

• the parameter spaceW ⊂ Rd′
satisfies that

diam(W) = sup
w,w′∈W

∥w −w′∥ < +∞, (71)

then with the probability at least 1− e−t > 0 , we have that for any w ∈ W ,
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E(x,y)∼DXlYl
ℓ(fw;x, y)− 1

n

n∑
i=1

ℓ
(
fw;xi

l, y
i
l

)
≤b0

√
Mℓ diam(W)Ld′

n
+Mℓ

√
2t

n

(72)

where b0 is a uniform constant.

Proof. The proof is similar to Corollary 1 in Sinha et al. (2018). Note that

F = {ℓ(fw;x, y) : w ∈ W}, (73)

and ℓ(·;x, y) is L-Lipschitz w.r.t. norm ∥ · ∥ , therefore,

N (F ,Mℓϵ, L
∞) ≤ N (W,Mℓϵ/L, ∥ · ∥)

≤
(
1 +

diam(W)L

Mℓϵ

)d′

,
(74)

which implies that

∫ 1

0

√
log (N (F ,Mℓϵ, L∞)dϵ

≤
√
d′
∫ 1

0

√
log

(
1 +

diam(W)L

Mℓϵ

)
dϵ

≤
√
d′
∫ 1

0

√
diam(W)L

Mℓϵ
dϵ = 2

√
diam(W)Ld′

Mℓ
.

(75)

By Lemma 1, we obtain this result.

Lemma 4. If 0 ≤ ℓ(fw ◦G; s, c, y) ≤Mℓ , then with the probability at least 1− e−t > 0 , we have that for any w ∈ W

E(x,y)∼DXlYl
max
s∈SΩ

ℓ(fw ◦G; s, c, y)− 1

n

n∑
i=1

max
s∈SΩ

ℓ
(
fw ◦G; s, cil, y

i
l

)
≤ b0Mℓ√

n

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ+Mℓ

√
2t

n

(76)

,where b0 is a uniform constant.

Proof. The proof is similar to the proof of Lemma 1.

Lemma 5. If 0 ≤ ℓ(fw ◦G; s, c, y) ≤Mℓ , then for a fixed w0 ∈ W , with the probability at least 1− e−t > 0 ,

1

n

n∑
i=1

max
s∈SΩ

ℓ
(
fw ◦G; s, cil, y

i
l

)
− E(x,y)∼DXlYl

max
s∈SΩ

ℓ(fw ◦G; s, c, y) ≤Mℓ

√
2t

n
. (77)

Proof. The proof is similar to the proof of Lemma 2.
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Lemma 6. If

• 0 ≤ ℓ(fw ◦G; s, c, y) ≤Mℓ ;

• ℓ(·;x, y) is L-Lipschitz w.r.t. norm ∥ · ∥, i.e., for any (x, y) ∈ X × Y , and w,w′ ∈ W ,

|ℓ(fw;x, y)− ℓ (fw′ ;x, y)| ≤ L ∥w −w′∥ , (78)

• the parameter spaceW ⊂ Rd′
satisfies that

diam(W) = sup
w,w′∈W

∥w −w′∥ < +∞, (79)

then with the probability at least 1− e−t > 0 , we have that for any w ∈ W ,

E(x,y)∼DXlYl
max
s∈SΩ

ℓ(fw ◦G; s, c, y)− 1

n

n∑
i=1

max
s∈SΩ

ℓ
(
fw ◦G; s, cil, y

i
l

)
≤b0

√
Mℓ diam(W)Ld′

n
+Mℓ

√
2t

n

(80)

where b0 is a uniform constant.

Proof. The condition (78) is equivalent to

• ℓ(·;G(s, c), y) is LG-Lipschitz w.r.t. norm ∥ · ∥, i.e., for any (s, c, y) ∈ S × C × Y , and w,w′ ∈ W ,

|ℓ(fw ◦G; s, c, y)− ℓ (fw′ ◦G; s, c, y)| ≤ LG ∥w −w′∥ , (81)

Then the proof is similar to the proof of Lemma 3.

B. Details of Realization
B.1. MODE-F: Fourier-based MODE

Fourier-based Transfer. The Fourier-based transfer has been used in many domain generalization methods. This transfer
method is considered able to separate the stylistic information from the semantic information by using the discrete Fourier
transform to decompose the image into its amplitude and phase, and then create more samples of different styles using
different mixing methods for amplitude.

For a image x, its discrete Fourier transformation F(x):

F(x)(u,v) =
H−1∑
h=0

W−1∑
w=0

x(h,w)e−j2π( h
H u+ w

W v) (82)

F−1(x) is defined as the discrete inverse Fourier transformation. And both of these transformations can be implemented
using FFT and do not require additional neural networks.

After discrete Fourier transformation, the amplitude and phase are defined as:

A(x)(u,v) =
[
R2(x)(u,v) + I2(x)(u,v)

]1/2
(83)

P(x)(u,v) = arctan

[
I(x)(u,v)

R(x)(u,v)

]
(84)

where R(x) and I(x) represent the real and imaginary part of F(x), respectively.
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In (Xu et al., 2021), Fourier-based data augmentation is implemented by:

Âγ (x) = (1− λ)A (x) + λA (x′) (85)

x̂ = F−1
[
Âγ (x) (u,v) ∗ e−j∗P(x)(u,v)

]
(86)

where x′ represents randomly selected image, λ ∼ U(0, η), and the hyperparameter η controls the strength of the
augmentation.x̂ represents the augmented images.

Adapt Fourier-based Transfer. Although the previous Fourier-based transfer methods have achieved good results in many
domain generalization methods (Xu et al., 2021; Lv et al., 2022), our approach requires that the transformation method used
should be controllable. More specifically, It means that the direction of style change in the transformation process can be
controlled by some parameters, and these parameters can be updated regularly in the process.

To meet the requirements, since a single image could not provide a sufficient amount of style, we randomly select M
images x1,x2, · · · ,xM as style providers and calculate their amplitudes A (x1) ,A (x2) , · · · ,A (xM ), and then acquire
their linear combination of amplitudes:

Âγ (x) = γ[α0A (x) +

M∑
i=1

αiA (xi)] + (1− γ)A (x) (87)

x̂ = F−1
[
Âγ (x) (u,v) ∗ e−j∗P(x)(u,v)

]
(88)

where α0, α1, · · · , αM are the parameter of linear weighted which could be updated, γ is hyperparameter to determine what
percentage of the amplitude is involved in the searching.

By controlling the parameter α0, α1, · · · , αM , we can control the changes in the augmented output’s style.

Adversarial-attacks-inspired Update Strategy. Motivated by these theoretical insights, in each iteration, the parameters
α0, α1, · · · , αM will be updated by maximizing the empirical risk of the augmented sample, so that we could guide the
augmented sample to be closer to the distribution with highest empirical risk.

Inspired by Adversarial attacks (Szegedy et al., 2014; Goodfellow et al., 2015; Madry et al., 2018; Zhang et al., 2020b), to
speed up the searching process, after the gradient backpropagation, we update the parameters α0, α1, · · · , αM using the
gradient’s direction and fixed step size:

α̃k = αk−1 + µ sign
(
∇αℓ(fw; x̂k−1, y)

)
(89)

αk
l = α̃k

l /

M∑
i=0

α̃k
i (90)

where αk = [αk
0 , α

k
1 , · · · , αk

M ]⊤, µ is the step size, x̂k comes from Equ Equ 87, Equ 88 with αk, ℓ is standard Cross-entropy
loss, fw is the network. Equ 90 means that since the sum is limited to 1, the parameters α0, α1, · · · , αM are normalized
after each update.

After K iterations in inner optimization, we get αK , and then we calculate x̂final using Equ 87, Equ 88 and αK .

Finally, to maintain the category label and thus enforce semantic consistency, we require that the generated sample x̂final is
classified into the same category together with the original sample x, and calculate the total loss to update network fw:

LMODE = (1− β)ℓ(fw;x, y) + βℓ(fw; x̂final, y) (91)

where ℓ is standard Cross-entropy loss, β is hyperparameter to control the influence of augmented images.

The full Fourier-based training algorithm is shown in Algorithm 2 and Figure 7.

B.2. MODE-A: AdaIN-based MODE

Neural Style Transfer. Although this Fourier-based transfer method has been widely used in many domain generalization
methods, it still has obvious disadvantages: most of the changes in the generated augmented image are reflected in adding
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Figure 7. Fourier-based algorithm approach. The top left picture is the input picture, and the rest are the amplitude provider. In an iteration,
the controlling parameters α are used to mix the amplitudes to obtain a new amplitude, together with the phase of the original input
image to generate an augmented image. The augmented is input to the network to calculate the loss, and the controlling parameters α are
updated by maximizing the loss.

Figure 8. AdaIN-based approach. The top left image is the input content image, and the rest are the style provider. In an iteration, the
controlling parameters α are used to mix the mean and std to obtain new mean and std, which is applied to the normalized feature map of
the original input content image to generate an augmented image. The augmented is input to the network to calculate the loss, and the
controlling parameters α is updated by maximizing the loss.
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Algorithm 2 Fourier-based MODE
Input: data xi, batch size n, number of iterations K in inner optimization, step size µ, number of amplitude providers M ,
network architecture parametrized by w, hyperparameter β and γ
Output: Robust network fw
Randomly initialize network fw, or initialize network with pre-trained configuration
repeat

Read mini-batch x = [x1, ...,xn] from training set
Calculate their phase and amplitude as [P1, ..., Pn], [A1, ..., An], respectively
# Exploration
for i = 1 to n (in parallel) do

Randomly select M other image’s amplitudes in B as amplitude providers [Â1, ..., ÂM ]
Initialize α0, α1, · · · , αM as α0

for k = 1 to K do
Calculate x̂k

i using Equ 87, 88 and αk−1

Update αk using Equ 89, 90
end for
Calculate x̂final

i using Equ 87, 88 and αK

end for
# Update Model
Calculate LMODE using Equ 91
Update w by performing one step gradient update using∇wLMODE

until training converged

Figure 9. The overall approach. Using existing generation methods like Style trans, MODE could create more aggressive samples by
updating the controlling parameters α through multiple steps, inspired by Adversarial attack.

irregular color blocks and textures to the original image, which is rarely seen in reality. At the same time, compared with the
good results applied to some low-resolution datasets such as handwritten digit datasets, when applied to some real-world
high-resolution datasets, the generated results lacking authenticity are also difficult to be satisfactory. It prompts us to
consider other style transfer methods with better results.

Neural Style Transfer (Huang & Belongie, 2017) has developed rapidly in recent years. Compared with the Fourier-based
method, using the pre-trained neural network model to process the image, the results generated by neural style transfer are
usually more authentic. AdaIN (Huang & Belongie, 2017) is one of the representative methods of neural style transfer. It
uses the mean and std of feature map output by the fixed encoder to represent style information and trains a decoder to
restore stylized images from the feature map whose mean and std had been changed.

To apply AdaIN in our approach, we use the mean and std introduced above to represent the non-semantic factor S and use
the normalized feature map to represent the semantic factor C.
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AdaIN consists of an encoder E, a decoder D, and a mean-std processing module for the feature map. Encoder E will
process input content image x and style image x̂ into feature map z = E(x), ẑ = E(x̂), respectively. And then mean-std
processing module will calculate the mean and std of the z and ẑ separately:

µ(z) =
1

HW

H∑
h=1

W∑
w=1

zc,h,w (92)

σ(z) =

√√√√ 1

HW − 1

H∑
h=1

W∑
w=1

(zc,h,w − µ(z))
2 (93)

where z should be a feature map of shape C ×H ×W with C,H,W being the number of channels, height, and width.

After obtaining the µ(z),σ(z),µ(ẑ),σ(ẑ), module will control their mixing by hyperparameter λ :

µ̃(z, ẑ, λ) = λµ(z) + (1− λ)µ(ẑ) (94)
σ̃(z, ẑ, λ) = λσ(z) + (1− λ)σ(ẑ) (95)

where 0 ≤ λ ≤ 1 is the hyperparameter to control the level of stylization

And then mean-std processing module will apply the mixed mean and std to the normalized feature map of the content
image :

z̃ = µ̃(z, ẑ, λ) + σ̃(z, ẑ, λ)
z− µ(z)

σ(z)
(96)

where z̃ is the output feature map.

Finally, the decoder D will process the output feature map z̃ to restore stylized images x̃ = D(z̃).

Adapt AdaIN Transfer. Original AdaIN style transfer can only control the degree of stylization but not the direction of
stylization. We should make AdaIN style transfer controllable, i.e. the direction of style change in the transformation process
can be controlled by some parameters, and these parameters can be updated regularly in the process.

To satisfy this requirement, since AdaIN use mean and std of feature map to represent style information, we randomly
select M images x1,x2, · · · ,xM as style providers and calculate their feature map output using encoder z1 = E(x1), z2 =
E(x2), · · · , zM = E(xM ), and finally calculate their mean and std of the feature map µ (z1) ,µ (z2) , · · · ,µ (zM ),
σ (z1) ,σ (z2) , · · · ,σ (zM ), and then acquire their linear combination of mean and std:

µ̃(z, z1,··· ,M , α0,··· ,M ) = α0µ(z) +

M∑
i=1

αiµ(zi) (97)

σ̃(z, z1,··· ,M , α0,··· ,M ) = α0σ(z) +

M∑
i=1

αiσ(zi) (98)

And then apply the linearly mixed mean and std to the normalized feature map of content image z, and use the decoder D to
restore stylized images x̃:

z̃ = µ̃(z, z1,··· ,M , α0,··· ,M )

+ σ̃(z, z1,··· ,M , α0,··· ,M )
z− µ(z)

σ(z)

(99)

x̃ = D(γz̃+ (1− γ)z) (100)

where γ is hyperparameter to determine what percentage of the amplitude is involved in the Exploration.

Adversarial-attacks-inspired Update Strategy. Motivated by these theoretical insights, in each iteration, the parameters
α0, α1, · · · , αM will be updated by maximizing the empirical risk of the augmented data, so that we could guide the
augmented data to be closer to the distribution with highest empirical risk.
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Inspired by adversarial attacks (Madry et al., 2018; Szegedy et al., 2014; Goodfellow et al., 2015; Zhang et al., 2020b), to
speed up the process, after the gradient backpropagation, we update the parameters α0, α1, · · · , αM using the gradient’s
direction and fixed step size:

α̃k = αk−1 + µ sign
(
∇αℓ(fw; x̂k−1, y)

)
(101)

αk
l = α̃k

l /

M∑
i=0

α̃k
i (102)

where αk = [αk
0 , α

k
1 , · · · , αk

M ]⊤, µ is the step size, x̂k comes from Equ 97, 98, 99, 100 with αk, ℓ is standard Cross-entropy
loss, fw is the network. Equ 102 means that since the sum is limited to 1, the parameters α0, α1, · · · , αM are normalized
after each update.

After K iterations in inner optimization, we get αK , and then we calculate x̂final using Equ 97, 98, 99, 100 and αK .

Finally, we use the original image and augmented image to compute the total loss :

LMODE = (1− β)ℓ(fw;x, y) + βℓ(fw; x̂final, y) (103)

where ℓ is standard Cross-entropy loss, β is hyperparameter to control the influence of augmented images.

The full AdaIN-based training algorithm is shown in Algorithm 3 and Figure 8. The overall approach is shown in Figure 9.

Algorithm 3 AdaIN-based MODE
Input: data xi, batch size n, number of iterations K in inner optimization, step size µ, number of style providers M ,
network architecture parametrized by w, hyperparameter β and γ
Output: Robust network fw
Randomly initialize network fw, or initialize network with pre-trained configuration
repeat

Read mini-batch x = [x1, ...,xn] from training set
Calculate their feature map [z1 = E(x1), · · · , zn = E(xn)]
Calculate their mean and std of feature map [µ(z1), · · · ,µ(zn)], [σ(z1), · · · ,σ(zn)] using Equ 94, 95
# Exploration
for i = 1 to n (in parallel) do

Randomly select M other image’s mean and std as style providers [µ1, ..., µM ], [σ1, ..., σM ]
Initialize α0, α1, · · · , αM as α0

for k = 1 to K do
Calculate x̂k

i using Equ 97, 98, 99, 100 and αk−1

Update αk using Equ 101, 102
end for
Calculate x̂final

i using Equ 97, 98, 99, 100 and αK

end for
# Update Model
Calculate LMODE using Equ 103
Update w by performing one step gradient update using∇wLMODE

until training converged

C. Discussion
C.1. Why exploring the worst-case for each sample rather than data distribution is more suitable

MODE explores the worst case for each sample, namely, minE[maxℓ(x, y)]. In contrast, DRO performs exploration for the
data distribution, namely, minmaxE[ℓ(x, y)].

Restricted capacity for searching distribution may make it hard to find the worst-case distribution. In contrast, the restricted
capacity for searching worst-case samples is relatively easy for deep models (Su et al., 2019).
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Moreover, it is challenging to exactly estimate a distribution under DG scenarios. Specifically, if we use a batch of samples
to estimate and update the distribution, the estimated distribution could be imprecise, leading to bad explorations. But if
we use all samples for the estimation in each iteration, the computational complexity could be excessive, particularly for
high-resolution and large-scale datasets (e.g., DomainNet with 0.6M 224x224 images). A possible solution to address the
challenge is to use the dual method (dual theorems for optimization need to be developed) for simplification. However, it is
beyond the scope, as we mainly propose to perform moderately distributional exploration for DG. Thus, we will leave it as
our future work. In contrast, performing sample-level exploration makes the distribution estimation unnecessary, bypassing
the above issues.

C.2. MODE does not require domain ID

MODE does not require domain ID, as demonstrated in our theoretical proof and Algorithms. However, Domain ID, in
certain situations, may provide a marginal performance gain (see Table below).

Table 3. The Impact of the Domain ID on MODE-A OfficeHome
MODE-A OfficeHome A C P R Avg.

with domain ID 60.0 57.3 74.0 75.7 66.7
without domain ID 60.1 57.0 74.2 76.0 66.8

C.3. Whether learnable λ can bring additional improvements

In the initial design, we merely thought of a simple approach, where λ stands for the ratio of each domain. Namely, λ = ni

N ,
where ni is the number of samples in the ith domain and N denotes the total number.

We conduct experiments to investigate whether learnable λ (such as the way in Group DRO) can bring additional improve-
ments. The results are shown below. We can see that making λ learnable can bring a certain performance gain, compared
with a fixed λ.

Table 4. Leave-one-domain-out classification accuracies (in %) on PACS with Learnable λ

MODE-F A C P S Avg.
Fixed λ 84.5±0.6 80.4±0.8 95.5±0.2 82.2±0.7 85.7

Learnable λ 84.1±0.7 81.2±0.9 95.1±0.3 83.6±0.4 86.0
MODE-A A C P S Avg.

Fixed λ 84.4±0.9 81.9±0.9 95.2±0.3 85.8±0.3 86.9
Learnable λ 85.5±1.2 81.7±0.6 95.2±0.4 85.5±0.9 87.1

C.4. Why randomly select the style providers

We choose to randomly select other images as style providers instead of using fixed images as providers. The motivation is
straightforward. Randomly selecting samples can diversify the styles used for exploration. Theoretical results indicate a
trade-off between the size of the search space in exploration, while exploring more styles can help improve performance.
Therefore, we provide different search spaces for each exploration.

To further verify the perspective, we conducted experiments under various experimental settings. In our experiments, the
only difference between the two settings is whether the style provider is fixed or not. The results are presented in the
following tables. Built upon the results, we find that randomly selecting style providers can indeed enhance the model’s
performance, demonstrating the rationality of the random selection mechanism.

Inspired by the mentioned approach of fixed-style providers, it is interesting to explore whether there exist optimal style
providers for a given sample. This is an interesting and challenging problem that we would like to explore in our future
work.
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Table 5. Leave-one-domain-out classification accuracies (in %) on PACS with Fixed Style Provider
MODE-F A C P S Avg.
Randomly 84.5±0.6 80.4±0.8 95.5±0.2 82.2±0.7 85.7

Fixed 83.1±0.5 79.2±0.7 95.4±0.4 81.1±0.3 84.4
MODE-A A C P S Avg.
Randomly 84.4±0.9 81.9±0.9 95.2±0.3 85.8±0.3 86.9

Fixed 82.4±0.7 80.6±0.2 95.2±0.2 83.2±1.0 85.3

C.5. Why MODE-A outperforms MODE-F

The mentioned two realizations are related to the semantic and non-semantic partition. Thus, a possible explanation for
the difference in model performance is that these two approaches have different abilities in partitioning semantic and
non-semantic factors.

Regarding MODE-A, we use AdaIN (Huang & Belongie, 2017; Li et al., 2022) as the partition mechanism. AdaIN separates
the semantic and non-semantic factors by processing the feature maps output by the model. The statistical features of the
feature maps, such as mean and variance, are used as a good representation of the non-semantic factors, while the normalized
feature maps are used as a good representation of the semantic factors. AdaIN creates new samples with different styles by
applying different mean and std to the normalized feature map. Regarding MODE-F, we use the Fourier-based method (Xu
et al., 2021) as the partition mechanism. The Fourier-based method assumes that the amplitude spectrum contains more style
information, and the phase spectrum contains more semantic information. The Fourier-based method creates new samples
with different styles by adjusting the amplitude spectrum of the samples.

In the Fourier-based method, it is difficult to produce a reasonable stylized image by directly adjusting the amplitude
spectrum. This often adds some chaotic and disordered color blocks to the generated image, which are unlikely to occur
in the real world and may even affect semantic factors. On the other hand, AdaIN with the help of a pre-trained network
can combine the low-level style features with the original semantics of the image in a reasonable way, in line with human
intuition. These more reasonable images with different styles will enable the model to better learn the distinctions and
connections between semantic and non-semantic factors.

Furthermore, we believe that the difference between domains is not limited to the style difference that Fourier and AdaIN
target. For example, viewing angle and distance of objects in images are not something that Fourier and AdaIN can change,
but these kinds of domain shifts often exist in reality. However, we also believe that selecting appropriate mechanisms to
address various domain shifts will consistently yield favorable outcomes with our framework.

C.6. More comparisons of work related to low confidence issues

Liu et al. (2021; 2022a) focuses on the uncertainty set in the DRO problem, and a Wasserstein distance is employed
to determine the uncertainty. In contrast, MODE addresses the challenge when applying DRO to DG problems, where
the overly large uncertainty set is shrunk to a subset through a semantic and non-semantic partition. Our semantic and
non-semantic strategy is a unique contribution that distinguishes MODE from existing DRO methods (Liu et al., 2021;
2022a).

Previous work (Liu et al., 2021; 2022a) uses adversarial attacks to generate new samples for exploitation. In contrast, MODE
employs style transformation methods commonly used in DG to generate new samples.

GroupDRO (Sagawa et al., 2020) explores the worst-case by leveraging group information to re-weight groups. In contrast,
MODE explores the worst-case by constructing new samples.

Geometric Wasserstein DRO (Liu et al., 2022b) uses data geometry to construct more reasonable and effective uncertainty
sets. In contrast, MODE shrinks the uncertainty set by introducing a semantic and non-semantic partition.

Topology-aware robust optimization (TRO) (Qiao & Peng, 2023) constructs the uncertainty using the data topology. In
contrast, MODE constructs the uncertainty subset by constraining the search space with the same semantic factors. Thus,
the main difference lies in how to constrain the uncertainty set.

Besides the above difference, previous methods perform exploration for the data distribution, namely, minmaxE[ℓ(x, y)].
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In contrast, MODE explores the worst case for each sample, namely, minE[maxℓ(x, y)].

C.7. More comparisons of work related to data augmentation for non-semantic information

DSU (Li et al., 2022) focuses on addressing the uncertain nature of domain shifts by modeling feature statistics as uncertain
distributions. This is achieved through the use of AdaIN, where non-semantic factors (i.e., feature map’s mean and std)
are replaced with randomly chosen values from the modeled distributions. By effectively modeling domain shifts with
uncertainty, DSU significantly enhances the network’s generalization ability.

CrossNorm and SelfNorm (Tang et al., 2021) address the problem of domain shift by developing two simple and efficient
normalization methods that can reduce the non-semantic domain shift between different distributions. It has been discovered
that processing the mean and variance of channels for samples or feature maps can help improve generalization ability.
These methods are complementary and can be applied to various fields.

In contrast, we take a different approach to solving the problem of domain shift. We aim to improve the model’s overall
generalization ability by exposing it to more difficult domains during training. This min-max game is common in DRO, but
simply applying DRO does not always lead to good results. Instead, we focus on constraining the exploration of semantic
and non-semantic factors and propose a theoretical framework to demonstrate the feasibility of our approach.

We theoretically prove that actively improving the model’s performance on a range of data distributions can help enhance its
overall generalization ability, even if the final test domain is not included in the range of distributions explored. To achieve
this, we use Fourier and AdaIN and actively search for the most challenging domains before each update step.

By generating new samples, we enable the model to explore more difficult domains. In contrast, CrossNorm and SelfNorm
focus on designing a new normalization method that can be embedded into the model, processing the mean and variance of
channels of feature maps.

Although MODE and DSU both use AdaIN to generate samples, DSU models non-semantic factors as a multivariate
Gaussian distribution and randomly samples the factors within this distribution. In contrast, following our theoretical results,
we actively explore more challenging non-semantic factors in the space, resulting in more challenging samples each time.

Moreover, we highlight the difference between our method and previous works (Tang et al., 2021; Li et al., 2022) through an
empirical perspective. Specifically, we compare our baselines in experiments. We have since reproduced these two methods:

Table 6. Additional experiments about DSU (Li et al., 2022) and CNSN (Tang et al., 2021).
ResNet18 PACS A C P S Avg.

CNSN (Tang et al., 2021) 83.6±0.3 79.1±0.3 96.5±0.1 80.2±0.3 84.8
DSU (Li et al., 2022) 83.1±0.3 79.8±0.4 96.3±0.1 77.3±0.1 84.1

MODE-F 84.5±0.6 80.4±0.8 95.5±0.2 82.2±0.7 85.7
MODE-A 84.4±0.9 81.9±0.9 95.2±0.3 85.8±0.3 86.9

We can see that our method can outperform the baselines. Besides the performance gain, we realize that it is necessary to
consider the running time of each method. Accordingly, we also compare our method with our baselines, taking running
time and FLOPs into consideration.

Table 7. Running Time and FLOPs of ResNet18 PACS
ResNet18 PACS Running Time FLOPs

CNSN (Tang et al., 2021) 25min 1x
DSU (Li et al., 2022) 35min 1.2x

MODE-F 4h ∼8x
MODE-A 5h ∼9x

It can be observed that due to the presence of the inner step, our method takes much longer running time than our baselines
as the cost of promoting model performance. Thus, it is interesting to explore a more efficient approach to reduce the time
cost while improving model performance, like Shafahi et al. (2019); Zhang et al. (2019). We thank the reviewer for the
insightful comments and we will explore the exciting direction in our future work.
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Table 8. Performance Comparison on CNSN (Tang et al., 2021) with different number of epochs. All results are conducted on the PACS
dataset with Sketch(S) as the unknown target domain.

CNSN (Tang et al., 2021) num of epoch 50 epoch 100 epoch
Running Time (min) 30 59

Acc (%) 80.2 80.1

Table 9. Performance Comparison on different number of Inner Steps K in MODE-A. All results are conducted on the PACS dataset with
Sketch(S) as the unknown target domain.

K 0 (Random) 1 2 3 4 5 6 7 8 9 10
Running Time (min) 41 68 95 122 157 189 211 242 278 301 331

Acc (%) 80.49 81.29 82.11 83.45 84.56 84.74 84.77 86.76 86.05 85.75 85.82

Our method is unable to adequately augment out-of-distribution (OOD) samples which have different semantic factors with
training domains (Wang et al., 2022).

D. More Result and Implementation Details
D.1. Datasets

VLCS (Torralba & Efros, 2011) consists of 10,729 images from four domains, namely Caltech (C), Labelme (L), Pascal(V),
Sun (S). There are five classes in each domain.

DomainNet (Peng et al., 2019) is a large-scale dataset designed for domain generalization, which contains 6.3 million
images from 345 categories covering a wide range of visual domains. It has 6 domains: ClipArt(C), Infograph (I), Painting
(P), Quickdraw (Q), Real (R) and Sketch (S).

Mini-Domainnet (Zhou et al., 2021a) is a highly challenging subset of DomainNet with a lower resolution (96x96) and
0.1M images. It has about 140K images with 126 classes and 4 domains: ClipArt(C), Painting (P), Real (R) and Sketch (S).

D.2. Implementation Details

Following the commonly used leave-one-domain-out strategy (Li et al., 2017; Xu et al., 2021), the model will be tested on
one domain after training on all other domains.

Basic Details For VLCS, we use a pre-trained AlexNet backbone. We train the network using SGD optimizer with learning
rate 5e-4, momentum 0.9, and weight decay 5e-4. We train the model for 50 epochs with batch size 32. The learning rate is
decayed by 0.1 every 40 epochs.

For DomainNet, we use a pre-trained ResNet50 backbone. We train the network using adam optimizer with learning rate
2e-4 and weight decay 1e-4. We train the model for 50 epochs with batch size 256. The learning rate is decayed by 0.1
every 30 epochs.

For Mini-DomainNet, we use a pre-trained ResNet18 backbone. We train the network using sgd optimizer with learning rate
5e-3 and weight decay 5e-4. We train the model for 60 epochs with batch size 256. Cosine learning rate scheduler is used.

Method-specific Details The method-specific details are shown in D.4.

D.3. Experimental Results

Results on VLCS We show the Leave-one-domain-out classification accuracies (in %) on VLCS on Tab D.3. It can be
observed that our approach achieves the highest average accuracy, but our result is only a little better than other methods. We
think that it is because VLCS is different from other datasets in domain shift. All the data in VLCS are real-world images
having complex compositions and background, which can’t be handled well by Fourier-based transfer and AdaIN transfer.
There will be better results by choosing a more suitable generation method to apply to our framework.

Results on DoaminNet We show the Leave-one-domain-out classification accuracies (in %) on VLCS on Tab 11. It can be
observed that our approach achieves the higher average accuracy.
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Table 10. Leave-one-domain-out classification accuracies (in %) on VLCS in AlexNet. The best and second-best results are highlighted in
bold and underlined, respectively.

Dataset VLCS
Methods C L V S Avg.

DeepAll (Zhou et al., 2020a) 96.3 59.7 70.6 64.5 72.8
MLDG (Li et al., 2018a) 97.9 59.5 66.4 64.8 72.2
Epi-FCR (Li et al., 2019) 94.1 64.3 67.1 65.9 72.9
MAML (Finn et al., 2017) 97.8 58 67.1 64.1 71.8

Jigen (Carlucci et al., 2019) 96.9 60.9 70.6 64.3 73.2
MMLD (Matsuura & Harada, 2020) 96.6 58.7 72.1 66.8 73.5

CICF (Li et al., 2021) 97.8 60.1 69.7 67.3 73.7
MASF (Dou et al., 2019) 94.8 64.9 69.1 67.6 74.1

MODE-F (ours) 97.87 61.17 69.54 68.73 74.33
MODE-A (ours) 96.92 63.05 70.28 67.97 74.55

Table 11. Leave-one-domain-out classification accuracies (in %) on DomainNet in ResNet50.
Methods Clipart Infograph Painting Quickdraw Real Sketch Avg.
Baseline 66.35 23.01 50.48 13.82 63.57 50.79 44.67
MODE-F (ours) 68.50 23.14 53.04 15.92 63.72 54.99 46.55
MODE-A (ours) 68.26 23.39 52.45 16.78 63.05 53.96 46.31

Results on Mini-DoaminNet We show the Leave-one-domain-out classification accuracies (in %) on VLCS on Tab 12. It
can be observed that our approach achieves the higher average accuracy.

Table 12. Leave-one-domain-out classification accuracies (in %) on Mini-DomainNet in ResNet18.
Methods Clipart Painting Real Sketch Avg.
Baseline 59.04 47.20 56.18 51.74 53.54

MODE-F (ours) 60.63 48.09 54.92 55.39 54.75
MODE-A (ours) 63.56 48.25 55.87 52.69 55.09
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D.4. The Overall Method-specific Details

The method-specific details of our approach are shown in Table D.4 and Table D.4.

Table 13. The method-specific details of the Fourier-based approach.
Dataset Domain Number of inner steps K Inner step size µ β γ The number of style providers M

Digit-DG All 10 0.05 0.3 1 3
DomainNet All 7 0.05 0.3 1 12

Others All 10 0.05 0.3 1 8

Table 14. The method-specific details of the AdaIN-based approach.
Dataset Domain Number of inner steps K Inner step size µ β γ The number of style providers M
PACS All

10 0.05 0.4

1 3 (Each domain provide one)
OfficeHome C

other 0.3 8VLCS All
Mini-DomainNet All 1DomainNet All 5 5 (Each domain provide one)
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Figure 10. The average loss of augmented samples in different inner steps to the current model changes with the number of epochs in a
training process. The left results are conducted on the PACS dataset with Art-painting (A) as the unknown target domain; the right results
are conducted with Sketch (S) as the unknown target domain.
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Figure 11. The effect of the number of inner steps. The left results are conducted on the PACS dataset with Art-painting (A) as the
unknown target domain; the right results are conducted with Sketch (S) as the unknown target domain.
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D.5. Visualization Results

Figure 12. The changes of images during exploration when Ω is too large in our approach. In each row, the leftmost image is the original
image, and from left to right is the result of each inner explore step of this image. The results are conducted on the PACS dataset with
Art-painting (A) as the target with γ = 1 and M = 10.
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Figure 13. The changes of images during exploration in our approach. In each row, the leftmost image is the original image, and from left
to right is the result of each inner explore step of this image.
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