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Abstract
Few-shot learning aims to transfer the knowledge
acquired from training on a diverse set of tasks to
unseen tasks from the same task distribution with
a limited amount of labeled data. The underlying
requirement for effective few-shot generalization
is to learn a good representation of the task mani-
fold. This becomes more difficult when only a lim-
ited number of tasks are available for training. In
such a few-task few-shot setting, it is beneficial to
explicitly preserve the local neighborhoods from
the task manifold and exploit this to generate arti-
ficial tasks for training. To this end, we introduce
the notion of interval bounds from the provably
robust training literature to few-shot learning. The
interval bounds are used to characterize neighbor-
hoods around the training tasks. These neighbor-
hoods can then be preserved by minimizing the
distance between a task and its respective bounds.
We then use a novel strategy to artificially form
new tasks for training by interpolating between
the available tasks and their respective interval
bounds. We apply our framework to both model-
agnostic meta-learning as well as prototype-based
metric-learning paradigms. The efficacy of our
proposed approach is evident from the improved
performance on several datasets from diverse do-
mains compared to current methods.

1. Introduction
Few-shot learning problems deal with diverse tasks consist-
ing of subsets of data drawn from the same underlying data
manifold and associated labels. The joint distribution of
data and corresponding labels which governs the sampling
of such tasks is often called the task distribution (Finn et al.,
2017; Yao et al., 2022). Consequently, few-shot learning
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Figure 1. Illustration of the proposed interval bound propagation–
aided few-shot learning setup (best viewed in color): We use inter-
val arithmetic to define a small ϵ-neighborhood around a training
task Ti sampled from the task distribution p(T ). IBP is then used
to obtain the bounding box around the mapping of the said neigh-
borhood in the embedding space fθS given by the first S layers of
the learner fθ . While training the learner fθ to minimize the clas-
sification loss LCE on the query set Dq

i , we additionally attempt
to minimize the losses LLB and LUB , forcing the ϵ-neighborhood
to be compact in the embedding space as well.

methods attempt to leverage the knowledge acquired by
training on a large pool of such tasks to easily generalize to
unseen tasks from the same distribution, using only a few
labeled examples. We hereafter refer to the support of the
task distribution as the task manifold, which is distinct from
but closely related to the data manifold associated with the
data distribution. Since the unseen tasks are sampled from
the same underlying manifold governing the task distribu-
tion, we should ideally learn a good representation of the
task manifold by preserving the neighborhoods from the
high-dimensional manifold in the lower-dimensional feature
embedding (Tenenbaum et al., 2000; Roweis & Saul, 2000;
Van der Maaten & Hinton, 2008). However, the labels as-
sociated with a task can define any arbitrary partitioning
of the data. Therefore, we may preserve the neighborhood
for a task by simply conserving the neighborhoods for the
corresponding subset of the data manifold in the feature
embedding learned by the few-shot learner. This facilitates
effective few-shot generalization to new tasks as the layers
which conserve the neighborhoods would likely require very
little adaptation, and only the subsequent layers of the net-
work will need to be updated. However, existing few-shot
learning methods lack an explicit mechanism for achiev-
ing this. Further, real-world few-shot learning scenarios
like rare disease detection may have a smaller number of
training tasks required for effective learning due to various
constraints such as data collection costs, privacy concerns,

1



Interval Bound Interpolation for Few-shot Learning with Few Tasks

and/or data availability in newer domains (Yao et al., 2022).
In such scenarios, few-shot learning methods are prone to
overfit the training tasks, thus limiting the ability to general-
ization to unseen tasks. Therefore, in this work, we develop
a strategy to explicitly constrain the feature embedding to
preserve neighborhoods from the high-dimensional task
manifold and to construct artificial tasks within these neigh-
borhoods in the feature space, to improve the performance
when a limited number of training tasks are available.

(a) (b)

Figure 2. Interval bound–based task interpolation (best viewed in
color): (a) Existing inter-task interpolation methods create new
artificial tasks by combining pairs of original tasks (blue ball).
However, depending on how flat the task-manifold embedding is at
the layer where interpolation is performed, the artificial tasks may
either be created close to the task-manifold (green cross) or away
from the task-manifold (red box). (b) The proposed interval bound–
based task interpolation creates artificial tasks by combining an
original task with one of its interval bounds (yellow ball). Such
artificial tasks are likely to be in the vicinity of the task manifold
as the interval bounds are forced to be close to the task embedding
by the losses LLB and LUB .

The proposed approach relies on characterizing the neigh-
borhoods from the high-dimensional task manifold and
propagating them through the network with the intent to
preserve the task neighborhood in the feature space. We
achieve this by employing the concept of interval bounds
from the provably robust training literature (Gowal et al.,
2019; Morawiecki et al., 2020), i.e., the axis-aligned bounds
for the activations in each layer, obtained using interval
arithmetic (Sunaga, 1958). Concretely, as shown in Figure
1, we first define a small ϵ-neighborhood for each few-shot
training task and then use Interval Bound Propagation (IBP;
Gowal et al., 2019) to obtain the bounding box around the
mapping of the corresponding neighborhood in the feature
embedding space. We then explicitly attempt to preserve
the ϵ-neighborhoods by minimizing the distance between
a task and its respective interval bounds in addition to op-
timizing the few-shot classification objective. We further
devise a mechanism to construct the artificial tasks by inter-
polating between a task and its corresponding IBP bounds.
It is important to notice that this setup is distinct from prov-
ably robust training for few-shot learning in that we do
not attempt to minimize (or calculate for that matter) the
worst-case classification loss.

Various methods have been proposed to mitigate the few-

task few-shot problem using approaches such as explicit
regularization (Jamal & Qi, 2019; Yin et al., 2019), intra-
task augmentation (Lee et al., 2020; Ni et al., 2021; Yao
et al., 2021), and inter-task interpolation to construct new
artificial tasks (Yao et al., 2022). While inter-task interpola-
tion has been shown to be the most effective among these
existing approaches, it suffers from the limitation that the
artificially created tasks may be generated away from the
task manifold depending on the curvature of the feature em-
bedding space, as there is no natural way to select pairs of
task which are close to each other on the manifold (Figure
2(a)). In contrast, the interval bounds obtained using IBP
are likely to be close to the original task embedding as we
explicitly minimize the distance between a task and its in-
terval bounds. Thus, using them for interpolation will likely
keep the generated tasks close to the manifold (Figure 2(b)).

In essence, the key contributions made in this article advance
the existing literature in the following ways:

1. In Section 4.1, we present, for the first time, a novel
method to synergize few-shot learning with interval
bound propagation (Gowal et al., 2019) to explicitly
lend the ability to preserve task neighborhoods in the
feature embedding space of the few-shot learner.

2. In Section 4.3, we propose the interval bound–based
task interpolation technique which can create new tasks
(as opposed to augmenting each individual task (Lee
et al., 2020; Ni et al., 2021; Yao et al., 2021)) by inter-
polating between a task sampled from the task distri-
bution and its interval bounds.

3. Unlike existing inter-task interpolation methods that
require paired tasks for interpolation (Yao et al., 2022),
our framework generates new tasks from only a single
task. This allows the proposed framework to be seam-
lessly integrated with few-shot learning paradigms.

In Section 5, we empirically demonstrate the effectiveness
of our proposed approach, in comparison to the recent prior
methods while making concluding remarks in Section 6.

2. Related works
Few-shot learning aims to generalize to new tasks using
only a few examples (Wang et al., 2020) through three ma-
jor strategies. First, one can augment the tasks at the data
level (Hariharan & Girshick, 2017). Second, the hypothe-
sis space can be constrained at the model level (Snell et al.,
2017). Third, the hypothesis search strategy at the algorithm
level can be improved (Finn et al., 2017). The problem of
few-task learning can be even more difficult when training
tasks are scarce in a few-task scenario. To train on few-task
datasets, some works directly impose regularization on the
few-shot learner (Jamal & Qi, 2019; Yin et al., 2019). An-
other line of work performs data augmentation on individual
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tasks (Lee et al., 2020; Ni et al., 2021; Yao et al., 2021). Fi-
nally, a third direction is to employ inter-task interpolation
to mitigate task scarcity (Yao et al., 2022). Our approach is
similar to the third category in that we create new artificial
tasks directly. But, we also differ from all of the methods
mentioned above in that we neither undertake intra-task aug-
mentation nor inter-task interpolation. Moreover, our novel
task augmentation strategy can work in conjunction with
both algorithm-level meta-learning as well as model-level
metric-learning methods.

Our technique relies on preserving the neighborhoods of
the task manifold in the learned feature embedding space.
This, in spirit, connects with the classical problem of man-
ifold learning. Traditional methods like ISOMAP (Tenen-
baum et al., 2000), LLE (Roweis & Saul, 2000), t-SNE
(Van der Maaten & Hinton, 2008), etc. aim to represent
high-dimensional data in lower-dimensional space while
preserving the local neighborhoods through manifold learn-
ing (Abukmeil et al., 2021). Recent deep manifold learning
methods mostly employ deep belief network (Lee et al.,
2009), variational auto-encoders (Connor et al., 2021; Ku-
mar & Poole, 2020), flow-based approaches (Brehmer
& Cranmer, 2020; Caterini et al., 2021), etc. Similarly,
here we repurpose IBP (Gowal et al., 2019) to define ϵ-
neighborhoods for few-shot learning tasks and constrain the
learned feature embedding to preserve the said neighbor-
hoods. IBP was originally proposed to build robust neural
networks. A way to build robust neural networks is to find
a differentiable upper bound on the verifiable violation of
specifications. Such upper bounds can then be directly op-
timized alongside the original loss (Mirman et al., 2018;
Raghunathan et al., 2018; Wong et al., 2018). IBP (Gowal
et al., 2019) follows this direction by explicitly minimizing
the worst-case loss inside the ϵ-neighborhood of an input
for an arbitrary network with some architectural constraints.
However, in our work, instead of building robust networks,
we repurpose IBP to characterize the ϵ-neighborhood to
learn better representation such that the generalization to
new tasks by a few-shot learner becomes easier. Moreover,
the bounds of the ϵ-neighborhood obtained through IBP give
us a direct way to construct new artificial tasks when the
number of available tasks is scarce.

3. Preliminaries
In a few-shot learning problem, we deal with tasks Ti ∼
p(T ). Each task Ti is associated with a dataset Di =
(Xi, Yi), that we further subdivide into a support set
Ds

i = (Xs
i , Y

s
i ) = {(xs

i,r, y
s
i,r)}

Ns
r=1 and a query set

Dq
i = (Xq

i , Y
q
i ) = {(xq

i,r, y
q
i,r)}

Nq

r=1. Given a learning
model fθ, where θ denotes the model parameters, few-
shot learning algorithms attempt to learn θ to minimize
the loss on the query set Dq

i for each of the sampled tasks
using the data-label pairs from the corresponding support

set Ds
i . Thereafter, the trained model fθ and the support

set Ds
j for new tasks Tj can be used to perform inference

on the corresponding query set Dq
j . In the following, we

discuss gradient-based meta-learning while the prototype-
based metric-learning is detailed in Appendix A.

Gradient-based meta-learning: In gradient-based meta-
learning, the aim is to learn initial parameters θ∗ such that a
typically small number of gradient update steps using the
data-label pairs in the support set Ds

i results in a model fϕi

that performs well on the query set of task Ti. During the
meta-training stage, first, a base learner is trained on mul-
tiple support sets Ds

i , and the performance of the resulting
models fϕi

is evaluated on the corresponding query sets
Dq

i . The meta-learner parameters θ are then updated so
that the base learner’s expected loss on query sets is min-
imized. In the meta-testing stage, the final meta-trained
model fθ∗ is fine-tuned on the support set Ds

j for the given
test task Tj to obtain the adapted model fϕj that can then be
used for inference on the corresponding query set Dq

j . Con-
sidering Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017) as an example, the bi-level optimization of the
gradient-based meta-learning is formulated as:

θ∗ ← argmin
θ

ETi∼p(T )[L(fϕi
;Dq

i )], (1)

where ϕi = θ− η0∇θL(fθ;Ds
i ) while η0 denotes the inner-

loop learning rate used by the base learner to train on Ds
i

for task Ti, and L is the loss function, which is usually the
cross-entropy loss for classification problems:

LCE = ETi∼p(T )[−
∑

r
log p(yqi,r|x

q
i,r, fϕi)]. (2)

Remark 3.1. For effective few-shot generalization to new
tasks, gradient-based meta-learning methods (or prototype-
based metric-learning methods) need to learn a good repre-
sentation of the task manifold. Since the unseen tasks are
sampled from the same task distribution supported by an
underlying task manifold, this can ideally be achieved by
preserving the neighborhoods from the high-dimensional
manifold in the lower-dimensional feature embedding, simi-
lar to long-standing manifold learning methods (Abukmeil
et al., 2021). However, the labels for a task may be con-
structed to define any arbitrary partition of the data, depend-
ing on the application domain. Therefore, it may be futile
to retain information about the partitioning imposed by past
tasks. One can instead choose to conserve the neighbor-
hoods in the subset of the data manifold corresponding to a
given task. This will encourage few-shot generalization as
the layers of the network which preserve the neighborhoods
are likely to require little update while only the subsequent
layers need to be tuned.

Therefore, in the following section, we start by discussing
IBP (Gowal et al., 2019) and show how it can be repurposed
to define a neighborhood around the samples for a given
task in the few-shot learning setup.
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4. Proposed Method
In the following subsections, we describe the notion of an
ϵ-neighborhood for a training task Ti using IBP and show
how preserving that can aid a few-shot learner fθ to learn
an efficient feature embedding, especially in few-task case.

4.1. Few-shot learning with interval bounds

Let us consider a neural network fθ consisting of a sequence
of transformations hl, (l ∈ {1, 2, · · · , L}) for each of its L
layers. We start from an initial input z0 = x to the network
along with lower bound z0(ϵ) = x− 1ϵ and upper bound
z0(ϵ) = x + 1ϵ for an ϵ-neighborhood around the input
x. In each of the subsequent layers l ∈ {1, 2, · · · , L} of
the network, we get an activation zl = hl(zl−1). IBP uses
interval arithmetic to obtain the corresponding axis-aligned
bounds of the form zl(ϵ) ≤ zl ≤ zl(ϵ) on the activations
for the l-th layer. Given the specific differentiable trans-
formation hl, interval arithmetic yields corresponding dif-
ferentiable lower and upper bound transformations zl(ϵ) =
hl(zl−1(ϵ), zl−1(ϵ)), and zl(ϵ) = hl(zl−1(ϵ), zl−1(ϵ)) (see
Appendix C). This ensures that each of the coordinates
zl,c(ϵ) and zl,c(ϵ) of zl(ϵ) and zl(ϵ) respectively, satisfies:

zl,c(ϵ) = min
zl−1(ϵ)≤zl−1≤zl−1(ϵ)

eT
chl(zl−1) and (3)

zl,c(ϵ) = max
zl−1(ϵ)≤zl−1≤zl−1(ϵ)

eT
chl(zl−1), (4)

where ec is the standard c-th basis vector. For multiple lay-
ers, such as fθS having the first S layers of fθ, the individual
transformations hl and hl for l ∈ {1, 2, · · · , S} can be com-
posed to obtain the corresponding functions f

θS and fθS ,
such that zS(ϵ) = f

θS (z0, ϵ), and zS(ϵ) = fθS (z0, ϵ).

Now consider the network fθ = fθL−S ◦ fθS where S (≤
L) is a user-specified layer number that demarcates the
boundary between the portion fθS of the model that focuses
on feature representation and the subsequent portion fθL−S

responsible for the classification. Given training task Ti,
the Euclidean distances between the embedding fθS (xq

i,r)
for the query instances and their respective interval bounds
f
θS (x

q
i,r, ϵ) and fθS (x

q
i,r, ϵ) is a measure of how well the ϵ-

neighborhood is preserved in the learned feature embedding:

LLB =
1

Nq

∑Nq

r=1
||fθS (xq

i,r)− fθS (x
q
i,r, ϵ)||

2
2 and (5)

LUB =
1

Nq

∑Nq

r=1
||fθS (xq

i,r)− fθS (x
q
i,r, ϵ)||

2
2. (6)

To ensure that the small ϵ-neighborhoods get mapped to
small interval bounds by the feature embedding fθS , we
can minimize the losses LLB and LUB in addition to the
classification loss LCE in (2). Notice that the losses LLB

and LUB are never used for the support instances xs
i,r.

Figure 3. Dynamic weights for MAML+IBP on miniImageNet
when γ is set to 1 for ease of visualisation.

4.2. Dynamic loss weighting

Attempting to minimize a naı̈ve sum of the three losses can
cause some issues. For example, weighing the classification
loss LCE too high essentially reduces the proposed method
to vanilla few-shot learning. On the contrary, assigning very
high weights to the interval losses LLB and/or LUB may
diminish learnability as the preservation of ϵ-neighborhoods
gets precedence over classification performance. Moreover,
such static weighting approaches are not capable of adapting
to (and consequently mitigating) situations where one of
the losses comes to unduly dominate the others. Thus, we
minimize a convex weighted sum L of the three losses:

L(t) =
∑

e∈{CE,LB,UB}
weLe(t), (7)

where t is the current training step and we(t) is the weight
for the corresponding loss Le, e ∈ {CE,LB,UB} at the
t-th training step, which is dynamically calculated based on
a softmax across the current values of the three losses:

we(t) =
exp(Le(t)/γ)∑

e′∈{CE,LB,UB} exp(Le′(t)/γ)
. (8)

The hyperparameter γ controls the relative importance of the
losses. If any of the losses become too large, the dynamic
weighing scheme strives to restore balance by assigning
very high weightage to the concerned loss, thus prioritizing
its minimization over that of the other losses. The changes
in the dynamic weights over training steps for IBP-aided
MAML (hereafter called MAML+IBP) using “4-CONV”
network (Vinyals et al., 2016) on the miniImageNet dataset
(Vinyals et al., 2016) is illustrated in Figure 3. We can
observe that while there is an explicit ordering to the mag-
nitude of the weights (and, therefore, the corresponding
losses) throughout the entire training run, the weights can
adapt to changes in loss values to maintain the status quo
among the different losses.

Motivating results: In Table 1, we demonstrate the ef-
fect of employing IBP-aided training for MAML using the
“4-CONV” network. Apart from vanilla MAML, we con-
sider two other baselines, (1) MAML+GL that uses the
distance between the original query set and its perturbed (by
additive Gaussian noise) version as an extra loss, and (2)
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Table 1. Accuracy and intra-task compactness of MAML+IBP.

Metric Algorithm miniImageNet tieredImageNet

MAML (Finn et al., 2017) 48.70±1.75% 51.67±1.81%
5-way 1-shot MAML+GL 48.70±0.97% 51.90±0.98%
Accuracy MAML+ULBL 49.43±0.90% 51.67±0.91%

MAML+IBP (ours) 50.76±0.83% 54.36±0.80%

MAML (Finn et al., 2017) 0.97±0.02 0.98±0.02
1-NN MAML+GL 0.96±0.02 0.98±0.02
Distance MAML+ULBL 0.94±0.02 0.97±0.02

MAML+IBP (ours) 0.90±0.02 0.96±0.02

MAML+ULBL that considers the distance between the up-
per and lower interval bounds as an additional loss (Moraw-
iecki et al., 2020) (further details in Appendix F.3). We see
that MAML+IBP achieves higher 5-way 1-shot classifica-
tion accuracy than the five contenders on the miniImageNet
and tieredImageNet (Ren et al., 2018) datasets (supporting
the conjecture in Remark 3.1). Moreover, we also illustrate
that the feature embedding learned by IBP-aided training
exhibits better intra-task compactness in terms of the mean
Euclidean distances from the nearest neighbor in the same
class for 100 query instances from 600 tasks in the feature
space characterized by fθS . Recent works (Ni et al., 2021;
Yao et al., 2022) have shown that augmenting the training
data with artificial tasks can improve performance in do-
mains with a scarcity of tasks. Thus, while IBP-aided train-
ing improves the performance of vanilla MAML (as well
as other baselines, see Appendix F.3), we are particularly
interested in the added advantage that it lends by facilitating
the generation of artificial tasks within the neighborhoods
defined by the interval bounds.

4.3. Interval bound–based task interpolation

Since minimizing the additional losses LLB and LUB is
expected to ensure that the ϵ-neighborhood around a task is
mapped to a small interval in the feature embedding space,
artificial tasks formed within such intervals are naturally ex-
pected to be close to the task manifold. Therefore, we create
additional artificial tasks by interpolating between an origi-
nal task and its corresponding interval bounds (i.e., either
the upper or the lower interval bound). In other words, for a
training task Ti, a corresponding artificial task T ′

i is charac-
terized by a support set Ds′

i = {(Hs′

i,r,y
s
i,r)}

Ns
r=1 in the em-

bedding space. The artificial support instances Hs′

i,r are ob-
tained as a sum of (1−λk)fθS (xs

i,r), (1−νk)λkfθS (x
s
i,r, ϵ),

and νkλkfθS (xs
i,r, ϵ), where k denotes the class to which

xs
i,r belongs, λk ∈ [0, 1] is sampled from a Beta distribution
Beta(α, β), and the random choice of νk ∈ {0, 1} dictates
which of the bounds is chosen randomly for each class. The
labels ys

i,r for the artificial task remain identical to that of

the original task. The query set Dq′

i for the artificial task is
also constructed analogously. We then minimize the mean
of the additional classification loss L′

CE for the artificial
task T ′

i and the classification loss LCE for the original task
Ti for query instances (also the support instances in case of

x

ϵ
H

′

LCE

LUB

y

LLB

f
θ

S f
θ

L−S

Ti

L
Softmax
weighting

Figure 4. Training of IBI (best viewed in color): For each query
data-label pair (x, y) in a given training task Ti, we start by defin-
ing a ϵ-neighborhood [x−1ϵ,x+1ϵ] around x. The bounding box
[f

θs
(x, ϵ), fθs(x, ϵ)] around the embedding fθS (x) after the first

S layers of the learner is found using IBP. In addition to the clas-
sification loss LCE , we also minimize the losses LLB and LUB

which respectively measure the distances of fθS (x) to f
θs
(x, ϵ)

and fθs(x, ϵ). A softmax across the three loss values is used to
dynamically calculate the convex weights for the losses, so as to
prioritize the minimization of the dominant loss(es) at any given
training step. For IBP-based interpolation, artificial tasks T ′

i are
created with instances H′ formed by interpolating both the sup-
port and query instances with their corresponding lower or upper
bounds. The mean of the classification loss LCE for the Ti and
the corresponding extra loss L′

CE for T ′
i is minimized.

meta-learning). As a reminder, the losses LLB and LUB are
also additionally minimized for the query instances. The
complete IBP-based task interpolation or Interval Bound
Interpolation (IBI) training setup is illustrated in Figure 4.
Since IBI does not play any part during the testing phase,
the testing recipe remains identical to that of vanilla few-
shot learning. The pseudocode of MAML+IBI (and the IBI
variant of ProtoNet) can be found in Appendix B.

Theoretical analysis: The data Xi (i = 1, 2, · · · , N ) for
tasks Ti can be thought of as i.i.d. observations from a
marginal distribution PX defined on a compact subset X of
Rd (d ≥ 1), paired with corresponding Yi drawn from the
marginal distribution PY . The map fθS is bestowed with the
task of producing a lower-dimensional representation of the
input X . Let us denote the embedding space by H ⊆ Rκ,
given that κ ≤ d. The spaces X and H are endowed with
l2 norm for simplicity and conformity to our convention.
One may observe that fθS = h1 ◦ h2 ◦ · · · ◦ hS , where in
general hl(z) = σ(Alz + bl) given that Al ∈ Rdl+1×dl

and bl ∈ Rdl+1 , l = 1, · · · , S. The function σ denotes
the activation (such as ReLU), applied component-wise.
Evidently, in our notation d1 = d and dS+1 = κ. With this
setup, we proceed to the theoretical analysis of our approach.
Please find the detailed proofs in Appendix C.

Definition 4.1 (Perturbation). Given any x1 ∈ X , an ε-
perturbation corresponding to x1 is the set of points x1(ε) ⊂
X such that∥x1 − x2∥ = ε, ∀x2 ∈ x1(ε); ε > 0.

For the particular choice of the l2 norm, Definition 4.1 char-
acterizes ε-perturbation as a hollow ball of radius ε = ϵ

√
d

around a given point.

Lemma 4.2 (Lipschitz networks ensure bounded IBP). Let
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x and x be ε-perturbations of x ∼ PX for an ε > 0 (i.e.
x,x ∈ x(ε)). Given that the activation σ is Lipschitz con-
tinuous (such as ReLU) with constant cσ > 0, there ex-
ists a constant D = D(cσ;A1, A2, · · · , AS ; ε) such that
f
θS (x, ε) and fθS (x, ε)) will at most be an ε̂-perturbed

version of fθS (x), where ε̂ = εD.

The minimization objective function of IBI can be rephrased
as L = LCE + ω1LLB + ω2LUB , where ω1, ω2 ≥ 0 are
Lagrangian multipliers. The forthcoming result, however,
relies on the constrained formulation of the objective, given
as min{LCE} subject to LLB ≤ t1 and LUB ≤ t2, where
t1, t2 ≥ 0. This is motivated by the fact that the constrained
formulation yields solutions upper bounding the ones ob-
tained using its Lagrangian counterpart (Boyd & Vanden-
berghe, 2004). Lemma 4.2 implies that the losses LUB and
LLB appearing in the constraints can always be made arbi-
trarily small, depending upon ε. As such, in the constrained
regime, the remaining problem is to show that the multi-task
sample classification loss can indeed be dealt with.

Theorem 4.3 (Generalization bound). Let P̃ be the joint
distribution of (fθS (X), Y ), supported on H × R. In
the multi-task regime, let I denote the set of tasks,
each consisting of N samples. Define R̂(N, |I|) =
ETi∼p̂(T )E(Xj ,Yj)∼p̂(Ti)[LCE(fθL−S (H∗

j ), Yj)] and R =
ETi∼p(T )E(Xj ,Yj)∼Ti

[LCE(fθL−S (fθS (Xj)), Yj)]. For a
bounded loss function LCE : R × R → [0, a](a ≥ 0),
if the neural network-induced map fθL−S is such that∣∣∇fθL−S (·)

∣∣ <∞, we ensure:∣∣∣R̂(N, |I|)−R∣∣∣− λ̃ ≾ 2L−S+1
√
2 log(2κ+ 2)×[(

1√
N

+
1√
|I|

)
+

√
log(2 |I| /δ)

N
+

√
log(2/δ)

|I|

]

holds with probability at least 1− δ, where λ̃ = λ̃(ε̂, λ).

Theorem 4.3 suggests that the excess risk (absolute differ-
ence between the population risk and the empirical counter-
part obtained by our method) behaves approximately similar
to a linear function of the perturbation parameter ε > 0.
The rate of convergence we obtain also turns out to be sharp
(compared to (Yao et al., 2022)) as the RHS vanishes when
both N and |I| → ∞, such that log(|I|)/N = o(1). An-
other key highlight of Theorem 4.3 is that it circumvents
the curse of dimensionality, often present in classical gen-
eralization bounds, by incorporating the dimension of the
embedding space (κ) in the constants instead.

5. Experiments
The experiments are conducted on few-task few-shot image
classification datasets, viz. a subset of the miniImageNet
dataset called miniImageNet-S (Yao et al., 2022), and two

medical images datasets namely DermNet-S (Yao et al.,
2022), and ISIC (Codella et al., 2018; Li et al., 2020). We
begin our experiments with a few analyses and ablations
to better understand the properties of our proposed method.
We then empirically demonstrate the effectiveness of our
proposed IBI method on the gradient-based meta-learning
method MAML (Finn et al., 2017) as well as the prototype-
based metric-learner ProtoNet (Snell et al., 2017) to show
that IBI can be seamlessly integrated with multiple few-
shot learning paradigms. For our experiments, we employ
the commonly used “4-CONV” network (Vinyals et al.,
2016) as well as the larger ResNet-12 network (Lee et al.,
2019) to demonstrate the scalability of the proposed method
(further details on scalability in Appendix E). We perform 5-
way 1-shot and 5-way 5-shot classification on all the above
datasets (except ISIC where we use 2-way classification
problems, similar to (Yao et al., 2021), due to the lack
of sufficient training classes). Further discussion on the
datasets and implementation details of IBI along with the
choice of hyperparameters can be found in the Appendix
while the code is available at https://github.com/
SankhaSubhra/maml-ibp-ibi.

Ablation studies on task interpolation: We undertake an
ablation study to highlight the importance of generating
artificial tasks using IBP bound–based interpolation by com-
paring IBI with (1) inter-task interpolation on images, (2)
inter-task interpolation in the feature embedding learned
by fSθ , (3) Worst-Case Loss (WCL) on the ϵ-neighborhood
(Gowal et al., 2019) along with IBP losses, (4) inter-task
interpolation while minimizing ULBL (Morawiecki et al.,
2020), (5) Gaussian noise–based perturbation (GA) in the
image space with IBP losses, (6) Gaussian noise–based
perturbation in the feature embedding space fθS with IBP
losses, (7) MLTI (Yao et al., 2022), which performs MixUp
(Zhang et al., 2017) at randomly chosen layers of the learner,
and (8) IBP bound–based interpolation without minimiz-
ing the LUB and LLB while only optimizing LCE (more
results in Appendix F.3). We perform the ablation study
on 5-way 1-shot classification with the “4-CONV” network
on miniImageNet-S, ISIC, and DermNet-S. From Table 2,
we observe that IBI performs best in all cases. Moreover,
inter-class interpolation at the same fixed layer S as IBI and
at randomly selected task-specific layers in MLTI shows
worse performance, demonstrating the superiority of the
proposed interval bound–based interpolation mechanism.
Further, it is interesting to observe that IBI, when performed
without minimizing the LUB and LLB , performs the worst.
This behavior is not unexpected as the neighborhoods are no
longer guaranteed to be preserved by the learned embedding
in this case, thus potentially resulting in the generation of
out-of-manifold artificial tasks.

To further check whether the tasks generated by IBI indeed
follow the distribution, we undertake a comparison based on
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Table 2. Ablation on task interpolation strategies in terms of mean Accuracy and average median distance between original and interpolated
tasks over 600 tasks on miniImageNet-S (mIS), ISIC and DermNet-S (DS).

Algorithm Accuracy Average median distance

mIS ISIC DS mIS ISIC DS

MAML+Inter-task interpolation in image space 40.90% 55.25% 48.30% N/A N/A N/A
MAML+Inter-task interpolation after fθS 41.00% 61.33% 47.43% 3.08 1.23 2.99
MAML+IBP+WCL 41.56% 64.75% 48.90% NA NA NA
MAML+ULBL+Inter-task interpolation after fθS 40.37% 64.91% 48.23% 3.10 0.97 2.83
MAML+IBP+GA (Image Space) 41.83% 62.67% 48.83% NA NA NA
MAML+IBP+GA (after fθS ) 41.66% 63.75% 47.60% NA NA NA
MAML+MLTI (Yao et al., 2022) 41.58% 61.79% 48.03% 3.24 1.36 3.05
MAML+IBI without LUB and LLB losses 35.26% 48.94% 41.30% N/A N/A N/A

MAML+IBI (ours) 42.20% 68.58% 49.13% 2.74 0.60 2.65
The Average median distance is calculated with features after the third block for all cases.

Table 3. Average loss weights for MAML+IBP and MAML+IBI,
comparison of the static weighting and dynamic weighting ver-
sions, and transferability of static weights across variants.

MAML+IBP MAML+IBI

Average of dynamic loss weights calculated for IBP and IBI.

wCE 0.8600 0.8658
wUB 0.1369 0.1314
wLB 0.0029 0.0027

Accuracy of algorithms with different weight choices.

Dynamic weighting 41.30±0.79% 42.20±0.82%
Static average weights for MAML+IBP 40.55±0.81% N/A
Static average weights for MAML+IBI N/A 40.72±0.79%

the similarity of the artificial tasks with the corresponding
original tasks. Concretely, we define the distance between
a task and its artificial counterpart as the median of the
pairwise distances between the corresponding data instances
in the two tasks. If an artificial task is created by combining
two tasks, a la MLTI (Yao et al., 2022), we consider the
smaller of the two median distances. We observe from Table
2, that the average median distance over 600 tasks is smaller
for the proposed method compared to MLTI, as well as inter-
task interpolation in the feature embedding learned by fSθ .
This indicates that the tasks generated by IBI are more likely
to lie close to the original task distribution.

Importance of dynamic loss weighting: To validate the
usefulness of softmax-based dynamic weighting of the three
losses for both IBP and IBI, we first find the average weights
for each loss in a dynamic weight run and then plug in the
respective values as static weights for new runs. All exper-
iments in Table 3 are conducted on the miniImageNet-S
dataset. From the upper half of Table 3, we can see that
the three average weights are always distinct with a definite
trend in that LCE gets maximum importance followed by
LUB while LLB contributes very little to the total loss L.
This may be due to the particular “4-CONV” architecture
used in this study which employs ReLU activations, thus
implicitly limiting the spread of the lower bound (Gowal
et al., 2019). Further, the average weights of IBP and IBI
are similar for a particular learner highlighting their com-
monalities, while they are distinct over different learners
stressing their learner-dependent behavior. Further, in the

lower half of Table 3, we explore the effect of using static
weights as well as the transferability of the loss weights
across learners. In all cases, the softmax-based dynamic
weighting outperforms static weighting, thus demonstrating
the importance of dynamic weighting.

Results on few-task few-shot classification problems:
For evaluating the few-shot classification performance of
IBI in few-task situations for MAML we compare against
(1) regularization-based meta-learning methods TAML (Ja-
mal & Qi, 2019), Meta-Reg (Yin et al., 2019), and Meta-
Dropout (Lee et al., 2020) (2) recent task augmentation
techniques Meta-Interpolation (Lee et al., 2022), TU, and
ATU (Wu et al., 2022). We also compare IBI against data
augmentation–based methods like MetaMix (Yao et al.,
2021), Meta-Maxup (Ni et al., 2021), and MLTI (Yao et al.,
2022) for both MAML and ProtoNet. The results in Table 4
show that in keeping with the observation in Table 1, IBP
without task interpolation can improve upon the correspond-
ing baselines. Incorporating IBP-based task interpolation in
IBI generally improves the results even further. Overall, we
observe that both IBP and IBI outperform the competitors
in case of DermNet-S and ISIC datasets. Even though, IBI
achieves slightly lower accuracy on miniImageNet-S com-
pared to TU and ATU, the large gains over these methods on
the significantly challenging ISIC dataset (Wu et al., 2022)
establishes the usefulness of the proposed technique.

Cross-domain transferability analysis: The DermNet-
S and miniImageNet-S datasets both allow 5-way 1-shot
classification. Moreover, miniImageNet-S contains images
from natural scenes, while DermNet-S consists of medical
images. Therefore, we undertake a cross-domain transfer-
ability study in Table 5. We summarize the Accuracy values
obtained by a source model trained on DermNet-S but tested
on miniImageNet-S and vice-versa (denoted DS→mIS and
mIS→ DS, respectively). In most cases, the IBP variant
can improve upon the corresponding baseline. Further, the
interpolation-based methods, i.e. MLTI and IBI, are able to
further enhance performance, with IBI achieving the best
performance in most cases, validating that IBI training can
improve cross-domain transferability.
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Table 4. Performance comparison of the two proposed methods with baselines and contending algorithms in terms of 5-way, 1-shot and
5-shot mean Accuracy over 600 tasks.

Backbone Algorithm miniImageNet-S ISIC DermNet-S
Network 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

4-CONV

MAML (Finn et al., 2017; Yao et al., 2022) 38.27% 52.14% 57.59% 65.24% 43.47% 60.56%
MAML+Meta-Reg (Yin et al., 2019; Yao et al., 2022) 38.35% 51.74% 58.57% 68.45% 45.01% 60.92%
TAML (Jamal & Qi, 2019; Yao et al., 2022) 38.70% 52.75% 58.39% 66.09% 45.73% 61.14%
MAML+Meta-Dropout (Lee et al., 2020; Yao et al., 2022) 38.32% 52.53% 58.40% 67.32% 44.30% 60.86%
MAML+MetaMix (Yao et al., 2021; 2022) 39.43% 54.14% 60.34% 69.47% 46.81% 63.52%
MAML+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 39.28% 53.02% 58.68% 69.16% 46.10% 62.64%
MAML+MLTI (Yao et al., 2022) 41.58% 55.22% 61.79% 70.69% 48.03% 64.55%
MAML+Meta-Interpolation (Lee et al., 2022) 40.28% 53.06% - - - -
MAML+TU (Wu et al., 2022) 42.16% 56.33% 62.03% 73.97% 48.07% 64.81%
MAML+ATU (Wu et al., 2022) 42.60% 56.78% 62.84% 74.50% 48.33% 65.16%

MAML+IBP (ours) 41.30% 54.36% 64.91% 78.75% 48.33% 63.33%
MAML+IBI (ours) 42.20% 55.23% 68.58% 79.75% 49.13% 65.43%

ProtoNet∗ (Snell et al., 2017; Yao et al., 2022) 36.26% 50.72% 58.56% 66.25% 44.21% 60.33%
ProtoNet (Snell et al., 2017) 40.70% 53.16% 65.58% 75.25% 46.86% 62.03%
ProtoNet∗+MetaMix (Yao et al., 2021; 2022) 39.67% 53.10% 60.58% 70.12% 47.71% 62.68%
ProtoNet∗+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 39.80% 53.35% 59.66% 68.97% 46.06% 62.97%
ProtoNet∗+MLTI (Yao et al., 2022) 41.36% 55.34% 62.82% 71.52% 49.38% 65.19%

ProtoNet+IBP (ours) 41.46% 55.00% 70.75% 81.01% 48.66% 67.26%
ProtoNet+IBI (ours) 43.30% 55.73% 70.25% 81.16% 51.13% 65.93%

ResNet-12

MAML (Finn et al., 2017; Yao et al., 2022) 40.02% 52.56% 59.41% 67.66% 47.58% 63.13%
MAML+MetaMix (Yao et al., 2021; 2022) 42.26% 54.65% 62.06% 72.18% 51.40% 64.82%
MAML+MetaMaxup (Ni et al., 2021; Yao et al., 2022) 41.97% 53.92% 61.64% 72.04% 50.82% 64.24%
MAML+MLTI (Yao et al., 2022) 43.35% 54.89% 62.16% 73.56% 52.03% 65.12%

MAML+IBP (ours) 43.50% 55.13% 64.50% 73.91% 50.40% 65.40%
MAML+IBI (ours) 43.90% 57.00% 63.25% 75.66% 52.10% 66.50%

ProtoNet∗ (Snell et al., 2017; Yao et al., 2022) 40.96% 53.77% 61.91% 72.97% 48.65% 64.61%
ProtoNet (Snell et al., 2017) 42.60% 55.00% 63.01% 75.91% 50.66% 65.40%
ProtoNet∗+MetaMix (Yao et al., 2021; 2022) 42.95% 56.95% 65.55% 78.33% 51.18% 66.80%
ProtoNet∗+MetaMaxup (Ni et al., 2021; Yao et al., 2022) 42.68% 56.07% 64.17% 77.62% 50.96% 66.38%
ProtoNet∗+MLTI (Yao et al., 2022) 44.08% 57.14% 66.02% 79.15% 52.01% 67.28%

ProtoNet+IBP (ours) 43.33% 57.40% 66.66% 81.00% 51.33% 67.57%
ProtoNet+IBI (ours) 45.33% 58.23% 66.75% 81.83% 52.53% 68.00%

∗ ProtoNet implementation as per (Yao et al., 2022).

Table 5. Transferability comparison of MAML and ProtoNet, with
their MLTI, IBP, and IBI variants in terms of 5-way, 1-shot mean
Accuracy over 600 tasks.

Algorithms Accuracy

DS → mIS mIS → DS

MAML 25.06% 33.40%
MAML+MLTI (Yao et al., 2022) 30.03% 36.74%
MAML+IBP (ours) 27.06% 33.90%
MAML+IBI (ours) 30.23% 36.21%

ProtoNet 28.76% 34.03%
ProtoNet∗+MLTI (Yao et al., 2022) 30.06% 35.46%
ProtoNet+IBP (ours) 29.60% 34.13%
ProtoNet+IBI (ours) 30.32% 35.63%
∗: ProtoNet implementation as per Yao et al. (2022).

6. Conclusion and future works
We explore the utility of IBP beyond its originally-intended
usage for building and verifying classifiers that are provably
robust against adversarial attacks. We identify the potential
of IBP to conserve a neighborhood from the input image
space to the learned feature space through the layers of a
deep neural network by minimizing the distances of the
feature embedding from the two bounds. This can be ef-
fective in few-shot classification problems to obtain feature
embeddings where task neighborhoods are preserved, thus

enabling easy adaptability to unseen tasks. Further, interpo-
lating between training tasks and their corresponding IBP
bounds can yield artificial tasks with a higher chance of
lying on the task manifold, that are likely to prevent over-
fitting to seen tasks in the few-task scenario. The resulting
IBI is shown to be effective in both the meta-learning and
metric-learning paradigms of few-shot learning.

Our results demonstrate that IBI can be effectively scaled to
relatively large networks like ResNet-12 as IBP is typically
needed in a few initial layers (see Appendix E). This may
still add some extra computational cost (see Appendix E for
a comparative study), which scales linearly with the number
of layers subjected to IBP. Thus, one may investigate the
applicability of advanced provably robust training methods
that yield more efficient and tighter bounds (Lyu et al., 2021).
Few-shot learners can also be improved with adaptive hyper-
parameters (Baik et al., 2020), feature reconstruction (Lee
& Chung, 2021), knowledge distillation (Tian et al., 2020),
embedding propagation (Rodrı́guez et al., 2020), etc. One
can observe the performance gains from these orthogonal
techniques when coupled with IBI. However, this may not
be a straightforward endeavor, given the complex dynamic
nature of such frameworks.
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A. Prototype-based metric-learning
Metric-based few-shot learning aims to obtain a feature embedding of the task manifold suitable for non-parametric
classification. Prototype-based metric-learning, specifically Prototypical Network (ProtoNet) (Snell et al., 2017), assigns a
query point to the class having the nearest (in terms of Euclidean distance) prototype in the learned embedding space. Given
the model fθ and a task Ti, we compute class prototypes {ck}Kk=1 as the mean of fθ(xs

i,r) for the instances xs
i,r belonging

to class k:
ck =

1

Ns

∑
(xs

i,r,y
s
i,r)∈Ds,k

i

fθ(x
s
i,r), (9)

where Ds,k
i ⊂ Ds

i represents the subset of Ns support samples from class k. Given a sample xq
i,r from the query set, the

probability p(yqi,r = k|xq
i,r) of assigning it to the k-th class is calculated using the distance function d(., .) between the

representation fθ(x
q
i,r) and the prototype ck:

p(yqi,r = k|xq
i,r, fθ) =

exp(−d(fθ(xq
i,r), ck))∑

k′ exp(−d(fθ(xq
i,r), ck′))

. (10)

Thereafter, the parameters θ for the model fθ can be trained by minimizing cross-entropy loss (2). During testing, each
query sample xq

j,r is assigned to the class having the maximal probability, i.e., yq
j,r = argmaxk p(y

q
j,r = k|xq

j,r).

B. Algorithms of MAML and ProtoNet coupled with IBP and IBI
The steps for MAML+IBP/IBI and ProtoNet+IBP/IBI are respectively presented in Algorithm 1 and 2. Please consult the
main paper for various notations and equations used in the algorithms. Also recall from Section 4.3, that an artificial task in
IBI is created as:

Hs′

i,r = (1− λk)fθS (xs
i,r) + (1− νk)λkfθS (x

s
i,r, ϵ) + νkλkfθS (xs

i,r, ϵ). (11)

Remark B.1. The way in which the training support set Ds
i informs the loss calculation on the corresponding query set Dq

i

differs between the MAML and ProtoNet variants. While a limited number of training steps on the support set is undertaken
to obtain the model fϕi

where the loss is calculated on the query set for MAML, the support set is used to calculate the
prototypes {ck}Kk=1 for the loss calculation on the query set for ProtoNet.

C. Detailed Theoretical Analysis
Interval bound propagation for networks with affine layer: Let us assume a network f with L layers where the 0-th
layer denotes the initial input. Let us also consider a layer l ≤ L that is not the 0-th input layer. The 0-th layer of f takes
the input along with its perturbed counterparts, as shown in Section 3 in the main paper. If at the end of l − 1-th layer, the
activation, upper bound, and lower bound are respectively zl−1, zl−1 and zl−1. Suppose the l-th layer performs an affine
transformation (such as a convolutional, fully connected, batch normalization, etc.) followed by a monotonic activation
function (such as ReLU, sigmoid, tanh, etc.), i.e. zl = σ(Alzl−1 + bl), then as per Gowal et al. (2019). In that case, we can
calculate the interval bounds for the subsequent l-th layer as follows:

zl = σ(µl − ψl), (12)

zl = σ(µl + ψl), (13)

where ψl = |Al|ψl−1 and µl = Alµl−1 + bl given µl−1 =
zl−1+zl−1

2 and ψl−1 =
zl−1−zl−1

2 .
Lemma 4.2 (Lipschitz networks ensure bounded IBP). Let x and x be ε-perturbations of x ∼ PX for an ε > 0 (i.e.
x,x ∈ x(ε)). Given that the activation σ is Lipschitz continuous (such as ReLU) with constant cσ > 0, there exists
a constant D = D(cσ;A1, A2, · · · , AS ; ε) such that f

θS (x, ε) and fθS (x, ε)) will at most be an ε̂-perturbed version of
fθS (x), where ε̂ = εD.

Proof. Given that x1,x2 ∈ X ∥∥h1(x1)− h1(x2)
∥∥ =

∥∥σ(A1x1 + b1)− σ(A1x2 + b1)
∥∥

≤ cσ
∥∥A1(x1 − x2)

∥∥ (14)
≤ cσ∥A1∥∥x1 − x2∥
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Algorithm 1 IBP/IBI for MAML training
Requires: Task distribution p(T ), batch size B, learning rates η0 and η1, interval coefficient ϵ.

1: Randomly initialize the meta-learner parameters θ.
2: while not converged do
3: Sample a batch of B tasks from the distribution ρ(T ).
4: For IBI, randomly sample an index 1 ≤ m ≤ B to perform the interpolation.
5: for all i ∈ {1, 2, · · · , B} do
6: Initialize base learner to meta-learner state.
7: Sample a support set Ds

i of data-label pairs {(xs
i,r,y

s
i,r)}

Ns
r=1 from task Ti.

8: Calculate the classification loss LCE using fθ(xs
i,r) and ys

i,r.
9: if i = m then

10: Generate interpolated support and query instances Hs′

i,r and Hs′

i,r using (11).
11: Calculate classification loss L′

CE using fθL−S (Hs′

i,r) and ys
i,r.

12: Set LCE = 1
2 (LCE + L′

CE).
13: end if
14: Update base learner parameters to ϕi = θ − η0∇θLCE .
15: Sample a query set Dq

i of data-label pairs {(xq
i,r,y

q
i,r)}

Nq

r=1 from task Ti.
16: Calculate the classification loss LCE with fϕi

(xq
i,r) and yq

i,r.
17: Calculate LLB and LUB respectively using (5) and (6).
18: if i = m then
19: Calculate classification loss L′

CE using fϕL−S (Hq′

i,r) and yq
i,r.

20: Set LCE = 1
2 (LCE + L′

CE).
21: end if
22: Calculate L by accumulating LCE , LLB and LUB using (7).
23: end for
24: Update meta-learner parameters θ = θ − η1 1

B

∑B
i=1∇θL.

25: end while

Algorithm 2 IBP/IBI for ProtoNet training
Requires: Task distribution p(T ), learning rate η, interval coefficient ϵ.

1: Randomly initialize the learner parameters θ.
2: while not converged do
3: For IBI, randomly select if interpolation is to be performed.
4: Sample a support set Ds

i of data-label pairs {(xs
i,r,y

s
i,r)}

Ns
r=1 from task Ti.

5: Calculate the features fθL(xs
i,r) and find the prototypes {ck}Kk=1 using (9).

6: if interpolation to be performed then
7: Generate interpolated support and query instances Hs′

i,r and Hs′

i,r using (11).
8: Calculate features fθL−S (Hs′

i,r) and find prototypes {c′k}Kk=1.
9: end if

10: Sample a query set Dq
i of data-label pairs {(xq

i,r,y
q
i,r)}

Nq

r=1 from task Ti.
11: Calculate the loss LCE using (10) and (2).
12: Calculate LLB and LUB using (5) and (6).
13: if interpolation to be performed then
14: Calculate classification loss L′

CE with fθL−S (Hq′

i,r), {c′k}Kk=1 and yq
i,r by (10) and (2).

15: Set LCE = 1
2 (LCE + L′

CE).
16: end if
17: Calculate L by accumulating LCE , LLB and LUB using (7).
18: Update learner parameters θ = θ − η∇θL.
19: end while
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where∥A1∥ = sup∥x∥=1∥A1x∥. The inequality 14 is due to the Lipschitz continuity of σ. Commonly used activation
functions, such as ReLU, tend to satisfy this condition. In particular, for ReLU, cσ = 1. As such, the map h1 also turns out
to be Lipschitz continuous. A similar argument also proves that hl, l = 2, · · · , S all follow the same trait. As a result, fθS

also becomes Lipschitz continuous with accompanying constant (cσA)S , where A = max {∥Al∥}.

The recurrence relation of extremities in IBP, as suggested by Gowal et al. (2019), can be written as:

fθl(x, ε) = σ

{
(Al +|Al|)

2
fθl−1(x, ε) +

(Al −|Al|)
2

f
θl−1(x, ε) + bl

}
,

and f
θl(x, ε) = σ

{
(Al −|Al|)

2
fθl−1(x, ε) +

{Al +|Al|}
2

f
θl−1(x, ε) + bl

}
,

where the |·| operator results in a matrix with all elements replaced by their corresponding absolute values, and l = 1, 2, ..., S.
Thus, ∥∥∥fθl(x, ε)− fθl(x)

∥∥∥
=

∥∥∥∥∥σ
{
(Al +|Al|)

2
fθl−1(x, ε) +

(Al −|Al|)
2

f
θl−1(x, ε) + bl

}
− σ

(
Alfθl−1(x) + bl

)∥∥∥∥∥
≤cσ

∥∥∥∥ (Al +|Al|)
2

fθl−1(x, ε) +
(Al −|Al|)

2
f
θl−1(x, ε)−Alfθl−1(x)

∥∥∥∥
=cσ

∥∥∥∥ (Al +|Al|)
2

(
fθl−1(x, ε)− fθl−1(x)

)
+

(Al −|Al|)
2

(
f
θl−1(x, ε)− fθl−1(x)

)∥∥∥∥
≤cσ

{∥∥∥∥ (Al +|Al|)
2

(
f1(θl−1(x, ε)− fθl−1(x)

)∥∥∥∥+∥∥∥∥ (|Al| −Al)

2

(
fθl−1(x)− f

θl−1(x, ε)
)∥∥∥∥
}

≤cσ

{∥∥∥∥Al +|Al|
2

∥∥∥∥∥∥∥fθl−1(x, ε)− fθl−1(x)
∥∥∥+∥∥∥∥|Al| −Al

2

∥∥∥∥∥∥∥fθl−1(x)− f
θl−1(x, ε)

∥∥∥} .
Observe that, in particular for l = 1

∥∥∥fθ1(x, ε)− fθ1(x)
∥∥∥ ≤ cσ {∥∥∥∥A1 +|A1|

2

∥∥∥∥∥x− x∥+
∥∥∥∥|A1| −A1

2

∥∥∥∥∥x− x∥

}

= cσε

{∥∥∥∥A1 +|A1|
2

∥∥∥∥+∥∥∥∥|A1| −A1

2

∥∥∥∥
}

= ε1 say,

i.e., the deviation in the first layer can be made arbitrarily small based on ε. The quantity
∥∥∥fθ1(x)− f

θ1(x, ε)
∥∥∥ can be

shown to be upper bounded using a similar argument. In other words, both fθ1(x, ε) and f
θ1(x, ε) are at most ε1-perturbed

from fθ1(x). By the method of induction we eventually get a D = D(cσ;A1, A2, · · · , AS ; ε) > 0 for which the lemma
holds.

Theorem 4.3 (Generalization bound). Let P̃ be the joint distribution of (fθS (X), Y ), supported on H × R. In
the multi-task regime, let I denote the set of tasks, each consisting of N samples. Define R̂(N, |I|) =
ETi∼p̂(T )E(Xj ,Yj)∼p̂(Ti)[LCE(fθL−S (H∗

j ), Yj)] and R = ETi∼p(T )E(Xj ,Yj)∼Ti
[LCE(fθL−S (fθS (Xj)), Yj)]. For a

bounded loss function LCE : R × R → [0, a](a ≥ 0), if the neural network-induced map fθL−S is such that∣∣∇fθL−S (·)
∣∣ <∞, we ensure:

∣∣∣R̂(N, |I|)−R∣∣∣− λ̃ ≾ 2L−S+1
√
2 log(2κ+ 2)

{
1√
N

+
1√
|I|

}
+

√
log( 2|I|δ )

N
+

√
log( 2δ )

|I|

holds with probability at least 1− δ, where λ̃ = λ̃(ε̂, λ).
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Proof. Before beginning with the proof, we point out that, based on Definition 4.1, given ε > 0 and x ∈ X , any x
′ ∈ x(ε)

can be written as x
′
= x + η(ε). For example, in the simplest case, η(ε) can be a function in the family ±ϵ1. Thus, in

case of IBI, the f
θS (xi, ε) and fθS (xi, ε) can both be expressed as fθS (xi) + η(ε̂) with corresponding η(ε̂). In essence

H∗
i = (1− λ)fθS (xi) + λ(fθS (xi) + η(ε̂)), where λ ∈ [0, 1]. Now, we can observe that,

fθL−S (H∗
i ) = fθL−S

(
(1− λ)fθS (xi) + λ

[
fθS (xi) + η(ε̂)

])
= fθL−S

(
fθS (xi) + λη(ε̂)

)
= fθL−S

(
fθS (xi)

)
+ λ∇fθL−S

(
fθS (xi)

)
η(ε̂), (15)

where η(ε̂) ∈ Rκ, ε̂ being as mentioned in lemma 4.2. We obtain (15) by using the Taylor expansion of fθL−S up to the
first order. Given that

∣∣∇fθL−S (·)
∣∣ < ∞, the second term λ∇fθL−S

(
fθS (xi)

)
η(ε̂) can be made arbitrarily small. The

higher-order terms in the expansion all follow suit, which justifies their omission. Now,∣∣∣∣∣∣ 1N
N∑
i=1

LCE(fθL−S (H∗
i ), yi)−

∫
H×R

LCE(fθL−S (x), y)dP̃(x, y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1N
N∑
i=1

[
LCE(fθL−S (H∗

i ), yi)− LCE(fθL−S (fθS (xi)), yi)
]

+
1

N

N∑
i=1

LCE(fθL−S (fθS (xi)), yi)−
∫
H×R

LCE(fθL−S (x), y)dP̃(x, y)

∣∣∣∣∣∣
≤ 1

N

N∑
i=1

∣∣LCE(fθL−S (H∗
i ), yi)− LCE(fθL−S (fθS (xi)), yi)

∣∣
+

∣∣∣∣∣∣ 1N
N∑
i=1

LCE(fθL−S (fθS (xi)), yi)−
∫
H×R

LCE(fθL−S (x), y)dP̃(x, y)

∣∣∣∣∣∣ . (16)

Since our networks use ReLU activation, the map induced by fθL−S can be shown to be continuous. GivenH is compact,
the output space also becomes compact. Restricted to such a space, the cross-entropy loss LCE (similarly, regularized
cross-entropy loss) turns out to be Lipschitz continuous. Consequently,

|LCE(fθL−S (H∗
i ), yi)−LCE(fθL−S (fθS (xi)), yi)|

≤ cL
∥∥∥fθL−S (H∗

i )− fθL−S

(
fθS (xi)

)∥∥∥ = λ̃(ε̂, λ), (17)

where cL > 0 is the Lipschitz constant associated with LCE . Without loss of generality we can construct the map fθL−S

such that∥fθL−S∥ ≤ 1. Now, in case there are|I| tasks involved, namely {Ti}|I|i=1 (i.e., the multi-task regime), the population
risk turns out to be

R = ETi∼p(T )E(Xj ,Yj)∼Ti

[
LCE

(
fθL−S (fθS (Xj)), Yj

)]
= ETi∼p(T )E(Xj ,Yj)∼Ti

[
LCE

(
fθL−S (Hj), Yj

)]
.

We are interested in observing the deviation of the same from the realized risk. In other words,∣∣R̂(N, |I|)−R∣∣ ≤ ∣∣R̂(N, |I|)− J ∣∣︸ ︷︷ ︸
(i)

+
∣∣J −R∣∣︸ ︷︷ ︸

(ii)

, (18)

where J = ETi∼p̂(T )E(Xj ,Yj)∼Ti

[
LCE

(
fθL−S (Hj), Yj

)]
and p̂ is the empirical counterpart of the task distribution. Using
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the Jensen’s inequality, (i) can be upper bounded by

ETi∼p̂(T )

∣∣∣∣∣E(Xj ,Yj)∼p̂(Ti)

[
LCE

(
fθL−S (H∗

j ), Yj

)]
− E(Xj ,Yj)∼Ti

[
LCE

(
fθL−S (Hj), Yj

)]∣∣∣∣∣
≤λ̃+ ETi∼p̂(T )

∣∣∣∣E(Xj ,Yj)∼p̂(Ti)

[
LCE

(
fθL−S (Hj), Yj

)]
− E(Xj ,Yj)∼Ti

[
LCE

(
fθL−S (Hj), Yj

)]∣∣∣∣ , (19)

where we utilize arguments (16) and (17) to reach (19). Using the union bound based on|I| tasks on top of Corollary 3.14 of

Wojtowytsch & E (2020) we can show that the second term in the right-hand side of (19) becomes ≾ 2L−S+1
√

2 log(2κ+2)
N +

a

√
2 log(

2|I|
δ )

N , with probability at least 1− δ.

To put a deterministic upper bound on (ii) let us first define the class of functions

G =

{
g : g(T ) = E(fθS (X),Y )∼P̃

[
LCE

(
fθL−S (H), Y

)]
; fθL−S ∈WL−S

}
,

where WL−S is the function space induced by networks with L− S hidden layers (Wojtowytsch & E, 2020). Let us now
calculate the Rademacher complexity of the class functions G:

Rad
(
G, {Ti}|I|i=1

)
= Eξ sup

g∈G

1

|I|

∣∣∣∣∣∣
|I|∑
i=1

ξig(Ti)

∣∣∣∣∣∣ = Eξ sup
g∈G

1

|I|

∣∣∣∣∣∣
|I|∑
i=1

ξiETi

[
LCE

(
fθL−S (H), Y

)]∣∣∣∣∣∣
≤ ETiEξ sup

g∈G

1

|I|

∣∣∣∣∣∣
|I|∑
i=1

ξiLCE

(
fθL−S (H), Y

)∣∣∣∣∣∣ (20)

≤ cLETiEξ sup
fθL−S∈WL−S

1

|I|

∣∣∣∣∣∣
|I|∑
i=1

ξifθL−S (H)

∣∣∣∣∣∣ (21)

≤ cL2L−S+1

√
2 log(2κ+ 2)

|I|
, (22)

where (21) is due to the Lipschitz property of LCE(·, y) [Lemma 26.9 of (Shalev-Shwartz & Ben-David, 2014) or Theorem
7 of (Meir & Zhang, 2003)]. We arrive at (22) using lemma 3.13 of (Wojtowytsch & E, 2020). The inequality (20) is
based on the fact that supu∈U

∣∣E[u(X)]
∣∣ ≤ E[supu∈U

∣∣u(X)
∣∣], given the expectation exists for the class of functions U and

random variable X .

Thus we obtain the deterministic bound on (ii) given by∣∣∣∣ETi∼p̂(T )E(Xj ,Yj)∼Ti

[
LCE

(
fθL−S (Hj), Yj

)]
− ETi∼p(T )E(Xj ,Yj)∼Ti

[
LCE

(
fθL−S (Hj), Yj

)]∣∣∣∣
≾

√
2 log(2κ+ 2)

|I|
+

√
log( 2δ )

|I|
,

that holds with probability at least 1− δ. The bounds on (i) and (ii) together prove the theorem.

D. Details of datasets used in this study
miniImageNet: The miniImageNet dataset (Vinyals et al., 2016) is a commonly used subset of ImageNet (Deng et al., 2009)
for evaluating few-shot classifiers. The dataset contains a total of 100 classes, each containing 600 images of resolution
84× 84× 3. Following the directives of Vinyals et al. (2016) from the total 100 classes, 64 are kept in the Training set, 16
are retained for validation, and the rest of the 20 classes are used for testing.

tieredImageNet: In (Ren et al., 2018) the authors proposed a new larger subset of ImageNet (Deng et al., 2009) for
addressing the limitations of miniImageNet. In miniImageNet it is not ensured that the classes used for training are distinct

16



Interval Bound Interpolation for Few-shot Learning with Few Tasks

from those contained in the Test set. Evidently, this contains the risk of information leakage and may not provide a fair
evaluation of the few-shot classifier. As a remedy Ren et al. (2018) proposed to go higher in the class hierarchy in ImageNet.
This enables tieredImageNet to use higher-level categories in the Training, Validation, and Test sets, maintaining significant
diversity between the three. In essence, a total of 608 ImageNet leaf-level classes are considered that can be categorized into
34 groups. Among these 34 higher-level groups, 20 are used for training, six are kept for validation, and the rest eight are
included in the Test set.

miniImageNet-S: This dataset is created by only using a subset of the original miniImageNet Training set for training the
few-shot learner in a few-task scenario Yao et al. (2022).

Training Classes: n03017168, n07697537, n02108915, n02113712, n02120079,
n04509417, n02089867, n03888605, n04258138, n03347037, n02606052, n06794110

Validation and Test sets are kept as same as those used in miniImageNet.

DermNet-S: DermNet-S (Yao et al., 2022) is a subset of the ”Dermnet Skin Disease Atlas” publicly available at http:
//www.dermnet.com/. The dataset, after discarding the duplicates, contains more than 22,000 medical images spread
across 625 classes of dermatological diseases. Following the preprocessing suggested by Prabhu et al. (2019) the authors
of (Yao et al., 2022) created DermNet-S by first extracting the 203 classes containing more than 30 images. Then from
the long-tailed data distribution of the 203 disease classes, the top 30 larger classes are kept for training while the smaller
53 bottom classes are considered for meta-testing. The images are resized to 84 × 84 × 3 to match the resolution of
miniImageNet. We follow the same dataset construction strategy in our case. Moreover, we use random classes not included
in the Training or Test set as the Validation set. The complete list of classes in the Training and Test sets are listed as follows:

Training Classes: Seborrheic Keratoses Ruff, Herpes Zoster, Atopic Dermatitis
Adult Phase, Psoriasis Chronic Plaque, Eczema Hand, Seborrheic Dermatitis,
Keratoacanthoma, Lichen Planus, Epidermal Cyst, Eczema Nummular, Tinea (Ringworm)
Versicolor, Tinea (Ringworm) Body, Lichen Simplex Chronicus, Scabies, Psoriasis
Palms Soles, Malignant Melanoma, Candidiasis large Skin Folds, Pityriasis
Rosea, Granuloma Annulare, Erythema Multiforme, Seborrheic Keratosis Irritated,
Stasis Dermatitis and Ulcers, Distal Subungual Onychomycosis, Allergic Contact
Dermatitis, Psoriasis, Molluscum Contagiosum, Acne Cystic, Perioral Dermatitis,
Vasculitis, Eczema Fingertip

Testing Classes: Warts, Ichthyosis Sex Linked, Atypical Nevi, Venous Lake,
Erythema Nodosum, Granulation Tissue, Basal Cell Carcinoma Face, Acne Closed
Comedo, Scleroderma, Crest Syndrome, Ichthyosis Other Forms, Psoriasis Inversus,
Kaposi Sarcoma, Trauma, Polymorphous Light Eruption, Dermagraphism, Lichen
Sclerosis Vulva, Pseudomonas, Cutaneous Larva Migrans, Psoriasis Nails, Corns,
Lichen Sclerosus Penis, Staphylococcal Folliculitis, Chilblains Perniosis,
Psoriasis Erythrodermic, Squamous Cell Carcinoma Ear, Basal Cell Carcinoma
Ear, Ichthyosis Dominant, Erythema Infectiosum, Actinic Keratosis Hand, Basal
Cell Carcinoma Lid, Amyloidosis, Spiders, Erosio Interdigitalis Blastomycetica,
Scarlet Fever, Pompholyx, Melasma, Eczema Trunk Generalized, Metastasis, Warts
Cryotherapy, Nevus Spilus, Basal Cell Carcinoma Lip, Enterovirus, Pseudomonas
Cellulitis, Benign Familial Chronic Pemphigus, Pressure Urticaria, Halo Nevus,
Pityriasis Alba, Pemphigus Foliaceous, Cherry Angioma, Chapped Fissured Feet,
Herpes Buttocks, Ridging Beading

ISIC: Following Yao et al. (2022) for “ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection” (Codella et al.,
2018; Li et al., 2020), we select the third task where 10,015 medical images are categorized into seven classes based on
lesion types. We first resize the images to 84× 84× 3 to match the miniImageNet resolution. Then among the seven classes
in the ISIC dataset, we select the four classes containing a higher number of samples for training while considering the rest
for meta-testing as per the directives of Yao et al. (2022). Since there are only four classes in the Training set, setting the
number of ways to 2 results in six possible class combinations in a task. This, in consequence, offers an extreme few-task
scenario. For hyper-parameter tuning, random classes are used as a Validation set following the cross-validation-based
approach employed in (Yao et al., 2022). The list of classes in the Training and the Test sets are listed as follows:
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Training Set: Nevus, Melanoma, Benign Keratoses, Basal Cell Carcinoma

Testing Set: Dermatofibroma, Pigmented Bowen’s, Vascular

E. Implementation details
Scheduling of ϵ: In their paper Gowal et al. (2019) recommended starting with an initial perturbation ϵ0 = 0 and gradually
increasing it to the intended perturbation ϵ over the training steps. In our case, we follow a similar approach for scheduling
the value of perturbation ϵt at the t-th training step. We have observed that a rapid increase in perturbation usually slows
down training while a very slow increment fails to aid the learner. We have found that the following strategy works well in
practice from extensive experimentation with various scheduling techniques such as linear, cosine, etc.. If the maximum
allowed number of training steps is set to T then for the step t, the perturbation ϵt is calculated as:

ϵt =

{
ϵ if t > ⌈0.9T ⌉

t
0.9T ϵ otherwise

. (23)

In essence, we linearly increase ϵt starting from 0 up to ϵ over 90% of the maximum training steps T and keep it fixed at ϵ
for the remainder of the training.

Frequency of interpolation for IBI variants: Performing IBP bound–based interpolation for every task during training
may not be beneficial and may instead mislead the learner. For MAML, we have seen that performing interpolation once in
every batch of B tasks aids the training process. In the case of ProtoNet, we have found that performing IBP bound–based
interpolation with a 25% probability results in the best outcome.

Modifications to network architecture: We have used two networks for our experiments namely “4-CONV” and “ResNet-
12”. The “4-CONV” network can be seamlessly integrated with IBI for both MAML and ProtoNet. This network consists
of 4 blocks, each having a convolution, batch normalization, max pooling, and ReLU in sequential order. IBI can be
performed after any one of the blocks. The ResNet-12 network also consists of 4 blocks where a block (except the first
one) receives inputs from (1) the output of the preceding block and (2) the input of the preceding block through a skip
connection. While the idea of applying IBI after any of the blocks seems appealing, the presence of skip connections may
hinder a straightforward integration of IBI in this case. To understand how ResNet-12 can be customized to accommodate
MAML+IBP (and consequently MAML+IBI) we undertake an ablation study on the miniImageNet-S dataset in a 5-way
1-shot classification problem as described in Table 6. We can observe that in our initial hyperparameter tuning experiment,
MAML+IBP can not match the performance of vanilla MAML on ResNet-12. Moreover, the performance gap increases as
IBP is applied deeper into the network. This may be explained by the fact that the interval bounds become gradually loose
as they progress through the network. Thus, with increasing depth, the magnitude of the bound losses (especially LUB as
the ReLU activations prevent LLB from becoming too large) will largely outscale the classification loss and consequently
affect convergence (see Remark E.1). Applying IBP after only the first block still fails to achieve parity with the baseline
because IBP induces a distortion in the feature space due to its regularization effect. While the sequential part of the blocks
after IBP can adapt to this distortion due to their complexity, the simpler skip paths can not do so. Hence, the effect of
the distortion keeps propagating to the deeper blocks via skip connections. To aid the network in such a situation, we
investigate three approaches to modify the skip connection immediately after the block(s) subjected to IBP, viz. (1) remove
the skip connection for the subsequent block, (2) introduce additional layers in the skip connection for the subsequent block
to make it deeper, and more complex (3) use a skip after one or more of the initial sub-block(s) (consisting sequentially
of one convolution, one batch normalization, and one ReLU layer) of the next block. Among the three approaches, we
empirically found that MAML+IBP (consequently MAML+IBI) performs best when the skip connection starts after the
second sub-block in block 2. Due to the comparatively powerful learning strategy of ProtoNet, no such modifications to
ResNet-12 are necessary for ProtoNet+IBI.
Remark E.1. [Scalability of IBI] IBP (and consequently IBI) requires the propagation of the two interval bounds along with
the input data. This introduces a computational overhead, especially in deeper networks. However, in practice, even in a
deeper network, we may only need to perform IBP in the initial few layers, as the bound losses will otherwise overwhelm
the classification loss and consequently impact convergence. To demonstrate this, we plot the losses (up to 5000 training
steps for the ease of visualization) in the following Figure 5 for MAML+IBI using a ResNet-12 network for 5-way 1-shot
miniImageNet-S classification, when IBP is applied up to blocks 1-4. We can see that the three losses have comparable
scales only when IBP is applied after block 1. In all other cases, LUB heavily dominates the total loss. But, due to its sheer
magnitude, the optimizer is unable to minimize it. Thus, in practice, IBP should only be limited to a few initial layers in
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Table 6. Ablation study of ResNet-12 modifications for MAML+IBP on miniImageNet-S in terms of mean Accuracy over 600 tasks with
95% confidence interval.

Algorithm IBP position Accuracy

MAML None (Baseline) 40.02±0.78%

MAML+IBP after block 4 21.24±0.54%
MAML+IBP after block 3 23.77±0.59%
MAML+IBP after block 2 29.62±0.62%
MAML+IBP after block 1 37.95±0.83%

MAML+IBP after block 1 with no-skip at block 2 37.81±0.85%
MAML+IBP after block 1 with deeper skip at block 2 38.54±0.81%
MAML+IBP after block 1 with skip and output combination at block 2 40.50±0.83%
MAML+IBP after block 1 with skip after one sub-block in block 2 42.18±0.82%
MAML+IBP after block 1 with skip after two sub-blocks in block 2 43.50±0.86%

deeper networks. Consequently, IBI easily scales to deeper networks despite the computational overhead.

0 1000 2000 3000 4000
Steps

10-10

100

1010

1020

Lo
ss

 w
it

h
 u

p
p
e
r 

b
o
u

n
d

(i
n
 l
o
g
 s

ca
le

)

(a)

0 1000 2000 3000 4000
Steps

0

0.5

1

1.5

2

2.5

Lo
ss

 w
it

h
 l
o
w

e
r 

b
o
u
n
d

(b)

0 1000 2000 3000 4000
Steps

0

1

2

3

4

C
la

ss
ifi

ca
ti

o
n
 l
o
ss

(c)

0 1000 2000 3000 4000
Steps

100

1010

1020

To
ta

l 
lo

ss
(i

n
 l
o
g
 s

ca
le

)

(d)

Figure 5. In the four plots above of losses against training steps, the Blue, Green, Red, and Magenta lines, respectively, denote IBI applied
after blocks 1,2,3, and 4 in ResNet-12 without any additional modifications. (a) The plot of LUB in log scale for ease of visualization. (b)
Plot of LLB . (c) Plot of LCE . (d) The plot of L in log scale for ease of visualization.

Remark E.2. To show that IBP and IBI variants are well-scalable as their vanilla counterpart, we list the actual training
costs in the following Table 7 in terms of the average time in seconds to execute a single training step of the algorithm. All
the experiments are performed in the same environment using an RTX 3090 GPU. From Table 7, we can observe that, in
the case of MAML, the IBI and IBP variants only takes about 40%-70% additional time when “4-CONV” is used. The
difference in cost reduces further if ResNet-12 is used as the backbone. This is expected as we only need to apply IBP in the
first few layers of ResNet-12 to gain its full advantage. For ProtoNet, the increment in computational cost for the proposed
techniques is slightly higher than that of MAML.

Table 7. Actual computational cost in seconds for IBP and IBI variants of MAML and ProtoNet with “4-CONV” and ResNet-12 backbone.

Algorithm 4-CONV ResNet-12

1-shot 5-shot 1-shot 5-shot

MAML 0.244 0.432 1.408 3.742
MAML + IBP (ours) 0.407 0.615 1.994 4.324
MAML + IBI (ours) 0.412 0.616 2.001 4.326

ProtoNet 0.067 0.073 0.075 0.091
ProtoNet + IBP (ours) 0.129 0.144 0.196 0.221
ProtoNet + IBI (ours) 0.133 0.156 0.202 0.233

F. Hyperparameters used in IBP and IBI
F.1. Names and functions of hyperparameters

The following Table 8 describes the hyperparameters used in the vanilla MAML, MAML+IBP, and MAML+IBI.
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Table 8. Descriptions of hyperparameters used in vanilla MAML, MAML+IBP, MAML+IBI

Hyperarameter name Hyperparameter description

Hyperparameters used in MAML

Meta-shots Number of shots in the query set in the training phase.
Inner loop iterations Number of iterations of the inner loop during training on support set.
Inner loop learning rate η0 Learning rate for SGD in the inner loop during training on support set.
Meta-step size η1 Learning rate for ADAM in the meta-learner update during training.
Meta-batch B Batch size of task during training.
Meta-iterations T Number of training steps.
Evaluation iterations Number of fine-tuning steps on the support set during meta-testing.

Additional hyperparameters introduced in MAML+IBP

Interval coefficient ϵ Perturbation required for IBP.
Softmax coefficient γ Controls the relative importance of the three losses used in MAML+IBP

during softmax-based weighting in training phase.
Layer S A layer in the network where IBP losses will be calculated.

Additional hyperparameters introduced in MAML+IBI

α and β Hyperparameters associated with the Beta distribution required for
performing IBP bounds-based interpolation.

The following Table 9 describes the hyperparameters used in the vanilla ProtoNet, ProtoNet+IBP, and ProtoNet+IBI.

Table 9. Descriptions of hyperparameters used in vanilla ProtoNet, ProtoNet+IBP, ProtoNet+IBI

Hyperarameter name Hyperparameter description

Hyperparameters used in MAML

Number of ways in training Traditional ProtoNet (Snell et al., 2017) usually considers a higher num-
ber of ways during training.

Meta-shots Number of shots in the query set in the training phase.
Meta-step size η Learning rate for ADAM in the learner update during training.
Meta-iterations T Number of training steps.
Distance metric Choice of distance measure, Euclidean or Cosine.

Additional hyperparameters introduced in ProtoNet+IBP

Interval coefficient ϵ Perturbation required for IBP.
Softmax coefficient γ Controls the relative importance of the three losses used in ProtoNet+IBP

during softmax-based weighting in the training phase.
Layer S A layer in the network where IBP losses will be calculated.

Additional hyperparameters introduced in ProtoNet+IBI

α and β Hyperparameters associated with the Beta distribution required for
performing IBP bounds-based interpolation.

F.2. Hyperparameter search space and tuning

For hyperparameter tuning, we employ a grid search. In Table 10, we list the search spaces for each of the hyperparameters
used in MAML+IBP and MAML+IBI. Moreover, in Table 11, we also detail the search spaces for each of the hyperparameters
used in ProtoNet+IBP and ProtoNet+IBI. For all other learners used in Tables 1 and 2 in the main paper, the results are
either taken from the corresponding article or reproduced using the originally recommended hyperparameter settings.

In Tables 12 and 13, we report the optimal dataset-specific hyperparameters for MAML+IBP and MAML+IBI. Similarly,
Tables 14 and 15 detail the optimal dataset-specific hyperparameter choices for ProtoNet+IBP and ProtoNet+IBI.

For Table 3 in the main paper, the methods using static weights share the same hyperparameter settings with their dynamic
weighted counterpart except for γ, which is not used for the static weight runs. For Table 4 in the main paper, all the MAML
variants use the same settings as vanilla MAML. Further, for all the different interpolation strategies, Beta distribution is
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used with the choices of α and β matching those of the MAML+IBI settings.

Table 10. Grid search space of hyperparameters used in vanilla MAML, MAML+IBP, MAML+IBI

Hyperarameter name Hyperparameter search space

Hyperparameters used in MAML

Meta-shots Set to 15 following (Finn et al., 2017).
Inner loop iterations Set to 5 following (Finn et al., 2017).
Inner loop learning rate η0 Set to 0.01 following (Finn et al., 2017).
Meta-step size η1 Set to 0.001 following (Finn et al., 2017).
Meta-batch B Set to 4 following (Finn et al., 2017).
Meta-iterations T Set to 60000 for miniImageNet and tieredImageNet following (Finn et al.,

2017). Set to 50000 for miniImageNet-S, DermNet-S, and ISIC following
(Yao et al., 2022).

Evaluation iterations Set to 10 following (Finn et al., 2017).

Additional hyperparameters introduced in MAML+IBP

Interval coefficient ϵ Searched in the set {0.05, 0.1, 0.2}.
Softmax coefficient γ Searched in the set {0.01, 1, 10}.
Layer S For the “4-CONV” learner containing 4 blocks of Convolution, Batch nor-

malization, Max pooling, and ReLU, S is searched at the block level in
the set {1, 2, 3, 4}. For example, S = 2 means IBP losses are calculated
after the second block. For the “ResNet-12” network the ablation study in
Appendix E provides the optimum choice of S.

Additional hyperparameters introduced in MAML+IBI

α and β Search space contains three pairs of choices (0.1, 1), (0.25, 1), and (0.5, 0.5)
where a tuple contains the value of α and β in order.

Table 11. Grid search space of hyperparameters used in vanilla ProtoNet, ProtoNet+IBP, ProtoNet+IBI

Hyperarameter name Hyperparameter search space

Hyperparameters used in ProtoNet

Number of ways in training Set to 30 for miniImageNet and tieredImageNet following (Snell et al., 2017).
Set to 5 for miniImageNet-S and DermNet-S, and 2 for ISIC as the benefit
of training using higher ways cannot be leveraged in the few-task scenario
(Yao et al., 2022).

Meta-shots Set to 15 following (Snell et al., 2017).
Meta-step size η Set to 0.001 following (Snell et al., 2017).
Meta-iterations T Set to 20000 for miniImageNet and tieredImageNet following (Snell et al.,

2017). Our implementation of ProtoNet, unlike (Yao et al., 2022), does not
require an additional hyperparameter B, analogous to MAML, for IBP or
IBI training. Thus, for miniImageNet-S, DermNet-S, and ISIC also we set T
to 20000.

Distance metric Set to Euclidean following (Snell et al., 2017).

Additional hyperparameters introduced in ProtoNet+IBP

Interval coefficient ϵ Searched in the set {0.05, 0.1, 0.2}.
Softmax coefficient γ Searched in the set {0.01, 1, 10}.
Layer S For the “4-CONV” learner containing 4 blocks of Convolution, Batch nor-

malization, Max pooling, and ReLU, S is searched at the block level in
the set {1, 2, 3, 4}. For example, S = 2 means IBP losses are calculated
after the second block. For the “ResNet-12” network the ablation study in
Appendix E provides the optimum choice of S.

Additional hyperparameters introduced in ProtoNet+IBI

α and β Search space contains three pairs of choices (0.1, 1), (0.25, 1), and (0.5, 0.5)
where a tuple contains the value of α and β in order.
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Table 12. Optimal hyperparamter setting for MAML+IBP, MAML+IBI in 1-shot settings when “4-CONV” network is used.

Hyperarameter Hyperparameter settings for datasets

miniImageNet tieredImageNet miniImageNet-S DermNet-S ISIC

Additional hyperparameters introduced in MAML+IBP

ϵ 0.1 0.05 0.1 0.2 0.05
γ 0.1 0.1 0.1 0.1 0.1
S 3 3 3 3 3

Additional hyperparameters introduced in MAML+IBI

α and β (0.25, 1) (0.25, 1) (0.5, 0.5) (0.5, 0.5) (0.25, 1)

Table 13. Optimal hyperparamter setting for MAML+IBP, MAML+IBI in 5-shot settings when “4-CONV” network is used.

Hyperarameter Hyperparameter settings for datasets

miniImageNet tieredImageNet miniImageNet-S DermNet-S ISIC

Additional hyperparameters introduced in MAML+IBP

ϵ 0.1 0.05 0.1 0.2 0.05
γ 0.1 0.1 0.1 0.1 0.1
S 3 3 3 3 3

Additional hyperparameters introduced in MAML+IBI

α and β (0.1, 1) (0.1, 1) (0.5, 0.5) (0.5, 0.5) (0.25, 1)

Table 14. Optimal hyperparamter setting for ProtoNet+IBP, ProtoNet+IBI in 1-shot settings when “4-CONV” network is used.

Hyperarameter Hyperparameter settings for datasets

miniImageNet tieredImageNet miniImageNet-S DermNet-S ISIC

Additional hyperparameters introduced in ProtoNet+IBP

ϵ 0.05 0.05 0.1 0.1 0.05
γ 1 1 1 1 1
S 1 1 1 1 1

Additional hyperparameters introduced in ProtoNet+IBI

α and β (0.1, 1) (0.25, 1) (0.5, 0.5) (0.25, 1) (0.1, 1)

Table 15. Optimal hyperparamter setting for ProtoNet+IBP, ProtoNet+IBI in 5-shot settings when “4-CONV” network is used.

Hyperarameter Hyperparameter settings for datasets

miniImageNet tieredImageNet miniImageNet-S DermNet-S ISIC

Additional hyperparameters introduced in ProtoNet+IBP

ϵ 0.05 0.05 0.1 0.1 0.05
γ 1 1 1 1 1
S 1 1 1 1 1

Additional hyperparameters introduced in ProtoNet+IBI

α and β (0.1, 1) (0.1, 1) (0.5, 0.5) (0.5, 0.5) (0.25, 1)

F.3. Full results

Contenders in Motivating Example: For the contenders in Table 1 the settings are as follows:

1. MAML+SN on fθS : This variant of MAML applies Spectral Normalization (Miyato et al., 2018) up to the S-th layer
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Table 16. Optimal hyperparameter settings for MAML+IBP/IBI and ProtoNet+IBP/IBI when “ResNet-12” is used as the network.

Datasets

Learner Shots Parameter miniImageNet-S DermNet-S ISIC

MAML+IBP 1 and 5 ϵ 0.1 0.1 0.1
MAML+IBP 1 and 5 γ 0.1 0.1 0.1
MAML+IBP 1 and 5 S∗ 1 1 1

MAML+IBI (Additional) 1 and 5 α and β (0.1, 1) (0.1, 1) (0.1, 1)

ProtoNet+IBP 1 and 5 ϵ 0.05 0.05 0.05
ProtoNet+IBP 1 and 5 γ 0.1 0.1 0.1
ProtoNet+IBP 1 and 5 S∗ 1 1 1

ProtoNet+IBI (Additional) 1 and 5 α and β (0.1, 1) (0.1, 1) (0.1, 1)
∗: Set as per Appendix E with necessary modifications.

of the “4-CONV” network. Here similar to the MAML+IBP the value of S is set to 3.

2. MAML+SN on fθ: Here Spectral Normalization is applied on the full network.

3. MAML+GL: In this variant, we calculate a Gaussian regularization loss instead of IBP. Here we send the query set
along with its perturbed version and attempt to minimize their norm after the S-th layer alongside LCE . The extra loss
LGL can be expressed as follows:

LGL =
1

Nq

Nq∑
r=1

||fθS (xq
i,r)− fθS (xq

i,r + ζ)||22,

where ζ ∼ N (0, σ), and the standard deviation σ is scheduled similar to ϵ with starting from 0 and slowly increasing
to ϵ/2.

4. MAML+ULBL: Following (Morawiecki et al., 2020) we replace the two bound losses with a single one that calculates
the distance between the upper and lower interval bounds. The loss LULBL in this case can be written as:

LULBL =
1

Nq

Nq∑
r=1

||fθS (x
q
i,r, ϵ)− fθS (x

q
i,r, ϵ)||

2
2

The full version of Table 1 is provided in the following Table 17.

Table 17. Effect of IBP on MAML for miniImageNet and tieredImageNet datasets in terms of 5-way 1-shot Accuracy and intra-task
compactness. This is the full version of Table 1.

Algorithm Accuracy 1-NN distance

miniImageNet tieredImageNet miniImageNet tieredImageNet

MAML (Finn et al., 2017) 48.70±1.75% 51.67±1.81% 0.97±0.02 0.98±0.02
MAML+SN on fθS 44.90±1.12% 45.26±1.05% 1.38±0.04 1.41±0.04
MAML+SN on fθ 42.83±0.94% 43.06±0.96% 1.52±0.04 1.53±0.04
MAML+GL 48.70± 0.97% 51.90±0.98% 0.96±0.02 0.98±0.02
MAML+ULBL 49.43±0.90% 51.67±0.91% 0.94±0.02 0.97±0.02
MAML+IBP (ours) 50.76±0.83% 54.36±0.80% 0.90±0.02 0.96±0.02

Comparison of IBP with other few-shot learners: As contending meta-learning algorithms, we choose the vanilla MAML
along with notable meta-learners such as Meta-SGD (Li et al., 2017), Reptile (Nichol et al., 2018), LLAMA (Grant et al.,
2018), R2-D2 (Bertinetto et al., 2019), and BOIL (Oh et al., 2021). Moreover, considering the regularizing effect of IBP and
IBI, we also include meta-learners such as TAML (Jamal & Qi, 2019), Meta-Reg (Yin et al., 2019), and Meta-Dropout (Lee
et al., 2020) which employ explicit regularization. We further include data augmentation–reliant learners such as MetaMix
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(Yao et al., 2021), Meta-Maxup (Ni et al., 2021), as well as the inter-task interpolation method MLTI (Yao et al., 2022). In
case of metric-learners, we compare against the vanilla ProtoNet in addition to other notable methods like MatchingNet
(Vinyals et al., 2016), RelationNet (Sung et al., 2018), IMP (Allen et al., 2019), and GNN (Satorras & Estrach, 2018).
We also compare against ProtoNet coupled with data augmentation methods such as MetaMix, Meta-Maxup, and MLTI,
as done in (Yao et al., 2022). While (Yao et al., 2022) had to modify the training strategy of the canonical ProtoNet to
accommodate the changes introduced by MetaMix, Meta-Maxup, and MLTI, the flexibility of IBP and IBI imposes no such
requirements. We summarize the findings in Table 18. We can observe that either IBP or IBI or both achieve better Accuracy
than the competitors in all cases. The slightly better performance of IBP with ProtoNet seems to imply that IBP-based task
interpolation is often unnecessary for ProtoNet when a large number of tasks is available.

Table 18. Performance comparison of the two proposed methods with baselines and competing algorithms on miniImageNet and
tieredImageNet datasets. The results are reported in terms of mean Accuracy over 600 tasks with 95% confidence interval.

Dataset Learner type Algorithm 1-shot 5-shot

miniImageNet

Meta-learners

MAML (Finn et al., 2017) 48.70±1.75% 63.11±0.91%
Meta-SGD (Li et al., 2017) 50.47±1.87% 64.03±0.94%
Reptile (Nichol et al., 2018) 49.97±0.32% 65.99±0.58%
LLAMA (Grant et al., 2018) 49.40±0.84% -
R2-D2 (Bertinetto et al., 2019) 49.50±0.20% 65.40±0.20%
TAML (Jamal & Qi, 2019; Yao et al., 2022) 46.40±0.82% 63.26±0.68%
BOIL (Oh et al., 2021) 49.61±0.16% 66.45±0.37%
MAML+Meta-Reg (Yin et al., 2019; Yao et al., 2022) 47.02±0.77% 63.19±0.69%
MAML+Meta-Dropout (Lee et al., 2020; Yao et al., 2022) 47.47±0.81% 64.11±0.71%
MAML+MetaMix (Yao et al., 2021; 2022) 47.81±0.78% 64.22±0.68%
MAML+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 47.68±0.79% 63.51±0.75%
MAML+MLTI (Yao et al., 2022) 48.62±0.76% 64.65±0.70%

MAML+IBP (ours) 50.76±0.83% 67.13±0.81%
MAML+IBI (ours) 52.16±0.84% 67.56±0.86%

Metric-learners

MatchingNet (Vinyals et al., 2016) 43.44±0.77% 55.31±0.73%
RelationNet (Sung et al., 2018) 50.44±0.82% 65.32±0.70%
IMP (Allen et al., 2019) 49.60±0.80% 68.10±0.80%
GNN (Satorras & Estrach, 2018) 49.02±0.98% 63.50±0.84%
ProtoNet (Snell et al., 2017) 49.42±0.78% 68.20±0.66%
ProtoNet∗+MetaMix (Yao et al., 2021; 2022) 47.21±0.76% 64.38±0.67%
ProtoNet∗+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 47.33±0.79% 64.43±0.69%
ProtoNet∗+MLTI (Yao et al., 2022) 48.11±0.81% 65.22±0.70%

ProtoNet+IBP (ours) 50.48±0.83% 68.33±0.79%
ProtoNet+IBI (ours) 51.79±0.81% 68.46±0.79%

tieredImageNet

Meta-learners

MAML (Finn et al., 2017) 51.67±1.81% 70.30±0.08%
Meta-SGD (Li et al., 2017) 48.97±0.21% 66.47±0.21%
Reptile (Nichol et al., 2018) 49.97±0.32% 65.99±0.58%
BOIL (Oh et al., 2021) 49.35±0.26% 69.37±0.12%

MAML+IBP (ours) 54.36±0.80% 71.30±0.77%
MAML+IBI (ours) 54.16±0.79% 71.00±0.84%

Metric-learners

MatchingNet (Vinyals et al., 2016) 54.02±0.79% 70.11±0.82%
RelationNet (Sung et al., 2018) 54.48±0.93% 71.32±0.78%
ProtoNet (Snell et al., 2017) 53.31±0.20% 72.69±0.74%

ProtoNet+IBP (ours) 53.83±0.81% 75.26±0.83%
ProtoNet+IBI (ours) 55.16±0.77% 74.96±0.82%

∗ ProtoNet implementation as per (Yao et al., 2022).

Notes on contenders used in Table 2: The extra parameter settings required for the contenders in Table 2 are as follows:

1. MAML+WCL: Here given a task its worst-case loss in the ϵ-neighborhood (Gowal et al., 2019) is added with the
original loss. In essence, this acts similar to augmentation with the worst-case logits. We tune the relative contribution
of the original task and the worst-case task to the final LCE following the recommendations made by (Gowal et al.,
2019).

2. MAML+GA (image space): Here the original task is perturbed with Gaussian noise to form the augmented task in the
image space. The noise is sampled from a Gaussian with mean 0 and standard deviation σ = ϵ/2. The value of σ is
scheduled similarly to ϵ.

3. MAML+GA (at fθS feature space): Here the embedding of the original task after fθS is perturbed with Gaussian noise.
Similar to the image space, the mean of the normal distribution used for sampling noise can be set to 0. However,
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finding a good σ may not be straightforward as the fθS feature space is continuously updating. In our implementation,
we take σ as half of the median distance between the original task and its bounds over a MAML+IBI run.

The full version of Table 2 is detailed in Table 19. The full version of Table 4 in the main paper is provided here across
Tables 20 and 21. Moreover, the full version of Table 5 in the main paper is presented in Table 22.

Table 19. Full version of Table 2 for performance comparison of MAML+IBI against 11 augmentation strategies, in the 5-way 1-shot
setting. The results are reported in terms of mean Accuracy over 600 tasks along with the 95% confidence intervals.

Algorithm mIS ISIC DS

MAML+Inter-task interpolation in image space 40.90±0.86% 55.25±1.58% 48.30±0.81%
MAML+Inter-task interpolation after fθS 41.00±0.83% 61.33±1.52% 47.43±0.78%
MAML+WCL 41.56±0.88% 66.83±1.64% 48.20±0.81%
MAML+ULBL+WCL 41.27±0.84% 63.50±1.48% 48.43±0.80%
MAML+IBP+WCL 41.56±0.85% 64.75±1.61% 48.90±0.83%
MAML+ULBL+Intra-task Interpolation 40.37±0.80% 64.91±1.45% 48.23±0.77%
MAML+GA (Image Space) 41.33±0.85% 63.25±1.68% 47.67±0.86%
MAML+IBP+GA (Image Space) 41.83±0.82% 62.67±1.59% 48.83±0.82%
MAML+IBP+GA (after fθS ) 41.66±0.84% 63.75±1.63% 47.60±0.82%
MAML+MLTI (Yao et al., 2022) 41.58±0.72% 61.79±1.00% 48.03±0.80%
MAML+IBI without LUB and LLB losses 35.26±0.79% 48.94±1.36% 41.30±0.81%

MAML+IBI (Ours) 42.20±0.82% 68.58±0.93% 49.13±0.80%

Table 20. Full results for MAML variants on miniImageNet-S, DermNet-S, and ISIC in Table 4 of the main paper. All results are reported
in terms of Accuracy over 600 tasks along with 95% confidence level.

Algorithm 4-CONV ResNet-12

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

miniImageNet-S

MAML (Finn et al., 2017) 38.27±0.74% 52.14±0.65% 40.02±0.78% 52.56±0.85%
MAML+Meta-Reg (Yin et al., 2019; Yao et al., 2022) 38.35±0.76% 51.74±0.68% - -
TAML (Jamal & Qi, 2019; Yao et al., 2022) 38.70±0.77% 52.75±0.70% - -
MAML+Meta-Dropout (Lee et al., 2020; Yao et al., 2022) 38.32±0.75% 52.53±0.69% - -
MAML+MetaMix (Yao et al., 2021; 2022) 39.43±0.77% 54.14±0.73% 42.26±0.75% 54.65±0.87%
MAML+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 39.28±0.77% 53.02±0.72% 41.97±0.78% 53.92±0.85%
MAML+MLTI (Yao et al., 2022) 41.58±0.72% 55.22±0.76% 43.35±0.90% 54.89±0.88%

MAML+IBP (ours) 41.30±0.79% 54.36±0.81% 43.50±0.86% 55.13±0.90%
MAML+IBI (ours) 42.20±0.82% 55.23±0.81% 43.90±0.90% 57.00±0.88%

ISIC

MAML (Finn et al., 2017) 57.59±0.79% 68.24±0.77% 59.41±1.98% 67.66±1.92%
MAML+Meta-Reg (Yin et al., 2019; Yao et al., 2022) 58.57±0.94% 68.45±0.81% - -
TAML (Jamal & Qi, 2019; Yao et al., 2022) 58.39±1.00% 66.09±0.71% - -
MAML+Meta-Dropout (Lee et al., 2020; Yao et al., 2022) 58.40±1.02% 67.32±0.92% - -
MAML+MetaMix (Yao et al., 2021; 2022) 60.34±1.03% 69.47±0.60% 62.06±1.77% 72.18±1.75%
MAML+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 58.68±0.86% 69.16±0.61% 61.64±1.81% 72.04±1.79%
MAML+MLTI (Yao et al., 2022) 61.79±1.00% 70.69±0.68% 62.16±1.88% 73.56±1.82%

MAML+IBP (ours) 64.91±0.92% 78.75±0.94% 64.50±1.48% 73.91±1.42%
MAML+IBI (ours) 68.58±0.93% 79.75±0.91% 63.25±1.51% 75.66±1.56%

DermNet-S

MAML (Finn et al., 2017) 43.47±0.83% 60.56±0.74% 47.58±0.93% 63.13±0.85%
MAML+Meta-Reg (Yin et al., 2019; Yao et al., 2022) 45.01±0.83% 60.92±0.69% - -
TAML (Jamal & Qi, 2019; Yao et al., 2022) 45.73±0.84% 61.14±0.72% - -
MAML+Meta-Dropout (Lee et al., 2020; Yao et al., 2022) 44.30±0.84% 60.86±0.73% -
MAML+MetaMix (Yao et al., 2021; 2022) 46.81±0.81% 63.52±0.73% 51.40±0.89% 64.82±0.87%
MAML+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 46.10±0.82% 62.64±0.72% 50.82±0.85% 64.24±0.86%
MAML+MLTI (Yao et al., 2022) 48.03±0.79% 64.55±0.74% 52.03±0.90% 65.12±0.88%

MAML+IBP (ours) 48.33±0.83% 63.33±0.84% 50.40±0.88% 65.40±0.89%
MAML+IBI (ours) 49.13±0.80% 65.43±0.79% 52.10±0.87% 66.50±0.92%
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Table 21. Full results for ProtoNet variants on miniImageNet-S, ISIC, and DermNet-S in Table 4 of the main paper. All results are reported
in terms of Accuracy over 600 tasks along with 95% confidence level.

Algorithm 4-CONV ResNet-12

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

miniImageNet-S

ProtoNet∗ (Snell et al., 2017; Yao et al., 2022) 36.26±0.70% 50.72±0.70% - -
ProtoNet (Snell et al., 2017) 40.70±0.79% 53.16±0.77% 40.96±0.75% 55.00±0.86%
ProtoNet∗+MetaMix (Yao et al., 2021; 2022) 39.67±0.71% 53.10±0.74% 42.95±0.87% 56.95±0.89%
ProtoNet∗+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 39.80±0.73% 53.35±0.68% 42.68±0.78% 56.07±0.85%
ProtoNet∗+MLTI (Yao et al., 2022) 41.36±0.75% 55.34±0.74% 44.08±0.83% 57.14±0.90%

ProtoNet+IBP (ours) 41.46±0.79% 55.00±0.81% 43.33±0.82% 57.40±0.90%
ProtoNet+IBI (ours) 43.30±0.81% 55.73±0.80% 45.33±0.85% 58.23±0.92%

ISIC

ProtoNet∗ (Snell et al., 2017; Yao et al., 2022) 58.56±1.01% 66.25±0.96% - -
ProtoNet (Snell et al., 2017) 65.58±0.91% 75.25±0.90% 61.91±1.94% 75.91±1.92%
ProtoNet∗+MetaMix (Yao et al., 2021; 2022) 60.58±1.17% 70.12±0.94% 65.55±1.80% 78.33±1.76%
ProtoNet∗+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 59.66±1.13% 68.97±0.83% 64.17±1.85% 77.62±1.86%
ProtoNet∗+MLTI (Yao et al., 2022) 62.82±1.13% 71.52±0.89% 66.02±1.88% 79.15±1.87%

ProtoNet+IBP (ours) 70.75±0.95% 81.01±0.93% 66.66±1.52% 81.00±1.49%
ProtoNet+IBI (ours) 70.25±0.91% 81.16±0.94% 66.75±1.63% 81.83±1.58%

DermNet-S

ProtoNet∗ (Snell et al., 2017; Yao et al., 2022) 44.21±0.75% 60.33±0.70% - -
ProtoNet (Snell et al., 2017) 46.86±0.77% 62.03±0.79% 48.65±0.85% 65.40±0.81%
ProtoNet∗+MetaMix (Yao et al., 2021; 2022) 47.71±0.83% 62.68±0.71% 51.18±0.90% 66.80±0.83%
ProtoNet∗+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 46.06±0.78% 62.97±0.74% 50.96±0.88% 66.38±0.85%
ProtoNet∗+MLTI (Yao et al., 2022) 49.38±0.85% 65.19±0.73% 52.01±0.93% 67.28±0.87%

ProtoNet+IBP (ours) 48.06±0.81% 67.26±0.84% 51.33±0.91% 67.57±0.88%
ProtoNet+IBI (ours) 51.13±0.80% 65.93±0.82% 52.53±0.94% 68.00±0.88%
∗ ProtoNet implementation as per (Yao et al., 2022).

Table 22. Full result for Table 5 describing transferability comparison of MAML and ProtoNet, with their MLTI, IBP and IBI variants. All
results are reported in terms of Accuracy over 600 tasks along with the 95% confidence intervals. Here, A → B indicates the model
trained on dataset A is tested on dataset B.

Algorithms Accuracy

DermNet-S → miniImageNet-S miniImageNet-S → DermNet-S

MAML 25.06±0.79% 33.40±0.77%
MAML+MLTI 30.03±0.58% 36.74±0.64%
MAML+IBP (ours) 27.06±0.78% 33.90±0.81%
MAML+IBI (ours) 30.23±0.82% 36.21±0.84%

ProtoNet 28.76±0.82% 34.03±0.80%
ProtoNet∗+MLTI 30.06±0.56% 35.46±0.63%
ProtoNet+IBP (ours) 29.60±0.81% 34.13±0.82%
ProtoNet+IBI (ours) 30.32±0.84% 35.63±0.83%
∗: ProtoNet implementation as per Yao et al. (2022).
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