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Abstract
Bayesian optimization is a popular method for
sample efficient multi-objective optimization.
However, existing Bayesian optimization tech-
niques fail to effectively exploit common and
often-neglected problem structure such as decou-
pled evaluations, where objectives can be queried
independently from one another and each may
consume different resources, or multi-fidelity eval-
uations, where lower fidelity-proxies of the ob-
jectives can be evaluated at lower cost. In this
work, we propose a general one-step lookahead
acquisition function based on the Knowledge Gra-
dient that addresses the complex question of what
to evaluate when and at which design points in
a principled Bayesian decision-theoretic fashion.
Hence, our approach naturally addresses decou-
pled, multi-fidelity, and standard multi-objective
optimization settings in a unified Bayesian deci-
sion making framework. By construction, our
method is the one-step Bayes-optimal policy for
hypervolume maximization. Empirically, we
demonstrate that our method improves sample
efficiency in a wide variety of synthetic and real-
world problems. Furthermore, we show that our
method is general-purpose and yields competi-
tive performance in standard (potentially noisy)
multi-objective optimization.

1. Introduction
Black-box optimization is a ubiquitous problem in scientific
and engineering applications. In many scenarios, there are
multiple objective functions that a decision maker seeks
to optimize simultaneously. Multi-objective Bayesian opti-
mization (MOBO) is a powerful technique to achieve this
with high sample efficiency (Hernandez-Lobato et al., 2016).
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Most MOBO algorithms assume that all objectives are eval-
uated jointly (i.e. the evaluations of the objectives are cou-
pled). However, in practice there are many partial informa-
tion settings in which this is not the case. For instance, we
may have the ability to evaluate objectives individually (the
decoupled evaluation setting, see Figure 1), or we may have
lower-fidelity proxies available (the multi-fidelity setting) in
order to save time and/or resources.
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Figure 1: Decoupled evaluation allows for multiple objec-
tives to be evaluated in non-blocking fashion (bar lengths
correspond to evaluation time). With non-competitive de-
coupling, objectives have independent evaluation resources
and do not compare for a shared resource.

Consider for example the problem of neural architecture
search (NAS), in which we aim to identify optimal neu-
ral network architectures with respect to both model quality
(e.g. accuracy) and hardware-specific metrics such as predic-
tion latency measured on-device (Janapa Reddi et al., 2022).
In general, neither metric can be computed analytically as a
function of the network architecture. Measuring accuracy
typically requires a substantial amount of computation time
as the NN must be trained and evaluated. Measuring latency
requires access to the specific hardware of interest (e.g. a
particular mobile device type) and often few devices may
be tested simultaneously (Ignatov et al., 2019). However,
device-specific latency can be evaluated on untrained NNs
with reasonable accuracy with a short benchmark, making
evaluation less time-consuming. This setting is illustrated
in Figure 2, where we consider the scenario where we have
access to a number of compute nodes—each of which can
be used to train and evaluated a model—and a small number
of mobile devices that can be used for measuring latency.
The time for training models and evaluating accuracy will
typically be much longer than the time required to measure
on-device latency, but can happen asynchronously.

1



Hypervolume Knowledge Gradient: A Lookahead Approach for Multi-Objective Bayesian Optimization with Partial Information

Mobile Devices

x9

x1

Training Nodes

x2

x4

x5

x7

Optimizer

x3

Accuracy 
, 


request for 2 arch

x6, x8
New arch x11, x12

Latency , 


request for 1 arch x10

New arch x13

Available

Legend

In use

Pareto 
Frontier

Figure 2: Multi-Objective Neural Architecture Search is
one example problem with decoupled evaluations, where
the objectives can be evaluated independently.

In this setting, a standard MOBO algorithm would sim-
ply generate architectures to be evaluated on all objectives
and wait for evaluations to complete before generating new
candidates (see, e.g., Guerrero-Viu et al. (2021); Eriksson
et al. (2021)). This can be very inefficient, especially if
evaluation time (more generally, cost) differs substantially
between the objectives. Instead, one may asynchronously
choose an architecture in a decoupled fashion to evaluate
on a given objective whenever capacity for that objective
becomes available. Figure 3 shows that even a simple pol-
icy that employs this strategy and selects architectures in a
(quasi-)random fashion significantly outperforms standard
MOBO methods.
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Figure 3: A random search
algorithm that generates can-
didates for each objective
in a decoupled asynchronous
fashion outperforms a state-
of-the-art MOBO method
(qNEHVI) on a NAS prob-
lem. Our method signifi-
cantly outperforms both.

Although some MOBO methods can exploit the problem’s
decoupled asynchronous structure (e.g., Hernandez-Lobato
et al. (2016); Suzuki et al. (2020)), recent work noted that
the performance improvements of existing decoupled meth-
ods relative to their non-decoupled counterparts are small
(Tu et al., 2022). In contrast, we develop a method that
significantly outperforms state-of-the-art MOBO algorithms
for these settings.

The NAS problem described above is an instance of a more
general class of problems that is ubiquitous in the physi-
cal science and engineering. For example, in material sci-

ence high-throughput screening may be applied to discover
candidate compounds, but computationally-expensive sim-
ulations and/or physical experiments may be necessary to
characterize the final behavior of the compound (Mukadum
et al., 2021). In the design of low-carbon-emission concrete,
objectives of interest are evaluated at multiple timescales:
carbon emissions can be measured within the first several
hours of production, while properties such as compressive
strength can take several weeks to evaluate (Barcelo et al.,
2014). Low-fidelity proxies for compressive strength (such
as strength after 3 days) can be evaluated in less time, but
due to the destructive nature of testing, such measurements
forgo the ability to evaluate the compressive strength at a
target fidelity (e.g., after 60 days). As in the NAS exam-
ple, there is limited capacity for testing certain properties
(e.g., only so many rods of concrete can be cured or stored
simultaneously).

The decoupled and multi-fidelity problems are instances in
which a practitioner wishes to perform MOBO with incom-
plete information. By leveraging this partial information,
one can substantially reduce the cost of optimization com-
pared to naı̈ve approaches.

Contributions

1. We formulate the MOBO problem by considering one-
step look-ahead optimization of hypervolume.

2. We propose the Hypervolume Knowledge Gradient
(HV-KG), a unifying acquisition strategy that allows
for conditioning on incomplete information and gen-
erating candidates in a way that takes the evaluation
structure into account.

3. We derive an unbiased gradient estimator and provide
a computationally efficient technique for optimizing
HV-KG using sample average approximation.

4. We demonstrate substantial gains in optimization per-
formance of HV-KG over state-of-the-art MOBO
methods on a variety synthetic and real-world multi-
fidelity and decoupled problems.

2. Preliminaries
2.1. Multi-Objective Optimization (MOO)

In MOO, the goal is to optimize a vector valued function
f(x) = (f (1)(x), . . . , f (M)(x)) over a compact hyperrect-
angular search space X ⊂ Rd. Typically there is no sin-
gle best solution, and therefore the goal is to identify the
set of designs with optimal objective trade-offs. We say a
solution f(x) dominates another solution f(x′), denoted
by f(x) ≻ f(x′), if f (m)(x) ≥ f (m)(x′) for all m and
there exists i such that f (i)(x) > f (i)(x′). An objective
vector is Pareto optimal iff it is not dominated. The set
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P∗ = {f(x) | ∄ x′ ∈ X s.t. f(x′) ≻ f(x)} of such vec-
tors is called the Pareto frontier. The corresponding set of
optimal designs is called the Pareto set X ∗ and is defined as

X ∗ = {x ∈ X | ∄ x′ ∈ X s.t. f(x′) ≻ f(x)}. (1)

The image of X ∗ is P∗. Given a Pareto frontier, a decision-
maker can select a design with corresponding objectives
that align with their preferences. The hypervolume indicator
(HV) is a popular quality measure of a Pareto frontier.

Definition 2.1. The hypervolume indicator (HV) of a Pareto
frontier P is the M -dimensional Lebesgue measure of the
space Z = {z ∈ RM : ∃ y ∈ P s.t. y ≻ z ≻ r} that is
dominated by P and bounded from below by a reference
point r ∈ RM : HV(P, r) =

∫
RM 1Z(z)dz, where 1Z(z)

denotes characteristic function of Z.1

HV monotonically increases with Pareto dominance, which
guarantees that it is maximized by the Pareto frontier (the
image of the Pareto set) (Bader and Zitzler, 2011):

HV
[
{f(x)}x∈X∗ ] = max

X ′⊆X
HV[{f(x)}x∈X ′

]
. (2)

Hence we can express the goal of MOO as finding the small-
est2 set of designs X ∗ that collectively maximize the HV:

X ∗ = argmin
{
|X ′′| : X ′′ ∈ argmax

X ′⊆X
HV[{f(x)}x∈X ′ ]

}
.

(3)
Maximizing HV is a commonly used optimization goal that
has been shown to produce high-quality approximate Pareto
frontiers (Emmerich et al., 2011).

2.2. Bayesian Optimization (BO)

BO is a sample-efficient optimization method that models
the objectives using a probabilistic surrogate, typically a
Gaussian process (GP). Leveraging this surrogate, BO em-
ploys an acquisition function (AF) that quantifies the value
of evaluating a new design on the objective functions. One
popular AF for MOBO is expected hypervolume improve-
ment (EHVI) (Emmerich et al., 2011), which quantifies the
improvement in HV of the observed data after evaluating x:

αEHVI(x) = E
[
HV

(
Y ∪ {f(x)}

)
− HV

(
Y
)
| D

]
,

where the expectation is over the model posterior P (f |D),
D = {(xi, yi)}ni=1 are the designs evaluated so far and their
corresponding observations, and Y := {yi}ni=1.

A BO policy selects one or more designs by finding the
maximizer of the AF with respect to a single design x

1Henceforth, we omit r from HV for brevity.
2We are interested in the smallest hypervolume-maximizing

set because for any hypervolume-maximizing set X ′ ⊆ X and
design x ∈ X , HV(X ′) = HV(X ′ ∪ {f(x)}).

when evaluation is done sequentially, or a batch of designs
x = {x1, . . . xq} when performing BO in parallel.3 The
designs are then evaluated on the objective functions, and
the surrogate model is updated with the new observations
y(x) = {y(x1), . . . y(xq)}. BO proceeds until an evalua-
tion budget is depleted.

2.3. BO with Partial Information

We briefly review terminology and common approaches to
multi-fidelity (MF) BO and BO with decoupled evaluation.

Multi-fidelity BO. In multi-fidelity (MF) optimization, de-
signs can be evaluated at different qualities within a fidelity
space S ⊂ RK . Examples of fidelity parameters may in-
clude the number of datapoints used to train a machine learn-
ing model or the resolution of a simulator. Lower fidelity
observations are assumed to incur lower cost (e.g., compute
or physical resources, time), but may differ from the value
of the target objective f (i)( · , s⋄), where s⋄ is a known tar-
get fidelity. MF-BO policies select designs and fidelities to
query f(x, s) with the aid of a surrogate model that borrows
strength across different fidelities. This can lead to signif-
icant improvements in performance within a cost budget
(Poloczek et al., 2017; Takeno et al., 2020; Wu et al., 2020a;
Irshad et al., 2021). Typically, designs and fidelities are
selected in a cost-aware fashion to maximize the acquisition
value per unit cost (Snoek et al., 2012; Lee et al., 2020; Wu
et al., 2020a). Specifically, the acquisition value of evaluat-
ing a set of designs at corresponding fidelities is weighted by
the inverse of a cost function λMF(x, s) : X q ×Sq → R>0,
where s = {s1, . . . , sq}.

BO with Decoupled Evaluations. In decoupled problems,
objectives can be evaluated independently at potentially dif-
ferent costs. As a result, any given evaluation of a design x
may not contain a full vector of outputs y ∈ RM , but rather
some subset of outcomes (typically, a single objective). We
further distinguish between competitive decoupling (CD)
and non-competitive decoupling (NCD) (Hernández-Lobato
et al., 2016). With CD, evaluation resources are shared
between objectives, whereas with NCD, they are not. De-
coupled BO policies select designs to be evaluated on par-
ticular objectives. Similar to the MF setting, this is typically
achieved by maximizing the acquisition value per unit cost.
Here, the cost function λD(x,m) : X q ×Mq → R>0 char-
acterizes the cost of evaluating a set of q designs, x, with
respect to m = {m1, . . . ,mq} ∈ Mq objectives, where
M = {m}Mm=1 is the set of objective indices. Similar to the
MF setting, exploiting decoupling can substantially improve
optimization performance within a given budget.

3For the sake of generality and notational simplicity, we will
assume that acquisition functions are maximized with respect a set
of designs (i.e., the joint value of x) throughout this work.
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3. Related Work
Many recent works have focused on multi-objective BO. Nu-
merous techniques exist, the three most prominent families
of methods are hypervolume-based approaches (Lukovic
et al., 2020; Daulton et al., 2021; 2022b), information the-
oretic methods (Hernandez-Lobato et al., 2016; Belakaria
et al., 2019; Suzuki et al., 2020; Tu et al., 2022; Garrido-
Merchán et al., 2023), and scalarization-based techniques
(Knowles, 2006; Golovin and Zhang, 2020; Daulton et al.,
2022a). However, the setting with incomplete information
is much less studied.

The only methods to consider MOO with decoupled eval-
uations are the entropy-based Predictive Entropy Search
(PESMO) (Hernandez-Lobato et al., 2016) and Pareto Fron-
tier Entropy Search (PFES) (Suzuki et al., 2020). Recent
work on multi-objective Joint Entropy Search (JES) (Tu
et al., 2022) noted that the improvements in sample effi-
ciency appeared marginal at best in those works and there-
fore abstained from implementing and evaluating JES in the
decoupled setting. In contrast to this finding, we observe
that exploiting decoupled evaluations with HV-KG (and
even random search) can greatly improve sample efficiency.

In the MF setting, Belakaria et al. (2020) proposed MF-
OSEMO, a multi-objective extension of Multi-Fidelity Max-
Value Entropy Search (Takeno et al., 2020). However, this
method is only applicable in discrete fidelity settings, as-
sumes that the objectives monotonically increase with the
fidelity parameter, and, similar to Multi-Objective Max-
Value Entropy Search (Belakaria et al., 2019), suffers from
significant approximation error (see Tu et al. (2022) for
details). MoFiBay (Chen et al., 2022) outperforms MF-
OSEMO, but is also limited to discrete fidelities. Irshad
et al. (2021) introduced a MF method called MOMF, which
uses the fidelity parameter as an additional “trust” objec-
tive and employs an inverse cost-weighted EHVI over all
objectives. Although this approach performs quite well em-
pirically, it does not a employ a principled procedure for
selecting the fidelity parameter, and it does not specifically
aim to learn the Pareto frontier over the M objectives at the
target fidelity, but rather to learn the Pareto frontier over
the M objectives and the trust objective. He et al. (2022)
also consider a MF EHVI variant, but it is limited to the
bi-fidelity setting. Guerrero-Viu et al. (2021) extend the MF
BO methods BANANAS (White et al., 2021) and BOHB
(Falkner et al., 2018) to the multi-objective setting, but find
that full-fidelity EHVI outperforms both methods.

While our contributions build upon previous work on the
Knowledge Gradient (Frazier et al., 2008; Scott et al., 2011)
and its MF extensions (Poloczek et al., 2017; Wu et al.,
2020a), none of these works consider the MOO setting.
Q. Yahyaa et al. (2014) consider KG in the multi-objective
bandit setting leveraging linear and Chebyshev scalariza-

tions, but they do not consider the BO setting and their
evaluations are quite limited.

4. Pareto Set Selection
In MOBO, a decision maker must infer the Pareto optimal
designs after receiving a finite number of observations. In
the setting where observations of all objectives are available
for all designs and are free of noise, a common approach
is to restrict the Pareto set selection in (3) to only consider
dominance with respect to XD := {x : (x, · ) ∈ D}, the set
of previously evaluated designs:

X̂ ∗ =
{
x ∈ X | ∄ x′ ∈ XD s.t. f(x′) ≻ f(x)

}
.

or, equivalently, X̂ ∗ = argmaxX ′⊆X HV[{f(x)}x∈X ′ ].
However, observations may be noisy y ∼ N (f(x), σ2

noise)
and in which case the actual objective function values may
not be directly observed (which can cause issues with tra-
ditional MOBO methods (Daulton et al., 2021)). Similarly,
in the setting where not all objectives are evaluated for all
designs or not all objectives are evaluated at the target fi-
delity, the set of designs that have been evaluated on all
objectives can be small or empty. In such scenarios, it is
common for a practitioner to identify the designs that are
optimal with respect to their expected values under the surro-
gate model (Hernandez-Lobato et al., 2016; Belakaria et al.,
2019; Suzuki et al., 2020; Tu et al., 2022) and to select the
optimal designs over the entire search space. Concretely,
under a Bayesian decision-theoretic framework, the optimal
set of designs is selected as the set of designs X ∗ whose
expected values under the posterior distribution of f con-
ditional on the observed data D are Pareto optimal. In the
standard sequential scenario,

X̂ ∗ =
{
x ∈ X | ∄ x′ ∈ X s.t. ED[f(x

′)] ≻ ED[f(x)]
}
,

where ED the expectation over the posterior of f conditional
on D. An equivalent problem is to find the set of designs
that maximize the HV of the expected values:

X̂ ∗ = argmax
X ′⊆X

HV
[{

ED
[
f(x)

]}
x∈X ′

]
. (4)

Since X̂ ∗ can be an infinite set, it is typically hard to iden-
tify exactly. A common approach is to identify a finite-
cardinality approximate Pareto set X̂∗ containing Np de-
signs, typically by running an evolutionary algorithm such
as NSGA-II on ED[f(x)] (Hernandez-Lobato et al., 2016;
Belakaria et al., 2019; Suzuki et al., 2020; Tu et al., 2022).
Often, the HV of the resulting Pareto frontiers is used for
comparing their quality. We can directly express this opti-
mization goal by restricting the HV maximization problem
in Equation (4) to finite cardinality sets |X ′| ≤ Np:

X̂∗ = argmax
X⊆X , |X|≤Np

HV
[{

ED
[
f(x)

]}
x∈X ′

]
.
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Henceforth, we assume |X| ≤ Np. In the following, we
will write µ(X | D) := {ED[f(x)]}x∈X .

5. A Knowledge Gradient Approach
Given the Bayesian decision-theoretic goal above, we de-
rive a novel AF to explicitly target our end goal: inferring a
hypervolume-maximizing finite Pareto set. Consider the sce-
nario where one can obtain additional observations (x,y)
before identifying the Pareto optimal designs conditional on
Dx := D ∪ {(x,y)}. Then, the one-step Bayes-optimal ac-
quisition function, denoted as the Hypervolume Knowledge
Gradient (HV-KG), is:

αHV-KG(x) = ED

[
max
X⊆X

HV
[
µ(X | Dx)

]
− ψ∗

]
, (5)

where ψ∗ := maxX⊆X HV
[
µ(X | D)

]
. Conceptually, HV-

KG quantifies the increase in hypervolume of the Pareto
frontier across the expected values of the objectives. The
outer expectation is necessary because y is a random vari-
able and µ depends on y. Since ψ∗ is constant conditional
on D, the maximizer of αHV-KG(x) does not change if ψ∗

is omitted.

Asynchronous Candidate Generation While (5) is the
formulation for parallel (i.e. batch) candidate generation, it
is straightforwardly extended to the setting of asynchronous
generation, in which the result of some pending points x̃
have yet to be observed. In this case the acquisition function
is evaluated on x ∪ x̃ but optimized only over x.

6. Conditioning on Partial Information
Although HV-KG is applicable to standard MOBO prob-
lems where observations of all objectives are received for
all designs, a key benefit of HV-KG is that it enables con-
ditioning on incomplete information. In contrast, other
popular HV-based methods (e.g. Emmerich and Fonseca
(2011); Lukovic et al. (2020); Daulton et al. (2021)) cannot
condition on incomplete information because they rely on
utility functions that measure improvement with respect to
an in-sample Pareto set and assume that observations of all
objectives will be received for the selected candidate design.
In contrast, HV-KG can leverage incomplete information
(such as decoupled and multi-fidelity evaluations) simply by
changing the new data Dx that the model is conditioned on.

Decoupled Evaluations In the decoupled setting the ob-
jectives can be evaluated independently. The decoupled

HV-KG acquisition function is4

αD-HV-KG(x,m) =
αHV-KG(x)

λD(x,m)
,

where now Dx = {(xi, y(mi)
i )}qi=1 and the cost λD is de-

fined in Section 2.3. In CD, the evaluation budget is in terms
of total cost and all objectives compete for shared resources.
As such, we consider the case of q = 1, without loss of
generality. The BO policy chooses the objective m and
design x jointly in a cost-aware fashion. In NCD, the evalu-
ation budget is in terms of time and all available evaluation
capacity should be exploited.

Let c ∈ NM denote the available evaluation capacity for
each objective. The policy generates q =

∑M
m=1 c

(m) can-
didates x jointly to exploit all available capacity. Each
candidate is assigned to be evaluated on an objective spec-
ified by m ∈ Mq such that c(m) =

∑q
i=1 1(mi = m) for

all m = 1, ...,M .

Multi-Fidelity Let µ⋄(X,D) := {ED[f(x, s⋄)]}x∈X .
The multi-fidelity HV-KG AF is given by

αMF-HV-KG(x, s) =

1

λMF(x, s)
ED

[
max
X⊆X

HV
[
µ⋄

(
X | D(x,s)

)]
− ψ∗

⋄

]
,

where ψ∗
⋄ := maxX⊆X HV

[
µ⋄(X | D)

]
and D(x,s) :=

D ∪ {(x, s,y)}. We note that in this general MF-HV-KG
formulation, each objective has a (potentially empty) set of
fidelity parameters, which can contain (i) fidelity parameters
that are unique to that objective, (ii) fidelity parameters that
are shared amongst multiple objectives, or (iii) a combina-
tion of (i) and (ii).

7. Computing and Optimizing HV-KG
7.1. Hypervolume Computation

To enable efficient optimization, one would like to com-
pute the hypervolume in a differentiable fashion. The joint
HV of Np points can be computed exactly using the in-
clusion exclusion principle (IEP) (Lopez et al., 2015) and
this approach is differentiable with respect to X ′

i (Daulton
et al., 2020). The IEP scales exponentially with Np and
therefore is only be feasible for small Np, but a small Np

tends to work empirically here and for information theo-
retic approaches. Following Tu et al. (2022), we select
Np = 10 (and find that HV-KG is robust to choice of Np

in Appendix D.2).

4We clamp difference in HV inside the expectation in (5) to
ensure the numerator remains non-negative in the cost-weighted
variants. See Appendix C for discussion.
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7.2. Unbiased Estimation via Nested Optimization

Although HV-KG cannot be computed analytically, we
obtain an unbiased estimator by approximating the outer
expectation via Monte Carlo:

α̂HV-KG(x) =
1

N

N∑
i=1

(
max
Xi⊆X

HV
[
µ(Xi | Di

x)
])

− ψ∗,

(6)
where Di

x = D ∪ {x,yi} with each yi a realization or
“fantasy” sample of the random variable y ∼ p(y|x,D).
For each fantasy yi, the updated posterior mean can be
computed analytically (Frazier et al., 2008). The inner max-
imization involves a numerical optimization over a (Np · d)-
dimensional space conditional upon the selected x. A com-
mon approach for solving the nested optimization problems
in KG methods is to leverage the envelope theorem to ob-
tain an unbiased gradient estimator (Wu et al., 2017; 2020a)
and solve the inner optimization to completion whenever x
changes. We derive a gradient of HV-KG in Theorem B.1
in Appendix B.2, which can be estimated without bias via
Monte Carlo and optimized via stochastic gradient ascent.

However, solving the inner optimization problem to com-
pletion after each outer optimization step is computationally
intensive and impractically slow (see Figure 4).

7.3. Deterministic Estimation and Optimization

Instead, we opt for using sample-average (SAA) approxima-
tion as Balandat et al. (2020). Using a fixed set of the stan-
dard normal base samples ϵ := {ϵi}Ni=1, ϵi ∈ RM for the
fantasized observations yi,(m) = µ

(m)
D (x)+L

(m)
D (x)ϵi,(m),

where L(m)
D is the Cholesky factor of the posterior covari-

ance matrix, the fantasies yi and updated posterior mean
functions µ(· |Di

x) are deterministic (see Appendix B.1.2).
Given fixed base samples, we can interchange maximization
and summation in (6) to obtain

α̂HV-KG(x) = max
X1,...,XN⊆X

1

N

N∑
i=1

HV
[
µ(Xi | Di

x)
]
− ψ∗

t .

(7)
The SAA estimator in (7) can be maximized efficiently
by optimizing over {x, X1, . . . , XN} simultaneously in
“one shot” (Balandat et al., 2020). Although such an ap-
proach requires optimizing over a ((Np · N + 1) · d)-
dimensional space, HV-KG is differentiable with respect to
x, X1, . . . , XN and sample-path gradients can be computed
via auto-differentiation. Since the SAA estimator is deter-
ministic, (quasi-) second-order gradient-based optimizers
can be employed. We can show that the maximizer x∗

N of
our SAA estimator converges with probability one to an
element of X ∗

HV-KG = argmaxx∈X αHV-KG(x), the set of
optimizers of the true αHV-KG, and that convergence occurs
exponentially fast in the number of MC samples N .

Theorem 7.1. Suppose that X is compact and that
f ∼ GP (µ0(·),K0(·, ·)) is a sample from a multi-
output Gaussian process prior with continuously differ-
entiable mean µ0(·) and covariance K0(·, ·) functions.
Let {ϵi}Ni=1 be i.i.d. base samples from N (0, IM ),
let x∗

N ∈ argmaxx∈X α̂
N
HV-KG(x), and let α∗

HV-KG =
maxx∈X αHV-KG(x), then

(i) α̂HV-KG(x
∗
N ) → α∗

HV-KG a.s.

(ii) infx∗∈X∗
HV-KG

||x∗
N − x∗|| → 0 a.s.

(iii) ∀ δ > 0,∃K <∞, α > 0 such that

p
(
infx∗∈X∗

HV-KG
||x∗

N − x∗|| ≥ δ
)
≤ Ke−αN .

We find that optimizing Equation (7) using L-BFGS-B
yields strong performance — in both optimization quality
and wall time — using the initialization technique described
in Appendix A.2. Figure 4 compares acquisition values
and wall times for optimizing HV-KG using the stochas-
tic, unbiased gradient estimator and using our deterministic
SAA approach. We find that using SAA with determinsitic
one-shot optimization finds better candidates than stochastic
nested optimization and does so in a fraction of the wall
time. See Appendix D.5 for details on the experiment setup.

25 50 75
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0.0
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0.4
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0.8
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isi

tio
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lu

e
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Figure 4: Acquisition optimization using (i) sample average
approximation with deterministic one-shot optimization and
(ii) nested optimization with stochastic unbiased gradients.
For evaluation at each step of gradient-based optimization,
we compute the HV-KG at the current design x by solving
the inner optimization problem using L-BFGS-B using 32
(stochastic) fantasy samples. We report the mean and two
standard errors of the mean across 20 replications.

8. Experiments
We evaluate HV-KG on synthetic and real-world problems
including multi-fidelity problems and problems with decou-
pled evaluations.5 For all HV-KG variants, we use N = 32

5 Code is available in open source at https://github.
com/pytorch/botorch.
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fantasies and Np = 10. Because HV-KG is the only acqui-
sition function that handles all cases, we consider differing
methods for different types of partial information. As a base-
line, we include qNEHVI due to its consistent performance
in all our tests, and scrambled Sobol sequences (Owen,
1998) as a quasi-random baseline. In the multi-fidelity case,
we include a comparison with MOMF. For decoupled sam-
pling, we compare with two information-based AFs, JES
and PFES. JES has been shown to work at least as well
as all other ES-based methods (Tu et al., 2022) and can
straightforwardly be generalized to the decoupled setting
(which is described, but not evaluated in Tu et al. (2022,
Appendix M)). PFES has a decoupled variant that had not
been evaluated outside of (Suzuki et al., 2020). All AFs are
implemented in BoTorch and utilize GPs with a standard
Matérn 5/2 kernel over the design space (see Appendix A.1
for additional details).

To compare methods, we first solve (4) by optimizing the
posterior means using NSGA-II (Deb et al., 2002) to find the
model-estimated Pareto set. Then, we compute the true ob-
jective values for the designs in the model-estimated Pareto
set and compute the resulting hypervolume dominated by
the true Pareto frontier of the model-selected Pareto set. This
procedure is common in many works (see e.g. Hernandez-
Lobato et al. (2016); Belakaria et al. (2019); Suzuki et al.
(2020); Tu et al. (2022)). We report means and ±2 standard
errors of the mean across 20 replications of the log hyper-
volume regret: the difference in hypervolume between the
image of Pareto set identified by the method and the true
Pareto frontier.

While the focus of this work is on MOBO with partial in-
formation, we also include an evaluation of all applicable
methods for the standard noiseless and noisy case with com-
plete information in Appendix D.1. We find that HV-KG
performs at least as well as other methods in all test prob-
lems considered. Additional details about test problems in
the remainder of this section can be found in Appendix A.3.

8.1. Multi-Fidelity

We consider the performance of HV-KG relative to MOMF,
a MF MOBO method, as well as the other non-MF baselines
with respect to four MF test problems.

Synthetic Problems (1) Park (d = 4 inputs, M = 2
objectives) (2) MF Branin Currin (d = 2,M = 2) where
the cost function is λ(s) = exp(4.8s) (Irshad et al., 2021).

Real-World Problems We consider two problems to high-
light the importance of exploiting multi-fidelity information
sources: (1) Laser-plasma acceleration, (d = 4,M = 3)
from Irshad et al. (2023a), where a continuous fidelity pa-
rameter governs the simulation accuracy and simulation

time. (2) Recommender system ranking policy optimiza-
tion (d = 15,M = 2) from Liu et al. (2023) simulates a
ranking policy which controls the number of items retrieved
from different content sources in a recommender system.
The target objectives are long-term engagement with the
product and content serving cost, and the fidelity parameter
is the experiment duration. This problem is designed to
mimic setups common to Bayesian optimization of rank-
ing policies with “A/B tests” (Letham and Bakshy, 2019),
where selection bias and transient effects bias objectives in
the short term (Bakshy et al., 2014).

8.2. Decoupled Evaluation

In the decoupled setting, we compare against three decou-
pled methods: decoupled PFES (Suzuki et al., 2020), the
decoupled extension of JES-LB2 proposed in Tu et al. (2022,
Appendix M), and a decoupled variant of Sobol. For Sobol,
evaluated objectives are selected uniformly at random, and
designs are sampled via scrambled Sobol sequences. We
consider both types of coupling: CD, where evaluations
occur sequentially, and NCD, where evaluations occur asyn-
chronously.

Synthetic Problems We evaluate performance on the clas-
sic ZDT2 (d = 6,M = 2) and (Zitzler et al., 2000) and
DTLZ2 (d = 6,M = 2) (Deb et al., 2002) test problems,
and evaluate the objectives in a decoupled fashion. For CD,
ZDT1 and DLTZ2 use a cost ratio of 1:3, and for NCD, the
objectives have a evaluation time ratio of 1:3, each has a
capacity of 1 and equal cost (here we are only concerned
with time for NCD).

Real-World Problems We consider two real-world prob-
lems: (1) NAS (d = 6,M = 2) is the neural architecture
search problem we use to motivate non-competitive decou-
pling in the Section 1. The goal is to maximize accuracy
and minimize on-device latency for an ImageNet model.
Here, we use data from NASBench201 (Dong and Yang,
2020) and HW-NAS-Bench (Li et al., 2021) for the first
and second objective, respectively. The NCD version of
the problem depicted in Figure 2. The training and latency
objectives have an evaluation time ratio of 1:4 and capacities
of 2 and 8 respectively and equal cost. For CD, latency and
accuracy have costs 1 and 2, respectively. (2) Vehicle De-
sign (d = 5,M = 3) poses an automotive design problem,
where the goal is optimize the design a vehicle to maximize
fuel economy, minimize vehicle damage in an off-frontal
collision, and minimize passenger trauma in a full frontal
crash (Liao et al., 2008). We leverage the surrogate from
Tanabe and Ishibuchi (2020) for this problem. For CD, the
three objectives have a cost ratio of 1:3:8, and for NCD, the
objectives have an evaluation time ratio of 1:3:8 and each
objective has an evaluation capacity of 1 and equal cost.
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Figure 7: Optimization performance with non-competitive decoupling.

8.3. Results

We find that MF-HV-KG and decoupled HV-KG variants
significantly improve sample efficiency and optimization
performance compared to alternatives. Notably, Sobol base-
lines that exploit problem structure perform remarkably well
on many problems. As shown in Figure 5, MOMF performs

well on many MF problems, but is never better than MF-
HV-KG. Furthermore, in Figure 17 in Appendix D.6, we
show that MOMF consumes the budget much faster with
high-fidelity queries due to a misaligned acquisition func-
tion where the fidelity is treated as an objective (Irshad et al.,
2021). In the decoupled setting, the entropy-based decou-
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pled methods struggle on many tasks and we find them to
be sensitive to the cost function, whereas HV-KG is more
robust across problems and costs (see Appendix D). With
CD, HV-KG is again the top performer on 3/4 problems
with the exception of NAS as shown in Figure 6. The poor
performance of all methods on the NAS CD problem is
likely due to poor surrogate model fits; selecting which ob-
jective to query in cost-aware fashion depends on having
a well-specified and well-calibrated model. On the other
hand, in NCD, decoupled methods do not need to rely on
the model to select which objective to evaluate and can
simply utilize all evaluation capacity. Unsurprisingly, non-
decoupled methods perform poorly because they can only
generate candidates once all metrics have been evaluated
and are limited to the lowest evaluation capacity across all
outcomes. Finally, we find (in Appendix D.4) that HV-KG
generates candidates faster than entropy-based methods in
the decoupled setting.

9. Discussion
HV-KG provides a principled approach to multi-objective
Bayesian optimization with incomplete information, includ-
ing situations in which objective values may be queried
separately or at multiple fidelities. To the best of our knowl-
edge, this is the first paper to consider a KG-based approach
in the decoupled setting and the multi-objective setting with
partial information, and we show that we are able to ob-
tain state-of-the-art performance with respect to standard,
decoupled, and multi-fidelity MOBO.

Our work opens the door to exploiting other problems with
incomplete observations. Although we exploit MF evalua-
tions, it is possible to leverage more sophisticated models
that consider the evolution of objectives over time by lever-
aging trace observations such as learning curves in AutoML
or reinforcement learning (Wu et al., 2020a; Nguyen et al.,
2020). The HV-KG approach also lends itself to other in-
stances where incomplete data is available. For example,
in contextual BO, we may wish to identify the best con-
figuration or set of best configurations across all contexts,
and can transfer knowledge from one context to another.
For instance, in the context of on-device AI one may target
multiple possible devices and when developing low-carbon-
emission concrete, one may wish to develop mixes that are
efficient across a variety of environments (e.g., tempera-
ture conditions). In other cases, experiments may involve
multiple dependent stages, such as cascade and function
networks (Astudillo and Frazier, 2021; Kusakawa et al.,
2022) common in manufacturing pipelines. HV-KG could
be extended to target learning at various stages. In addition,
optimiziation improvements might be obtained by exploring
alternative approaches handling discrete parameters (e.g.
Moss et al. (2020); Jain et al. (2022)). Finally, while the

performance of HV-KG is competitive with other methods,
the speed of these algorithms might be further improved via
exploiting alternative approaches for computing HV (Shang
et al., 2022).
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A. Experiment Details
A.1. Implementation of Acquisition Functions and Models

We use the BoTorch implementations of qNEHVI (Daulton et al., 2020), MOMF (Irshad et al., 2021), JES-LB and
JES-LB2 (Tu et al., 2022) developed by the original authors of these works.5 To determine the Pareto frontier, we use
Tu et al. (2022)’s NSGA-II-based implementation.6 For PFES (Suzuki et al., 2020), we utilize Tu et al. (2022)’s open
source implementation in BoTorch, which includes the lower-bound batch variant (for q > 1). For decoupled sampling, we
modified the existing BoTorch implementation of Suzuki et al. (2020) to include the decoupled approach from the original
paper, and we implemented the extension of JES-LB2 to the decoupled setting, proposed in Tu et al. (2022, Appendix M).

For all MC acquisition functions, we use quasi-random (QMC) base samples and sample average approximation (Balandat
et al., 2020). All methods are optimized using L-BFGS-B from 20 starting points using the default initialization heuristic in
BoTorch (Balandat et al., 2020)—except for HV-KG, which we optimize from a single starting point to limit computational
overhead. All methods use independent GPs with ARD Matérn 5/2 kernels. We use Gamma(2,2) priors over the lengthscales
(with allow learning large lengthscales for irrelevant parameters) and Gamma(2, 0.15) priors on the outputscales. We assume
that the noise level is known.

For the NAS and chemistry problems, we one-hot encode each categorical x with C categories as x′ = [x′1, ..., x
′
C ] ∈ [0, 1]C ,

apply exact discretization functions (i.e., x = ONE-HOT(argmaxc∈C x
′
c)) before evaluating the GP, and use straight through-

gradient gradient estimators (Daulton et al., 2022c).

A.2. Initialization of HV-KG

The optimization of HV-KG can be significantly sped up by choosing good initial conditions for the design point and the
fantasy optimizers. If we assume that the additional observation (x,y) does not drastically change the location of the Pareto
set in input space, then solving the optimization problem

max
X⊆X

HV
[
µ(X | D)

]
(8)

under the current posterior (having observed data D) will yield an optimizer that will likely be quite close to the optimal
{Xi}Ni=1 after fantasizing about the unknown function values y. Equation (8) can be solved efficiently using gradient-based
optimization. Using different starting points, we can identify N solution sets X to use as initial values for the HV-KG
optimization problem. Lastly, we can find starting points for x conditional on (X1, . . . , XN ) using standard BO initialization
heuristics such as Boltzmann sampling on the HV-KG values (Balandat et al., 2020). We use the resulting starting point
(x, X1, . . . , XN ) to optimize HV-KG via quasi-second order methods (L-BFFS-B) using SAA.7

A.3. Problem Details

All noisy variants use additive zero-mean Gaussian noise, where the noise standard deviations (denoted by σ) are set as
a percentage of the range of each objective as indicated in parentheses. These noise levels come from in previous works
(Daulton et al., 2021; Tu et al., 2022).

We use the multi-fidelity versions of Park (M = 2 objectives, d = 4 inputs, K = 1 fidelity parameters) and Branin-Currin
(M = 2, d = 2,K = 1) from Irshad et al. (2021), the Penicillin manufacturing problem (M = 3, d = 7, σ = 1%) from
Liang and Lai (2021),8. When considering the standard test problems DTLZ2 (M = 2, d = 6, σ = 10%) (Deb et al., 2002),
ZDT2 (M = 2, d = 6, σ = 10%) (Zitzler et al., 2000), and Vehicle Design (M = 3, d = 5, σ = 1%) (Tanabe and Ishibuchi,
2020) all of which are implemented in BoTorch.5

We use implementations of the Marine design problem (M = 4, d = 6, σ = 3%) (Parsons and Scott, 2004; Tanabe and

6 Code is available in open source at https://github.com/benmltu/JES.
7In the case that the objectives are not modeled directly and do not have analytic expressions in terms of the model outputs, the inner

expectation could also be approximated with Monte Carlo samples. Such cases would arise in the case of constrained optimization where
the goal is to optimize feasibility-weighted objectives and unweighted objectives and constraint slacks are both modeled and subsequently
combined.

8We modify the search space slightly to make the simulations less bimodal (as identified in Park et al. (2022)) by reducing the number
of designs that lead to a zero fermentation time objective. The modified search space sets the lower bounds of the 4th and 5th parameters to
be 4 and 1

4
, respectively.
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Table 1: Reference points for all benchmark problems (assuming minimization of all objectives). In our benchmarks, we
maximize all objectives by multiplying objectives and reference points by -1.

PROBLEM REFERENCE POINT

ZDT2 (11, 11)
DTLZ2 (1.1,1.1)
VEHICLE DESIGN (1698.55, 11.21, 0.29)
NAS (-7.319, 30.847)
PARK (0,0)
BRANIN-CURRIN (0,0)
RANKING POLICY OPTIMIZATION (5.353, -44.39)
PLASMA LASER ACCELERATION (280.864, -50.613, -36.412)
PENICILLIN (-5.657, 64.1, 340.0)
MARINE (-250, 2 · 104 , 2.5 · 104 , 15)
SNAR (-5.5, 5)
CHEMISTRY (32.669, -0.107)

Ishibuchi, 2020) and SnAr (M = 2, d = 4σ = 3%, a chemical reaction optimization problem) (Hone et al., 2017) from Tu
et al. (2022).6

Chemistry problem aims to tune experimental conditions to maximize chemical reaction yield while minimizing cost
(M = 2, d = 5). We adopt this problem from Daulton et al. (2022c) (Direct Arylation Chemical Synthesis). A GP surrogate
is fit to chemical reaction data from Shields et al. (2021),9 and corresponding reaction cost data10 from Torres et al. (2022)

NAS problem (M = 2, d = 6) uses accuracy data from NASBench20111 (Dong and Yang, 2020), augmented with edge
GPU latency estimates from HW-NAS-Bench12 (Li et al., 2021).

Vehicle Design problem (d = 5,M = 3) poses a hypothetical automotive problem. We leverage the surrogate from Tanabe
and Ishibuchi (2020) and formulate the problem the problem with respect to the surrogate in the following way: we minimize
mass (a proxy for maximizing fuel economy), minimize length of toe-box intrusion in case of a crash (a proxy for vehicle
damage), and minimize acceleration (a proxy for passenger trauma), vehicle damage in an off-frontal collision (measure in a
by toe-box intrusion distance), and minimize acceleration (a proxy for passenger trauma in a full frontal crash) (Liao et al.,
2008). This problem can most naturally be thought of as a NCD problem, since the evaluation of the last two objectives as
destructive, so that each objective requires a different type of collision. The fuel economy objective is less costly to evaluate,
as it does not require manufacturing and crashing a car. For CD, the three objectives have a cost ratio of 1:3:8, and for NCD,
the objectives have an evaluation time ratio of 1:3:8 and each objective has an evaluation capacity of 1 and equal cost.

Recommendation System Ranking Policy Optimization We use variant of the ranking policy (M = 2, d = 15,K = 1)
optimization problem system from (Liu et al., 2023). To create a multi-fidelity variant of this problem, we add bias term to
emulate the “novelty effect”, an ephemeral boost in engagement, that commonly affects engagement metrics when new
ranking policies conducted via “A/B tests” (Bakshy et al., 2014). Running longer experiments (high fidelity experiments),
will reduce the novelty effect and provide more accurate estimates of the long term effect. We use the same search space as
in Liu et al. (2023), but restricted to 15 dimensions.

Plasma Laser Acceleration The plasma laser acceleration problem comes from the recent work by Irshad et al. (2023a).
We fit GP surrogate models to the data (Irshad et al., 2023b) collected by the original authors via simulations.13

A.4. Initial Point Selection for Multi-Fidelity Experiments

The cost budget for selecting initial design points is set equal to the cost of 2 full-fidelity evaluations 2λ(s). Full fidelity
methods sample 2 designs from a scrambled Sobol sequence. Multi-fidelity methods sample the design parameters uniformly
at random and the fidelity parameter is sampled (via the inverse transform) from the probability distribution with pdf

9Data is available at https://github.com/b-shields/edbo.
10Data is available at https://github.com/doyle-lab-ucla/edboplus.
11Code is available at https://github.com/D-X-Y/NAS-Bench-201.
12Code is available at https://github.com/GATECH-EIC/HW-NAS-Bench/.
13Data is available at https://doi.org/10.5281/zenodo.7565882.
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p(s) ∝ 1
λ(s) . Designs are added until the next sampled point exceeds the cost budget. Hence, multi-fidelity methods use an

initialization with cost ≤ 2λ(s).

B. Theoretical Results
B.1. Preliminaries

B.1.1. HYPERVOLUME COMPUTATION

For a set of Np points Y = {yj}
Np

j=1, the HV w.r.t to a reference point r can be computed in a differentiable fashion (Daulton
et al., 2020) as

HV(Y, r) =
Np∑
j=1

∑
Yj∈Yj

(−1)j+1
M∏

m=1

[
z
(m)
Yj

− r(m)
]
+
, (9)

where Yj := {Yj ⊆ Y : |Yj | = j} is the set of all subsets of Y of size j and z
(m)
Yj

:= min
[
y
(m)
i1

, . . . , y
(m)
ij

]
for

Yj = {yi1 , . . . , yij}.

B.1.2. GAUSSIAN PROCESSES

In this work, we place independent Gaussian process priors on the different objectives. In this section we therefore restrict
ourselves to modeling a single objective f ∼ GP (µ0,K0), where µ0 : X → R is the prior function (assumed to be constant)
and K0 : X × X → R is the the prior covariance function. We assume that observations of the objectives are subject to
iid zero-mean Gaussian noise with variance σ2. Then after conditioning on D = {(xi, yi)}ni=1 observations, the mean and
covariance functions conditioned on D at a set of points x are given by (Rasmussen, 2004)

µD(x) = µ0(x) +K0(x,x1:n)[K
σ
0 (x1:n,x1:n)]

−1[y1:n − µ0(x1:n)]

KD(x,x
′) = K0(x,x

′)−K0(x,x1:n)[K
σ
0 (x1:n,x1:n)]

−1K0(x1:n,x
′),

where x1:n := {x1, . . . , xn}, Kσ
D(x1:n,x1:n) denotes KD(x1:n,x1:n) + diag(σ2(x1), ..., σ

2(xn)).

In this work, we are often interested in fantasization; i.e. fantasizing about the observations y that we would receive if we
were to evaluate x. In this case, y is a random vector, which according to our beliefs is y ∼ N (µD(x),KD(x,x) + σ2(x)).
Then conditioned on evaluating x and observing y, the updated posterior mean function would be

µDx(x
′) = µD(x

′) +KD(x
′,x)[Kσ

D(x,x)]
−1[y − µD(x)].

As in previous works, it is convenient to express the updated mean in terms of a standard normal random variable (Wu et al.,
2020a; Wu and Frazier, 2016). We can rewrite Kσ

D(x,x) in terms of its Cholesky factors Kσ
D(x,x) = LD(x)LD(x)

T .
So [Kσ

D(x,x)]
−1 = (LD(x)

T )−1LD(x)
−1. Since [y − µD(x)] ∼ N (0,Kσ

D(x,x)), LD(x)
−1[y − µD(x)] is a standard

normal random vector. Letting Σ̂D(x
′,x) := KD(x

′,x)(LD(x)
T )−1, we can express the update posterior mean as

µDx(x
′) = µD(x

′) + Σ̂D(x
′,x)ϵ,

where ϵ is a standard normal random vector.

B.2. Proofs

Without loss of generality, we consider case with a batch size q = 1 (i.e. x = {x}). Since x only affects the new data Dx

that the model is conditioned on, partial derivatives can be computed for all q · d elements of x and extending the results that
follow is straightforward.14 Moreover, for brevity we only consider (iid) Monte Carlo sampling in this section. Balandat
et al. (2020) also prove basic results for SAA using (randomized) quasi-Monte Carlo (RQMC) sampling; leveraging those
results the proofs in this section can be extended to the RQMC setting in a straightforward fashion.

At a high level, we derive a gradient estimator and prove that it is unbiased (Theorem B.1) by building upon the work of Wu
et al. (2020b) and leveraging our proof that value function in HV-KG is Lipschitz continuous (Lemma B.1). Then, we prove

14Note that there is a minor complication if x contains duplicate points as the posterior mean will not be differentiable at such points.
However, the set of such points is of measure zero and so does not affect the derivations and the results below.
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our main result (Theorem 7.1), which proves three convergence properties of our SAA estimator, building upon work from
Balandat et al. (2020) and leveraging Lemma B.2.

Lemma B.1. For a fixed X , let A(x, ϵ) := HV
[
µx,ϵ(X)

]
, where µx,ϵ(X) :=

[
µ
(1)
x,ϵ(X), . . . , µ

(M)
x,ϵ (X)

]
, µ(m)

x,ϵ (X) :=

µ
(m)
D (X) + Σ̂

(m)
D (X,x)ϵ(m) for m = 1, . . .M , and ϵ := [ϵ(1)..., ϵ(M)]. Then, A(x, ϵ) is Lipschitz continuous with respect

to x for any given ϵ.

Proof. Note that

A(x, ϵ) = HV
[
µx,ϵ(X)

]
=

Np∑
j=1

∑
Xj∈Xj

(−1)j+1
M∏

m=1

[
min[µ(m)

x,ϵ (Xi1), . . . , µ
(m)
x,ϵ (Xij )]− r(m)

]
+
,

where Xj := {Xj ⊆ X : |Xj | = j} is the set of all subsets of X of size j.

We wish to show that there exists a function l : RM → R such that |A(x, ϵ)−A(y, ϵ)| ≤ l(ϵ)||x− y||.

Let ãm,j,Xj
(x, ϵ) =

[
min[µ

(m)
x,ϵ (Xi1), ..., µ

(m)
x,ϵ (Xij )] − r(m)

]
+

and let Ãj,Xj
(x, ϵ) =

∏M
m=1 ãm,j,Xj

(x, ϵ). Since

A(x, ϵ) =
∑Np

j=1

∑
Xj∈Xj

(−1)j+1Ãj,Xj (x, ϵ), it suffices to show that there exists a function l : RM → R such that

|Ãj,Xj (x, ϵ)− Ãj,Xj (y, ϵ)| ≤ l(ϵ)||x− y||.

We have that

ãm,j,Xj
(x, ϵ) =

[
min[µ(m)

x,ϵ (Xi1), ..., µ
(m)
x,ϵ (Xij )]− r(m)

]
+

≤ |r(m)|+
∣∣min[µ(m)

x,ϵ (Xi1), ..., µ
(m)
x,ϵ (Xij )]

∣∣
≤ |r(m)|+

j∑
k=1

∣∣µ(m)
x,ϵ (Xik)

∣∣.
Note that for a given ϵ, µ(m)

x,ϵ (X) is continuously differentiable with respect to x for any fixed X and continuously
differentiable w.r.t to X for any x because µ(m)

x,ϵ (X) = µ
(m)
D (X) + Σ̂

(m)
D (X,x)ϵ(m) and µ(m)

D (X) and Σ̂
(m)
D (X,x) are

continuously differentiable with respect to x (Wu et al., 2020a).15 Note that |µ(m)
x,ϵ (X)| ≤ ||µ(m)

D (X)||+ ||Σ̂(m)
D (X,x)|| ·

|ϵ(m)|. Since µ(m)
D (X) and Σ̂

(m)
D (X,x) are uniformly bounded for each m = 1, . . . ,M , there exist C(m)

1 , C
(m)
2 ∈ R such

that |µ(m)
x,ϵ (X)| ≤ C

(m)
1 + C

(m)
2 |ϵ(m)| for each m = 1, . . . ,M . Hence, |ãm,j,Xj (x, ϵ)| ≤ |r(m)|+ j(C

(m)
1 + C

(m)
2 |ϵ(m)|).

Omitting the subscripts j,Xj for brevity, and considering M = 2 for now, we have that

|Ãj,Xj
(x, ϵ)− Ãj,Xj

(y, ϵ)| =
∣∣ã1(x, ϵ)ã2(x, ϵ)− ã1(y, ϵ)ã2(y, ϵ)

∣∣ (10)

=
∣∣ã1(x, ϵ)((ã2(x, ϵ)− ã2(y, ϵ)) + ã2(y, ϵ)(ã1(x, ϵ)− ã1(y, ϵ))

∣∣ (11)

≤
∣∣ã1(x, ϵ)∣∣∣∣ã2(x, ϵ)− ã2(y, ϵ)

∣∣+ ∣∣ã2(y, ϵ)∣∣∣∣ã1(x, ϵ)− ã1(y, ϵ)
∣∣. (12)

Note that

|am,j,Xj (x, ϵ)− am,j,Xj (y, ϵ)|

=

∣∣∣∣[min[µ(m)
x,ϵ (xi1), ..., µ

(m)
x,ϵ (xij )]− r(m)

]
+
−

[
min[µ(m)

y,ϵ (xi1), ..., µ
(m)
y,ϵ (xij )]− r(m)

]
+

∣∣∣∣.
For brevity, we assume without loss of generality that r = 0 (otherwise this is just a constant shift in the means µ).

Case 1: If both terms are zero, then |am,j,Xj (x, ϵ)− am,j,Xj (y, ϵ)| = 0.

15Technically, this is only true if the noise terms {σ2(Xi)}ni=1 are strictly positive; otherwise µ
(m)
x,ϵ (X) is not differentiable if

Kσ
0 (x1:n,x1:n) is singular. However, even in this case that happens only on a set of measure zero, and thus our arguments remain valid

in the almost everywhere sense.
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Case 2: Suppose that one of the terms inside of [·]+ is greater than 0 and one term is less than zero. Without
loss of generality suppose that min[µ

(m)
x,ϵ (Xi1), ..., µ

(m)
x,ϵ (Xij )] ≤ 0 and min[µ

(m)
y,ϵ (Xi1), ..., µ

(m)
y,ϵ (Xij )] ≥ 0. Let

k = argmink=1,...,j µ
(m)
y,ϵ (Xik). Recall that µ(m)

x,ϵ (X) = µ
(m)
D (X) + Σ̂

(m)
D (X,x)ϵ(m) and Σ̂

(m)
D (X,x) is continuously

differentiable with respect to x (Wu et al., 2020a), so they are Lipschitz with respect to x. Hence,

|µ(m)
x,ϵ (Xik)− µ(m)

y,ϵ (Xik)| = |µ(m)
t (X) + Σ̂

(m)
D (X,x)ϵ(m) − µ

(m)
t (X)− Σ̂

(m)
D (X,y)ϵ(m)|

= |Σ̂(m)
D (X,x)ϵ(m) − Σ̂

(m)
D (X,y)ϵ(m)|

≤ C
(m)
3 |ϵ(m)| · ||x− y||,

where C(m)
3 ∈ R, for all m = 1, ...,M . Note that µx,ϵ(Xik) ≤ 0 ≤ µy,ϵ(Xik). So |am,j,Xj

(x, ϵ) − am,j,Xj
(y, ϵ)| =

|0− µy,ϵ(Xik)| ≤ |µx,ϵ(Xik)− µy,ϵ(Xik)| ≤ C
(m)
3 |ϵ| · ||x− y||.

Case 3: Suppose both terms are not zero, i.e., min[µ
(m)
x,ϵ (Xi1), ..., µ

(m)
x,ϵ (Xij )] ≥ 0 and min[µ

(m)
y,ϵ (Xi1), ..., µ

(m)
y,ϵ (Xij )] ≥ 0.

Let k = argmink=1,...,j µ
(m)
y,ϵ (Xik). Let q = argmink=1,...,j µ

(m)
x,ϵ (Xik).

Suppose k = q. Then, |am,j,Xj
(x, ϵ)− am,j,Xj

(y, ϵ)| = |µ(m)
x,ϵ (Xik)− µ

(m)
y,ϵ (Xik)| ≤ C

(m)
3 |ϵ(m)| · ||x− y||.

Suppose k ̸= q.

Suppose µ(m)
x,ϵ (Xiq ) ≤ µ

(m)
y,ϵ (Xik). Since µ(m)

x,ϵ (Xiq ) ≤ µ
(m)
y,ϵ (Xik) ≤ µ

(m)
y,ϵ (Xiq ), we have that |µ(m)

x,ϵ (Xiq ) −
µ
(m)
y,ϵ (Xik)| ≤ |µ(m)

x,ϵ (Xik)− µ
(m)
y,ϵ (Xik)| ≤ C

(m)
3 |ϵ(m)| · ||x− y|| because µ(m)

x,ϵ (·), µ(m)
y,ϵ (·) are Lipschitz w.r.t. x, y

respectively, as noted above.

Suppose µ
(m)
x,ϵ (Xiq ) > µ

(m)
y,ϵ (Xik). Similarly, since µ

(m)
y,ϵ (Xik) < µ

(m)
x,ϵ (Xiq ) ≤ µ

(m)
x,ϵ (Xik), we have that

|µ(m)
x,ϵ (Xiq )− µ

(m)
y,ϵ (Xik)| ≤ |µ(m)

x,ϵ (Xik)− µ
(m)
y,ϵ (Xik)| ≤ C

(m)
3 |ϵ(m)| · ||x− y||.

So, |am,j,Xj (x, ϵ)− am,j,Xj (y, ϵ)| ≤ C
(m)
3 |ϵ(m)| · ||x− y||.

Hence, in all cases, |am,j,Xj
(x, ϵ)− am,j,Xj

(y, ϵ)| ≤ C
(m)
3 |ϵ(m)| · ||x− y||.

Plugging into (12), we have
|Ãj,Xj

(x, ϵ)− Ãj,Xj
(y, ϵ)| ≤ l(ϵ)||x− y||.

with
l(ϵ) =

(
|r(1)|+ j(C

(1)
1 + C

(1)
2 |ϵ(1)|)

)
· C(2)

3 |ϵ(2)|+ (|r(2)|+ j
(
C

(2)
1 + C

(2)
2 |ϵ(2)|)

)
· C(1)

3 |ϵ(1)|).

This result can be generalized for any M by telescoping the expressions in (10). Hence Ãj,Xj
(x, ϵ) is l(ϵ)-Lipschitz

continuous and thus A(x, ϵ) is Lipschitz continuous.

Theorem B.1. Let the search space X be compact, the prior mean function µ0 be constant, and the prior covariance
function K0 be continuously differentiable. Let X∗ ∈ argmaxX⊆X HV

[
µ(X | Dx)

]
. Then

∇xED

[
max
X⊆X

HV
[
µ(X | Dx)

]]
= ED

[
∇xHV

[
µ(X∗ | Dx)

]]
.

Proof. The proof follows that of (Wu et al., 2020a, Theorem 1). We wish to show that

∇xED

[
max
X⊆X

HV
[
µ(X | Dx)

]]
= ED

[
∇x max

X⊆X
HV

[
µ(X | Dx)

]]
(13)

= ED

[
∇xHV

[
µ(X∗ | Dx)

]]
. (14)

To justify (14), we begin by expressing the posterior mean µ(X | Dx) =
[
µ(1)(X | Dx), . . . , µ

(M)(X | Dx)
]

for each
outcome in terms of a standard normal random vector: µ(m)(X) = µ(m)(X | D) + Σ̂

(m)
D (X,x | D)ϵ(m) for m = 1, ...,M .
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Note that for a fixed x, µ(m)(X | D) and Σ(m)(X,x | D) are continuously differentiable in X a.e.,16 and for a fixed X ,
Σ(m)(X,x | D) is continuously differentiable in x (Wu et al., 2020a, Lemma 1).16 Hence, µ(X | Dx) is continuously
differentiable w.r.t to x for fixed X and continuously differentiable w.r.t to X for fixed x.16

From Equation (9), it is easily to see that HV(Y, r) is continuous over Y ∈ RM . Moreover, the partial derivatives of the
input Y exist almost everywhere, since HV is an incarnation of hypervolume improvement with no incumbent Pareto frontier
and hypervolume improvement is differentiable almost everywhere w.r.t Y (Daulton et al., 2020).17 Hence, HV

[
µ(X | Dx)

]
is differentiable w.r.t x almost everywhere for a fixed X and ϵ and is differentiable w.r.t X almost everywhere for a fixed x
and ϵ.

To employ the envelope theorem (Milgrom and Segal, 2002), we need to show that the following conditions of Milgrom and
Segal (2002, Theorem 2) hold:

1. HV
[
µ(X | Dx)

]
is absolutely continuous w.r.t. x for a fixed ϵ and a fixed X .

2. There exists an integrable function b : X → R such that ||∇xHV
[
µ(X | Dx)

]
|| ≤ b(x) for almost all x ∈ X and for

all X .

From Lemma B.1, HV
[
µ(X | Dx)

]
is Lipschitz continuous in x for a fixed ϵ, X , so it is absolutely continuous. Furthermore,

since it is Lipschitz continuous, its gradient is bounded almost everywhere. Hence, we have

∇x max
X⊆X

HV
[
µ(X | Dx)

]
= ∇xHV

[
max
X⊆X

µ(X | Dx)
]
= ∇xHV

[
µ(X∗ | Dx)

]
,

showing equality between (13) and (14). To show (13), we note that since X is compact, HV
[
µ(X | Dx)

]
is bounded,

which satisfies the conditions of Bartle (1995, Corollary 5.8). Given the result in Bartle (1995, Corollary 5.8) and noting
again that the partial derivatives of HV

[
µ(X | Dx)

]
are bounded almost everywhere, we can interchange expectation and

gradient (Bartle, 1995, Corollary 5.9), which justifies (13) and completes the proof.

Corollary B.1. Let µ
(m)
i (X) := µ(m)(X | D) + Σ̂(m)(X,x | D)ϵ

(m)
i for m = 1, . . . ,M , µi(X) :=[

µ
(1)
i (X), . . . , µ

(M)
i (X)

]
, and ϵi ∼ N (0, IM ) iid. Let X∗

i ∈ argmaxX⊆X HV
[
µ(X | Di

x)
]
, where Di

x = D ∪ {(x,yi)}
with yi ∼ p(y | D,x). Then an unbiased estimator of the gradient ∇xαHV-KG(x) is given by the average of the sample-level
gradients

∇xαHV-KG(x) ≈
1

N

N∑
i=1

∇xHV
[
µ(X∗

i | Di
x)
]
.

The result follow directly from Theorem B.1 and approximating the expectation via Monte Carlo (using independence of the
ϵi). Computing the gradient estimator in Corollary B.1 requires solving the inner maximization problem to obtain X∗

i and
computing the sample-level gradient for each of the N samples.

Lemma B.2. Suppose that X is compact and that f(x) ∼ GP (0,K0(x,x)) is a zero-mean multi-output Gaussian Process
prior with M outputs. Suppose that ||f(x)|| < ∞ almost surely for all x ∈ X . Let X ⊆ X such that |X| ≤ Np, and let
r ∈ RM . Then, the moment generating function

E
[
exp

(
t · sup

X⊆X
HV

[
f(X)

])]
of supX⊆X HV[f(X)], where t ∈ R, is finite for all t.

Proof. Let use denote the components of f(x) by f (1)(x), ..., f (M)(x). Since ||f(x)|| <∞ for all x ∈ X a.s., we have
that |f (i)(x)| <∞ for all x ∈ X and m = 1, . . . ,M a.s.. Therefore, E

[
supx∈X f

(m)(x)] <∞ for m = 1, . . . ,M (Adler,

16If there are repeated points in X and noise variance is not positive at all points X , then the gradient does not exist.
17The partial derivative of HV with respect to Yi,j , the element in the ith row and j th column of Y , is not defined when there exists

another k! = i such that Yi,j = Yk,j or when Yi,j = rj , where rj is the reference point value for objective j. The set of points defined by
the union of these settings has zero measure under any GP posterior (Daulton et al., 2020). Furthermore, the gradient is only computed
at the optimal X ′∗, and typically, Np ≤ |X ∗|, so columns of µt+1(X ′∗) will contain unique values if µt+1 is representative of the
underlying objectives.
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1990, Theorem 2.1). Let f∗ denote the component-wise supremum of f : i.e. f∗ = [supx∈X f
(1)(x), ..., supx∈X f

(M)x)].
By definition f∗ ⪰ f(x) for all x ∈ X . Hence, HV[{f∗}] ≥ supX⊆X HV[f(X)]. Since HV is non-negative, it is
sufficient to consider t ≥ 0. From Equation (9), we have that HV[{f∗}] =

∏M
m=1 max(supx∈X f

(m)(x) − r(m), 0).
Without loss of generality, we may assume r = 0 (otherwise this corresponds to a simple shift of f ). Then,

HV(f∗) =

M∏
m=1

max
(
sup
x∈X

f (m)(x), 0
)

≤
(

max
m=1...,M

[
max

(
sup
x∈X

f (m)(x), 0
)])M

≤ max
m=1...,M

∣∣∣sup
x∈X

f (m)(x)
∣∣∣M

≤ max
m=1...,M

(
sup
x∈X

|f (m)(x)|
)M

.

Hence

E
[
exp

(
t · HV(f∗)

)]
≤ E

[
exp

(
t · max

m=1...,M

(
sup
x∈X

|f (m)(x)|
)M

)]
(15)

= E
[

max
m=1...,M

exp

(
t ·

(
sup
x∈X

|f (m)(x)|
)M

)]
(16)

≤
M∑

m=1

E
[
exp

(
t ·

(
sup
x∈X

|f (m)(x)|
)M)]

, (17)

where the final inequality comes from noting that all terms in the max are positive. Since all moments of supx∈X |f (m)(x)|
are finite (Balandat et al., 2020, Lemma 4), E

[
supx∈X |f (m)(x)|M

]
≤ ∞ for all m = 1, ...,M . From here, our proof

follows that of Balandat et al. (2020, Lemma 4). Consider the mth term in (17) and let Z(m) :=
(
supx∈X |f (m)(x)|

)M
:

E[exp(t · Z(m))] =

∫ ∞

0

p
(
exp(t · Z(m)) > u

)
du

≤ 1 +

∫ ∞

1

p
(
exp(t · Z(m)) > u

)
du

= 1 +

∫ ∞

1

p
(
Z(m) >

log u

t

)
du

= 1 +

∫ ∞

1

p
(
Z(m) − E[Z(m)] >

log u

t
− E[Z(m)]

)
du

Using a change of variables where v = log u
t − E[Z(m)], we have that dv = du

ut and ut = tetvetE[Z
(m)]. Hence via

substitution,

E[exp(t · Z(m))] ≤ 1 +

∫ ∞

1

p
(
Z(m) − E[Z(m)] >

log u

t
− E[Z(m)]

)
du

= 1 + teE[Z
(m)]

∫ ∞

−E[Z(m)]

p
(
Z(m) − E[Z(m)] > v

)
etvdv

= 1 + teE[Z
(m)]

[ ∫ 0

min(−E[Z(m)],0)

p
(
Z(m) − E[Z(m)] > v

)
etvdv

+

∫ ∞

0

p
(
Z(m) − E[Z(m)] > v

)
etvdv

]
≤ 1 + teE[Z

(m)]

[
|E[Z(m)]|+

∫ ∞

0

p
(
Z(m) > v + E[Z(m)]

)
etvdv

]
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Note that since Z(m) =
(
supx∈X |f (m)(x)|

)M
,

p
(
Z(m) > v + E[Z(m)]

)
= p

(
sup
x∈X

|f (m)(x)| > (v + E[Z(m)])
1
M

)
.

Let σ2
X = supx∈X

[
(f (m)(x))2

]
. Then, the tail probability p

(
supx∈X f

(m)(x) > α
)

can be bounded as

p
(
sup
x∈X

f (m)(x) > α
)
≤ e−α2/(2σ2

X )

by Borell’s inequality (Adler, 1990, Section 2.1). Hence,

p
(
sup
x∈X

|f (m)(x)| > α
)
≤ 2e−α2/(2σ2

X ).

Letting α = v + E[Z(m)], we have that

p
(
Z(m) > v + E[Z(m)]

)
≤ 2e−(v+E[Z(m)])2/(2σ2

X ).

Hence we obtain

E[exp(t · Z(m))] ≤ 1 + teE[Z
(m)]

[
|E[Z(m)]|+

∫ ∞

0

p
(
Z(m) > v + E[Z(m)]

)
etvdv

]
≤ 1 + teE[Z

(m)]|E[Z(m)]|+ teE[Z
(m)]

∫ ∞

0

2etv−(v+E[Z(m)])2/(2σ2
X )dv

<∞.

So,

E
[
exp

(
t · sup

X⊆X
HV

[
f(X)

])]
<∞.

Theorem 7.1. Suppose that X is compact and that f ∼ GP (µ0(·),K0(·, ·)) is a sample from a multi-output Gaussian
process prior with continuously differentiable mean µ0(·) and covariance K0(·, ·) functions. Let {ϵi}Ni=1 be i.i.d. base
samples from N (0, IM ), let x∗

N ∈ argmaxx∈X α̂
N
HV-KG(x), and let α∗

HV-KG = maxx∈X αHV-KG(x), then

(i) α̂HV-KG(x
∗
N ) → α∗

HV-KG a.s.

(ii) infx∗∈X∗
HV-KG

||x∗
N − x∗|| → 0 a.s.

(iii) ∀ δ > 0,∃K <∞, α > 0 such that

p
(
infx∗∈X∗

HV-KG
||x∗

N − x∗|| ≥ δ
)
≤ Ke−αN .

Proof. Let us express the integrand in α̂N
HV-KG(x) as G(x, ϵ) = maxX⊆X HV(µi(X)), where µi(·) is defined in Corol-

lary B.1. As in Balandat et al. (2020); Daulton et al. (2020), we leverage Homem-de-Mello (2008, Proposition 2.2) to obtain
our (i) and (ii). Homem-de-Mello (2008, Proposition 2.2) requires that two conditions be met (Homem-de-Mello, 2008,
Assumptions A1, A2):

(A1) ∀x ∈ X , α̂N
HV-KG(x) → αHV-KG(x) a.s.

(A2) there exists an integrable function L(ϵ) : RM → R such that for almost every ϵ and ∀ x,y ∈ X ,

|G(x, ϵ)−G(y, ϵ)| ≤ L(ϵ)||x− y||.

Note that for any ϵ, the restriction from x → G(x, ϵ) to the kth coordinate, where x = (x1, . . . , xd) and k ∈ {1, ..., d}, is
Lipschitz continuous by Theorem B.1. Therefore, the partial derivative ∂G(x,ϵ)

∂xk
exists and is bounded almost everywhere.

That is, there exists ck ∈ RM such that ||ck|| <∞ and |∂G(x,ϵ)
∂xk

| ≤ cTk |ϵ|, where | · | denotes the component-wise absolute
value.
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Consider the difference |G(x, ϵ)−G(y, ϵ)|. We can bound this difference by summing the component-wise differences
and leveraging the bounded partial derivatives to obtain

|G(x, ϵ)−G(y, ϵ)| ≤
d∑

k=1

cTk |ϵ| · |xk − yk| ≤ max
k∈{1,...,d}

cTk |ϵ| · ||x− y||1. (18)

Let L1(ϵ) = maxk∈{1,...,d} c
T
k |ϵ|. We need only to verify that L1(ϵ) is integrable. Since ϵ is a vector of standard Normal

random variables,

E
[
|L1(ϵ)|

]
≤ max

k∈{1,...,d}

M∑
m=1

c
(m)
k E

[
|ϵ(m)|

]
=

√
2

π
max

k∈{1,...,d}
||ck||1.

So L1(ϵ) is integrable, and assumption (A2) holds.

Note that G(x, ϵ) is the maximum hypervolume where the objectives are GPs. From Lemma B.2, the moment generating
function E[etG(x,ϵ)] is finite for all t. Noting that G(x, ϵ) is positive for all x, ϵ, we have that E[et|G(x,ϵ)|] is also finite for
all t. Hence, all of their absolute moments (Meyer, 2012, Exercise 9.15) and E[|G(x, ϵ)|] are finite for all x. Thus, by the
strong law of large numbers α̂N

HV-KG(x) → αHV-KG(x) a.s. where {ϵi}Ni=1 are i.i.d. Therefore assumption (A1) holds.

To obtain (iii), we additionally need to show that there exists an integrable function L2(ϵ) : RM → R such that G(x, ϵ)
is L2(ϵ)-Lipschitz and the moment generating function E[etL2(ϵ)] of L2(ϵ) is finite in an open neighborhood of t = 0
(originally from Homem-de-Mello (2008) and written concisely in Balandat et al. (2020, Proposition 2)). Let us define

L2(ϵ) :=M ||ϵ||∞ · ||ck||∞ ≥ max
k∈{1,...,d}

cTk |ϵ|.

From (18) it follows that G(x, ϵ) is L2(ϵ)-Lipschitz in x. Furthermore, ||ϵ||∞ ≤ ||ϵ||1. So, L2(ϵ) ≤ C1||ϵ||1, where
C1 :=M · ||ck||∞ <∞. Moreover,

E
[
etL2(ϵ)

]
≤ E

[
etC1||ϵ||1

]
= E

[
etC1

∑M
m=1 |ϵ(m)|

]
= E

[
M∏

m=1

etC1|ϵ(m)|

]
=

M∏
m=1

E
[
etC1|ϵ(m)|

]
,

where we arrive at the last equality since ϵ(1), ..., ϵ(M) are independent. Let M(t) =
∏M

m=1 E
[
etC1|ϵ(m)|]. Note that M(t)

is simply the moment generating function of a folded Normal variable with scale parameter C2
1 , which is finite for all t.

Hence E[etL2(ϵ)] <∞ for all t, which completes the proof.

C. Alternative Knowledge Gradient Acquisition Functions
HV-KG is strongly motivated by the Bayesian decision-theoretic best point selection described in Section 4. That is, given a
model of the objectives a decision maker will typically wish to infer the Pareto set of optimal designs and select one design
from the Pareto set based on their preferences and estimates of the objectives for each design. In many MOBO works that
consider inference regret (Hernandez-Lobato et al., 2016; Suzuki et al., 2020; Tu et al., 2022), it is common practice to
determine the Pareto set over the search space under the posterior mean. Hence, HV-KG is constructed to be the one-step
Bayes optimal acquisition function maximizing the hypervolume of the Pareto set under the posterior mean HV(µ(X)).

An alternative formulation would be to consider hypervolume as a utility function and seek to maximize the expected
utility E[HV(f(X))]. Although many BO acquisition functions including the the single objective knowledge gradient
are formulated as expected utilities, expected hypervolume would be difficult to leverage in a Bayesian decision-theoretic
framework because it quanitifies the expected utility of a set of points rather than an individual point. In the single
objective setting with a utility function g : R → R the point18 x∗ that maximizes the expected utility is given by
x∗ = argmaxx∈X E[g(f(x))]. Hence, it is simple to determine the best point with maximum expected utility in this
framework. In the multi-objective setting, the hypervolume indicator is a set function and quantifies the utility of a set of
points. Although one could identify the optimal set of points19 X∗ = argmaxX∈X E[HV(f(X))], selecting a single point
from X∗ to implement according to one’s preferences would be challenging. Although the set X∗ would be optimal with

18Technically there could be set of maximizers, but here we consider only one for simplicity.
19Rather, one could identify an approximation of the optimal set of designs, as discussed in Section 4.
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respect to the expected hypervolume utility, using the posterior mean to estimate the objectives for each point in X∗ may
yield confusing results. Namely, the points in X∗ would not necessarily in the Pareto optimal under the posterior mean.
Hence, the expected utility would be misaligned given the method for selecting the best point. In contrast, maximizing the
hypervolume of the posterior mean would directly align with the best point selection method.

Nevertheless, we define and evaluate a KG acquisition function that arises when treating HV as an expected utility.

αE-HV-KG(x) = ED

[
max
X⊆X

E
[
HV(f(X)) | Dx)

]
− ϕ∗

]
, (19)

where ϕ∗ := maxX⊆X E
[
HV(f(X)) | D

]
. This acquisition function has the desirable property of non-negativity.

Theorem C.1. αE-HV-KG(x) is non-negative for all x in X q

Proof. We have that

αE-HV-KG(x) = ED

[
max
X⊆X

E
[
HV(f(X)) | Dx)

]
− ϕ∗

]
= ED

[
max
X⊆X

E
[
HV(f(X)) | Dx)

]]
− ϕ∗.

The proof is straightforward and follows from the fact that the max function is convex. From Jensen’s inequality, we have
that

ED

[
max
X⊆X

E
[
HV(f(X)) | Dx)

]]
≥ max

X⊆X
ED

[
E
[
HV(f(X)) | Dx)

]]
= max

X⊆X
E
[
HV(f(X)) | D)

]
]

= ϕ∗

Hence, αE-HV-KG(x) ≥ 0.

We leave the analysis of the non-negativity of HV-KG with a multi-output Gaussian process prior to future work. We note
that hypervolume is not convex, and that for non-Gaussian priors, simple examples show that it can be negative.

C.1. Empirical Evaluation

Computing the expected utility requires Monte Carlo integration, and we evaluate the performance below with 16 samples.
The decoupled and multi-fidelity variants are straightforward extensions of αE-HV-KG using the same conditioning on partial
information as with HV-KG.

In Figure 11, we evaluate αE-HV-KG on single fidelity benchmarks with coupled evaluations and find that HV-KG typically
performs at least as well as αE-HV-KG, but is much faster to optimize. αE-HV-KG is much more expensive to compute due to
the nested Monte Carlo integration and is slow even on a GPU as shown in Table 7.

In Figures 8 and 9, we evaluate a decoupled variant of αE-HV-KG and similar results with respect to optimization performance,
wall times, as shown in Tables 5 and 6. We where unable to run αE-HV-KG on the NAS problem with non-competitive
decoupling due to memory issues on a CPU and excessive runtime on a CPU. In Figure 10, we evaluate a MF variant of
αE-HV-KG and find that it works quite well, but is quite slow and we were unable to run it on the plasma laser acceleration
problem and the ranking problem due to memory issues on a GPU and excessive wall time on a CPU. Wall times are reported
in Table 4.

D. Additional Experiments
D.1. MOBO Problems with Complete Information

D.1.1. SEQUENTIAL MOBO WITH COMPLETE INFORMATION

We evaluate optimization performance in the standard sequential (i.e. q = 1), complete information multi-objective setting
(Figure 12). We find that HV-KG is a top performer on most problems. HV-KG is outperformed by qNEHVI for noiseless
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Figure 8: NCD benchmarks with αE-HV-KG.
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Figure 9: CD benchmarks with αE-HV-KG.

Penicilin, and performance is otherwise slightly better than, or not statistically significant from qNEHVI.

24



Hypervolume Knowledge Gradient: A Lookahead Approach for Multi-Objective Bayesian Optimization with Partial Information

0.0 2.5 5.0
Cost

0.00

0.01

0.02

0.03

0.04

Lo
g 

Re
gr

et

Park

0.0 2.5 5.0
Cost

1.5

1.0

0.5

Branin Currin

E-HV-KG
HV-KG

JES-LB
JES-LB2

MF
MOMF

PFES Sobol qNEHVI

Figure 10: MF benchmarks with αE-HV-KG.
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Figure 11: Single fidelity, coupled evaluation benchmarks with αE-HV-KG.
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Figure 12: Sequential (q = 1) optimization performance on single fidelity problems.

D.1.2. PARALLEL MOBO WITH COMPLETE INFORMATION

We evaluate optimization performance using a batch size of q = 4 (Figure 13). We find that HV-KG is a top performer on
most problems. Like the sequential case, HV-KG is outperformed by qNEHVI for noiseless Penicilin, and performance is
otherwise slightly better than, or not statistically significant from qNEHVI.
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D.2. Sensitivity with Respect to Pareto Set Size and MC Samples
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Figure 13: Parallel (q = 4) optimization performance on single fidelity problems. Many PFES and JES-LB(2) runs to failed
with numerical errors, and so they are not reported in for some problems.
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We evaluate the sensitivity of HV-KG to the Pareto set size Np and the number of MC samples N and find that HV-KG is
quite robust to both as show in Figures 14 and 15.
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Figure 14: Sensitivity analysis on single fidelity problems. We do not observe any meaningful differences in performance
across multiple problems and over a range of values for either the number of points in the finite Pareto Frontier approximation
(Np) or the number of fantasy samples (N ).
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Figure 15: Sensitivity analysis on NCD problems. We do not observe any meaningful differences in performance across
multiple problems and over a range of values for either the number of points in the finite Pareto Frontier approximation (Np)
or the number of fantasy samples (N ).
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D.3. Sensitivity to Costs in Competitive Decoupling

In this study, we examine the extent to which CD results are sensitive to the costs used for each objective, which can be
particularly relevant when some objectives are more challenging to model than others. To do this, we swap the cost functions
such that for ZDT2 and DTLZ2 the two objectives costs 3 and 1, respectively; for Vehicle Design, the objectives have costs
8, 3, and 1 respectively, and for NAS, the objectives have costs 2 and 1 respectively. We observe that decoupled entropy
methods works significantly better on ZDT2 with the cost functions swapped. We note that the first objective is far simpler
than the second objective, and in this case, the first objective is 3 times more expensive. Comparing Figure 6 in the main text
and Figure 16 here, we find that HV-KG is robust with both cost configurations. In addition, we evaluate which objectives
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Figure 16: Competitive decoupling with swapped costs across objectives. Results are qualitatively similar to that of the
main text, but the performance of decoupled JES improves for ZDT2, and deteriorates for Vehicle Design.

different decoupled algorithms choose to evaluate in the competitive decoupling setting. We observe that the behaviors of
JES-LB2 and PFES are far more sensitive to the cost function and that those methods assign significantly more samples to
lower cost objectives. When the costs are swapped, JES-LB2 and PFES again allocate significantly more evaluations to
lower cost objectives, where as the change in HV-KG’s behavior is less severe. We suspect the performance of JES-LB2
and PFES is quite sensitive to the choice of cost function.

ZDT2 (1, 3) DTLZ2 (1,3) VEHICLE DESIGN (1, 3, 8) NAS (1, 2)

HV-KG [34, 29] [45, 25] [17, 16, 15] [182, 159]
JES-LB2 [68, 18] [78, 14] [39, 15, 12] [371, 65]
PFES - [66, 18] [48, 12, 12] [17, 242]

Table 2: Number of evaluations of each objective in the competitive decoupling setting.

ZDT2 (3,1) DTLZ2 (3,1) VEHICLE DESIGN (8, 3, 1) NAS (2,1)

HV-KG [30, 31] [27, 39] [14, 18, 21] [47, 107]
JES-LB2 [21, 57] [14, 78] [12, 12, 48] [26, 148]
PFES [20, 62] [30, 32] [13, 15, 31] [14, 172]

Table 3: Number of evaluations of each objective in the competitive decoupling setting with swapped costs across objectives.
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D.4. Wall Times

We find that candidate generation time with HV-KG is competitive with other methods in the decoupled setting as shown
in Tables 5 and 6. Notably, HV-KG is significantly faster than the information theoretic alternatives on problems with
decoupled evaluations. In the MF setting, MF-HV-KG and HV-KG are slower than alternatives as shown in Table 4, but
MF-HV-KG is also the best performing method with respect to regret.

D.5. Details on Wall time Comparison of Nested Optimization via Unbiased Estimation

We use the default stochastic optimization routine in BoTorch (Balandat et al., 2020), which uses Adam (Kingma and Ba,
2014) with a constant learning rate of 1

40 and an exponential moving average stopping strategy. We use L-BFGS-B to
solve the inner optimization problem. To select starting points for gradient-based optimization, we sample 8 points from a
scrambled Sobol sequence, evaluate HV-KG via solving the inner optimization problem, and use the standard Boltzmann
sampling (Duchon et al., 2004) initialization procedure in BoTorch to select a single starting point. We limit the number of
quasi-random points to 8 because HV-KG via solving the inner optimization problem is computationally intensive. For
the SAA, we use initialization procedure described in Appendix A.2 and we use 1024 quasi-random points to select one
starting point (i.e. the current design to select) because evaluating HV-KG in a one-shot fashion (i.e. not solving the inner
optimization problem to completion for each x) is fast. From the starting point, we use L-BFGS-B to HV-KG in a one-shot
fashion. We report results on optimizing HV-KG under these two approaches in Figure 4 using a GP fit to 14 data points
collected from the DTLZ2 (d = 6,M = 2) problem (Deb et al., 2002). It worth noting that we limited the number of
quasi-random points to 8 to run this comparison in a reasonable amount of time, but by the time gradient-based optimization
starts for the nested stochastic approach, the SAA approach has achieved a higher HV-KG than the stochastic approach will
ever reach (on average).

PARK BRANIN-CURRIN RANKING POLICY OPTIMIZATION PLASMA LASER ACCELERATION

E-HV-KG 336.6 (±45.7) 140.6 (±14.1) - -
E-MF-HV-KG 97.3 (±6.0) 74.5 (±2.5) - -
HV-KG 15.3 (±1.7) 14.1 (±4.7) 158.6 (±24.4) 55.3 (±9.2)
JES-LB 148.6 (±11.3) 54.8 (±3.1) 68.9 (±4.9) 154.4 (±6.1)
JES-LB2 133.6 (±9.6) 54.1 (±4.4) 70.0 (±3.5) 187.5 (±9.9)
MF-HV-KG 17.9 (±1.4) 16.0 (±0.8) 49.8 (±5.4) 42.7 (±3.1)
MF-SOBOL 0.3 (±0.0) 0.3 (±0.0) 0.3 (±0.0) 0.3 (±0.0)
MOMF 6.5 (±0.4) 5.2 (±0.2) 5.3 (±1.1) 8.6 (±0.6)
PFES 9.3 (±0.2) 11.8 (±1.8) 9.6 (±0.3) 28.0 (±4.0)
SOBOL 0.3 (±0.0) 0.3 (±0.0) 0.3 (±0.0) 0.3 (±0.0)
QNEHVI 2.2 (±0.2) 1.9 (±0.6) 5.0 (±0.3) 3.7 (±0.3)

Table 4: Acquisition function optimization wall time in seconds on a Tesla V100 SXM2 GPU (16GB RAM) for the
multi-fidelity problems. The mean and two standard errors are reported.
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ZDT2 DTLZ2 VEHICLE DESIGN NAS

HV-KG 16.2 (±1.3) 17.5 (±1.1) 30.6 (±3.8) 12.0 (±0.6)
HV-KG, DECOUPLED 28.7 (±2.3) 30.8 (±1.7) 55.4 (±6.5) 24.4 (±1.4)
E-HV-KG 203.3 (±9.6) 259.8 (±21.7) 265.4 (±25.1) 15.7 (±0.6)
E-HV-KG, DECOUPLED 290.0 (±12.7) 479.9 (±30.8) 584.9 (±35.9) 34.8 (±2.0)
JES-LB 100.6 (±8.1) 162.5 (±14.0) 119.9 (±8.9) 44.2 (±0.7)
JES-LB2 110.5 (±9.2) 163.7 (±11.9) 133.1 (±10.7) 43.6 (±0.6)
JES-LB2, DECOUPLED 172.1 (±13.5) 181.7 (±23.3) 305.4 (±26.4) 44.9 (±0.6)
PFES 15.5 (±1.3) 21.0 (±1.9) 40.5 (±9.0) 16.0 (±0.5)
PFES, DECOUPLED - 20.7 (±1.8) 22.1 (±0.8) 17.3 (±0.5)
SOBOL 0.3 (±0.0) 0.3 (±0.0) 0.3 (±0.0) 4.2 (±0.3)
SOBOL, DECOUPLED 0.3 (±0.0) 0.3 (±0.0) 0.3 (±0.0) 4.4 (±0.3)
QNEHVI 3.8 (±0.2) 3.9 (±0.2) 4.1 (±0.2) 8.8 (±0.6)

Table 5: Acquisition function optimization wall time for problems with competitive decoupling in seconds on a Tesla V100
SXM2 GPU (16GB RAM). The mean and two standard errors are reported.

ZDT2 DTLZ2 VEHICLE DESIGN NAS

HV-KG 9.8 (±0.6) 12.9 (±1.7) 22.0 (±2.0) 13.7 (±0.6)
HV-KG, DECOUPLED 10.7 (±0.5) 12.9 (±0.7) 16.5 (±0.8) 132.4 (±5.4)
E-HV-KG 95.0 (±4.5) 185.4 (±10.1) 149.1 (±10.2) 17.5 (±0.7)
E-HV-KG, DECOUPLED 116.8 (±5.5) 262.1 (±11.3) 158.1 (±9.1) -
JES-LB 62.0 (±4.1) 70.3 (±3.6) 68.6 (±3.4) -
JES-LB2 80.1 (±5.9) 91.3 (±5.8) 91.2 (±6.7) -
JES-LB2, DECOUPLED 104.6 (±5.6) 131.8 (±16.1) 177.2 (±11.3) 152.3 (±4.9)
PFES 13.9 (±0.8) 25.4 (±2.2) 38.9 (±3.8) 768.9 (±12.3)
PFES, DECOUPLED - - 349.6 (±8.4) 1421.1 (±36.1)
SOBOL 0.3 (±0.0) 0.3 (±0.0) 0.3 (±0.0) 4.1 (±0.3)
SOBOL, DECOUPLED 0.3 (±0.0) 0.3 (±0.0) 0.3 (±0.0) 4.1 (±0.2)
QNEHVI 4.2 (±0.4) 4.4 (±0.3) 4.9 (±0.5) 9.5 (±0.6)

Table 6: Acquisition function optimization wall time for problems with non-competitive decoupling in seconds on a Tesla
V100 SXM2 GPU (16GB RAM). The mean and two standard errors are reported.
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DTLZ2 (NOISELESS) DTLZ2 (NOISY) ZDT2 (NOISELESS) ZDT2 (NOISY)

E-HV-KG 135.3 (±6.8) 122.2 (±9.8) 69.7 (±3.0) 62.9 (±3.8)
HV-KG 11.3 (±0.2) 11.3 (±0.2) 11.9 (±1.0) 10.1 (±0.6)
JES-LB 98.2 (±9.0) 49.3 (±1.7) - 44.2 (±1.7)
JES-LB2 133.2 (±3.9) 49.3 (±2.2) 130.8 (±5.9) 42.1 (±1.3)
PFES 33.2 (±1.9) 17.2 (±0.9) 16.0 (±0.7) 14.1 (±0.6)
SOBOL 2.8 (±0.0) 2.5 (±0.1) 3.3 (±0.0) 2.3 (±0.0)
QNEHVI 6.2 (±0.1) 6.9 (±0.3) 5.8 (±0.2) 5.5 (±0.2)

VEHICLE DESIGN(NOISELESS) VEHICLE DESIGN (NOISY) PENICILLIN (NOISELESS) PENICILLIN (NOISY)

E-HV-KG 91.5 (±3.1) 86.4 (±1.8) 218.7 (±14.9) 120.8 (±16.5)
HV-KG 34.3 (±1.4) 29.6 (±0.7) 82.0 (±9.8) 45.4 (±10.1)
JES-LB 167.4 (±9.2) 115.6 (±4.9) 172.2 (±27.8) 83.6 (±5.6)
JES-LB2 210.6 (±10.1) 118.5 (±4.3) 187.7 (±18.4) 82.9 (±4.9)
PFES 37.7 (±2.3) 36.2 (±3.6) - 37.9 (±2.9)
SOBOL 15.8 (±0.5) 12.4 (±0.5) 6.3 (±0.1) 6.6 (±0.3)
QNEHVI 29.7 (±1.3) 27.5 (±1.1) 15.1 (±1.1) 14.7 (±0.8)

SNAR (NOISELESS) SNAR (NOISY) MARINE (NOISELESS) MARINE (NOISY)

E-HV-KG 67.9 (±3.5) 127.1 (±10.0) 219.4 (±15.4) 194.8 (±10.3)
HV-KG 24.7 (±0.9) 21.4 (±1.7) 74.9 (±2.6) 66.3 (±1.9)
JES-LB - - 245.2 (±14.3) 196.0 (±9.8)
JES-LB2 - - 274.2 (±10.4) 189.7 (±8.2)
PFES - - 83.8 (±7.8) 59.0 (±3.2)
SOBOL 13.4 (±1.6) 13.5 (±3.1) 8.0 (±0.3) 7.8 (±0.5)
QNEHVI 19.5 (±0.9) 20.2 (±2.6) 69.9 (±2.5) 76.4 (±3.1)

CHEMISTRY

E-HV-KG 47.6 (±2.2) - - -
HV-KG 8.8 (±0.7) - - -
JES-LB 49.6 (±1.9) - - -
JES-LB2 48.6 (±1.2) - - -
PFES 11.9 (±0.4) - - -
SOBOL 3.4 (±0.2) - - -
QNEHVI 5.9 (±0.5) - - -

Table 7: Sequential (q = 1) acquisition function optimization wall time in seconds on a Tesla V100 SXM2 GPU (16GB
RAM). The mean and two standard errors are reported. PFES and JES-LB(2) failed are missing some values due to numerical
errors , which caused the runs to fail.
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DTLZ2 (NOISELESS) DTLZ2 (NOISY) ZDT2 (NOISELESS) ZDT2 (NOISY)

HV-KG 43.1 (±2.4) 49.6 (±1.7) 44.5 (±2.0) 35.4 (±1.6)
JES-LB 249.0 (±9.3) 72.1 (±4.0) - -
JES-LB2 333.3 (±15.1) 79.2 (±3.9) - -
PFES 1420.2 (±29.8) 1224.8 (±23.8) - -
SOBOL 0.3 (±0.0) 0.3 (±0.0) 0.3 (±0.0) 0.3 (±0.0)
QNEHVI 15.6 (±0.4) 18.9 (±0.6) 7.9 (±0.2) 11.1 (±0.5)

VEHICLE DESIGN(NOISELESS) VEHICLE DESIGN (NOISY) PENICILLIN (NOISELESS) PENICILLIN (NOISY)

HV-KG 69.5 (±2.5) 64.6 (±1.7) 333.7 (±42.5) 210.8 (±40.4)
PFES 1264.0 (±77.3) 1343.7 (±76.5) - 1376.4 (±50.7)
SOBOL 0.3 (±0.0) 0.2 (±0.0) 0.3 (±0.0) 0.3 (±0.0)
QNEHVI 35.9 (±0.9) 37.1 (±0.9) 35.6 (±1.9) 45.0 (±2.1)

SNAR (NOISELESS) SNAR (NOISY) MARINE (NOISELESS) MARINE (NOISY)

HV-KG 45.9 (±1.6) 30.3 (±0.8) 252.3 (±8.4) 225.8 (±7.2)
PFES - - 1612.1 (±97.1) 1468.8 (±94.6)
SOBOL 0.2 (±0.0) 0.2 (±0.0) 0.2 (±0.0) 0.2 (±0.0)
QNEHVI 11.4 (±0.7) 9.2 (±0.6) 245.4 (±10.4) 264.6 (±10.0)

CHEMISTRY

HV-KG 23.6 (±0.6) - - -
PFES 1201.3 (±29.3) - - -
SOBOL 0.3 (±0.0) - - -
QNEHVI 5.7 (±0.3) - - -

Table 8: Batch (q = 4) acquisition function optimization wall time in seconds on a Tesla V100 SXM2 GPU (16GB RAM).
The mean and two standard errors are reported. Most of the PFES and JES-LB(2) runs to failed with numerical errors.

D.6. Fidelity Selection Behavior

In this section, we examine the how different algorithms select fidelities. We examine the fidelity levels which MOMF and
MF-HV-KG choose to evaluate at each iteration. We observe that MOMF tends to evaluate many more higher fidelities
in early iterations and therefore exhausts its cost budget very quickly. In contrast, MF-HV-KG evaluates many more
low-fidelity points early on and therefore collects many more observations (at lower fidelities).

Figure 17: A comparison of which fidelities each algorithm chooses to query at each iteration.

E. On Pareto Subset Selection
In general, the quality of a finite approximation of a larger (potentially infinite) Pareto frontier is often assessed by additive
(and multiplicative) approximation ratios (Bringmann and Friedrich, 2013), which are the minimum added value (and
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multiplier, respectively) that when applied to all points in the approximate Pareto frontier yield a frontier that is at least a
good as all points on the true Pareto frontier. In the bi-objective case, the hypervolume maximizing set enjoys the optimal
additive (and multiplicative) approximation ratio(s) asymptotically in Np (Bringmann and Friedrich, 2013).
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