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Abstract
Recent work has shown that leveraging learned
predictions can improve the running time of algo-
rithms for bipartite matching and similar combina-
torial problems. In this work, we build on this idea
to improve the performance of the widely used
Ford-Fulkerson algorithm for computing maxi-
mum flows by seeding Ford-Fulkerson with pre-
dicted flows. Our proposed method offers strong
theoretical performance in terms of the quality of
the prediction. We then consider image segmen-
tation, a common use-case of flows in computer
vision, and complement our theoretical analysis
with strong empirical results.

1. Introduction
The Ford-Fulkerson method is one of the most ubiquitous in
combinatorial optimization, both in theory and in practice.
While it was first developed for solving the maximum flow
problem, many problems in scheduling (Ahuja et al., 1993),
computer vision (Vineet and Narayanan, 2008), resource
allocation, matroid intersection (Im et al., 2021b), and other
areas are solvable by finding a reduction to a flow problem.

Theoretically, max flow algorithms exist that are asymptoti-
cally much faster than the original Ford-Fulkerson formula-
tion, most recently the near-linear time algorithm of Chen
et al. (2022b). However—as often happens—algorithms
with great theoretical guarantees might be difficult to im-
plement in practice. Indeed, algorithms used in practice
still leave room for improvement. In fact, for computing
max flows in networks, practitioners often stick to older
algorithms such as Dinic’s algorithm (Bhadra et al., 2020),
push-relabel (Cherkassky and Goldberg, 1997), pseudoflow
(Chandran and Hochbaum, 2009), or these algorithms lay-
ered with heuristics to fit particular settings.
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When flow algorithms are deployed in practice, they are
often used to solve several problem instances arising natu-
rally over time. However, the theoretical analysis, as well
as many implementations, considers solving each new prob-
lem from scratch to derive worst-case guarantees. This
approach needlessly discards information that may exist
between instances. We are interested in discovering whether
flow problems can be solved more efficiently by leveraging
information from past examples. Seeding an algorithm from
a non-trivial starting point is referred to as a warm-start.

We are motivated by the question: can one warm-start
Ford-Fulkerson to improve theoretical and empirical perfor-
mance? Towards this goal, we leverage the recently devel-
oped algorithms with predictions framework (a.k.a learning-
augmented algorithms). Research over the past several years
has showcased the power of augmenting an algorithm with a
learned prediction, leading to improvements in caching (Im
et al., 2022; Lindermayr and Megow, 2022; Lykouris and
Vassilvitskii, 2021), scheduling (Im et al., 2021a; Lattanzi
et al., 2020), clustering (Lattanzi et al., 2021), matching
(Chen et al., 2022a; Dinitz et al., 2021), and more (see the
survey by Mitzenmacher and Vassilvitskii (2022)). An algo-
rithm is learning-augmented if it can use a prediction that
relays information about the problem instance. Most prior
work uses predictions to overcome uncertainty in the online
setting. However, recent work by Dinitz et al. (2021)—and
the follow-up work by Chen et al. (2022a)—instead focuses
on improving the run-time of bipartite matching algorithms
by predicting the dual variables and using these to warm-
start the primal-dual algorithm.

Motivated by the idea of warm-starting combinatorial op-
timization algorithms, we seek to provide faster run-time
guarantees for flow problems via warm-start. The paper
will focus on flow problems generally, but will additionally
showcase a common, practical use-case in computer vision:
image segmentation. In the image segmentation problem,
the input is an image containing an object/ foreground, and
the goal is to locate the foreground in the image.

1.1. Our contributions

For a graph G = (V,E) equipped with a capacity vector
c ∈ Z|E|

≥0 , let f be a flow on G, where fe is the flow value
on each edge e ∈ E. Let F∗ be the collection of all feasible,
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maximum flows on G. Given a potentially infeasible flow f̂ ,
let η(f̂) = minf∗∈F∗ ||f̂ − f∗||1. This term denotes how
close f̂ is to being optimal.

Warm-starting Ford-Fulkerson on general networks
Our main contribution is Algorithm 1, which can be used
to warm-start any implementation of Ford-Fulkerson, i.e.,
Ford-Fulkerson with any specified subroutine for finding
augmenting paths. Algorithm 1 takes as input a predicted
flow f̂ . Note f̂ may be infeasible for G, as predictions
can be erroneous. Algorithm 1 first projects f̂ to a feasible
flow for G, and then runs the Ford-Fulkerson procedure
from the feasible state to find a maximum flow. While our
warm-started Ford-Fulkerson has its performance tied to the
quality of the prediction, it also enjoys the same worst-case
run-time bounds as the vanilla Ford-Fulkerson procedure.

Theorem 1. Let f̂ be a potentially infeasible flow on net-
work G = (V,E). Let T be the worst-case run-time for
Ford-Fulkerson with a chosen augmenting path subroutine.
Using the same subroutine, Algorithm 1 seeded with f̂
finds an optimal flow f∗ on G within time O(min{|E| ·
η(f̂), T})1.

At various points, we specify two Ford-Fulkerson implemen-
tations: Edmonds-Karp and Dinic’s algorithm, for which
the run-time T is O(|E|2|V |) and O(|V |2|E|), respectively.

One may wonder how to obtain such a f̂ . While in practice
it might be sufficient to use, for warm-start, the optimal
solution found on a past problem instance, recent studies
have proposed the PAC-learning framework for finding the
“best” overall prediction. To this end, we prove that when
the networks come from a fixed but unknown distribution,
one can indeed PAC-learn the best approximation (Theorem
9) for optimal flows.

Faster warm-start on locally-changed networks Next,
we improve the analysis of Algorithm 1 for network in-
stances with gradual, local transitions from one to another.
We prove the local transitions among networks, informally
characterized in Theorem 2, give rise to many short paths
along which we can send flow, thus improving the run-time.

Theorem 2 (Informal, formally Theorem 10). Fix separable
networks G1 and G2, where the transition between them
is d-local. For f̂ an optimal flow on G1, the run-time of
Algorithm 1 seeded with f̂ on G2 to find optimal f∗ on G2

is O(d2 · |E|+ d · η(f̂)).

Empirical results Motivated by our theoretical results,
we use our warm-started Ford-Fulkerson procedure on net-
works derived from instances of image segmentation on

1Here the term O|E| generally refers to the run time of finding
each augmenting path since the most commonly used subroutines
are BFS/DFS. However, given any other subroutine with different
time bounds one can also replace this term.

sequences of photos taken of a moving object or from chang-
ing angles. We show that warm-start is faster than standard
Ford-Fulkerson procedures (2-5× running time improve-
ments), thus demonstrating that our theory is predictive of
practical performance. A key piece of the speed gain of
warm-start comes not from sending the flow along fewer
paths, but rather from using shorter paths to project f̂ to a
feasible flow, as predicted by Theorem 2. We note that the
goal of our experiments is not necessarily to provide state-
of-the-art algorithms for image segmentation, but instead to
show that warm-starting Ford-Fulkerson leads to substantial
run-time improvements on practical networks as compared
to running Ford-Fulkerson from scratch.

1.2. Related work

Flow problems have been well studied. See the survey by
Ahuja et al. (1993). The Ford-Fulkerson method greed-
ily computes a maximum flow by iteratively using an
augmenting-path finding subroutine (Ford and Fulkerson,
1956). Different subroutines give rise to different implemen-
tations such as Edmonds-Karp (using BFS) (Edmonds and
Karp, 1972) and the even faster Dinic’s algorithm (Dinitz,
2006). Sherman (2013) and Kelner et al. (2014) give fast
algorithms that compute approximate maximum flows. The
theoretical breakthrough by Chen et al. (2022b) gave a
nearly-linear time max flow algorithm, and we note that
the current presentation of this algorithm is not appropriate
for implementation; huge steps are still needed in order to
make this algorithm that is actually usable for practitioners.

Similar in spirit to our work, Altner and Ergun (2008)
demonstrate empirically that one can warm-start the push-
relabel algorithm on similar networks. Additionally, we are
aware of concurrent work on a warm-started max flow algo-
rithm by Polak and Zub (2022). Importantly, they require
an additional assumption that the predicted flow satisfy flow
conservation constraints, a limitation that the authors high-
light. In contrast, we have an explicit feasibility restoration
step, allowing us to get rid of this assumption.

Learning-augmented algorithms have become popular re-
cently. The area was jump started by Kraska et al. (2018),
who showed results on learned data structures. The area has
since become popular for the design of online algorithms
where the algorithm uses predictions to cope with uncer-
tainty (Purohit et al., 2018; Lattanzi et al., 2020; Antoniadis
et al., 2020). See also the paragraph Learning-augmented
algorithms in Section 1.3.

While Kraska et al. (2018) showed that running times can
be improved using predictions, this is still yet to be well-
understood theoretically. The work of Dinitz et al. (2021)
showed how to improve the run-time of the Hungarian algo-
rithm for weighted bipartite matching. Chen et al. (2022a)
has extended this to other graph problems. Both of these
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works warm-start primal dual algorithms with a predicted
dual solution, and it is reasonable to wonder whether those
techniques can be extended to the general flow problem con-
sidered in our paper. We do not believe this is possible. The
work of Chen et al. (2022a) could only potentially handle
the restricted case of 0-1 min-cost flow (i.e., the capacities of
the edges in the graph are 0 or 1) by reducing that problem to
min-weight bipartite perfect matchings and then using their
algorithm. This is because several aspects of their run-time
analysis heavily rely on the assumption that the constraints
are 0-1. Moreover, the reductions to bipartite matching that
allowed Chen et al. (2022a) to study other combinatorial
optimization problems (including 0-1 min-cost flow) do not
exist for general integral flow problems.

Other run-time improvements have been made using pre-
dictions, too. A more general framework for warm-starting
algorithms is given by Sakaue and Oki (2022), though we
note that their method does not work for general optimiza-
tion problems (only L-convex ones), and therefore cannot
be used on general flow problems. Additionally, Lu et al.
(2021) showed predictions can be used to improve the run-
time of generalized sorting. A closely related area is that
of data-driven algorithm design (Gupta and Roughgarden,
2017; Balcan et al., 2021).

1.3. Organization and preliminaries

Section 2 presents the warm-start algorithm, proves its cor-
rectness, and provides run-time guarantees. In Section 3,
we give additional theoretical guarantees if the networks are
from a specific subclass. In Section 4, we show our empir-
ical results on networks arising from image segmentation,
which are closely related to the networks in Section 3.

Learning-augmented algorithms In this model, an algo-
rithm is given access to a predicted parameter. The predic-
tion can be erroneous and must come equipped with an error
metric. In our setting, for a given network G, we will pre-
dict a flow f̂ . This predicted flow may be infeasible for G.
Recall that for F∗ the set of optimal flows on G, we define
the error of f̂ on G to be η(f̂) = minf∗∈F∗ ||f̂ − f∗||1.

It is well-established in the literature (see, for example,
(Lykouris and Vassilvitskii, 2021)) on learning-augmented
algorithms that the desired properties of the prediction and
algorithm are learnability, consistency, and robustness. We
show that given an additional assumption on the uniqueness
of optimal flows (see Assumption 8), predicted flows are
PAC-learnable in Theorem 9. Additionally, we use the
instance-robustness (Lavastida et al. (2021)) of flows to
justify learnability for special networks in Theorem 2 and
observe this empirically, as well.

If we are given a predicted flow f̂ for a network G that is
actually an optimal flow, then the run-time is 0, so Algorithm

1 is consistent. We are also guaranteed robustness and a
worst-case guarantee, as the run-time of Algorithm 1 is
O(min{|E|η(f̂), T}), which degrades smoothly when f̂ is
far from an optimal flow f∗ on a network, but the worst-
case is still bounded by O(T )2. We note that the run-time
bounds in learning-augmented algorithms are often (if not
always) asymptotically the same as the worst-case bound
of the vanilla algorithm, but typically with a worse leading
constant. Such constants represent the overhead of trying to
make use of a (potentially wrong) prediction. For example,
this constant is 2 in the caching algorithm in Lykouris and
Vassilvitskii (2021) (and our constant is also 2).

Network flow Let G = (V,E) be a fixed network with
|V | = n and |E| = m. The source s and sink t are part of
the vertex set V . The network is equipped with a capacity
vector c ∈ Zm

≥0. A flow f ∈ Zm
≥0 on G is feasible if it

satisfies flow conservation, i.e. for all vertices u ∈ V \
{s, t} the incoming flow for u equals the outgoing flow∑

e=(v,u) fe =
∑

e=(u,w) fe, and capacity constraints, i.e.
fe ≤ ce for all edges e ∈ E. Throughout the paper we refer
to a flow satisfying these constraints as feasible.

Given a flow f that satisfies capacity constraints but not
necessarily flow conservation, the residual graph Gf is
the network on the same set of vertices, and for any edge
e = (u, v) ∈ E, add edge e to Gf but with capacity c′e =
ce−fe and a reversed edge ⃗e = (v, u) with capacity fe. Let
ν(f) be the amount of flow that f sends from the source,
ν(f) =

∑
e=(s,u) fe. An augmenting path in Gf is a path

p from s to t where every edge e ∈ p has c′e > 0.

When f does not satisfy flow conservation, the total in-
and out-coming flow values on a node are different. Call
this difference the excess/deficit (exf/deff ) of the node
if in-coming is more/less than out-coming flows respec-
tively. For shorthand, we let the total excess and deficit in
G according to flow f be exf =

∑
u̸∈{s,t} exf (u) and

deff =
∑

u̸∈{s,t} deff (u); note that this excludes the
source and sink, which are special nodes with deficit/excess
by definition. Let Af , Bf ⊆ V be the nodes with positive
excess/deficit with respect to f (so t ∈ Af , s ∈ Bf ), re-
spectively. It will be convenient to further refer to these sets
excluding s, t with A′

f = Af \ {t} and B′
f = Bf \ {s}.

2. Warm-start Ford-Fulkerson
Here, we give our algorithm for using predicted flows.
The next proposition follows from the following observa-
tions. Any Ford-Fulkerson method (e.g., Edmonds-Karp or
Dinic’s) can be seeded with any feasible flow. Each iteration
of Ford-Fulkerson increases the value of the flow and takes
O(|E|) time to find an augmenting path and send flow.

2Recall, T depends on the Ford-Fulkerson implementation.
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Proposition 3. Let f be a feasible flow on G, where ν(f) <
ν(f∗) for f∗ an optimal flow on G. Ford-Fulkerson seeded
with f terminates in at most ν(f∗)− ν(f) many iterations,
so its run-time is O(|E| · (ν(f∗)− ν(f))).

Let f̂ be a predicted flow for network G. It may be infea-
sible, that is, it can violate capacity or flow conservation
constraints. Algorithm 1 has two primary steps: step (1)
projects f̂ to a feasible flow—we call this the feasibility pro-
jection—and step (2) runs a Ford-Fulkerson method seeded
with a feasible flow and finds an optimal flow. During fea-
sibility projection, we first round down the flow wherever
capacity constraints are violated. Then we send flow along
projection paths, that is, a path from excess nodes to deficit
nodes where all capacities are positive in the residual graph,
to get flow conservation.

Algorithm 1 Warm-starting Ford-Fulkerson with f̂

Input: predicted flow f̂

while ∃ edge e in G with f̂e > ce do
Update f̂ to f̂e ← ce

end while
Set f ← f̂
Build the residual graph Gf , as well as A′

f and B′
f , the

sets of nodes with excess/deficit to round
// Main while loop, feasibility projection

while |A′
f ∪B′

f | > 0 do
if |A′

f | > 0 then
if ∃ projection path from u ∈ A′

f to v ∈ B′
f then

Let p be the path from u to v
else

Let p be a path from u ∈ A′
f to s

end if
else

Let v ∈ B′
f , let p be a path from t to v

// Find projection paths by adapting the augmenting
path subroutine. See the text for more details.

end if
For w,w′ beginning, ending nodes of p respectively
Find flow µp = min{exf (w),deff (w′),mine∈p c

′
e}

Send µp units down path p, Update f , Gf , A
′
f , and B′

f

end while
// Feasibility projection ends, optimization starts

Run Ford-Fulkerson on G seeded with f until optimality
Output: f∗

In the main WHILE loop of Algorithm 1, projection paths
are found in three rounds: A′

f −B′
f , A′

f −s, t−B′
f . Within

each round, we find the projection paths by constructing
auxiliary graphs G′ and applying on this graph the chosen
augmenting path subroutine (e.g., BFS) in Ford-Fulkerson.
To build G′ for finding all possible A′

f − B′
f projection

paths, take the residual graph Gf w.r.t f and treat it as a

new network. Add a super source s∗ and super sink t∗.
Add arcs (s∗, u) to every u ∈ A′

f (non-sink excess nodes)
with capacity exf (u) , and (u, t∗) from every u ∈ B′

f (non-
source deficit nodes) to t∗. Initialize all flows to be 0 on this
network. An s∗ − t∗ augmenting path in G′ corresponds to
a A′

f − B′
f projection path in Gf . This is because for any

projection path from u to u′ one can let there be flow on
s∗ to u and u′ to t∗ and thus making it an augmenting path
in G′, and the reverse procedure holds. The graph G′ for
the other two rounds are built similarly; for finding A′

f − s
projection paths, add arcs (s∗, u) to u ∈ A′

f and (s, t∗); for
t−B′

f , add arcs (s∗, t) and (v, t∗) to every v ∈ B′
f .

2.1. Warm-start Algorithm Analysis

In this section we analyze how Algorithm 1 works.

Validity of algorithm We first prove that the projection
paths can be found following the order of A′

f − B′
f , then

A′
f − s, and lastly t−B′

f .

Lemma 4. Fix an infeasible flow f . If there is no path from
A′

f to B′
f with positive capacity in Gf , then sending flow

from A′
f to s (or from t to B′

f ) to form the flow h will not
result in a path from A′

h to B′
h with positive capacity in Gh.

The proof can be found in Appendix 6.1. We next prove that
the projection path must always exist in the main WHILE
loop as long as |A′

f ∪B′
f | is not empty.

Lemma 5. Given infeasible flow f , ∀u ∈ A′
f , ∃v ∈ Bf

such that there is a projection path from u to v; ∀v ∈ B′
f ,

∃u ∈ Af such that there is a projection path from u to v.

This lemma results from the following observation that links
the summation of excess/deficit to the difference between
in-flows and out-flows for any fixed set of nodes.

Proposition 6. Let f be a flow satisfying the capacity con-
straints of a network G. Then for any S ⊆ V , the difference
between the total deficits in S and the total excesses in S
is exactly the difference between the total flow out of S and
into S. Formally,∑
u∈S

deff (u)−
∑
u∈S

exf (u) =
∑
u∈S

∑
e=(u,v):

v ̸∈S

fe−
∑
u∈S

∑
e=(v,u):

v ̸∈S

fe.

Proof. In
∑

u∈S deff (u)−
∑

u∈S exf (u), the edges with
flow within S are counted with a positive and negative sign,
but the edges carrying flow into S or out of S are counted
once by the excess and once by the deficit, respectively.

Proof of [Lemma 5] We prove one direction by contra-
diction. The proof for the other direction is similar. For
any u ∈ A′

f , assume no such path exists. In Proposition
6 take S to be the set of all vertices reachable from u in
Gf . None of the nodes in S can have positive deficit, so
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the LHS of Proposition 6 must be negative. On the other
hand, S must have 0 flow incoming to it, otherwise there is
an edge pointing from S to V \ S in Gf , producing a vertex
in V \ S reachable from u and contradicting the maximality
of S. Therefore, the RHS in Proposition 6 is non-negative,
contradicting the equation.

Note each iteration decreases the total amount of excess
and deficit in the system, exf + deff , by at least one, so
the WHILE loop terminates after restoring flow conserva-
tion, giving rise to a feasible flow. Then the vanilla Ford-
Fulkerson takes over until an optimal solution is found.

Running-time analysis Here we prove Theorem 1. It is
straight-forward to justify the run-time of Algorithm 1 is
bounded by O(T ). During the feasibility projection step
an auxiliary graph is constructed three times, each time
with |V | + 2 vertices and O(|E|) edges. Thus running
the chosen Ford-Fulkerson implementation on these graphs
takes time O(T ). The optimization step also takes time
O(T ), since running Ford-Fulkerson starting with a feasible
flow is equivalent to running it from scratch on the residual
graph as a new input. Thus the total running time is O(T ).

On the other hand, we show the running time is also tied
to the quality of prediction, η(f̂) = minf∗∈F∗ ||f̂ − f∗||1.
We note that in case of multiple max flow solutions, η(·) is
evaluated at the f∗ closest to the seed solution f̂ , which does
not necessarily coincide with the max flow solution returned
by Algorithm 1. We first bound the times the path-finding
subroutine is called. For projection paths, the total excess
and deficit could increase by at most

∑
e max{f̂e − ce, 0}

when Algorithm 1 rounds down the flow where it exceeds
capacity. Thus it takes at most (exf̂+deff̂ ) projection paths
to restore feasibility. For augmenting paths, the difference
in flow value, ν(f̂) − ν(f∗), could decrease by at most∑

e max{f̂e − ce, 0} during the round-down and another
exf̂ during feasibility projection, thus the total number is at
most the summation of the three. Each path-finding takes
O(|E|) time. This combined with the next lemma proves
Theorem 1; the full proof is deferred to Appendix 6.1.

Lemma 7. ν(f∗)− ν(f), exf̂ + deff̂ , and
∑

e max{f̂e −
ce, 0} are upper bounded by η(f̂).

2.2. PAC-learning Flows

Here, we show theoretically that high quality flows are
learnable. This gives theoretical evidence that flows can
be learned for input to Algorithm 1. We show that given
a distribution over capacity vectors for a network, one can
learn a predicted flow from samples that is the best approxi-
mation. Importantly, PAC learning says nothing about the
relative quality of the solution, other than saying it is the
best possible

Generally speaking, while experiments give empirical ev-
idence that predicting flows is reasonable, PAC-learning
results give the theoretical evidence. The learning method
presented in this section, where one takes the predicted flow
to be the median of sampled flows on each edge, is a stan-
dard learning method in the related literature (see either of
the faster matchings works by Dinitz et al. (2021) or Chen
et al. (2022b)).

Consider a fixed network G with edge capacities c. An
instance is a network Gi on the same vertex and edge set
as G, but the capacity vector is ci, where every edge e
in Gi must satisfy cie ∈ [0, ce]. Let D be an unknown
distribution over such instances. Since an instance is exactly
characterized by its new capacity vector, we notationally
write this as sampling a capacity vector ci ∼ D.

Suppose we sample instances c1, . . . , cs from D. Let F be
the set of all integral flows on G that satisfy the capacities
in c, noting that flows in F do not have to satisfy flow
conservation. Technically, a network G might have several
optimal solutions. Here we make the following assumption.

Assumption 8. For a network G, there is a uniquely asso-
ciated, computable optimal flow.3

Given samples c1, . . . , cs, we can compute the uniquely as-
sociated optimal flows on those samples f∗(c1), . . . , f∗(cs).
One can efficiently compute the empirical risk minimizer in
f̂ ∈ F to be the coordinate-wise median of the optimal flows
of the samples, i.e. f̂e = median(f∗(c1)e, . . . , f

∗(cs)e)
for all e ∈ E (see Lemma 11 in Appendix 6.2).

We will now state our PAC-learning result, whose proof is
in Appendix 6.2. The proof of this theorem follows that of
(Dinitz et al., 2021).

Theorem 9. Let c1, . . . , cs be sampled i.i.d. from D and let
f̂ = argminf∈F0

1
s

∑s
j=1 ||f − f∗(cj)||1. For

s = Ω((max
e

c2e ·m2)(logm+ log(1/p)))

and f̃ = argminf∈F0
Eci∼D||f−f∗(ci)||1, then with prob-

ability at least 1− p, f̂ satisfies

Eci∼D||f̂ − f∗(ci)||1 ≤ Eci∼D||f̃ − f∗(ci)||1 +O(1).

3. Faster Flows via Shorter Projection Paths
Algorithm 1 has made specific choices about finding pro-
jection paths, such as trying to send flows from excess to
deficit nodes first, instead of to s, i.e., the algorithm prefers
to amend the flow without reducing the actual flow value. In
this section, we show such projection path choices do matter.

3Such assumptions are standard for the PAC-learning results
in learning-augmented based run-time improvements, even if not
explicitly stated. See, for instance (Sakaue and Oki, 2022).
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We give an example particular graph structure, where, by
careful selection of projection paths, one can restore feasi-
bility of the given flow using significantly shorter projection
paths, thus getting a more refined run time bound than that
in Theorem 1.

Let G = (V,E) be a directed graph, with s, t ∈ V . Suppose
V \ {s, t} forms a two-dimensional grid. Further for u, v ∈
V \ {s, t}, if e = (u, v) ∈ E then the reverse direction
edge ⃗e = (v, u) ∈ E. We consider a pair of networks
G1, G2 on G. The only difference in these networks is
their capacity vectors, though we assume they have capacity
vectors c1, c2 ∈ {1,M}m for some large M , and we assume
that all edges incident to s or t have capacity M .

For ℓ ∈ [2], let the boundary Eℓ = {e ∈ E | cℓe = 1}.
We call Gℓ separable if the vertices in V \ {s, t} can be
partitioned into subsets Vℓ and Wℓ = V \ ({s, t} ∪ Vℓ),
such that there is some x ∈ V1 ∩ V2 with (x, t) ∈ E and
y ∈W1 ∩W2 with (s, y) ∈ E, and for all e = (u, v) ∈ Eℓ,
e has one endpoint in Vℓ and the other in Wℓ. Consider the
set of vertices ∆ = (V2 \ V1) ∪ (W2 \W1). This is the
set of nodes that used to belong to V1/W1 in G1, and yet
has changed to be in W2/V2 in G2 respectively, in other
words, vertices that crossed the old boundary E1. We say
the transition between G1 and G2 is d-local, if for all pairs
of distinct vertices u, v in ∆ and its neighboring grids such
that u, v are both in V2/W2, there exists a path from u to v
composed of capacity M edges only. Later d will be used
to control the length of the projection paths.

While we require additional assumptions for our theoretical
results, these assumptions are sufficient but not necessary
to take advantage of short projection paths. The image
segmentation network in Section 4 is a generalization of this
graph class. Our empirical results are consistent with the
theory provided in this section.

Theorem 10 (Restates Theorem 2). Fix separable networks
G1 and G2, where the transition between them is d-local.
Any f̂ that is an optimal flow on G1 can be used to warm-
start Ford-Fulkerson on G2 within time O(d2 ·|E|+d·η(f̂)).

For the proof of Theorem 10, we first reroute flow along
excess-deficit paths that does not cross the boundary E2,
until we only have nodes with excess on one side of the new
boundary E2 and deficits on the other. We argue that the
rerouting uses paths of length O(d). We then fix the excess
and deficit nodes depending on whether they are in V2 or
W2, by either sending flow from excess to deficit nodes
directly, or use s, t to make up for excess/deficits. These
paths could be longer, i.e. of length O(|E|). We can argue
the change in flow value is at most ||E2| − |E1|| ≤ O(d2),
where the upper bound comes from he definition of d-local.
This means the resulting flow, after feasibility projection, is
only slightly sub-optimal.

Proof. For the network G2 with capacity constraints c2,
project f̂ to satisfy c2 as in Algorithm 1, and let the resulting
flow be f . Note that excess/deficit can only arise because
we have flow greater than 1 on an edge not in E1 but is now
in E2. Further, they appear in pairs across the boundary
with the same value.

To restore flow conservation on f , we can choose paths to
first route flow from nodes with excess to deficit where both
nodes are in V2, and likewise in W2. By our assumption
that the networks are d−local, excess and deficit within V2

or in W2 have distance at most d. Since the capacity of the
non-boundary edges is M , we can route flow until there is
only excess or only deficit contained within V2 and within
W2 with these projection paths.

Also, notice that, we can choose paths to perform re-routing
so excess and deficit are symmetric across the boundary.
Specifically, since excess/deficits appear in pairs before any
re-routing, every time we route any flow to excess to deficit
without crossing the boundary, go to the neighbors of these
two nodes across the boundary and re-route the flow there
to keep the symmetry. From the proof of Theorem 1 (see
Appendix 6.1), we have exf +deff ≤ η(f̂), so the run-time
of re-routing this excess and deficit is at most O(d · η(f̂)).

Then, if V2 contains a node with positive deficit and W2

contains a node with positive excess and if there are any
edges with positive flow going from V2 to W2, one can send
flow on the reverse edge and remove that excess/ deficit with
a projection path of length at most 2d.

We will show any remaining deficit/ excess can be handled
by paths using s and t. First, the max flow on G1 has value
|E1|, since the edges crossing from W1 into V1 form a cut.
On the other hand, for large M and by the existence of
x ∈ V1 ∩ V2 and y ∈W1 ∩W2, there exists feasible flows
with every edge (u, v) with u ∈W1 and v ∈ V1 having flow
1 incoming to V1. Second, our re-routing procedure made
the excess within V2 symmetric across the boundary to the
deficit in W2, so there is either positive excess in V2 and
positive deficit in W2, or vice versa.

We use these two observations. Suppose that after re-routing,
there is deficit inside of V2 and excess outside of it. As a
consequence of our routing, we can assume all edges with
positive flow in E2 are directed from W2 to V2. For every
node u with positive excess in W2, take the excess of u and
send it to s, which is possible from the conditions for being
separable. Similarly, for every node u with positive deficit
inside of V2, find paths from t to u and send deff (u) from t
to u, and this is again possible by the separable condition.
The resulting flow is feasible. Further, there are no s − t
paths since all edges in E2 going into V2 are saturated and
form a cut, so the flow is optimal. So re-routing this flow
using s and t takes time O(|E|(|E1| − |E2|)).
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When after re-routing there is excess inside of V2 and deficit
inside of W2, the proof is similar. The edges with no excess/
deficit incident to them have flow 1 going into V2. Since
the deficit is outside of V2, the boundary edges crossing
from V2 into W2 have flow 1 going out of V2. Send flow
from s to the nodes with positive deficit inside of W2, and
send the excess inside of V2 to t, which is possible by the
conditions for being separable. The resulting flow is feasible,
though perhaps not optimal, as one may need to saturate new
boundary edges. The run-time is still O(|E|(|E2| − |E1|)).

By the definition of d−local, ||E2| − |E1|| ≤ O(d2). There-
fore, the run-time of Algorithm 1 on these locally-changed
instances is at most O(d2 · |E|+ d · η(f̂))).

4. Empirical Results
In this section, we validate the theoretical results in Sections
2 and 3. We consider image segmentation, a core problem in
computer vision that aims at separating an object from the
background in a given image. The problem is re-formulated
as a max-flow/ min-cut optimization problem in a line of
work (Boykov and Jolly, 2001; Boykov and Kolmogorov,
2004; Boykov and Funka-Lea, 2006) and solved with com-
binatorial graph-cut algorithms, including Ford-Fulkerson.

We do not attempt to provide state-of-the-art run-time re-
sults on image segmentation. Our goal is to show that on
real-world networks, warm-starting Ford-Fulkerson leads
to big run-time improvements compared to cold-start Ford-
Fulkerson. We highlight the following:

• For both Edmonds-Karp and Dinic’s implementation
of Ford-Fulkerson, warm-start offers improved running
time compared to starting the algorithm from scratch
(referred to as a cold-start).

• As we increase the number of image pixels (i.e., its
resolution), the size of the constructed graph increases
and the savings in time becomes more significant.

• The feasibility projection step in Algorithm 1 has high
performance. It returns a feasible flow that is only
slightly sub-optimal, and it finds short paths to fix the
excess/deficits in doing so. Both factors contribute to
warm-start being way more efficient than cold-start.

Datasets and data pre-processing We use four differ-
ent image groups from the Pattern Recognition and Image
Processing dataset from the University of Freiburg4, named
BIRDHOUSE, HEAD, SHOE and DOG respectively. The
first three groups are from the dataset Image Sequences5,
in the format of .jpg images, whereas DOG, from Stereo
Ego-Motion Dataset6, is a video which we converted to .jpg.

4https://lmb.informatik.uni-freiburg.de/resources/datasets/
5https://lmb.informatik.uni-freiburg.de/resources/datasets/

sequences.en.html
6https://lmb.informatik.uni-freiburg.de/resources/datasets/

(a) Birdhouse (b) Head

(c) Shoe (d) Dog

Figure 1. Examples of original images in each group.

Each image group contains a sequence of photos featuring
the same object and background. The sequence may feature
the object’s motion relative to the background or changes
in the camera’s shooting angle. Any image is only slightly
different from the previous one in the sequence, and this
could potentially lead to minor differences in segmentation
solutions. This justifies warm-starting with the optimal flow
for the max flow problem found on the previous image.

Using data from a previous instance to warm-start an it-
erative process is one of the most common ways to ac-
tually warm-start algorithms practically. We see our em-
pirical choice of prediction as simple, yet effective, and
also indicative of what practitioners do. Moreover, other
theoretically-focused works have chosen such predictions
(see for instance the paper by Chen et al. (2022a) who use
prior optimal dual values from past data to warm-start their
primal-dual method on current data). The experiments give
empirical evidence that learning flows is reasonable, while
the PAC-learning results give the theoretical evidence, thus
complementing each other.

Table 1. Image groups desciption
Image Group Object, background Original size Cropped size
BIRDHOUSE wood birdhouse, backyard 1280, 720 600, 600

HEAD a person’s head, buildings 1280, 720 600, 600
SHOE a shoe, floor and other toys 1280, 720 600, 600
DOG Bernese Mountain dog, lawn 1920, 1080 500, 500

We take 10 images from each group, cropped them to be
600× 600 pixels with the object included, and gray-scaled
them. Then we resize the images to generate image se-
quences of different sizes. See Table 1 for detailed informa-
tion about the image groups, the featured object/backround,
and the original and cropped sizes of each image. See Fig-
ures 1 and 2 for an image instance from each group.

Graph construction Following the practice in Boykov
and Funka-Lea (2006), we briefly describe how to formulate
image segmentation as a max-flow/min-cut problem and

StereoEgomotion.en.html
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(a) BH (b) Head (c) Shoe (d) Dog

Figure 2. Cropped, gray-scaled images in each group.

how to write the boundary-based objective function. Our
input is an image with pixel set V , along with two sets of
seeds O,B, which are pixels predetermined to be part of
the object or background, respectively (often selected by
human experts), to make the segmentation task easier. Let
Iv denote the intensity (or gray scale) of pixel v. For any
two pixels p, q, separating them in the object/background
segmentation solution induces a penalty of βp,q . If p, q are
neighboring pixels, i.e. p and q are either in the same column
and in adjacent rows or same row and adjacent columns,
then βp,q = C exp(− (Ip−Iq)

2

2σ2 ), where C is a relatively big
constant scalar, otherwise it is 0. Thus βp,q gets bigger when
there is low contrast between neighboring p and q.

For a given solution let J denote the object pixels. The
boundary-based objective function is the summation of the
penalties over all pairs of pixels: maxJ

∑
p∈J,q/∈J βp,q, for

J satisfying O ⊆ J,B ⊆ V \ J . Penalties are only imposed
on the object boundary. The best segmentation minimizes
the total penalty, thus maximizing the contrast between the
object and background across the boundary, while satisfying
the constraints imposed by seeds.

This is equivalent to solving the max-flow/min-cut problem
on the following graph. Let the node set be all the pixels
plus two terminal nodes: the object terminal s (source) and
the background terminal t (sink). We add the following arcs:
(1) from s to every node in O, with a huge capacity M ; (2)
from every node in B to t, again with capacity M ; (3) from
every pair of node p, q ∈ V (including the seeds), both arcs
(p, q) and (q, p) with capacity βp,q. The value M should
ensure that these arcs never appear in the optimal cut. The
flow goes from s to t. For an n× n pixels image, the graph
is sparse with O(n2) nodes and also O(n2) arcs.

Link to theory For an image sequence, the constructed
graphs are a generalization of the setting in Section 3. The
graphs form 2-dimensional grids and share the same network
structure, the only differences being the capacity vectors.
In addition, Section 3 makes other assumptions which also
translate into properties of the images. The 1 or M edge
capacities assumption implies an extreme contrast between
the gray scales of object and background pixels. The d-local
assumption says that from one image to the next, the new
object and background pixels are geographically close, im-
plying only minor changes in the object’s shape and location.
Our image sequences do not strictly satisfy these properties.
However, in all of our experiments the conclusions remain

(a) Image 1 (b) Image 5 (c) Image 10

Figure 3. Seeds on the first, fifth and last images from 120× 120
pixels BIRDHOUSE. Red for object, green for background.

(a) Image 1 (b) Image 5 (c) Image 10

Figure 4. Cuts (red) on the first, fifth and last images from 120×
120 pixels BIRDHOUSE

robust against moderate violations of the theoretical assump-
tions, showing that warm-starts can be beneficial in practice
beyond current theoretical limits.

Detailed experiment settings Each image sequence has
10 images and they share the same set of seeds, so the con-
structed graphs have the same structure. See Figure 3 for
seeds for BIRDHOUSE. Starting with the second image, we
reuse the old max-flow solution on the previous one and
pass the flow to Algorithm 1. During the feasibility projec-
tion, we pick a node and keep diminishing its excess/deficit
by finding a projection path and sending flow down that
path, until excess/deficit is 0. As in Section 3, we prioritize
projection paths excluding s and t, since these modifications
preserve the overall flow value, and we only sending flow
back to s and from t when no other paths exist.

We compare cold- and warm-start for both Edmonds-Karp
and Dinic’s algorithms. Recall that warm-start also needs to
find paths to restore excess/deficit (referred to as projection
paths). We use breadth-fist-search (BFS) to find such projec-
tion paths in our warm-starts for both Edmonds-Karp and
Dinic’s. We use the BFS procedure for our warm-started
Dinic’s instead of the expected subroutine from Dinic’s al-
gorithm because the overhead of building the level graph is
more time consuming than running BFS. This is due to the
projection paths being short.

We use n× n pixel images for n ∈ {30, 60, 120}. Numeri-
cally, the σ in the definition of β·,· is 50, and C is 100. To
make the capacities integral, all βp,q’s are rounded down to
the nearest integer. Notice that βp,q ≤ C by definition. We
let M = C|V |2 to make the term sufficiently large.

All experiments are run on a device with Intel(R) Core(TM)

8



Predictive Flows for Faster Ford-Fulkerson

i7-7600U CPU @ 2.80GHz, with 24G memory. We record
the wall-clock running time for both algorithms. Many
of the image process tools and functions are based on the
Image Segmentation Github project (Jiang, 2017).

Table 2. Average running times of cold-/warm-start Ford Fulkerson
and the percentage of time saved by warm-start, Edmonds-Karp

Image Group 30 × 30 60 × 60 120 × 120
BIRDHOUSE 0.83/0.55, 34.07% 8.48/3.48, 58.98% 109.06/37.31, 65.78%

HEAD 0.65/0.45 31.06% 9.52/4.28, 55.07% 112.66/31.77, 71.80%
SHOE 0.72/0.46, 36.01% 8.81/3.04, 65.47% 111.05/30.44, 72.59%
DOG 0.73/0.41, 42.96% 22.38/6.89, 69.22% 202.99 / 42.04, 79.29%

Table 3. Average running times of cold-/warm-start Ford Fulkerson
and the percentage of time saved by warm-start, Dinic

Image Group 30 × 30 60 × 60 120 × 120
BIRDHOUSE 0.38/0.37, 2.49% 5.81/3.17, 45.43% 82.52/35.37, 57.14%

HEAD 0.36/0.36 0.58% 7.7/4.44, 42.35% 149.12/49.44, 62.88%
SHOE 0.39/0.37, 5.07% 7.01/3.35, 52.24% 140.52/49.33, 64.9%
DOG 0.5/0.41, 10.16% 12.38/4.99, 59.66% 206.85 / 58.98, 71.48%

Results We first show that the boundary-based image seg-
mentation approach generates reasonable cuts. For example,
Figure 4 illustrates cuts from the 120 × 120 BIRDHOUSE
sequence. See Appendix 6.3 for other examples. We then
compare the running time of cold- and warm-start Ford-
Fulkerson. As all algorithms are returning optimal flows,
there are no qualitative aspects of the solutions to measure.
Table 2 and 3 show results in all experiments settings for
Edmonds-Karp and Dinic, rows being image groups and
columns image sizes. Each entry is formatted as “cold-start
time (s) / warm-start time(s), warm-start time savings (%)”.

These results show warm-starting Ford-Fulkerson greatly
improves the efficiency in all settings. Further, both cold-
and warm- start’s running time increases polynomially with
the image width n, but warm-start grows slower, making it a
potentially desirable approach on large scale networks. This
is most obvious on image group DOG using Edmonds-Karp,
where warm-start time is 60% of cold-start time on 30× 30
pixels versus 20% on 120× 120 pixels. These conclusions
hold for both Edmonds-Karp and Dinic, with Dinic being
slightly more efficient on smaller datasets.

Next we examine the execution of cold-/warm-start in more
detail, taking the 120 × 120 BIRDHOUSE sequence for
Edmonds-Karp for example (Table 4). The table gives the
average length of the augmenting paths (‘avg length’) and
the average number of paths found (‘avg #’) over the se-
quence of images. See Appendix 6.3 for complete data.

Table 4. Comparison of projection and augmenting paths in cold-
and warm-start Ford-Fulkerson, the first 5 images from the 120×
120 BIRDHOUSE image sequence

Image # cold-start
aug path #

cold-start
aug path

avg length

warm-start
proj path #

warm-start
proj path

avg length

warm-start
aug path #

warm-start
aug path

avg length
1 2453 67.93 2105 9.39 628 81.48
2 2093 65.22 3393 19.28 0 0
3 2536 74.88 2038 9.71 896 101.731
4 2089 69.09 3335 28.55 0 0
5 1908 68.53 3226 22.97 0 0

Results in Table 4 suggest that the projected feasible flow

is in general only slightly sub-optimal, which is key for
warm-starts efficiency. Max-flow on the previous image
is a good starting point for warm-start with the feasibility
projection algorithm. On average, after rounding down the
previous max-flow to satisfy the new edge capacities, the
total excess/deficit is (1.75± 0.44) % of the real maximum
flow value. Moreover, fixing the excess/deficit results in a
near optimal flow. Indeed, the projection quickly gives a
feasible flow that recovers (96± 6)% of the maximum flow.

Another factor contributing to the efficiency of warm-start
is the projection path-finding subroutine. Recall that both
cold- and warm-start use the same BFS subroutine to find
either an s, t augmenting path or a projection path. The
theory in Section 3 suggests that paths in the projection
step will take less time to find. To show this empirically,
we collected data on the number of augmenting/feasibility
projection paths found and their average lengths for both
cold- and warm-start. Overall, compared with cold-start,
warm-start has shorter projection paths on average, sug-
gesting massive savings in the BFS running time per path.
While we show this for the BIRDHOUSE images in Table
4, this is true on other datasets too, available in Appendix
6.3. This explains the efficiency even if the excess/deficit is
large. This shows that the theoretical expectations raised in
Section 3 are predictive of empirical performance.

5. Conclusion
We show how to warm-start the Ford-Fulkerson algorithm
for computing flows, as well as prove strong theoretical
results and give empirical evidence of good performance of
our algorithm. We further refine our analysis to capture the
gains due to using short projection paths to route excess flow
and show that these scenarios are prevalent in image segmen-
tation applications. Many interesting challenges remain. For
one, there are many known algorithms for computing flows,
and it would be interesting to see if those methods can also
be sped up in a similar fashion. A technical roadblock lies
in handling both under- and over- predictions, particularly
when predictions lead to infeasible flows. More generally,
a network flow problem can be written as a linear program.
Another direction is finding algorithms for solving general
LPs that can be helped by judiciously chosen predictions.
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6. Appendix
6.1. Omitted Proofs

Proof of [Lemma 4] Assume for sake of deriving a contradiction that (without loss of generality) sending flow from some
u ∈ A′

f to s formed flow h, for which there exists a path from A′
f to B′

f with positive capacity in Gh. Let p1 = (u1, . . . , s)
be the path along which flow was sent in Gf , and let p2 = (u2, . . . , v) be the path with positive capacity in Gh. Note that
u1, u2 ∈ A′

f and v ∈ B′
f by the assumptions. Since p2 went from having 0 capacity in Gf to positive capacity in Gh, at

least one edge e = (a, b) of p2 has ⃗e = (b, a) in p1. If there are multiple such edges take e to be the last such edge in p1. Let
p′1 = (u1, . . . , a) be the truncation of p1 at a and let p′2 = (a, . . . , v) be the suffix of p2 that begins at a. Then let p′ be the
concatenation of p′1 and p′2. Note that p′1 and p′2 both have positive capacity in Gf . Thus p′ is a path in Gf with positive
capacity from u to v, which is a contradiction.

Proof of [Theorem 1]

Given a flow f̂ that does not satisfy capacity constraints, Algorithm 1 simply updates the edges E′ ⊆ E that violate capacity
f̂e > ce to f̂e ← ce for e ∈ E′. This can be done in time O(|E′|). Further, rounding down the flow on these edges changes
the value of the flow and the sum of the excess and deficit by at most

∑
e max{f̂e − ce, 0}.

In Section 2.1, we showed that given f̂ that satisfies capacity constraints, Algorithm 1 will find an optimal f∗. Next, we
analyze the run-time of Algorithm 1. Each iteration of the main while loop in Algorithm 1 costs time O(|E|). Further, the
number of iterations in the main while loop in Algorithm 1 is at most exf̂ + deff̂ . Let f be the feasible flow obtained by
Algorithm 1 at the end of the main while loop. The run-time to produce flow f is O(|E|(exf̂ + deff̂ )).

At most |ν(f∗) − ν(f)| iterations of any Ford-Fulkerson procedure are needed to arrive at the optimal flow value ν(f∗)
from f by Proposition 3. Each iteration of Ford-Fulkerson also costs O(|E|).

Therefore, run-time of Algorithm 1 given a prediction which satisfies capacity constraints is at most

O(|E| · (|ν(f)− ν(f∗)|+ exf̂ + deff̂ )).

Combining this with the loss from projecting to satisfy capacity constraints, the full run-time of Algorithm 1 is

O
(
|E| ·

(∑
e

max{f̂e − ce, 0}+ |ν(f)− ν(f∗)|+ exf̂ + deff̂
))
.

We will show all of the terms multiplying |E| in the above can be bounded by O(η(f̂)) (recall this was the statement of
Lemma 7).

Proof of Lemma 7. First, we see that |ν(f)− ν(f∗)| and |ν(f̂)− ν(f∗)| can only differ by however much value was lost
and however much excess and deficit was gained in projecting f̂ to the feasible flow f. Therefore, we can upper bound
|ν(f)− ν(f∗)| by

|ν(f)− ν(f∗)| ≤ |ν(f̂)− ν(f∗)|+
∑
e

max{f̂e − ce, 0}+ exf̂ + deff̂ .

Then, we can further upper bound |ν(f̂)− ν(f∗)| by rewriting the difference between the values of the flows

|ν(f∗)− ν(f̂)| = min
f∗∈F∗

∣∣∣∣ ∑
e=(s,v)

f∗
e −

∑
e=(s,v)

f̂e

∣∣∣∣ ≤ η(f̂).

The next term to bound in terms of the ℓ1 error is
∑

e max{f̂e − ce, 0}, though it is straight forward to see∑
e

max{f̂e − ce, 0} ≤ min
f∗∈F∗

∑
e

max{f̂e − f∗
e , 0} ≤ η(f̂).

Lastly, we see that the excess/ deficit of any node v ∈ V \ {s, t} can be charged to the difference between f̂e and f∗
e for e

adjacent to v, as any f∗ ∈ F∗ has excess/ deficit 0 on all non-source and sink nodes. Therefore, exf̂ + deff̂ ≤ η(f̂).
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The justification that the worst-case run-time of Algorithm 1 is O(T ), for O(T ) the worst-case run-time of the chosen
Ford-Fulkerson implementation, is in Section 2.

6.2. PAC-Learnability

Let c1, . . . , cs from D be the samples, and F be the set of integral flows on G satisfying the capacities in c. In what follows,
let f∗(ci) be the uniquely associated optimal flow on the sample ci ∼ D (recall Assumption 8).

Let f̂ denote a predicted flow. When our goal is to warm-start Ford-Fulkerson, we choose the predicted flow to be that
in F which minimizes the empirical risk f̂ = argminf∈F

1
s

∑s
j=1 ||f̂ − f∗(cj)||1. That choice corresponds to the flow

minimizing the run-time given s samples, as shown in Lemma 11.

Lemma 11. One can find a flow f̂ ∈ F minimizing 1
s

∑s
j=1 ||f̂ − f∗(cj)||1 from independent samples c1, . . . , cs ∼ D in

polynomial time by taking f̂e = median(f∗(c1)e, . . . , f
∗(cs)e) for all e ∈ E.

Proof. We would like to find f̂ ∈ F that minimizes 1
s

∑s
j=1 ||f̂ − f∗(cj)||1. Since we do not require flow conserva-

tion, the minimization can occur over each edge independently, where f̂e will be in [0, ce], i.e. it suffices to minimize
1
s

∑s
j=1 |f̂e − f∗(cj)e| for each e ∈ E. The function 1

s

∑s
j=1 |f̂e − f∗(cj)e| is continuous and piece-wise linear in

f̂e, where the slope changes at the points {f∗(cj)e}j . It is well-known that the minimum of this function in [0, ce] is
median(f∗(c1)e, . . . , f

∗(cs)e).

In the proof of Theorem 9, we will use some well-known results regarding the pseudo-dimension of a class of functions.

The VC dimension is a quantity that captures the complexity of a family of binary functions, and the pseudo-dimension is
the analog of this for real-valued functions Specifically, the pseudo-dimension of a family of real-valued functionsH is the
largest sized subset shattered byH. A subset S = {x1, . . . , xs} of X is shattered byH if there exists real-valued witnesses
r1, · · · , rs such that for each of the 2s subsets T of S, there exists a function h ∈ H with h(xi) ≤ ri if and only if i ∈ T .

The following theorem relates the convergence of the sample mean of some h ∈ H to its expectation, and this relation
depends on the pseudo-dimension.

Theorem 12 (Uniform convergence). Let H be a class of functions with domain X and range in [0, H]. Let dH be the
pseudo-dimension ofH. For every distribution D over X , every ϵ > 0, and every δ ∈ (0, 1], if

s ≥ c(H/ϵ)2(dH + ln(1/δ))

for some constant c, then with prob at least 1− δ over s samples x1 . . . , xs ∈ D,∣∣∣∣∣
(
1

s

s∑
i=1

h(xi)

)
− Ex∼D[h(x)]

∣∣∣∣∣ < ϵ.

Equipped with Theorem 12, we are ready to prove our PAC-learning result. We note that this proof structure exactly follows
that in (Dinitz et al., 2021).

Theorem 13. [Restates Theorem 9] Let c1, . . . , cs be sampled i.i.d. fromD and let f̂ = argminf∈F0

1
s

∑s
j=1 ||f−f∗(cj)||1.

For
s = Ω((max

e
c2e ·m2)(m logm+ log(1/p)))

and f̃ = argminf∈F0
Eci∼D||f − f∗(ci)||1, then with probability at least 1− p, f̂ satisfies

Eci∼D||f̂ − f∗(ci)||1 ≤ Eci∼D||f̃ − f∗(ci)||1 +O(1).

Proof. We will construct a class of functions that contains the loss functions of the flow f given capacity constraints ci.
Then, we will apply Theorem 12 to this class of functions.
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For every integral flow f ∈ R|E| that satisfies the capacity vector ci, let the function gf (c
i) = ||f∗(ci)− f ||1 be the loss

function of f on ci. Then letH = {gf | f ∈ Rm} be the family of all of these loss functions.

We saw in Lemma 11 how to efficiently compute the empirical risk minimizer. Also, the upper bound of the range of the
loss functions, i.e. H in the statement of Theorem 12, is at most m ·maxe ce. To prove our lemma, it remains to bound the
pseudo-dimension ofH.

We will upper bound the pseudo-dimension of H by showing it is no more than the pseudo-dimension of another class
of functions, Hm, whose pseudo-dimension is already known. Let Hm = {hy | y ∈ Rm} for hy(x) = ||y − x||1. The
following result appears as Theorem 19 in (Dinitz et al., 2021), and the reader may refer to that paper for its proof.

Lemma 14. The pseudo-dimension ofHm is at most O(m logm).

Now all that remains is to prove the following lemma, relating the pseudo-dimensions of the two classes.

Lemma 15. If the pseudo-dimension ofHm is at most d, then the pseudo-dimension ofH is at most d.

Proof. Let S = {c1, . . . , cd} be a set that is shattered byH. Let r1, . . . , rd ∈ R be the witnesses such that for all S′ ⊆ [d],
there exists some gfS′ ∈ H with gfS′ (cj) = ||f∗(cj)− fS′ ||1 ≤ rj if and only if j ∈ S′.

We will construct a set S̃ of size d from S that is shattered byHm. Let S̃ = {f∗(c1), . . . , f∗(cd)} and fix some S′ ⊆ [d].
Then hfS′ (f∗(cj)) = ||fS′ − f∗(cj)||1 ≤ rj if and only if j ∈ S′.

Plugging H ≤ m ·maxe ce and dH ≤ O(m logm) into Theorem 12, we see that it suffices to take

s ≥ Ω((max
e

ce ·m/ϵ)2(m logm+ ln(1/δ))).

6.3. More Experimental Results

In this section, we give a more detailed description of the experiment settings and provide more complete collected data and
results.

More on choice of seeds and cuts Recall that on the 10 images from the same sequence, the seed pixels are always
fixed. We note here the choice of seeds (number of seeds and their locations) affects which min-cut solution is found a lot.
However, as long as the seeds give a reasonable solution that is close to the real object/background boundary, the conclusions
in the comparison between cold- and warm-start remain robust against a change of seeds.

In Section 4, we showed seeds and optimal cuts on images 1, 5, and 10 of the 120× 120 pixel BIRDHOUSE sequence in
Figures 3 and 4. Here we show, in addition, our seeds and resulting cuts on images 1, 5, and 10 of the other 120 × 120
sequences. Those of HEAD are in Figure 5, those of SHOE in Figure 6, and those of DOG in Figure 7.

(a) Image 1, seeds (b) Image 5, seeds (c) Image 10, seeds (d) Image 1, cut (e) Image 5, cut (f) Image 10, cut

Figure 5. Seeds and resulting cuts on the first, fifth and last images from 120× 120 pixels HEAD. Red seeds for object, green seeds for
background, red line for cut.

When we select a seed, we draw a two-dimensional ball around the target seed and let every pixel in this ball be a seed
as well. We found this practice to work better than simply choosing individual pixels as seeds. When we switch from
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(a) Image 1, seeds (b) Image 5, seeds (c) Image 10, seeds (d) Image 1, cut (e) Image 5, cut (f) Image 10, cut

Figure 6. Seeds and resulting cuts on the first, fifth and last images from 120× 120 pixels SHOE. Red seeds for object, green seeds for
background, red line for cut.

(a) Image 1, seeds (b) Image 5, seeds (c) Image 10, seeds (d) Image 1, cut (e) Image 5, cut (f) Image 10, cut

Figure 7. Seeds and resulting cuts on the first, fifth and last images from 120× 120 pixels DOG. Red seeds for object, green seeds for
background, red line for cut.

low-resolution (30× 30) to high-resolution (120× 120) images, we rescale the radius of this ball proportional to the number
of pixels on each side. On the 30× 30, 60× 60, 120× 120 pixel images, the ball’s radius is 1, 2 and 4 pixels, respectively.
In other words, if we stretch/compress the images of different resolution to be the same size, the ball will roughly have
the same area geometrically. We also found this to be more effective than fixing the pixel radius, despite the change in
resolution.

(a) 30× 30 (b) 60× 60 (c) 120× 120

Figure 8. Area that each seed covers on the same image with different resolutions.

Note that although the location of the seeds remains unchanged throughout an image sequence, we may still need to provide
more seeds when we switch from low- to high-resolution images. Intuitively, blurring the image lessens the minor contrast
of pixels within the object and makes the geometric shape easier to capture.

The seeds and min-cut results on the 30× 30 and 60× 60 sequences can be found in the code directory uploaded in the
supplementary folder.

More on the warm-start magic In the main body we gave evidence—both theoretically and empirically—that the savings
in the run-time of warm-start is mostly due to:

• The algorithm’s ability to use short projection paths to re-route excess flow to nodes with deficit flow, thus projecting
the predicted flow to a feasible one quickly.
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• An only slightly sub-optimal flow after the feasibility projection, so that warm-start takes fewer augmenting paths to
reach an optimal flow.

Here we provide more results in support of these two claims.

To show the level of total excess/deficit (whichever one is larger) and the flow value after the feasibility projection step, we
show two ratios: total excess/deificit over max-flow (Table 5), and feasible flow value over max-flow (Table 6). One can
see that typically the total excess/deficit is not negligible. In fact they are quite high and if the algorithm does not resolve
excesses/deficits in the right way (such as sending all excess to the source) it could cause the flow value to diminish a lot.
Our feasibility projection makes good decisions about using projection paths to make up for excess/deficit, so that it outputs
a feasible flow with almost optimal flow value.

Table 5. Average ratio of total excess/deficit over max-flow value in warm-start
Image Group 30 × 30 60 × 60 90 × 90
BIRDHOUSE 1.06 ± 0.22 1.60 ± 0.21 1.75 ± 0.44

HEAD 0.49 ± 0.12 0.6 ± 0.12 0.74 ± 0.1
SHOE 0.49 ± 0.13 0.66 ± 0.08 0.95 ± 0.14
DOG 0.55 ± 0.07 0.8 ± 0.07 1.08 ± 0.19

Table 6. Average ratio of flow value after feasibility projection over max-flow value in warm-start
Image Group 30 × 30 60 × 60 90 × 90
BIRDHOUSE 0.94 ± 0.09 0.98 ± 0.03 0.96 ± 0.06

HEAD 0.98 ± 0.03 0.98 ± 0.03 0.99 ± 0.01
SHOE 0.98 ± 0.02 0.98 ± 0.03 0.98 ± 0.02
DOG 0.97 ± 0.04 0.97 ± 0.03 0.98 ± 0.03

To show that the conclusion of projection paths being short broadly holds for all image groups, we give the average length
of the augmenting and projection paths (‘avg length’) and the number of paths found (‘aug path #’ and ‘proj path #’) over
the first 5 images in the sequence for the 120× 120 HEAD sequence in Table 7, the 120× 120 SHOE sequence in Table 8,
and the 120× 120 DOG sequence in Table 9. Note the analogous table for the 120× 120 BIRDHOUSE sequence (Table 4) is
in Section 4.

Table 7. Comparison of projection and augmenting paths in cold- and warm-start Ford-Fulkerson, the first 5 images from the 120× 120
HEAD image sequence

Image #
cold-start
aug path #

cold-start
aug path

avg length

warm-start
proj path #

warm-start
proj path

avg length

warm-start
aug path #

warm-start
aug path

avg length
1 2714 82.65 2573 15.93 221 80.42
2 2687 82.74 2512 20.40 217 135.68
3 2475 76.63 2667 19.78 0 0
4 2379 76.44 2140 17.00 0 0
5 2349 75.66 2260 19.97 112 138.14

Further, we show the equivalence of these tables for the other two image sizes/resolutions, 30× 30 and 60× 60, for image
groups HEAD (Table 10 and 11) and SHOE (Table 12 and 13). For these two groups, sequences of all three sizes share the
same location of seeds. One can see that, the average length of augmenting path in cold-start Ford-Fulkerson grows roughly
proportional to the width of the image. The average length of projection path during the warm-start feasibility projection
also grows as the width of the image grows, but slightly slower than the former. This could potentially cause warm-start to
be more advantageous on high-resolution images.

The omitted data tables and other experiment results can be found in the uploaded program directory (see the README.md
file for instructions).
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Table 8. Comparison of projection and augmenting paths in cold- and warm-start Ford-Fulkerson, the first 5 images from the 120× 120
SHOE image sequence

Image #
cold-start
aug path #

cold-start
aug path

avg length

warm-start
proj path #

warm-start
proj path

avg length

warm-start
aug path #

warm-start
aug path

avg length
1 1948 89.23 2252 22.70 0 0
2 2081 91.67 1992 16.54 112 148.41
3 2039 93.88 1936 14.91 177 142.51
4 2110 101.97 2525 35.04 0 0
5 2016 93.68 2375 18.60 0 0

Table 9. Comparison of projection and augmenting paths in cold- and warm-start Ford-Fulkerson, the first 5 images from the 120× 120
DOG image sequence

Image #
cold-start
aug path #

cold-start
aug path

avg length

warm-start
proj path #

warm-start
proj path

avg length

warm-start
aug path #

warm-start
aug path

avg length
1 3314 63.04 3684 12.51 0 0
2 3200 65.56 4611 21.69 0 0
3 3138 63.53 3515 12.30 0 0
4 3259 66.61 3270 10.74 444 87.08
5 3120 64.43 3932 12.63 0 0

Table 10. Comparison of projection and augmenting paths in cold- and warm-start Ford-Fulkerson, the first 5 images from the 30× 30
HEAD image sequence

Image #
cold-start
aug path #

cold-start
aug path

avg length

warm-start
proj path #

warm-start
proj path

avg length

warm-start
aug path #

warm-start
aug path

avg length
1 267 25.16 226 8.61 61 40.72
2 244 23.26 254 11.63 3 44.33
3 253 22.11 236 12.05 0 0
4 248 21.45 238 11.17 0 0
5 250 22.98 252 12.24 10 43.30

Table 11. Comparison of projection and augmenting paths in cold- and warm-start Ford-Fulkerson, the first 5 images from the 60× 60
HEAD image sequence

Image #
cold-start
aug path #

cold-start
aug path

avg length

warm-start
proj path #

warm-start
proj path

avg length

warm-start
aug path #

warm-start
aug path

avg length
1 789 46.52 674 10.36 164 56.57
2 852 44.17 763 9.69 99 62.59
3 752 41.09 866 14.71 0 0
4 782 40.19 567 7.52 169 48.0
5 777 42.62 931 16.67 0 0
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Table 12. Comparison of projection and augmenting paths in cold- and warm-start Ford-Fulkerson, the first 5 images from the 30× 30
SHOE image sequence

Image #
cold-start
aug path #

cold-start
aug path

avg length

warm-start
proj path #

warm-start
proj path

avg length

warm-start
aug path #

warm-start
aug path

avg length
1 165 20.85 192 9.59 0 0
2 172 20.72 164 7.53 24 27.21
3 175 21.91 195 12.42 2 34.5
4 201 22.51 164 12.34 15 29.93
5 162 21.21 215 9.22 0 0

Table 13. Comparison of projection and augmenting paths in cold- and warm-start Ford-Fulkerson, the first 5 images from the 60× 60
SHOE image sequence

Image #
cold-start
aug path #

cold-start
aug path

avg length

warm-start
proj path #

warm-start
proj path

avg length

warm-start
aug path #

warm-start
aug path

avg length
1 585 41.22 580 13.40 31 58.65
2 508 40.21 562 14.06 0 0
3 609 42.29 469 7.13 147 50.65
4 646 43.86 675 14.13 17 58.24
5 595 44.64 683 14.82 0 0

18


