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Abstract
Despite the success of physics-informed neural
networks (PINNs) in approximating partial differ-
ential equations (PDEs), PINNs can sometimes
fail to converge to the correct solution in problems
involving complicated PDEs. This is reflected in
several recent studies on characterizing the “fail-
ure modes” of PINNs, although a thorough un-
derstanding of the connection between PINN fail-
ure modes and sampling strategies is missing. In
this paper, we provide a novel perspective of fail-
ure modes of PINNs by hypothesizing that train-
ing PINNs relies on successful “propagation” of
solution from initial and/or boundary condition
points to interior points. We show that PINNs
with poor sampling strategies can get stuck at
trivial solutions if there are propagation failures,
characterized by highly imbalanced PDE residual
fields. To mitigate propagation failures, we pro-
pose a novel Retain-Resample-Release sampling
(R3) algorithm that can incrementally accumu-
late collocation points in regions of high PDE
residuals with little to no computational overhead.
We provide an extension of R3 sampling to re-
spect the principle of causality while solving time-
dependent PDEs. We theoretically analyze the
behavior of R3 sampling and empirically demon-
strate its efficacy and efficiency in comparison
with baselines on a variety of PDE problems.

1. Introduction
Our understanding of physical systems in a number of do-
mains largely relies on our ability to solve partial differential
equations (PDEs), and hence, enhancing PDE solution accu-
racy and computational speed can yield substantial benefits.
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Physics-informed neural networks (PINNs) (Raissi et al.,
2019) represent a seminal line of work in deep learning for
solving PDEs. The basic idea of PINNs is to train a neural
network to minimize errors w.r.t. the PDE solution provided
at initial/boundary points of a spatio-temporal domain, as
well as the PDE residuals observed over a sample of interior
points, referred to as collocation points. Recent success
with PINNs has shown significant promise across a broad
range of scientific applications, from fluid dynamics (Rao
et al., 2020; Zhu et al., 2021), medical imaging (Sahli Costa-
bal et al., 2020; van Herten et al., 2022), material science
(Shao et al., 2020; Lin et al., 2022), geophysics (Yang & Ma,
2021; Voytan & Sen, 2020) and climate modeling (Lutjens
et al., 2021). Despite the success of PINNs, it is known that
PINNs sometimes fail to converge to the correct solution
in problems involving complicated PDEs, as reflected in
several recent studies on characterizing the “failure modes”
of PINNs (Wang et al., 2021; 2022c; Krishnapriyan et al.,
2021). Many of these failure modes are related to the suscep-
tibility of PINNs in getting stuck at trivial solutions acting
as poor local minima, due to the unique optimization chal-
lenges of PINNs. In particular, training PINNs is different
from conventional deep learning problems as we only have
access to the correct solution on the initial and/or boundary
points, while for all interior points, we can only compute
PDE residuals. Also, minimizing PDE residuals does not
guarantee convergence to a correct solution since there are
many trivial solutions of commonly observed PDEs that
show 0 residuals. While previous studies have mainly fo-
cused on modifying network architectures or balancing loss
functions during PINN training, the effect of sampling collo-
cation points on avoiding failure modes of PINNs has been
largely overlooked. Although some previous approaches
have explored the effect of sampling strategies on PINN
training (Wang et al., 2022a; Lu et al., 2021), they either
suffer from large computation costs or fail to converge to
correct solutions, empirically demonstrated in our results.

In this work, we present a novel perspective of failure modes
of PINNs by postulating the propagation hypothesis: “in
order for PINNs to avoid converging to trivial solutions at in-
terior points, the correct solution must be propagated from
the initial/boundary points to the interior points.” When
this propagation is hindered, PINNs can get stuck at trivial
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solutions that are difficult to escape, referred to as the prop-
agation failure mode. This hypothesis is motivated from
a similar behavior observed in numerical methods where
the solution of the PDE at initial/boundary points are itera-
tively propagated to interior points using finite differencing
schemes (LeVeque, 2007).

We show that propagation failures in PINNs are character-
ized by highly imbalanced PDE residual fields, making it
difficult to adequately represent the high residual regions in
the set of collocation points at every iteration. This moti-
vates us to develop sampling strategies that dynamically fo-
cus on collocation points from high residual regions during
PINN training. This is related to the idea of local-adaptive
mesh refinement used in FEM (Zienkiewicz et al., 2005) to
refine the computational mesh in regions with high errors.

We propose a novel Retain-Resample-Release sampling (R3)
strategy that can accumulate collocation points in high PDE
residual regions, thereby dynamically emphasizing on these
skewed regions as we progress in training iterations. We
theoretically show that R3 retains points from high resid-
ual regions if they persist over iterations (Retain Property)
and releases points if they have been resolved by PINN
training (Release Property), while maintaining non-zero
representation of points resampled from a uniform distribu-
tion over the entire domain (Resample Property). We also
provide a causal extension of our proposed R3 sampling
algorithm (Causal R3) that can explicitly encode the strong
inductive bias of causality in propagating the solution from
initial points to interior points over training iterations, when
solving time-dependent PDEs. We empirically evaluate
the performance of R3 in multiple benchmark PDE prob-
lems. We show the R3 and Causal R3 are able to mitigate
propagation failure modes and converge to the correct solu-
tion with significantly smaller sample sizes as compared to
baseline methods, while incurring negligible computational
overhead.

The novel contributions of our work are as follows: (1) We
provide a novel perspective for characterizing failure modes
in PINNs by postulating the “Propagation Hypothesis” and
empirically demonstrate how regions with high-PDE residu-
als lead to propagation failures in PINNs. (2) We propose a
novel R3 sampling algorithm to adaptively sample colloca-
tion points in PINNs that shows superior prediction perfor-
mance empirically with little to no computational overhead
compared to existing methods. (3) We theoretically prove
the three key properties of R3 sampling: Retain, Resample,
and Release properties.

2. Background and Related Work
Physics-Informed Neural Networks (PINNs). The basic
formulation of PINN (Raissi et al., 2017) is to use a neural
network fθ(x, t) to infer the forward solution u of a non-

linear PDE:

ut +Nx[u] = 0, x ∈ X , t ∈ [0, T ];

u(x, 0) = h(x), x ∈ X ; (1)
u(x, t) = g(x, t), t ∈ [0, T ], x ∈ ∂X

where x and t are the space and time coordinates, respec-
tively, X is the spatial domain, ∂X is the boundary of spa-
tial domain, T is the time horizon, and Nx is the non-linear
differential operator. The PDE is enforced on the entire
spatio-temporal domain (Ω = X × [0, T ]) on a set of collo-
cation points {xr

i = (xi
r, t

i
r)}Nr

i=1 by computing the PDE
residual (R(x, t)) and the corresponding PDE Loss (Lr) as
follows:

Rθ(x, t) =
∂

∂t
fθ(x, t)−Nx[fθ(x, t)] (2)

Lr(θ) = Exr∼U(Ω)[Rθ(xr)
2] ≈ 1

Nr

Nr∑
i=1

[Rθ(x
i
r, t

i
r)]

2

(3)
where Lr is the expectation of the squared PDE Residu-
als over collocation points sampled from a uniform distri-
bution U . PINNs approximate the solution of the PDE
by optimizing the following overall loss function L =
λrLr(θ) + λbcLbc(θ) + λicLic(θ), where Lic and Lbc are
the mean squared loss on the initial and boundary data re-
spectively, and λr, λic, λbc are hyperparameters that control
the interplay between the different loss terms. Although
PINNs can be applied to inverse problems, i.e., to estimate
PDE parameters from observations, we only focus on for-
ward problems in this paper.

Prior Work on Characterizing Failure Modes of PINNs.
Despite the popularity of PINNs in approximating PDEs,
several works have emphasized the presence of failure
modes while training PINNs. One early work (Wang et al.,
2021) demonstrated that imbalance in the gradients of mul-
tiple loss terms could lead to poor convergence of PINNs,
motivating the development of Adaptive PINNs. Another
recent development (Wang et al., 2022c) made use of the
Neural Tangent Kernel (NTK) theory to indicate that the
different convergence rates of the loss terms can lead to
training instabilities. Large values of PDE coefficients have
also been connected to possible failure modes in PINNs
(Krishnapriyan et al., 2021). In another line of work, the ten-
dency of PINNs to get stuck at trivial solutions due to poor
initializations has been demonstrated theoretically in (Wong
et al., 2022) and empirically in (Rohrhofer et al., 2022). In
all these works, the effect of sampling collocation points on
PINN failure modes has largely been overlooked. Although
some recent works have explored strategies to grow the rep-
resentation of collocation points with high residuals, either
by modifying the sampling procedure (Wu et al., 2023; Lu
et al., 2021; Nabian et al., 2021) or choosing higher-order
Lp norms of PDE loss (Wang et al., 2022a). In another
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Figure 1. PINN solutions for a simple ODE: uxx + k2u = 0
(k = 20) with the analytical solution, u = A sin(kx)+B cos(kx).
The boundary condition was set to u(−π/2) = 0, and the PINN
is trained with 1000 equispaced collocation points. We can see
smooth propagation of the correct solution from the boundary
point at x = 0 to interior points (x > 0) as we increase training
iterations.

recent line of work on Causal PINNs (Wang et al., 2022b),
it was shown that traditional approaches for training PINNs
can violate the principle of causality for time-dependent
PDEs. Hence, they proposed an explicit way of incorporat-
ing the causal structure in the training procedure. Further,
a recent study introduces the concept of “fixed points” u∗

(Rohrhofer et al., 2023) which were defined as the roots
of the non-linear PDE function, i.e.,R[u∗] = 0 (trivial so-
lution u = 0 is a special case of fixed point). PINNs are
attracted towards these “fixed points” during the initial train-
ing iterations, and can get trapped in local minimas, leading
to premature convergence.

3. Propagation Hypothesis
What is Unique About Training PINNs? Training PINNs
presents fundamentally different optimization challenges
than those encountered in conventional deep learning prob-
lems. In a conventional supervised learning problem, the
correct solution for every training sample is known and the
training samples are considered representative of the test
samples such that the trained model can easily be extrap-
olated on closely situated test samples. However, in the
context of PINNs, we only have access to the “correct” solu-
tion of the PDE on the initial and/or boundary points, while
not having any labels for the interior points in the spatio-
temporal domain Ω. Note that the interior points in Ω can
be quite far away from the initial/boundary points, making
extrapolation difficult. Further, training PINNs involves min-
imizing the PDE residuals over a set of collocation points
sampled from Ω. However, minimizing PDE residuals alone
is not sufficient to ensure convergence to the correct solu-
tion, since there may exist many trivial solutions of a PDE
showing very small residuals. For example, u(x, t) = 0
is a trivial solution for any homogeneous PDE, which a
neural network is likely to get stuck at in the absence of
correct solution at initial/boundary points. Another unique
aspect of training PINNs is that minimizing PDE residuals

requires computing the gradients of the output w.r.t. (x, t)
(e.g., ux and ut). Hence, the solution at a collocation point
is affected by the solutions at nearby points leading to local
propagation of solutions.

Propagation Hypothesis. In light of the unique properties
of PINNs, we postulate that in order for PINNs to converge
to the “correct” solution, the correct solution must propagate
from the initial and/or boundary points to the interior points
as we progress in training iterations. We draw inspiration
for this hypothesis from a similar behavior observed in nu-
merical methods for solving PDEs, where the solution of the
PDE at initial/boundary points are iteratively propagated to
interior points using finite differencing schemes (LeVeque,
2007). Figure 1 demonstrates the propagation hypothesis of
PINNs for a simple ordinary differential equation (ODE).

Propagation Failure: Why It Happens and How to Diag-
nose? As a corollary of the propagation hypothesis, PINNs
can fail to converge to the correct solution if the solution
at initial/boundary points is unable to propagate to interior
points during the training process. We call this phenomenon
the “propagation failure” mode of PINNs. This is likely to
happen if some collocation points start converging to trivial
solutions before the correct solution from initial/boundary
points is able to reach them. Such collocation points would
also propagate their trivial solutions to nearby interior points,
leading to a cascading effect in the learning of trivial so-
lutions over large regions of Ω and further hindering the
propagation of the correct solution from initial/boundary
points.

To diagnose propagation failures, note that the PDE residu-
als are expected to be low over both types of regions: regions
that have converged to the correct solution and regions that
have converged to trivial solutions. However, the boundaries
of these two types of regions would show a sharp discon-
tinuity in solutions, leading to very high PDE residuals in
very narrow regions. A similar phenomenon is observed in
numerical methods where sharp high-error regions disrupt
the evolution of the PDE solution at surrounding regions,
leading to cascading of errors. We use the imbalance of high
PDE residual regions as a diagnosis tool for characterizing
propagation failure modes in PINNs.

To demonstrate propagation failure, let us consider an ex-
ample PDE for the convection equation: ∂u

∂t + β ∂u
∂x =

0, u(x, 0) = h(x), where β is the convection coefficient
and h(x) is the initial condition (see Appendix G for de-
tails about this PDE). In a previous work (Krishnapriyan
et al., 2021), it has been shown that PINNs fail to converge
for this PDE for β > 10. We experiment with two cases,
β = 10 and β = 50, in Figure 2. We can see that the PDE
loss steadily decreases with training iterations for both these
cases, but the relative error w.r.t. the ground-truth solution
only decreases for β = 10, while for β = 50, it remains
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flat. This suggests that for β = 50, PINN is likely getting
stuck at a trivial solution that shows low PDE residuals but
high errors. To diagnose this failure mode, we plot two
additional metrics in Figure 2 to measure the imbalance
in high PDE residual regions: Fisher-Pearson’s coefficient
of Skewness (Kokoska & Zwillinger, 2000) and Fisher’s
Kurtosis (Kokoska & Zwillinger, 2000) (see Appendix H
for computation details). High Skewness indicates lack of
symmetry in the distribution of PDE residuals while high
Kurtosis indicates the presence of a heavy-tail. For β = 10,
we can see that both Skewness and Kurtosis are relatively
small across all iterations, indicating absence of imbalance
in the residual field. However, for β = 50, both these
metrics shoot up significantly as the training progresses,
which indicates the formation of very high residuals in very
narrow regions—a characteristic feature of the propagation
failure mode. Figure 3 confirms that this indeed is the case
by visualizing the PINN solution and PDE residual maps.
Specifically, we observe that for β = 50, the PDE residual
is very high at the bottom left corner, which overlaps with
the region where we observe the hindrance in propagation
of the PDE solution. We see similar trends of propagation
failure for other values of β > 10 (see Appendix J.1). We
also illustrate in Appendix J.2 that regions with high error
rates contribute to the propagation failures in PINNs for an-
other complex PDE, specifically the Kuramoto-Sivashinksy
Equation (chaotic regime).
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Figure 2. Demonstration of propagation failure using skewness and
kurtosis while solving the convection equation with β = 50.

Remark 3.1. “Propagation failures” in PINNs are charac-
terized by skewed regions with very high residuals acting as
“barriers” in the flow of information. Algorithms that can se-
lectively focus on high residual regions during training can
potentially break such barriers and thus offer some respite.

Prior Works Focussing on High Residual Regions. Re-
cently, a number of algorithms have been proposed to in-
crease the importance of collocation points from high resid-
ual regions in PINN training, which can be broadly grouped
into two categories. The first category includes methods that
alter the sampling strategy such that a point xr is picked
up as a collocation point with probability proportional to
its residual, i.e., p(xr) ∝ |R(xr)|k, where k ≥ 1. This
includes residual-based adaptive refinement (RAR) methods
(Lu et al., 2021) and its variants (Wu et al., 2023; Nabian
et al., 2021), where a dense set of collocation points Pdense

is maintained to approximate the continuous residual field
R(x), and points with high residuals are regularly added
from Pdense to the set of collocation points every K itera-
tions according to a sampling function.

A second line of work was recently proposed in (Wang
et al., 2022a), where higher-order Lp norms of the PDE
loss (e.g., L∞) were advocated to be used in the training
of PINNs in contrast to the standard practice of using L2

norms, to ensure stability of learned solutions in control
problems involving high-dimensional PDEs. Note that by
using higher-order Lp norms, we are effectively increasing
the importance of collocation points from high residual
regions in the PDE loss, thereby having a similar effect as
increasing their representation in the sample of collocation
points (see Proposition A.1 for more details).

Limitations of Prior Work. There are two main challenges
faced by the prior work described above that limit their ef-
fectiveness in mitigating propagation failures in PINNs.
(1) High computational complexity: Sampling methods
such as RAR and its variants require using a dense set of
collocation points Pdense (typically with 100k ∼ 1M points
spread uniformly across the entire domain) to locate high
residual regions, such that points from high residual regions
can be added to the training set every K iterations. This
increases the computational cost in two ways. First, com-
puting the PDE residuals on the entire dense set is very
expensive. Second, the size of the training set keeps grow-
ing every K iterations, further increasing the training costs
at later iterations. See Appendix F for a detailed analysis of
the computational complexity of RAR based methods.
(2) Difficulty selecting ideal values of k or p: While in-
creasing the value of k in sampling-based methods and p
in Lp norm-based methods influences a greater skew in the
sample set towards points with higher residuals, the opti-
mal values of k or p are generally unknown for an arbitrary
PDE. Additionally, choosing L∞ loss (or equivalently, only
sampling collocation points with highest residuals) may not
ideal for the training dynamics of PINNs, as it can lead to
oscillatory behavior between different peaks of the PDE
residual landscape, while forgetting to retain the solution
over other regions. We empirically demonstrate in Section 5,
both sampling-based methods such as RAR and its variants
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Figure 3. Demonstration of the Exact PDE solution, the predicted PDE solution, and the PDE Residual Field for the convection equation
with β = 10 (first three figures) and β = 50 (last three figures) respectively.

as well as L∞ PDE loss-based methods suffer from poor per-
formance in converging to the correct solution for complex
PDE problems due to the aforementioned limitations.

4. Proposed R3 Sampling Algorithm
We propose a novel “Retain-Resample-Release” (R3) Sam-
pling algorithm to overcome the limitations in prior works
while effectively prioritizing the high residual regions dur-
ing training to mitigate propagation failures. This algorithm
has three key properties which are defined as follows:
(1) Retain Property: To break propagation barriers, R3 fo-
cus on retaining points from high residual regions such that
the set of collocation points starts accumulating in these
regions until the PINN training process eventually resolves
them. This is similar to starting from L2-norm and dy-
namically increasing the order of Lp norm if high residual
regions persist over iterations, in contrast to using a fixed
value of p as is done in prior works.
(2) Resample Property: At every iteration, R3 ensures that
the set of collocation points contains non-zero support of
points resampled from a uniform distribution over the entire
domain Ω. This is done so that the collocation points do not
collapse solely to high residual regions, which is one of the
limitations of using L∞ loss.
(3) Release Property: Upon sufficient minimization of a
high residual region through PINN training, collocation
points that were once accumulated from the region are re-
leased, such that R3 can focus on minimizing other high
residual regions in later iterations. Note that if the retained
points are not released, the set of collocation points would
keep growing, thus increasing the computational costs and
biasing the sampling to these regions even at later iterations
(which is one of the limitations of RAR-based methods).

Along with satisfying the above properties, the R3 algorithm
also incurs little to no computational overhead in sampling
collocation points from high residual regions, in contrast to
prior works. Specifically, we are able to add points from
high residual regions without maintaining a dense set of col-
location points, Pdense, and by only observing the residuals
over a small set of Nr points at every iteration.

Algorithm 1 shows the pseudo-code of our proposed R3

sampling strategy. At iteration 0, we start with an initial
population P0 of Nr points sampled from a uniform dis-
tribution. At iteration i, in order to update the population
to the next iteration, we first construct the “retained pop-
ulation” Pr

i comprising of points from Pi falling in high
residual regions. Specifically, we define the “residual func-
tion” F(xr) for every collocation point xr as the absolute
value of the PDE residual of xr, i.e., F(xr) = |R(xr)|.
We compute τi as the expected value of residual function
over all points in Pi. Points in Pi with residual function
values greater than τi are then considered to be part of the
retained population Pr

i , i.e., Pr
i ← {xj

r : F(xj
r) > τi}.

The remainder of collocation points in Pi with F(xj
r) ≤ τi

are dropped and replaced with points re-sampled from a
uniform distribution, thus constructing the “re-sampled pop-
ulation” Ps

i ← {xr
j : xr

j ∼ U(Ω)}. The retained and
re-sampled population are then merged to generate the pop-
ulation for the next iteration, Pi+1. Note that the size of the
population at every iteration is constant (equal to Nr). We
schematically show the dynamics of collocation points in
R3 Algorithm over training iterations in Figure 4.

Algorithm 1 Proposed R3 Sampling Algorithm For PINN
1: Sample the initial population P0 of Nr collocations point
P0 ← {xr}Nr

i=1 from a uniform distribution xr
i ∼ U(Ω),

where Ω is the input domain (Ω = [0, T ]×X ).
2: for i = 0 to max iterations - 1 do
3: Compute the residual function of collocation points xr ∈

Pi as F(xr) = |R(xr)|.
4: Compute the threshold τi =

1
Nr

∑Nr
j=1 F(xr

j)

5: Select the retained population Pr
i such that Pr

i ← {xr
j :

F(xr
j) > τit}

6: Generate the re-sampled population Ps
i ← {xr

j : xr
j ∼

U(Ω)}, s.t. |Ps
i |+ |Pr

i | = Nr

7: Merge the two populations Pi+1 ← Pr
i ∪ Ps

i

8: end for

4.1. Theoretical Validations of R3 Sampling properties

A unique feature of our proposed R3 sampling algorithm is
that while prior works have only addressed a subset of the
three sampling properties: Retain, Resample, and Release,
we are able to satisfy all of them while being computa-
tionally efficient (i.e., without maintaining a dense set of
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Figure 4. Schematic to describe our proposed R3 sampling algorithm, where collocation points are incrementally accumulated in regions
with high PDE residuals (shown as contour lines).

collocation points). See Table 2 in the Appendix for a com-
parison of our R3 sampling algorithm with prior works. In
the following, we theoretically verify the ability of R3 to
satisfy the three sampling properties.

(1) Retain Property: Theorem 4.1 shows that for a fixed
F(x) (e.g., when θ is kept constant), the expectation of
the retained population in R3 sampling becomes maximum
(equal to L∞) when the number of iterations approaches∞.

Theorem 4.1 (Accumulation Dynamics Theorem). Let
Fθ(x) : Rn → R+ be a fixed real-valued k-Lipschitz con-
tinuous objective function optimized using the R3 Sampling
algorithm. Then, the expectation of the retained population
Ex∈Pr [F(x)] ≥ maxx F(x)− kϵ as iteration i→∞, for
any arbitrarily small ϵ > 0.

The proof of Theorem 4.1 can be found in Appendix C.1.
This demonstrates the Retain property of R3 sampling as
points from high residual regions would keep accumulating
in the retained population and make its expectation maximal
if the residual function is kept fixed. Note that since the
PINN optimizer is also minimizing the residuals at every
iteration, we would not expect the residual function to be
fixed unless a high residual region persists over a long num-
ber of iterations. In fact, points from a high residual region
would keep on accumulating until they are resolved by the
PINN optimizer and thus eventually released from Pr.

(2) Resample Property: Theorem 4.2 states that the size of
the resampled population Ps is always greater zero. As a
result, there is always some background density of colloca-
tion points sampled from a uniform distribution, preventing
the R3 Sampling algorithm from collapsing to high residual
regions.

Theorem 4.2 (Non-Empty Theorem). For any population
P generated at an arbitrary iteration of R3 sampling, the
re-sampled population is always non-empty, i.e., |Ps| > 0.

The proof of Theorem 4.2 can be found in Appendix C.1
stated as a part of Lemma C.3.

(3) Release Property: Let us define that for an arbitrary
iteration i, a collocation point xr ∈ Pi is “sufficiently
minimized” if its residual function is less than τi, i.e.,
Rθ(xr) ≤ Exr∈Pi [Rθ(xr)] = τi (where τi is the threshold

at the i-th iteration). Then, by definition, xr will belong to
the “non-retained population”, i.e., it will be “released” from
the population Pi and replaced by a new point re-sampled
from the uniform distribution. Thus, R3 sampling satisfies
the “Release Property” by design.

Connections to Numerical Methods: Note that R3 sam-
pling shares a similar motivation as local-adaptive mesh
refinement methods developed for Finite Element Methods
(FEM) (Zienkiewicz et al., 2005), where the goal is to pref-
erentially refine the computational mesh used in numerical
methods based on localization of the errors. It is also related
to the idea of boosting in ensemble learning where training
samples with larger errors are assigned higher weights of
being picked in the next epoch, to increasingly focus on
high error regions (Schapire, 2003).

Connections to Evolutionary Algorithms: Our proposed
R3 sampling strategy also shares similarity with evolution-
ary algorithms that are used for modeling biological evolu-
tion (Eiben et al., 2003). The residual function F is equiva-
lent to the fitness function defined for typical evolutionary
algorithms. At each iteration, we retain the points with the
largest fitness (i.e., points corresponding to the highest PDE
residuals), which is similar to the “survival of the fittest”
concept commonly found in evolutionary algorithms.

4.2. Causal Extension of R3 Sampling (Causal R3)

In problems with time-dependent PDEs, a strong prior
dictating the propagation of solution is the principle of
causality, where the solution of the PDE needs to be well-
approximated at time t before moving to time t+∆t. To in-
corporate this prior guidance, we present a Causal Extension
of R3 (Causal R3) that includes two modifications: (1) we
develop a causal formulation of the PDE loss Lr that pays
attention to the temporal evolution of PDE solutions over
iterations, and (2) we develop a causally biased sampling
scheme that respects the causal structure while sampling
collocation points. We describe both these modifications in
the following.

Causal Formulation of PDE Loss. The key idea here is
to utilize a simple time-dependent gate function g(t) that
can explicitly enforce causality by revealing only a por-
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Figure 5. Causal R3 uses a time-dependent causal gate for computing PDE loss and for sampling.

tion of the entire time-domain to PINN training. Specif-
ically, we introduce a continuous gate function g(t) =
(1 − tanh(α(t̃ − γ)))/2, where γ is the scalar shift pa-
rameter that controls the fraction of time that is revealed
to the model, α = 5 is a constant scalar parameter that
determines the steepness of the gate, and t̃ is the normal-
ized time, i.e., t̃ = t/T . Example causal gates for dif-
ferent settings of γ are provided in Appendix D. We use
g(t) to obtain a causally-weighted PDE residual loss as
Lg
r(θ) = 1

Nr

∑Nr

i=1[R(xi
r, t

i
r)]

2 ∗ g(tir). We initially start
with a small value of the shift parameter (γ = −0.5), which
essentially only reveals a very small portion of the time
domain, and then gradually increase γ during training to
reveal more portions of the time domain. For γ ≥ 1.5, the
entire time domain is revealed.

Causally Biased Sampling. We bias the sampling strategy
in R3 such that it not only favors the selection of collocation
points from high residual regions but also accounts for the
causal gate values at every iteration. In particular, we modify
the residual function as F(xr) = |R(xr)| ∗ g(tr). Figure
5(b) represents a schematic describing the causally biased
R3 sampling described in Section 4.2 and the causal gate g
that is updated every iteration.

How to Update γ? Ideally, at some iteration i, we would
like increase γi at the next iteration only if the PDE residu-
als at iteration i are low. Otherwise, γi should remain in its
place until the PDE residuals under the current gate are min-
imized. To achieve this behaviour, we propose the following
update scheme for γ: γi+1 = γi + ηge

−ϵLg
r(θ), where ηg is

the learning rate and ϵ denotes tolerance that controls how
low the PDE loss needs to be before the gate shifts to the
right. Since the update in γ is inversely proportional to the
causally-weighted PDE loss Lg

r , the gate will shift slowly
if the PDE residuals are large. Also note that increasing γ
also increases the value of g(t) for all collocation points,
thus increasing the causally-weighted PDE loss and slowing
down gate movement. Upon convergence, γ attains a large
value such that the entire time domain is revealed.

0.0 2.5 5.0 7.5
Iteration ×104

0

20

40

Sk
ew

PINN (dynamic)
PINN (fixed)

R3

0.0 2.5 5.0 7.5
Iteration ×104

0

500

1000

K
ur

to
si

s

PINN (dynamic)
PINN (fixed)

R3

0.0 2.5 5.0 7.5
Iteration ×104

10−1

101

103

105

M
ax

 P
D

E
 R

es
id

ua
l

PINN (dynamic)
PINN (fixed)

R3

0.0 0.5 1.0
Iteration ×10 5

10−5

10−2

101

M
ea

n 
P

D
E

 R
es

id
ua

l

PINN (dynamic)
PINN (fixed)

R3

Figure 6. Comparison of Max PDE Residuals, and Mean PDE
Residuals over training iterations for PINN-fixed, PINN-dynamic,
and R3 Sampling for convection equation with β = 50.

5. Results
Experiment Setup. We perform experiments over three
benchmark PDEs that have been used in existing literature
to study failure modes of PINNs. In particular, we con-
sider two time-dependent PDEs: convection equation (with
β = 30 and β = 50) and Allen Cahn equation, and one
time-independent PDE: the Eikonal equation for solving
signed distance fields for varying input geometries. For
PINNs and CausalPINNs (Wang et al., 2022b) we have de-
fined two separate baselines, (1) fixed: which uses a fixed
set of uniformly sampled collocation points, (2) dynamic: a
simple modification where the collocation points are dynam-
ically sampled from a uniform distribution every iteration
(see Appendix B for more details). We introduce another
baseline L∞ where we sample top Nr collocation points
at every iteration from a dense set Pdense to approximate
L∞ norm. The other baselines have been listed in Table 1.
For every benchmark PDE, we use the same neural network
architecture and hyper-parameter settings across all base-
lines and our proposed methods, wherever possible. Details
about the PDEs, experiment setups, and hyper-parameter
settings are provided in Appendix I. All of our codes and
datasets are available here 1.

Comparing Prediction Performance. Table 1 shows the
relative L2 errors (over 5 random seeds) of PDE solutions
obtained by comparative methods w.r.t. ground-truth solu-
tions for different time-dependent PDEs when Nr is set to

1https://github.com/arkadaw9/r3_sampling_
icml2023
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Figure 7. Demonstration of accumulation behavior of R3 sampling
on two sample objective functions using the PDE loss of Pr going
from L2 to L∞ with iterations for two sample objective function.

1K. We particularly chose a small value of Nr to study the
effect of small sample size on PINN performance (note that
the original formulations of baseline methods used very high
Nr). We can see that while PINN-fixed fails to converge for
convection (β = 30) and Allen Cahn equations (admitting
very high errors), PINN-dynamic shows significantly lower
errors. However, for complex PDEs such as convection
(β = 50), PINN-dynamic is still not able to converge to
low errors. We also see that cPINN-fixed shows high errors
across all PDEs when Nr = 1000. This is likely because
the small size of collocation samples are insufficient for
cPINNs to converge to the correct solution. As we show
later, cPINN indeed is able to converge to the correct solu-
tion when Nr is large. Performing dynamic sampling with
cPINN shows some reduction in errors, but it is still not
sufficient for convection (β = 50) case. All other baseline
methods including Curr Reg, RAR-based methods, and L∞

fail to converge on most PDEs and show worse performance
than even the simple baseline of PINN-dynamic. On the
other hand, our proposed approaches (R3 and Causal R3)
consistently show the lowest errors across all PDEs. Fig-
ure 5 shows that R3 and PINN-dynamic are indeed able
to mitigate propagation failures for convection (β = 50),
by maintaining low values of max PDE residuals across
all iterations, in contrast to PINN-fixed. Note that R3 is
further able to reduce the mean PDE residuals better than

PINN-dynamic. Additional visualizations of the evolution
of samples in R3, Caual R3, and RAR-based methods across
iterations are provided in Appendix J. Sensitivity of RAR-
based methods to hyper-parameters is provided in Appendix
J.5.

Accumulation Behavior of R3 Sampling: To demonstrate
the ability of R3 Sampling to accumulate high residual
points in the retained population Pr (or equivalently, fo-
cus on higher-order Lp norms of PDE loss), we consider
optimizing two fixed objective functions: the Auckley func-
tion and Michaelewicz Function in Figure 7 (see Appendix
K.1 and K.7 for details of these function). We can see that at
iteration 1, the expected loss overPr is equal to the L2 norm
of PDE loss over the entire domains. As training progresses,
the expected loss over Pr quickly reaches higher-order Lp

norms, and approaches L∞ at very large iterations. This
confirms the gradual accumulation behavior of R3 sampling
as theoretically stated in Theorem 4.1. Addition visualiza-
tions of the dynamics of R3 sampling for a number of test
optimization functions are provided in Appendix K.

Sampling Efficiency: Figure 8 shows the scalability of R3
sampling to smaller sample sizes of collocation points, Nr.
Though all the baselines demonstrate similar performances
when Nr is large (> 10K), only R3 and Causal R3 man-
age to maintain low errors even for very small values of
Nr = 100, showing two orders of magnitude improvement
in sampling efficiency. Note that the sample size Nr is
directly related to the compute and memory requirements
of training PINNs. We also show that R3 sampling and
Causal R3 show faster convergence speed than baseline
methods for both convection and Allen Cahn equations (see
Appendix J.4 for details). Further, in Figure 9 we compare
sample efficiency of CPINN, R3 sampling, and Causal R3
on the Kuramoto-Sivashinsky (KS) equation (regular case)
(for details refer to Appendix G). We can see that both R3
and Causal R3 show improvements over CPINN when the
number of collocation points is small (Nr = 128). As the
number of collocation points is increased, Causal R3 shows

Table 1. Relative L2 errors (in %) of comparative methods over benchmark PDEs with Nr = 1000.
Convection (β = 30) Convection (β = 50) Allen Cahn

Epochs. 100k 300k 150k 300k 200k
PINN (fixed) 107.5± 10.9% 107.5± 10.7% 108.5± 6.38% 108.7± 6.59% 69.4± 4.02%
PINN (dynamic) 2.81± 1.45% 1.35± 0.59% 24.2± 23.2% 56.9± 9.08% 0.77± 0.06%
Curr Reg (Krishnapriyan et al., 2021) 63.2± 9.89% 2.65± 1.44% 48.9± 7.44% 31.5± 16.6% -
CPINN (fixed) (Wang et al., 2022b) 138.8± 11.0% 138.8± 11.0% 106.5± 10.5% 106.5± 10.5% 48.7± 19.6%
CPINN (dynamic) (Wang et al., 2022b) 52.2± 43.6% 23.8± 45.1% 79.0± 5.11% 73.2± 8.36% 1.5± 0.75%
RAR-G (Lu et al., 2021) 10.5± 5.67% 2.66± 1.41% 65.7± 17.0% 43.1± 28.9% 25.1± 23.2%
RAD (Nabian et al., 2021) 3.35± 2.02% 1.85± 1.90% 66.0± 1.55% 64.1± 1.98% 0.78± 0.05%
RAR-D (Wu et al., 2023) 67.1± 4.28% 32.0± 25.8% 82.9± 5.99% 75.3± 9.58% 51.6± 0.41%
L∞ 66.6± 2.35% 41.2± 27.9% 76.6± 1.04% 75.8± 1.01% 1.65± 1.36%
R3 (ours) 1.51± 0.26% 0.78± 0.18% 6.03± 6.99% 1.98± 0.72% 0.83± 0.15%
Causal R3 (ours) 2.12± 0.67% 0.75± 0.12% 5.99± 5.25% 2.28± 0.76% 0.71± 0.007%
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better performance than R3, as it incorporates an additional
prior of causality along with satisfying the three properties
of R3. Additional results on other cases of KS Equations
including chaotic behavior are provided in Appendix J.9.
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Solving Eikonal Equations. Given the equation of a sur-
face geometry in a 2D-space, u(xs, ys) = 0, the Eikonal
equation is a time-independent PDE used to solve for the
signed distance field (SDF), u(x, y), which has negative
values inside the surface and positive values outside the
surface. See Appendix G for details of the Eikonal equa-
tion. The primary difficulty in solving Eikonal equation
comes from determining the sign of the field (interior or
exterior) in regions with rich details. We compare the per-
formance of different baseline methods with respect to the
ground-truth (GT) solution obtained from numerical meth-
ods for two complex surface geometries in Figure 10. We
also plot the reconstructed geometry of the predicted solu-
tions to demonstrate the real-world application of solving
this PDE, e.g., in downstream real-time graphics rendering.
The quality of reconstructed geometries are quantitatively
evaluated using the mean Intersection-Over-Union (mIOU)
metric. The results show that PINN-fixed shows poor per-
formance across both geometries, while PINN-dynamic is
able to capture most of the outline of the solutions with a
few details missing. On the other hand, R3 sampling is able
to capture even the fine details of the SDF for both geome-
tries and thus show better reconstruction quality. We can
see that mIOU of R3 sampling is significantly higher than
baselines. See Appendix Section J.10 for more discussion
and visualizations.
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Figure 10. Solving Eikonal equation for signed distance field
(SDF). The color of the heatmap represents the values of the SDF.
The gray region shows the negative values of SDF that represents
the interior points in the reconstructed geometry from predicted
SDF.

6. Conclusions And Future Work Directions
We present a novel perspective for identifying failure modes
in PINNs named “propagation failures.” and develop a
novel R3 sampling algorithm to mitigate propagation fail-
ures. R3 empirically demonstrates better performance on
a variety of benchmark PDEs. Future work can focus on
building the theoretical foundations of the propagation hy-
pothesis and studying the interplay between minimizing
PDE loss and sampling from high residual regions. Build-
ing on the success of established sampling techniques such
as importance sampling in neural implicit representation
learning problems, future research can focus on investigat-
ing the potential applicability of our proposed R3 sampling
strategy in these problems.
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A. Connections Between Lp Norm and Sampling
In this section, we provide connections between adaptively sampling collocation points from a distribution q(xr) ∝
|Rθ(xr)|k (Wu et al., 2023) and using Lp norm of the PDE loss (Wang et al., 2022a).

Theorem A.1. For p ≥ 2, let Lp
r(U) denote the expected Lp PDE Loss computed on collocation points sampled from a

uniform distribution, U(Ω). Similarly, for k ≥ 0, let L2
r(Qk) denote the expected L2 PDE Loss computed on collocation

points sampled from an alternate distribution Qk(Ω) : xr ∼ q(xr), where q(xr) ∝ |Rθ(xr)|k. Then, L2
r(Qk) =

1
Z1/2V −1/2

(
Lk+2
r (U)

)(k+2)/2

, where Z is a normalization constant, defined as Z =
∫
xr∈Ω

|Rθ(xr)|kdxr and V is the
volume of the domain Ω.

Proof. The expectation of Lp PDE Loss for collocation points sampled from a uniform distribution U(Ω) : xr ∼ p(xr) can
be defined as follows 2:

Lp
r(U) =

(
Exr∼U(Ω)|Rθ(xr)|p

)1/p
=
(∫

p(xr)|Rθ(xr)|pdxr

)1/p
(4)

Note that for a uniform distribution, p(xr) =
1
V , where V is the volume of the domain Ω, i.e., V =

∏n
i=1

(
supp(xi) −

inf(xi)
)

with supp(.) and inf(.) being the supremum and infimum operators, and xi is the i-th dimension of xr (e.g., the
space dimension x or the time dimension t).

Now, let us consider the case where we are interested in sampling from an alternate distribution Qk(Ω) : xr ∼ q(xr),
where q(xr) ∝ |Rθ(xr)|k while using the L2 PDE Loss (the most standard loss formulation used in PINNs). The sampling
function of Qk(Ω) can be defined as follows:

q(xr) =
|Rθ(xr)|k

Z
(5)

where Z is the normalizing constant, i.e., Z =
∫
xr∈Ω

|Rθ(xr)|kdxr.

Hence, the L2 PDE Loss for collocation points sampled from Qk(Ω) can be defined as:

L2
r(Qk) =

(
Exr∼Qk(Ω)|Rθ(xr)|2

)1/2
=
(∫

q(xr)|Rθ(xr)|2dxr

)1/2
=
(∫ |Rθ(xr)|k

Z
|Rθ(xr)|2dxr

)1/2
(From Equation 5)

=
1

Z1/2

(∫
|Rθ(xr)|k+2dxr

)1/2
=

1

Z1/2

(∫ p(xr)

p(xr)
|Rθ(xr)|k+2dxr

)1/2
=

1

Z1/2V −1/2

(∫
p(xr)|Rθ(xr)|k+2dxr

)1/2
, ∵ xr ∼ U(Ω) =⇒ p(xr) =

1

V

=
1

Z1/2V −1/2

(
Exr∼U(Ω)|Rθ(xr)|k+2

)1/2
=

1

Z1/2V −1/2

(
Lk+2
r (U)

)(k+2)/2

(From Equation 4,with p = k + 2) (6)

2We assume that the batch size/number of collocation points used to compute the PDE Loss tends to infinity, i.e., Nr → ∞. This
allows us to analyze the behavior of the continuous PDE loss function Lr(θ) as Nr →∞
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Theorem A.1 suggests that sampling collocation points from a distribution q(xr) ∝ |Rθ(xr)|k and Lp norm of the PDE loss
are related to each other by a scaling term 1

Z1/2V −1/2 . However, since this scaling term is variable in nature as Z depends on
the neural network parameters θ, optimizing Lp

r(U) is not directly equivalent to optimizing L2
r(Qk) (or a power thereof).

B. Analyzing PINN-Dynamic: A Strong Baseline
A very simple baseline for mitigating propagation failures is to dynamically sample a random set of Nr collocation points
from a uniform distribution at every iteration, independently of previous iterations. To see how this simple sampling strategy
can help in sampling points from high PDE residual regions, let us consider partitioning the entire input domain Ω into two
subsets: regions with high PDE residuals, Ωhigh, and regions with low PDE residuals Ωlow. If the high PDE residual regions
are imbalanced because of propagation failure, we would expect that the area of Ωhigh (Ahigh) is significantly smaller than
the area of Ωlow (Alow), i.e., Ahigh ≪ Alow. Let us compute the probability of sampling at least one collocation point from
Ωhigh across all iterations of PINN training. If we use a fixed set of collocation points sampled from a uniform distribution
at every iteration, this probability will be equal to Ahigh/(Ahigh +Alow), which can be very small. Hence, we are likely to
under-represent points from Ωhigh in the training process and thus get stuck in trivial solutions with high residual regions
around its boundaries, especially when Nr is low.

On the other hand, if we perform dynamic sampling, the probability of picking at least one point from Ωhigh across all
iterations will be equal to 1 − (1 − Ahigh/(Ahigh + Alow))

N , where N is the number of iterations for which the high
residual region Ahigh persists during the training of PINN. Note that N << Ntrain where Ntrain is the total number of
training iterations for the PINN. We can see that when N is large, this probability approaches 1, indicating that across
all iterations of PINN training, we would have likely sampled a point from Ωhigh in at least one iteration, and used it to
minimize its PDE residual. As we empirically demonstrate later in Section 5, dynamic sampling is indeed able to control the
skewness of PDE residuals compared to fixed sampling, and thus act as a strong baseline for mitigating propagation failures.

However, note that even if we use dynamic sampling, the contribution of points from Ωhigh in the overall PDE residual loss
computed at any iteration is still low. In particular, since the probability of sampling points from Ωhigh at any iteration is
equal to Ahigh/(Ahigh +Alow), the expected PDE residual loss computed over all collocation points will be equal to

EΩ[Lr(θ)] = EΩhigh
[Lr(θ)]×

Ahigh

Ahigh +Alow
+ EΩlow

[Lr(θ)]×
Alow

Ahigh +Alow
(7)

Since Ahigh ≪ Alow, the gradient update of θ at every epoch will be dominated by the low PDE residuals observed over
points from Ωlow, leading to slow propagation of information from initial/boundary points to interior points.

C. Analysis of R3 Sampling
In this section, we analyze the dynamic behavior (or evolution) of the collocation points for our proposed Retain-Resample-
Release Sampling (R3) approach over the iterations.

C.1. Retain Property of R3.

In this section, we provide the proof of Theorem 4.1 presented in the main paper.

Definition C.1 (Objective Function). Let Fθ(x) : Rn → R+ be an arbitrary positive real-valued k-Lipschitz continuous
function, where θ denotes the neural network parameters. When θ is fixed, the function F(x) does not vary with iterations,
representing a fixed objective function.

Let X∗ = {x∗
i : F(x∗

i ) = maxx F(x) ∀ i ∈ [n]} be the set of points where the objective function F is maximal.

Now, let us define an ϵ-neighborhood around each of point x∗
i ∈ x∗ as Nϵ(xi) such that ||xi − x∗

i || ≤ ϵ for any arbitrarily
small ϵ > 0 and for all xi ∈ Nϵ(xi) with i ∈ [n].

Let us also assume that the objection function F is k-Lipschitz continuous. Then the following is true:

|F(x∗
i )−F(xi)| ≤ kϵ ∀ xi ∈ Nϵ(xi) & i ∈ [n] (8)

=⇒ F(x∗
i )−F(xi) ≤ kϵ ∵ F(x∗

i ) = max
x
F(x) (9)

12
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Definition C.2 (ϵ-maximal Neighborhood). Let F∗ = maxx F(x) be the maximal value of the objective function F(x)
(Definition C.1). Then an ϵ-maximal Neighborhood N∞

ϵ can be defined as: N∞
ϵ = Nϵ(x0) ∪Nϵ(x1) ∪ ... ∪Nϵ(xn) such

that any point x sampled from N∞
ϵ would have F∗ −F(x) ≤ kϵ ∀ x ∈ N∞

ϵ and for any arbitrarily small ϵ > 0.

Note that since the volume of N∞
ϵ is greater than 0, the probability of sampling any x ∈ N∞

ϵ from a uniform distribution
U(x) is greater than 0.

Lemma C.3 (Population Properties). For any population P generated at some iteration of R3 sampling, optimizing a given
objective function F(x) (Definition C.1), the following properties are always true:

1. The re-sampled population is always non-empty, i.e., |Ps| > 0

2. The size of the retained population is always less than the total population size, i.e., |Pr| < |P|

3. The size of the retained population is zero, i.e., |Pr| = 0, if and only if F(x) = c,∀x ∈ P .

Proof. The threshold τ for the R3 Sampling can be computed as τ = 1
|P|
∑

x∈P F(x).

The retained population is defined as: Pr ← {x : F(x) > τ ∀x ∈ P},
Similarly, the non-retained population can be defined as: Pr ← {x : F(x) ≤ τ ∀x ∈ P}.
Proof of Property 1: For any arbitrary set of real numbers, there always exists some element in the set that is less than
or equal to the mean. Hence, the size of the non-retained population is always non-zero as there always exists some point
x ∈ P such that F(x) ≤ τ . Thus, |Pr| > 0.

Now by definition, since the re-sampled population Ps replaces the non-retained population at every iteration, |Ps| = |Pr|.
Hence, |Ps| > 0, i.e., the size of the resampled population is always non-zero.

Proof of Property 2: By definition, |Pr|+ |Pr| = |P| (where |P| is the total size of the population and is always constant).
Since, |Pr| > 0, we can say that |Pr| < |P|, i.e., the size of the retained population can never be equal to the entire
population size |P|.
Proof of Property 3: Let us consider the case where F(x) = c,∀x ∈ P (where c is some constant), i.e., the value of the
function is constant at all of the points x ∈ P . In this case, the mean of the population P , which is equal to the threshold, τ
will be equal to c. This condition would lead to the entire population to be re-sampled as all element x ∈ P would satisfy
the condition to belong in the non-retained population. Note that the constant function F(x) = c is the only case where all
of the elements are less than or equal to the mean. Otherwise, there would always be at least one element greater than the
mean, resulting in a non-zero size of the retained population.

Lemma C.4 (Entry Condition). If a point xm is sampled from N∞
ϵ at any arbitrary iteration m, then it will always enter

the retained population Pr
m unless Ex∈Pr

m
[F(x)] > F∗ − kϵ.

Proof. The condition for any arbitrary point xm to enter the retained population Pr
m at any arbitrary iteration m is given by

the following:

F(xm) > τm = Ex∈Pm [F(x)]. (By definition of the threshold τm) (10)

Now, if the point xm is sampled from N∞
ϵ , then F(xm) ≥ F∗ − kϵ (from Definition C.2). Hence, for xm to enter the

retained population Pr
m, we need to ensure that F∗ − kϵ > τm.

Let us consider the case where xm is not able to enter the retained population. In such a case, we will have the following
inequality:

F∗ − kϵ < τm. (11)

It is also easy to show from the definition of retained population that the threshold τ is always less than the expectation of
the retained population:

τm ≤ Ex∈Pr
m
[F(x)] (12)
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From Equations 11 and 12, we get,

F∗ − kϵ < τm ≤ Ex∈Pr
m
[F(x)]

=⇒ Ex∈Pr
m
[F(x)] > F∗ − kϵ (13)

We have thus proved that xm will not be able to enter the retained population Pr
m only if Ex∈Pr

m
[F(x)] > F∗ − kϵ, which

suggests that the expectation of the retained population is already close to F∗, for any arbitrarily small ϵ > 0. On the other
hand, if Ex∈Pr

m
[F(x)] ≤ F∗ − kϵ, we would necessarily add xm

Lemma C.5 (Exit Condition). A point xm sampled fromN∞
ϵ that entered the retained population at any arbitrary iteration

m, can exit the retained population Pr
n at an arbitrary iteration n (such that n > m) only if Ex∈Pr

n
[F(x)] ≥ F∗ − kϵ.

Proof. The generic condition for any arbitrary point x to exit the retained population Pr
n at iteration n is given by:

F(x) ≤ τn = Ex∈Pn
[F(x)] (By definition of the threshold τ ).

Since a point xm that was originally sampled fromN∞
ϵ will have F(xm) ≥ F∗ − kϵ (from Definition C.2), we can use this

inequality in the generic exit condition shown above to get,

F∗ − kϵ ≤ τn ≤ Ex∈Pr
n
[F(x)] (14)

Hence, the point xm can exit the retained population at iteration n only if Ex∈Pr
n
[F(x)] ≥ F∗ − kϵ.

Theorem C.6 (Accumulation Dynamics Theorem). Let Fθ(x) : Rn → R+ be a fixed real-valued k-Lipschitz contin-
uous objective function optimized using the R3 Sampling algorithm. Then, the expectation of the retained population
Ex∈Pr [F(x)] ≥ maxx F(x)− kϵ as iteration i→∞, for any arbitrarily small ϵ > 0.

Proof. We prove this theorem by contradiction. For the sake of contradiction, let us assume that as iterations i→∞, the
expectation of the retained population Ex∈Pr [F(x)] < maxx F(x)− kϵ, for any arbitrarily small ϵ > 0. We can then make
the following two remarks.

Entry of collocation points: Note that the probability of sampling x fromN∞
ϵ is non-zero because the size of the re-sampled

population is non-zero, i.e., |Ps| > 0 (proved in Lemma C.3). Also, since we have assumed Ex∈Pr [F(x)] < F∗ − kϵ, we
can use the Entry condition proved in Lemma C.4 to arrive at the conclusion that a point from N∞

ϵ will always be able to
enter the retained population.

Exit of collocation points: Similarly, a point x that belongs in the ϵ-maximal neighborhood and is part of the retained
population Pr will not be able to escape the retained population as we have asssumed Ex∈Pr [F(x)] < F∗ − kϵ (using the
Exit condition proved in Lemmas C.5).

From the above two remarks, we can see that points would keep accumulating indefinitely in the retained population if our
initial assumption (for the sake of contradiction) is true. However, since the total size of the population |P| is bounded, the size
of the retained population |Pr| cannot grow indefinitely. We have thus arrived at a contradiction suggesting our assumption
is incorrect. Hence, as iterations i→∞, the expectation of the retained population Ex∈Pr [F(x)] ≥ maxx F(x)− kϵ, for
any arbitrarily small ϵ > 0.

From Theorem 4.1, we can prove a continuous accumulation of collocation points from the ϵ-maximal neighborhood until
the expectation of the retained population is close to the maximum point (i.e., reaches L∞), thus exhibiting the Retain
Property described in Section 4. Although this theorem assumes that the objective function F(x) (or in the context of
PINNs, the absolute residual values,Rθ(xr)) is constant, this theorem is still valid whenRθ(xr) is gradually changing with
the highest error regions (defined using our ϵ-maximal neighborhood) persisting over iterations. Under such conditions, the
theorem states that the retained population Pr would always accumulate points from the ϵ-maximal neighborhood, thereby
adaptively increasing their contribution to the overall PDE residual loss and eventually resulting in their minimization.
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C.2. Release of Collocation Points from High PDE Residual Regions.

Our definition of the Release Property states that the distribution of collocation points should revert back to its original
form by releasing the accumulated points in the high PDE residual regions once they are “sufficiently minimized”. Let
us define that for an arbitrary collocation point xr

i ∈ P , “sufficient minimization” of the PDE is achieved if Rθ(xr
i) ≤

Exr∈P [Rθ(xr)] = τ (where τ is the threshold used by R3 sampling). Then, by definition, such points will belong to the
“non-retained population” and will be immediately replaced by the re-sampled population. Since we generate the re-sampled
population Ps from a uniform distribution, these “sufficiently minimized” collocation points are replaced with a uniform
density. Thus, R3 sampling satisfies the “Release Property”.

D. Additional Details for Causal R3 Sampling
D.1. Preventing Abrupt Causal Gate Movement.

The shift parameter γ of the causal gate is updated every iteration using the following scheme: γi+1 = γi + ηge
−ϵLg

r(θ),
where ηg is the learning rate that controls how fast the gate should propagate and ϵ denotes tolerance that controls how low
the PDE loss needs to be before the gate shifts to the right, and i denotes the ith iteration. Typically, in our experiments
we set the learning rate to 1e-3. Thus, for example, if the expectation of e−ϵLg

r(θ) over 1000 iterations is 0.1, then γ would
change by a value of 0.1 after 1000 iterations (since γi+N ≈ γi+ηg ∗N ∗E[e−ϵLg

r(θ)]). Additionally, note that, for a typical
“tanh” causal gate, the operating range of γ values vary from −0.5 to 1.5. However, if the loss is very small (Lg

r(θ)→ 0),
the magnitude of the update e−ϵLg

r(θ) → 1, i.e., leads to an abrupt change in the causal gate. Thus, to prevent an abrupt
gate movement due to large magnitude update, we employ a magnitude clipping scheme (similar to gradient clipping in
conventional ML) as follows: γi+1 = γi + ηg min(e−ϵLg

r(θ),∆max), where ∆max is the maximum allowed magnitude of
update. Typically, for our experiments we keep ∆max = 0.1. Note, that ∆max needs to be carefully chosen depending on
the gate learning rate ηg .

D.2. Choice of Other Gate Functions.

The gate function g to enforce the principle of causality is not limited to the “tanh” gate presented in Section 4.2 of the main
paper. Any arbitrary function can be used for a causal gate as long as it obeys the following criteria:

1. Continuous Time Property: The function g should be continuous in time, such that it can be evaluated at any arbitrary
time t.

2. Monotonic Property: The value of gate g at time t + ∆t should be less than the value of the gate at time t, i.e.,
g(t+∆t) ≤ g(t). In other words, g should be a monotonically decreasing function,

3. Shift Property: The gate function should be parameterized using a shift parameter γ, such that gγ(t) < gγ+δ(t),
where δ > 0, i.e., by increasing the value of the shift parameter the gate value of any arbitrary time should increase.

An alternate choice of a causal gate is using a composition of ReLU and tanh functions: g = ReLU(− tanh(α(t − γ))
(as shown in Figure 11. We can see that by using ReLU, this alternate gate function provides a stricter thresholding of
gate values to 0 after a cutoff value of time. The effect of this strict thresholding on the incorporation of causality in
training PINNs can be studied in future analyses. In our current analysis, we simply used the tanh gate function for all our
experiments.

E. Comparison of Baselines
In this Section, we compare the different baseline methods w.r.t. the motivating properties. See Table 2.

F. Computational Complexity Analysis of R3 Sampling vs its baselines
In this section, we aim to provide a comprehensive comparison of the computational complexity of R3 Sampling and its
baselines. It is well-known that the cost of computing the PDE residuals using automatic-differentiation during training
amounts is reasonably large, especially when the PDE contains higher order gradients that require repeated backward passes
through the computational graphs used by standard deep learning packages like PyTorch/Tensorflow. Thus, in this section
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Figure 11. ReLU-tanh Causal Gate

Table 2. Table comparing baseline methods in terms of their ability to comply with the motivating properties of this work.
Retain

Property
Release

Property
Resample
Property

Computational
Efficiency Causality

RAR-G (Lu et al., 2021) ✓ ✓
RAD (Nabian et al., 2021) ✓ ✓ ✓
RAR-D (Wu et al., 2023) ✓ ✓
L−∞ (Wang et al., 2022a) ✓ ✓ ✓
CausalPINN (Wang et al., 2022b) ✓ ✓ ✓
R3 (ours) ✓ ✓ ✓ ✓
Causal R3 (ours) ✓ ✓ ✓ ✓ ✓

we would mainly focus on comparing the number of PDE residual computations that each algorithm makes during training.
We can quantify the effect of this difference on computational costs as follows. Let us first define the Notations that we are
going to use for the analysis:

Notations for Computational Analysis

C Computational Cost to evaluate the PDE residual on a single
collocation point.

N Total Number of Training Iterations

|P| Total Number of Collocation Points/Population Size (Also re-
ferred to as the initial set of collocation points for RAR based
methods)

|Pdense| Auxiliary Set of dense points [For RAR-G,RAD, and RAR-D],
where |Pdense| >> |P|

K Resampling Period [For RAR-G,RAD, and RAR-D]

M Number of additional collocation points added to the initial set

Next, we present the computational cost to run each method separately.

PINN/R3: The cost of computing the PDE residual at an arbitrary epoch i: CR3(i) = C|P|. Thus, the overall computational
cost for N iterations is CR3 = NC|P|.
RAR-G/RAD/RAR-D: For RAR-based methods, the initial set of collocation points P keeps growing as M new test
points are added every K iterations. Thus, at an iteration i, the size of the collocation point set |Pi| = |P0|+m⌊i/K⌋ =
|P|+M⌊i/K⌋ (to simplify notations, let |P0| = |P|, i.e., all of the methods start with the same number of initial collocation
points).
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Thus, the cost to compute the PDE residuals on this training set P is:

Ctrain
RAR = KC|P|+KC(|P|+M) +KC(|P|+ 2M) + ...+KC(|P|+M

⌊N
K

⌋
)

= KC|P|
(⌊N

K

⌋
+ 1 +

M

2|P|
⌊N
K

⌋(⌊N
K

⌋
+ 1
))

(15)

There is also an additional cost of evaluating the PDE residuals on the dense set Cdense
RAR to select these M points from high

PDE residual region.

Cdense
RAR = C|Pdense|

⌊N
K

⌋
(16)

Therefore, the overall cost for RAR-based methods is: CRAR = Cdense
RAR + Ctrain

RAR

Comparing the cost between R3 and RAR: Assuming that the total number of epochs N is divisible by the resampling
period K, which is true for most practical scenarios.

CRAR = NC|P|+KC|P|+ MNC

2

(N
K

+ 1
)
+ C|Pdense|

N

K

CRAR = CR3 +KC|P|+ MNC

2

(N
K

+ 1
)
+ C|Pdense|

N

K

CRAR − CR3 = KC|P|+ MNC

2

(N
K

+ 1
)
+ C|Pdense|

N

K
(17)

Thus, we can see that the difference in the computational cost can quickly grow depending on the choice of RAR
setting. Also note that, since |Pdense| >> |P|, the additional cost of C|Pdense|NK is significant, especially if we want to
re-sample/re-evaluate the adaptive sampling frequently (i.e., for small values of K).

G. Details of Partial Differential Equations Used in this Work
G.1. Convection Equation

We considered a 1D-convection equation that is commonly used to model transport phenomenon, described as follows:

∂u

∂t
+ β

∂u

∂x
= 0, x ∈ [0, 2π], t ∈ [0, 1] (18)

u(x, 0) = h(x) (19)
u(0, t) = u(2π, t) (20)

where β is the convection coefficient and h(x) is the initial condition. For our case studies, we used a constant setting of
h(x) = sin(x) with periodic boundary conditions in all our experiments, while varying the value of β in different case
studies.

G.2. Allen-Cahn Equation

We considered a 1D - Allen Cahn equation that is used to describe the process of phase-separation in multi-component alloy
systems as follows:

∂u

∂t
− 0.0001

∂2u

∂x2
+ 5u3 − 5u = 0, x ∈ [−1, 1], t ∈ [0, 1] (21)

u(x, 0) = x2 cos(πx) (22)
u(t,−1) = u(t, 1) (23)
∂u

∂t

∣∣∣
x=−1

=
∂u

∂t

∣∣∣
x=1

(24)
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G.3. Eikonal Equation

We formulate the Eiknonal equation for signed distance function (SDF) calculation as:

|∇u| = 1, x, t ∈ [−1, 1] (25)

u(xs) = 0, xs ∈ S (26)

u(x,−1), u(x, 1), u(−1, y), u(1, y) > 0 (27)

where S is zero contour set of the SDF. In training PINN, we use the zero contour constraint as initial condition loss and
positive boundary constraint as boundary loss (see Table 3 for details of loss balancing).

G.4. Kuramoto–Sivashinsky Equation

We use 1-D Kuramoto–Sivashinsky equation from CausalPINN (Wang et al., 2022b):

∂u

∂t
+ αu

∂u

∂x
+ β

∂2u

∂x2
+ γ

∂4u

∂x4
= 0, (28)

subject to periodic boundary conditions and an initial condition

u(0, x) = u0(x) (29)

The parameter α, β, γ controls the dynamical behavior of the equation. We use the same configurations as the CausalPINN:
α = 5, β = 0.5, γ = 0.005 for regular settings, and α = 100/16, β = 100/162, γ = 100/164 for chaotic behaviors.

H. Details on Skewness and Kurtosis Metrics
Skewness and kurtosis are two basic metrics used in statistics to characterize the properties of a distribution of values
{Yi}Ni=1. A high value of Skewness indicates lack of symmetry in the distribution, i.e., the distribution of values to the left
and to the right of the center point of the distribution are not identical. On the other hand, a high value of Kurtosis indicates
the presence of a heavy-tail, i.e., there are more values farther away from the center of the distribution relative to a Normal
distribution. In our implementation using scipy, we used the adjusted Fisher-Pearson coefficient of skewness and Fisher’s
definition of kurtosis, as defined below.

Skewness: For univariate data Y1, Y2, ..., YN , the formula of skewness is

skewness =

√
N(N − 1)

N − 2
×
∑N

i=1(Yi − Ȳ )3/N

s3
, (30)

where Ȳ is the sample mean of the distribution and s is the standard deviation. For any symmetric distribution (e.g., Normal
distribution), the skewness is equal to zero. A positive value of skewness means there are more points to the right of the
center point of the distribution than there are to the left. Similarly, a negative value of skewness means there are more points
to the left of the center point than there are to the right. In our use-case, a large positive value of skewness of the PDE
residuals indicates that there are some asymmetrically high PDE residual values to the right.

Kurtosis: Kurtosis is the fourth central moment divided by the square of the variance after subtracting 3, defined as follows:

kurtosis =
∑N

i=1(Yi − Ȳ )4/N

s4
− 3 (31)

For a Normal distribution, Kurtosis is equal to 0. A positive value of Kurtosis indicates that there are more values in the
tails of the distribution than what is expected from a Normal distribution. On the other hand, a negative value of Kurtosis
indicates that there are lesser values in the tails of the distribution relative to a Normal distribution. In our use-case, a large
positive value of Kurtosis of the PDE residuals indicates that there are some high PDE residual values occurring in very
narrow regions of the spatio-temporal domain, that are being picked up as the heavy-tails of the distribution.
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I. Hyper-parameter Settings and Implementation Details
The hyper-parameter settings for the different baseline methods for every benchmark PDE are provided in Table 3. Note that
we used the same network architecture and other hyper-parameter settings across all baseline method implementations for
the same PDE. In this table, the column on ‘r/ic/bc’ represents the setting of the λr, λic, λbc hyper-parameters that are used
to weight the different loss terms in the overall learning objective of PINNs. Table 3 also lists the type of Optimizer, learning
rate (lr), and learning rate scheduler (lr.scheduler) used across all baselines for every PDE. For the Eikonal equation, we
used the same modified multi-layer perceptron (MLP) architecture as the one proposed in (Wang et al., 2021). Additionally,
for the Causal R3 Sampling method, we used the following hyper-parameter settings across all PDEs: α = 5, learning rate
of the gate ηg = 1e− 3, tolerance ϵ = 20, initial value of β = −0.5, and ∆max = 0.1. The number of iterations (and the
corresponding PDE coefficients for the Convection Equation) are provided in Section 5 of the main paper.

Table 3. Hyper-parameter settings for different baseline methods for every benchmark PDE

PDE Method Architecture
Periodic

Encoding
r/ic/bc

Optimizer/

lr

lr.

scheduler

RAR Hyperparams

k/m/N/|S|

Convection

PINN,

cPINN,

R3,

Causal R3

50 x 4

(MLP)
No 1/100/100

Adam/

1e-3

StepLR

rate=0.9

steps=5000

N/A

Curr. Reg.
50 x 4

(MLP)
No 1/1/1

Adam/

1e-4
No N/A

RAR-G

RAD

RAR-D

50 x 4

(MLP)
No 1/100/100

Adam/

1e-3

StepLR

rate=0.9

steps=5000

-/1/100/100000

1/1/100/100000

1/1/100/100000

Allen Cahn

PINN,

cPINN,

R3,

Causal R3

128x4

(MLP)
Yes 1/100/100

Adam/

1e-3

StepLR

rate=0.9

steps=5000

N/A

RAR-G

RAD

RAR-D

128x4

(MLP)
Yes 1/100/100

Adam/

1e-3

StepLR

rate=0.9

steps=5000

-/1/100/100000

1/1/100/100000

1/1/100/100000

Eikonal
PINN,

R3

128x4

(Wang et al., 2021)

(modified MLP)

No 1/500/10
Adam/

1e-3

StepLR

rate=0.9

steps=5000

N/A

Hardware Implementation Details: We trained each of our models on one Nvidia Titan RTX 24GB GPU.

J. Additional Discussion of Results
J.1. Visualizing Propagation Failure for Different Settings of β

In Figure 2 of the main paper, we demonstrated the phenomenon of propagation failure for convection equation with
β = 50, which was characterized by large values of Skewness and Kurtosis in the PDE residual fields for a large number of
iterations (or epochs), and a simultaneous stagnation in the relative error values even though the mean PDE residual kept
on decreasing. Here, in Figure 12, we show that the same phenomenon can be observed for other large values of β > 10,
namely, β = 30, 50, 70. We can see that the relative errors for all these three cases remains high even though the PDE
residual loss keeps on decreasing with iterations. We can also see that the absolute values of skewness and kurtosis increase
as we increase β, indicating higher risks of propagation failure. In fact, for β = 30, we can even see that the epoch that
marks an abrupt increase in skewness and kurtosis (around 50K iterations) also shows a sudden increase in the relative error
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at the same epoch, highlighting the connection between imbalanced PDE residuals and the phenomenon of propagation
failure.
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Figure 12. Demonstration of Propagation Failure for Different Settings of β (β = 10, 30, 50, 70)

J.2. Visualizing Propagation Failure for Kuramoto-Shivashinksy Equation

Figure 13 is similar to Figure 2, and demonstrates that during the training of conventional PINNs although the PDE residuals
steadily decrease with iterations, the skewness and kurtosis quickly become very large. This behavior suggests the presence
of small regions with very high PDE residuals, which we refer to as the “propagation failure” of PINNs. Figure 14 shows
the Ground-truth solution, the predicted PDE field and the PDE Residuals after 100k iterations. It can be seen that there
exists small regions or sharp boundaries of high error regions which we hypothesise is the effect for propagation failure.

0.0 0.2 0.4 0.6 0.8 1.0

Iterations ×105

0.80

0.85

0.90

0.95

1.00

1.05

1.10

R
el

at
iv

e
E

rr
or

0.0 0.2 0.4 0.6 0.8 1.0

Iterations ×105

10−3

10−2

10−1

100

101

102

P
D

E
R

es
id

u
al

0.0 0.2 0.4 0.6 0.8 1.0

Iterations ×105

2

4

6

8

10

12

14

S
ke

w
n

es
s

0.0 0.2 0.4 0.6 0.8 1.0

Iterations ×105

0

100

200

300

K
u

rt
os

is

Figure 13. Demonstration of Propagation Failure for Kuramoto-Shivashinksky Equation.

Figure 14. Visualization of High PDE Residuals due to Propagation Failure for Kuramoto-Shivashinksky Equation (Chaotic).

J.3. Additional Results for Sample Efficiency of R3 Sampling

We provide the results for the sample efficiency results for the Convection Equation and Allen Cahn Equations in Table 4
and 5 respectively, averaged across 3 random runs.

J.4. Convergence Speed of R3 Sampling

Figure 15 shows that Causal R3 is able to converge faster to low error solutions than all other baseline methods for both
convection and Allen Cahn equations. This shows the importance of respecting causality along with focusing on high residual
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Table 4. Relative L2 errors (in %) of comparative methods for Convection Equation with β = 50 for different number of
collocation points Ns averaged across 3 random runs.

Method Ns = 100 Ns = 500 Ns = 1000 Ns = 2000 Ns = 5000 Ns = 10000 Ns = 20000

PINN (fixed) 103.0± 0.97 121.0± 13.1 108.0± 11.5 114.0± 22.8 135.0± 15.4 7.04± 7.81 3.35± 1.91

PINN (dynamic) 66.2± 4.87 51.5± 26.8 52.2± 17.8 63.0± 7.22 4.93± 1.59 5.90± 3.17 3.14± 1.76

CausalPINN 89.0± 9.49 66.9± 11.2 72.5± 3.82 43.4± 37.1 44.9± 36.3 61.5± 13.8 61.8± 6.77

RAD 83.4± 11.3 28.9± 34.9 67.1± 1.57 51.0± 29.9 23.5± 32.1 23.5± 32.1 23.5± 32.1

R3 4.27± 2.11 2.22± 1.26 1.47± 0.45 1.93± 0.66 3.27± 2.70 2.77± 1.52 1.96± 0.33

CausalR3 5.54± 3.52 4.59± 2.87 1.14± 0.11 5.69± 4.10 6.51± 5.50 4.11± 2.86 1.52± 9.69

Table 5. Relative L2 errors (in %) of comparative methods for Allen Cahn Equation for different number of collocation
points Ns averaged across 3 random runs.

Method Ns = 100 Ns = 500 Ns = 1000 Ns = 2000 Ns = 5000 Ns = 10000 Ns = 20000

PINN (fixed) 70.4± 5.49 70.1± 0.28 62.4± 1.80 56.0± 3.70 76.4± 21.9 51.2± 0.02 5.11± 4.32

PINN (dynamic) 2.88± 3.67 2.93± 2.22 3.69± 5.00 0.78± 0.10 0.83± 0.16 0.82± 0.04 0.78± 0.02

CausalPINN 75.4± 9.43 22.9± 6.85 23.6± 21.2 5.50± 3.32 2.53± 1.23 1.90± 1.68 0.79± 0.10

RAD 50.9± 0.13 21.3± 23.2 5.10± 4.23 1.08± 0.40 1.92± 2.06 0.82± 0.11 0.73± 0.02

R3 0.86± 0.22 0.69± 0.03 0.81± 0.16 0.75± 0.07 0.69± 0.01 0.81± 0.22 0.81± 0.10

CausalR3 0.70± 0.01 0.69± 0.04 0.71± 0.01 0.69± 0.02 0.71± 0.01 0.71± 0.03 0.72± 0.02

regions to ensure fast propagation of correct solution from initial/boundary points to interior points. While cPINN-fixed and
PINN-dynamic do not converge for convection (Nr = 1K), we can see that they both converge to lower errors compared to
PINN-fixed for Allen Cahn and for convection when Nr is large (20K).

J.5. Sensitivity of RAR-based Methods

Figures 16 shows the sensitivity of two RAR-based methods: RAR-G and RAR-D respectively on different values of the
resampling period K and the number of collocation points m added from the dense set Pdense. Note that although the size
of the initial set of collocation points |P| was same for each of these experiments, the final size of the collocation points vary
depending on the choice of K (the final size of the collocation points increases as k decreases) and m (the final size of the
collocation points increases with m). We essentially observe that adding more collocation points almost always improves
the performance of these RAR-based methods.

J.6. Visualizing the Evolution of Collocation Points in R3 sampling

Figure 17 shows the evolution of collocation points and PDE residual maps of R3 sampling as we progress in training
iterations for the convection equation with β = 50. We can see that the retained population of R3 sampling at every iteration
(shown in red) selectively focuses on high PDE residual regions, while the re-sampled population (shown in blue) are
generated from a uniform distribution. By increasing the contribution of high residual regions in the computation of the
PDE loss, we can see that R3 sampling is able to reduce the PDE loss over iterations without admitting high imbalance, thus
mitigating the propagation failure mode, in contrast to conventional PINNs.

J.7. Visualizing the Evolution of Collocation Points in Causal R3

Figure 18 shows the evolution of collocation points and PDE residuals of Causal R3, along with the dynamics of the Causal
Gate function. We can see that the retained population at every iteration (shown in red) strictly adheres to the principle of
causality such that the collocation points are sampled from later times only when the PDE residuals at earlier times have
been minimized. This is also reflected in the movement of the causal gate function where the gate values are close to 1 for
only small portions of time domain at intermediate epochs. At 90K iterations, we can see that the causal gate values are
close to 1 for all values of time, indicating that the entire time domain is now revealed for training PINN to converge to the
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Figure 15. Comparing convergence speeds of baselines w.r.t. R3 sampling and Causal R3.
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correct solution.

J.8. Visualizing the Dynamics of Collocation Points for RAR-Based Methods

Figures 19, 20, annd 21 shows the evolution of collocation points and PDE residuals of RAR-G, RAD, and RAR-D,
respectively. We can see that all three RAR-based methods are failing to converge to the correct solution even after 100K
iterations, demonstrating their inabillity to mitigate propagation failures.

J.9. Kuramoto-Sivashinsky (KS) Equations

We used three additional experiments on the Kuramoto-Sivashinsky (KS) Equations (one for a regular relatively simple
case and the remaining two exhibiting chaotic behavior). Please note that these equations are particularly more complex,
especially the chaotic cases where a small change in the state of the solution can result in very large errors downstream
in time. Thus, for chaotic domains, the successful propagation of solution from the initial and boundary conditions is
critical to guarantee convergence. We would also like to highlight that the computational cost of these experiments are
significantly higher. We used the exact same hyper-parameter settings as those provided in CPINN except the sample size,
which was varied from 128 to 2048 in the KS-regular case, and the number of training iterations, which was kept as 300k in
our proposed approaches while CPINN was allowed to use about 1 M maximum number of iterations with early stopping.
Our method on average takes 50-60% less time than CPINN because of the significantly smaller number of iterations.

Table 6 compares the performance of CPINN, R3, and Causal R3 on the three KS-Equations cases as was used in the original
CPINN paper. Please note that for these experiments, we used the exact same hyper-parameter settings as the original
CPINN, thus a large number of collocation points were used (2048 for the regular case and 8192 for the two chaotic regimes
for each time-window). We can observe that on the regular case, R3 sampling performs similarly to CPINN, while Causal
R3 is significantly better than both. However, in the first chaotic case, CPINN is slightly better than both R3 sampling
and Causal R3. Finally, in the much more chaotic regime for the KS-Equation (extended case), we find that all of the
methods struggle to obtain a high fidelity solution of the field. However, R3 sampling and Causal R3 are somewhat better
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Figure 17. Demonstrating the propagation of information from the initial/boundary points to the interior points for R3 Sampling on
Convection Equation(β = 50)

than CPINNs. Hence, we can comment that R3 sampling and Causal R3 have comparable performance to CPINN on their
benchmark settings. Additional visualizations of the solutions of comparative methods on the three KS equations cases are
provided in Figures 22, 23, and 24.

J.10. Additional Discussion and Visualization for the Eikonal Equation

We chose to solve 2D Eikonal Equations for complex arbitrary surface geometries as they represent particularly hard PDE
problems that are susceptible to PINN failure modes. In these problems, we are given the zero contours of the equation
on the boundaries (representing the outline of the 2D object), which can take arbitrary shapes. The goal is to correctly
propagate the boundary conditions to obtain the unique target solution where the interior is negative and the exterior is
positive. Here, any small error in propagation from the boundaries can lead to cascading errors such that a large segment of
the predicted field can have opposite signs compared to the ground-truth, even though their PDE residuals are close to 0.
Since R3 sampling is explicitly designed to break propagation barriers and thus enable easy transmission of the solution
from the boundary to the interior/exterior points, we can see that it shows significantly better performance. On the other
hand, PINN (fixed) and PINN (dynamic) struggle to converge to the correct solution especially for complex geometries
(e.g., the ‘gear’) because of the inherent challenge in sampling an adequate number of points from arbitrary shaped object
boundaries exhibiting highly imbalanced residuals.

In Figure 25, we show the evolution of the solutions of comparative methods for the ‘gear’ case over iterations. We can see
that R3 sampling is able to resolve the high residual regions better than the baselines, and thus encounter less incorrect “sign
flips” compared to the ground-truth, even in the early iterations of PINN training.
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Figure 18. Demonstrating the propagation of information from the initial/boundary points to the interior points for Causal R3 on Convection
Equation(β = 50)

K. Optimization Characteristics of R3 Sampling on Test Optimization Functions
In this section, we demonstrate the ability of our proposed R3 Sampling Algorithm to find global minimas on various test
optimization functions. We will also provide other characterizations of our proposed R3 Sampling algorithm.

K.1. Auckley Function

The two-dimensional form of the Auckley function has multiple local maximas in the near-flat region of the function and
one large peak at the center.

f(x) = aexp

(
− b

√√√√1

d

d∑
i=1

x2
i

)
+ exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1) (32)

K.2. Bohachevsky Function

The two-dimensional form of the Bohachevsky function is a bowl shaped function having one global maxima.
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Figure 19. Demonstrating the dynamic changes in the collocation points for RAR-G on Convection Equation(β = 50)

f(x, y) = −x2 − 2y2 + 0.3 cos(3πx) + 0.4cos(4πy)− 0.7 (33)

K.3. Drop-Wave Function

The two-dimensional form of the Drop-Wave function which is multimodal and highly complex.

f(x, y) =
1 + cos(12

√
x2 + y2)

0.5(x2 + y2) + 2
(34)

K.4. Egg-Holder Function

The two-dimensional form of the Egg-Holder function is highly complex function that is difficult to optimize because of the
presence of multiple local maximas.

f(x, y) = (y + 47) sin(

√
|y + x

2
+ 47|) + x sin(

√
|x− (y + 47)|) (35)
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Figure 20. Demonstrating the dynamic changes in the collocation points for RAD on Convection Equation(β = 50)

K.5. Holder-Table Function

The two-dimensional form of the Holder-Table function has many local maximas, but has 4 global maximas at the four
corners.

f(x, y) = | sin(x) cos(y) exp
(
|1−

√
x2 + y2

π
|
)
| (36)

K.6. Bukin Function

The two-dimensional form of the Bukin function has many local maximas, all of which lie on a ridge.

f(x, y) = −100
√
|y − 0.01x2| − 0.01|x+ 10| (37)

K.7. Michalewicz Function

The two-dimensional form of the Michalewicz function has multiple ridges and valleys which are very steep.

f(x) =

d∑
i=1

sin(xi) sin
2m

(
ix2

i

π

)
(38)
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Figure 21. Demonstrating the dynamic changes in the collocation points for RAR-D on Convection Equation(β = 50)

Table 6. Relative L2 errors (in %) of CausalPINN, R3 sampling and Causal R3 over the three different KS-Equation Benchmarks (Wang
et al., 2022b).

CausalPINN
R3

(ours)

Causal R3

(ours)

Regular 2.120% 3.740% 0.761%

Chaotic 3.272% 6.924% 7.630%

Chaotic - Extended 52.66% 29.26% 33.50%
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Figure 22. Visualization of the R3 sampling, Causal R3 and CausalPINN on KS-Equation (Regular Case).
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Figure 23. Visualization of the R3, Causal R3 and CausalPINN on KS-Equation (Chaotic Case).
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Figure 24. Visualization of the R3, Causal R3 and CausalPINN on KS-Equation (Extended Chaotic Case).
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Figure 25. The predicted solutions of Eikonal equation (Figure 10) at different iterations during training.
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Figure 26. Surface Plot of the 2-D Auckley Function

Figure 27. Demonstrating the evolution of the randomly initialized points while optimizing the Auckley function. The red triangles
represent the re-sampled population at that epoch, and the blue dots represent the retained population at that epoch. The contour function
of the objective function is shown in the background.
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Figure 28. Illustrating the dynamic behavior of the R3 Sampling algorithm on Auckley Function using the L2 Physics-informed Loss
computed on the retained and re-sampled populations. The horizontal lines represent the Lp Physics-informed Loss on a dense set of
uniformly sampled collocation points (where p = 2, 4, 6,∞).
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Figure 29. Demonstrating the dynamic evolution of the retained population size over epochs on the Auckley Function.

Figure 30. Surface Plot of the 2-D Bohachevsky Function

Figure 31. Demonstrating the evolution of the randomly initialized points while optimizing the Bohachevsky function. The red triangles
represent the re-sampled population at that epoch, and the blue dots represent the retained population at that epoch. The contour function
of the objective function is shown in the background.
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Figure 32. Illustrating the dynamic behavior of the R3 Sampling algorithm on Bohachevsky Function using the L2 Physics-informed Loss
computed on the retained and re-sampled populations. The horizontal lines represent the Lp Physics-informed Loss on a dense set of
uniformly sampled collocation points (where p = 2, 4, 6,∞).
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Figure 33. Demonstrating the dynamic evolution of the retained population size over epochs on the Bohachevsky Function.

Figure 34. Surface Plot of the 2-D Drop-Wave Function
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Figure 35. Demonstrating the evolution of the randomly initialized points while optimizing the Drop-Wave function. The red triangles
represent the re-sampled population at that epoch, and the blue dots represent the retained population at that epoch. The contour function
of the objective function is shown in the background.
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Figure 36. Illustrating the dynamic behavior of the R3 Sampling algorithm on Drop-Wave Function using the L2 Physics-informed Loss
computed on the retained and re-sampled populations. The horizontal lines represent the Lp Physics-informed Loss on a dense set of
uniformly sampled collocation points (where p = 2, 4, 6,∞).
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Figure 37. Demonstrating the dynamic evolution of the retained population size over epochs on the Drop-Wave Function.
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Figure 38. Surface Plot of the 2-D Egg-Holder Function

Figure 39. Demonstrating the evolution of the randomly initialized points while optimizing the Egg-Holder function. The red triangles
represent the re-sampled population at that epoch, and the blue dots represent the retained population at that epoch. The contour function
of the objective function is shown in the background.
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Figure 40. Illustrating the dynamic behavior of the R3 Sampling algorithm on Egg-Holder Function using the L2 Physics-informed Loss
computed on the retained and re-sampled populations. The horizontal lines represent the Lp Physics-informed Loss on a dense set of
uniformly sampled collocation points (where p = 2, 4, 6,∞).
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Figure 41. Demonstrating the dynamic evolution of the retained population size over epochs on the Egg-Holder Function.

Figure 42. Surface Plot of the 2-D Holder-Table Function

Figure 43. Demonstrating the evolution of the randomly initialized points while optimizing the Holder-Table function. The red triangles
represent the re-sampled population at that epoch, and the blue dots represent the retained population at that epoch. The contour function
of the objective function is shown in the background.
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Figure 44. Illustrating the dynamic behavior of the R3 Sampling algorithm on Holder-Table Function using the L2 Physics-informed Loss
computed on the retained and re-sampled populations. The horizontal lines represent the Lp Physics-informed Loss on a dense set of
uniformly sampled collocation points (where p = 2, 4, 6,∞).
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Figure 45. Demonstrating the dynamic evolution of the retained population size over epochs on the Holder-Table Function.

Figure 46. Surface Plot of the 2-D Bukin Function
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Figure 47. Demonstrating the evolution of the randomly initialized points while optimizing the Bukin function. The red triangles represent
the re-sampled population at that epoch, and the blue dots represent the retained population at that epoch. The contour function of the
objective function is shown in the background.
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Figure 48. Illustrating the dynamic behavior of the R3 Sampling algorithm on Bukin Function using the L2 Physics-informed Loss
computed on the retained and re-sampled populations. The horizontal lines represent the Lp Physics-informed Loss on a dense set of
uniformly sampled collocation points (where p = 2, 4, 6,∞).
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Figure 49. Demonstrating the dynamic evolution of the retained population size over epochs on the Bukin Function.
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Figure 50. Surface Plot of the 2-D Michalewicz Function

Figure 51. Demonstrating the evolution of the randomly initialized points while optimizing the Michalewicz function. The red triangles
represent the re-sampled population at that epoch, and the blue dots represent the retained population at that epoch. The contour function
of the objective function is shown in the background.
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Figure 52. Illustrating the dynamic behavior of the R3 Sampling algorithm on Michalewicz Function using the L2 Physics-informed Loss
computed on the retained and re-sampled populations. The horizontal lines represent the Lp Physics-informed Loss on a dense set of
uniformly sampled collocation points (where p = 2, 4, 6,∞).
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Figure 53. Demonstrating the dynamic evolution of the retained population size over epochs on the Michalewicz Function.
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