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Abstract

Randomized ensemble classifiers (RECs), where
one classifier is randomly selected during infer-
ence, have emerged as an attractive alternative to
traditional ensembling methods for realizing ad-
versarially robust classifiers with limited compute
requirements. However, recent works have shown
that existing methods for constructing RECs are
more vulnerable than initially claimed, casting
major doubts on their efficacy and prompting fun-
damental questions such as: “When are RECs
useful?”, “What are their limits?”, and “How do
we train them?”. In this work, we first demystify
RECs as we derive fundamental results regard-
ing their theoretical limits, necessary and suffi-
cient conditions for them to be useful, and more.
Leveraging this new understanding, we propose
a new boosting algorithm (BARRE) for training
robust RECs, and empirically demonstrate its ef-
fectiveness at defending against strong ℓ∞ norm-
bounded adversaries across various network archi-
tectures and datasets. Our code can be found at
https://github.com/hsndbk4/BARRE.

1. Introduction
Defending deep networks against adversarial perturbations
(Szegedy et al., 2013; Biggio et al., 2013; Goodfellow
et al., 2014) remains a difficult task. Several proposed
defenses (Papernot et al., 2016; Pang et al., 2019; Yang
et al., 2019; Sen et al., 2019; Pinot et al., 2020) have been
subsequently “broken” by stronger adversaries (Carlini &
Wagner, 2017; Athalye et al., 2018; Tramèr et al., 2020;
Dbouk & Shanbhag, 2022), whereas strong defenses (Cisse
et al., 2017; Tramèr et al., 2018; Cohen et al., 2019), such
as adversarial training (AT) (Goodfellow et al., 2014; Zhang
et al., 2019; Madry et al., 2018), achieve unsatisfactory
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Figure 1. The efficacy of employing randomized ensembles (⋆) for
achieving robust and efficient inference compared to AT (•) and
deterministic ensembling MRBoost (♦) on CIFAR-10. Robustness
is measured using the standard ℓ∞ norm-bounded adversary with
radius ϵ = 8/255.

levels of robustness1.

A popular belief in the adversarial community is that single
model defenses, e.g., AT, lack the capacity to defend against
all possible perturbations, and that constructing an ensem-
ble of diverse, often smaller, models should be more cost-
effective (Pang et al., 2019; Kariyappa & Qureshi, 2019;
Pinot et al., 2020; Yang et al., 2020b; 2021; Abernethy et al.,
2021; Zhang et al., 2022). Indeed, recent deterministic ro-
bust ensemble methods, such as MRBoost (Zhang et al.,
2022), have been successful at achieving higher robustness
compared to AT baselines using the same network architec-
ture, at the expense of 4× more compute (see Fig. 1). In
fact, Fig 1 indicates that one can simply adversarially train
larger deep nets that can match the robustness and compute
requirements of MRBoost models, rendering state-of-the-art
boosting techniques obsolete for designing classifiers that
are both robust and efficient.

In contrast, randomized ensembles, where one classifier is
randomly selected during inference, offer a unique way of
ensembling that can operate with limited compute resources.

1when compared to the high clean accuracy achieved in a non-
adversarial setting
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However, the recent work of Dbouk & Shanbhag (2022)
has cast major concerns regarding their efficacy, as they
successfully compromised the state-of-the-art randomized
defense of Pinot et al. (2020) by large margins using their
proposed ARC adversary. Furthermore, there is an appar-
ent lack of proper theory on the robustness of randomized
ensembles, as fundamental questions such as: “when does
randomization help?” or “how to find the optimal sampling
probability?” remain unanswered.

Contributions. In this work, we first provide a theoreti-
cal framework for analyzing the adversarial robustness of
randomized ensmeble classifiers (RECs). Our theoretical
results enable us to better understand randomized ensem-
bles, revealing interesting and useful answers regarding their
limits, necessary and sufficient conditions for them to be
useful, and efficient methods for finding the optimal sam-
pling probability. Next, guided by our threoretical results,
we propose BARRE, a boosting algorithm to construct ran-
domized ensemble classifiers that achieve robustness on par
with that of AT and MRBoost but at a fraction of their com-
putational cost (see Fig. 1). We validate the effectiveness
of BARRE via comprehensive experiments across multiple
network architectures and datasets.

2. Background and Related Work
Adversarial Robustness. Deep neural networks are known
to be vulnerable to adversarial perturbations (Szegedy et al.,
2013; Biggio et al., 2013). In an attempt to robustify deep
nets, several defense methods have been proposed (Katz
et al., 2017; Madry et al., 2018; Cisse et al., 2017; Zhang
et al., 2019; Yang et al., 2020b; Zhang et al., 2022; Tjeng
et al., 2018; Xiao et al., 2018; Raghunathan et al., 2018;
Yang et al., 2020a). While some heuristic-based empirical
defenses have later been broken by better adversaries (Car-
lini & Wagner, 2017; Athalye et al., 2018; Tramèr et al.,
2020), strong defenses, such as adversarial training (AT)
(Goodfellow et al., 2014; Madry et al., 2018; Zhang et al.,
2019), remain unbroken but achieve unsatisfactory levels of
robustness.

Ensemble Defenses. Building on the massive success of
classic ensemble methods in machine learning (Breiman,
1996; Freund & Schapire, 1997; Dietterich, 2000), robust
ensemble methods (Kariyappa & Qureshi, 2019; Pang et al.,
2019; Sen et al., 2019; Yang et al., 2020b; 2021; Abernethy
et al., 2021; Zhang et al., 2022) have emerged as a natural
solution to compensate for the unsatisfactory performance
of existing single-model defenses, such as AT. Earlier works
(Kariyappa & Qureshi, 2019; Pang et al., 2019; Sen et al.,
2019) relied on heuristic-based techniques for inducing di-
versity within the ensembles, and have been subsequently
shown to be weak (Tramèr et al., 2020; Athalye et al., 2018).
Recent methods, such as RobBoost (Abernethy et al., 2021)

and MRBoost (Zhang et al., 2022), formulate the design
of robust ensembles from a margin boosting perspective,
achieving state-of-the-art robustness for deterministic en-
semble methods. This achievement comes at a massive
(4−5×) increase in compute requirements, as each inference
requires executing all members of the ensemble, deeming
them unsuitable for safety-critical edge applications (Guo
et al., 2020; Sehwag et al., 2020; Dbouk & Shanbhag, 2021).
Randomized ensembles (Pinot et al., 2020), where one clas-
sifier is chosen randomly during inference, offer a more
compute-efficient alternative. However, this defense has
been recently broken independently by Dbouk & Shanbhag
(2022) and Zhang et al. (2022). In this work, we develop
theoretical results to delineate scenarios when randomized
ensembles can be effective at defending against adversarial
perturbations, and propose a boosting algorithm for training
such ensembles to achieve high levels of robustness with
limited compute requirements.

Randomized Defenses. A randomized defense, where the
defender adopts a random strategy for classification, is intu-
itive: if the defender does not know what is the exact policy
used for a certain input, then one expects that the adversary
will struggle on average to fool such a defense. Theoreti-
cally, Bayesian Neural Nets (BNNs) (Neal, 2012) have been
shown to be robust (in the large data limit) to gradient-based
attacks (Carbone et al., 2020), whereas Pinot et al. (2020)
has shown that a randomized ensemble classifier (REC)
with higher robustness exists for every deterministic clas-
sifier. However, realizing strong and practical randomized
defenses remains elusive as BNNs are too computationally
prohibitive and existing methods (Xie et al., 2018; Dhillon
et al., 2018; Yang et al., 2019) often end up being com-
promised by adaptive attacks (Athalye et al., 2018; Tramèr
et al., 2020). Even BAT, the proposed method of Pinot et al.
(2020) for robust RECs, was recently broken by Zhang et
al. (2022) and Dbouk & Shanbhag (2022). In contrast, our
work first demystifies randomized ensembles as we derive
fundamental results regarding the limit of RECs, necessary
and sufficient conditions for them to be useful, and efficient
methods for finding the optimal sampling probability. Em-
pirically, our proposed boosting algorithm (BARRE) can
successfully train RECs, to achieve both robust and efficient
classification.

3. Preliminaries & Problem Setup
Notation. Let F = {f1, ..., fM} be a collection of M arbi-
trary C-ary classifiers fi : Rd → [C]. A soft classifier, de-
noted by f̃ : Rd → RC , can be used to construct a hard clas-
sifier f(x) = argmaxc∈[C][f̃(x)]c, where [v]c = vc. We
use the notation f(·|θ) to represent parametric classifiers
where f is a fixed mapping and θ ∈ Θ represents the learn-
able parameters. Let ∆M = {v ∈ [0, 1]M :

∑
vi = 1} be
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the probability simplex of dimension M −1. Given a proba-
bility vector α ∈ ∆M , we construct a randomized ensemble
classifier (REC) fα such that fα(x) = fi(x) with probabil-
ity αi. In contrast, traditional ensembling methods construct
a deterministic ensemble classifier (DEC) using the soft clas-
sifiers as follows2: f̄(x) = argmaxc∈[C][

∑M
i=1 f̃i(x)]c.

Denote z = (x, y) ∈ Rd × [C] as a feature-label pair that
follows some unknown distribution D. Let S ⊂ Rd be a
closed and bounded set representing the attacker’s perturba-
tion set. A typical choice of S in the adversarial community
is the ℓp ball of radius ϵ: Bp(ϵ) = {δ ∈ Rd : ∥δ∥p ≤ ϵ}.
For a classifier fi ∈ F and data-point z = (x, y), define
Si(z) = {δ ∈ S : fi(x + δ) ̸= y} to be the set of valid
adversarial perturbations to fi at z.
Definition 1. For any (potentially random) classifier f , de-
fine the adversarial risk η:

η(f) = Ez∼D

[
max
δ∈S

Ef [1 {f(x+ δ) ̸= y}]
]

(1)

The adversarial risk measures the robustness of f on average
in the presence of an adversary (attacker) restricted to the
set S. For the special case of S = {0}, the adversarial risk
reduces to the standard risk of f :

η0(f) = Ez∼D [Ef [1 {f(x) ̸= y}]] = P {f(x) ̸= y} (2)

The more commonly reported robust accuracy of f , i.e.,
accuracy against adversarially perturbed inputs, can be di-
rectly computed from η(f). The same can be said for the
clean accuracy and η0(f).

When working with an REC fα, the adversarial risk can be
expressed as:

η(fα) = Ez∼D

[
max
δ∈S

M∑
i=1

αi1 {fi(x+ δ) ̸= y}

]
(3)

where we use the notation η(fα) ≡ η(α) whenever the
collection F is fixed. Let {ei}Mi=1 ⊂ {0, 1}M be the stan-
dard basis vectors of RM , then we employ the notation
η(fi) = η(fei) ≡ η(ei) = ηi.

4. The Adversarial Risk of a Randomized
Ensemble Classifier

In this section, we develop our main theoretical findings
regarding the adversarial robustness of any randomized en-
semble classifier. Detailed proofs of all statements and
theorems can be found in Appendix A.

4.1. Properties of η

We start with the following statement:

2the normalizing constant 1
M

does not affect the classifier out-
put

Proposition 1. For any F = {fi}Mi=1, perturbation set
S ⊂ Rd, and data distribution D, the adversarial risk η is
a piece-wise linear convex function ∀α ∈ ∆M . Specifically,
∃K ∈ N configurations Uk ⊆ {0, 1}M ∀k ∈ [K] and p.m.f.
p ∈ ∆K such that:

η(α) =

K∑
k=1

(
pk · max

u∈Uk

{
u⊤α

})
(4)

Before we explain the intuition behind Proposition 1, we
first make the following observations:

Generality. Proposition 1 makes no assumptions about the
classifiers F , i.e., it applies even to the enigmatic deep nets.
While the majority of theoretical results in the literature have
been restricted to ℓp-bounded adversaries, Proposition 1
holds for any closed and bounded perturbation set S. This
is crucial, as real-world attacks are often not restricted to ℓp
balls around the input (Liu et al., 2018; Duan et al., 2020).
This generality is further inherited by all of our results, as
they build on Proposition 1.

Analytic Form. Proposition 1 allows us to re-write the
adversarial risk in (3) using the analytic form in (4), which is
much simpler to analyze and work with. In fact, the analytic
form in (4) enables us to derive our main theoretical results
in Sections 4.2 & 4.3, which include tight fundamental
bounds on η.

Optimal Sampling. The convexity of η implies that any
local minimum α∗ is also a global minimum. The probabil-
ity simplex is a closed convex set, thus a global minimum,
which need not be unique, is always achievable. Since η
is piece-wise linear, then there always exists a finite set of
candidate solutions for α∗. For M ≤ 3, we efficiently enu-
merate all candidates in Section 4.2, eliminating the need
for any sophisticated search method. For larger M however,
enumeration becomes intractable. In Section 4.4, we con-
struct an optimal algorithm for finding α∗ by leveraging
the classic sub-gradient method (Shor, 2012) for optimizing
sub-differentiable functions.

Intuition. Consider a data-point z ∈ Rd × [C], then for any
δ ∈ S and α ∈ ∆M we have the per-sample risk:

r (z, δ,α) =

M∑
i=1

αi1 {fi(x+ δ) ̸= y} = u⊤α (5)

where u ∈ {0, 1}M such that ui = 1 if and only if δ is
adversarial to fi at z. Since u is independent of α, we thus
obtain a many-to-one mapping from δ ∈ S to u ∈ {0, 1}M .
Therefore, for any α and z, we can always decompose the
perturbation set S, i.e., S = G1 ∪ ... ∪ Gn, into n ≤ 2M

subsets, such that: ∀δ ∈ Gj : r (z, δ,α) = α⊤uj for some
binary vector uj independent of α. Let U = {uj}nj=1 be
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perturbation 
set 

decomposition 

captured by configuration 

shaded regions 
are misclassified 

Figure 2. Illustration of the equivalence in (6) using an example of
three classifiers in R2. The shaded areas represent regions in the
attacker-restricted input space where each classifier makes an error.
All classifiers correctly classify x. The set U uniquely captures the
interaction between z and f1, f2, & f3 inside S.

the collection of these vectors, then we can write:

max
δ∈S

r (z, δ,α) = max
δ∈G1∪...∪Gn

r (z, δ,α)

= max
j∈[n]

{
max
δ∈Gj

r (z, δ,α)

}
= max

u∈U

{
u⊤α

} (6)

The main idea behind the equivalence in (6) is that we
can represent any configuration of classifiers, data-point
and perturbation set using a unique set of binary vectors
U . For example, Fig. 2 pictorially depicts this equivalence
using a case of M = 3 classifiers in R2 with S = B2(ϵ).
This equivalence is the key behind Proposition 1, since the
point-wise max term in (6) is piece-wise linear and convex
∀α ∈ ∆M . Finally, Proposition 1 holds due to the pigeon-
hole principle and the linearity of expectation.

4.2. Special Case of Two Classifiers

With two classifiers only, we can leverage the analytic form
of η in (4) and enumerate all possible classifiers/data-point
configurations around S by enumerating all configurations
Uk ⊆ {0, 1}2. Specifically, Fig. 3 visualizes all K = 5 such
unique configurations, which allows us to write ∀α ∈ ∆2:

η(α) = p1·max{α1, α2}+p2·1+p3·α1+p4·α2+p5·0 (7)

where p ∈ ∆5 is the p.m.f. of “binning” any data-point z
into any of the five configurations, under the data distribu-
tion z ∼ D. Using (7), we obtain the following result:
Theorem 1. For any two classifiers f1 and f2 with individ-
ual adversarial risks η1 and η2, respectively, subject to a
perturbation set S ⊂ Rd and data distribution D, if:

P {z ∈ R1} > |η1 − η2| (8)

where:

R1 = {z ∈ Rd×[C] : S1(z),S2(z) ̸= ∅,S1(z)∩S2(z) = ∅}
(9)

then the optimal sampling probability α∗ = [1/2 1/2]
⊤

uniquely minimizes η(α) resulting in η(α∗) =
1
2 (η1 + η2 − P {z ∈ R1}). Otherwise, α∗ ∈ {e1, e2}
minimizes η(α), where eis are the standard basis vectors
of R2.

Theorem 1 provides us with a complete description of how
randomized ensembles operate when M = 2. We discuss
its implications below:

Interpretation. Theorem 1 states that randomization is
guaranteed to help when the condition in (8) is satisfied,
i.e., when the probability of data-points z (P {z ∈ R1}) for
which it is possible to find adversarial perturbations that can
fool f1 or f2 but not both (see configuration 1 in Fig. 3),
is greater than the absolute difference (|η1 − η2|) of the
individual classifiers’ adversarial risks. Consequently, if
the adversarial risks of the classifiers are heavily skewed,
i.e., |η1 − η2| is large, then randomization is less likely to
help, since condition (8) becomes harder to satisfy. This,
in fact, is the case for BAT defense (Pinot et al., 2020)
since it generates two classifiers with η1 < 1 and η2 = 1.
Theorem 1 indicates that adversarial defenses should strive
to achieve η1 ≈ η2 for randomization to be effective. In
practice, it is very difficult to make P {z ∈ R1} very large
compared to η1 and η2 due to transferability of adversarial
perturbations.

Optimality Condition. In fact, the condition in (8) is ac-
tually a necessary and sufficient condition for η(α∗) <
min{η1, η2}. That is, a randomized ensemble of f1 and f2
is guaranteed to achieve smaller adversarial risk than either
f1 of f2 if and only if (8) holds. This also implies that it
is impossible to have a nontrivial3 unique global minimizer
other than α∗ = [1/2 1/2]

⊤, which provides further theoreti-
cal justification for why the BAT defense (Pinot et al., 2020)
does not work, where α∗ = [0.9 0.1]

⊤ was claimed to be a
unique optimum (obtained via sweeping α).

Theoretical Limit. From Theorem 1, we can directly obtain
a tight bound on the adversarial risk:
Corollary 1. For any two classifiers f1 and f2 with individ-
ual adversarial risks η1 and η2, respectively, perturbation
set S, and data distribution D:

min
α∈∆2

η(α) ≥ min

{
1

2
max{η1, η2},min{η1, η2}

}
(10)

In other words, it is impossible for a REC with M = 2
classifiers to achieve a risk smaller than the RHS in (10). In
the next section, we derive a more general version of this
bound for arbitrary M .

Simplified Search. Theorem 1 eliminates the need for
sweeping α to find the optimal sampling probability α∗

3that is different than e1 or e2
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configuration 1 configuration 2 configuration 3 configuration 4 configuration 5

Figure 3. Enumeration of all K = 5 unique configurations with two classifiers and a data-point around a set S . Note that since αi ≥ 0 ∀i,
the 0 vector is redundant in Uk for k ∈ [4], which explains why K = 5 and not more.

when working with M = 2 classifiers as done in Pinot
et al. (2020) and Dbouk & Shanbhag (2022). We only
need to evaluate η

(
[1/2 1/2]

⊤
)

and check if it is smaller
than min{η1, η2} to choose our optimal sampling proba-
bility. Thus, the defender’s optimal strategy is to either
sample between the classifiers uniformly at random or deter-
minstically choose one of the classifiers. This observation
might sound counter-intuitive at first, as one would expect a
more “nuanced” approached to sampling based on the clas-
sifiers’ relative performances. Interestingly, Vorobeychik &
Li (2014) derive a similar result for M = 2 for a different
problem of an adversary attempting to reverse engineer the
defender’s classifier via queries.

Extension to Three Classifiers. In fact, a simplified search
strategy for the special case of M = 3 can also be derived
in a similar fashion, as shown below:

Theorem 2. Define A ⊂ ∆3 to be the set of the following
vectors:

A =


10
0

 ,

01
0

 ,

00
1

 ,

1/2
1/2
0

 ,

 0
1/2
1/2

 ,

1/2
0
1/2

 ,

1/2
1/4
1/4

 ,

1/4
1/2
1/4

 ,

1/4
1/4
1/2

 ,

1/3
1/3
1/3


(11)

Then for any three classifiers f1, f2, and f3, perturbation
set S ⊂ Rd, and data distribution D, we have:

min
α∈∆3

η(α) = min
α∈A

η(α) (12)

The set A is optimal, in the sense that there exist no smaller
set A′ such that (12) holds.

4.3. Tight Fundamental Bounds

A fundamental question remains to be answered: given
an ensemble F of M classifiers with adversarial risks
η1, ..., ηM , what is the tightest bound we can provide for the

adversarial risk η(α) of a randomized ensemble constructed
from F? The following theorem answers this question:

Theorem 3. For a perturbation set S, data distribution D,
and collection of M classifiers F with individual adversar-
ial risks ηi (i ∈ [M ]) such that 0 < η1 ≤ ... ≤ ηM ≤ 1, we
have ∀α ∈ ∆M :

min
k∈[M ]

{ηk
k

}
≤ η(α) ≤ ηM (13)

Both bounds are tight in the sense that if all that is known
about the setup F , D, and S is {ηi}Mi=1, then there exist no
tighter bounds. Furthermore, the upper bound is always met
if α = eM , and the lower bound (if achievable) can be met
if α =

[
1
m ... 1

m 0 ... 0
]⊤

, where m = argmink∈[M ]{
ηk

k }.

Upper bound: The upper bound in (13) holds due to
the convexity of η (Proposition 1) and the fact ∆M =
H
(
{ei}Mi=1

)
, where H(X ) is the convex hull of the set

of points X .

Implications of upper bound: Intuitively, we expect that a
randomized ensemble cannot be worse than the worst per-
forming member (in this case fM ). A direct implication
of this is that if all the members have similar robustness
ηi ≈ ηj ∀i, j, then randomized ensembling is guaranteed
to either improve or achieve the same robustness. In con-
trast, deterministic ensemble methods that average logits
(Zhang et al., 2022; Abernethy et al., 2021; Kariyappa &
Qureshi, 2019) do not even satisfy this upper bound (see
Appendix A.7). In other words, there are no worst-case per-
formance guarantees with deterministic ensembling, even if
all the classifiers are robust. Note that this does not imply
that deterministic ensembling methods are inherently more
vulnerable.

Lower bound: The main idea behind the proof of the lower

5
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bound in (13) is to show that ∀α ∈ ∆M :

η(α) ≥
M∑
i=1

(
(ηi − ηi−1) · max

j∈{i,...,M}
{αj}

)
= h(α) ≥ min

α∈∆M

h(α) = h(α∗) =
ηm
m

(14)

where η0
.
= 0, m = argmink∈[M ]{ηk/k}, and h can be in-

terpreted as the adversarial risk of an REC constructed from
an optimal set of classifiers F ′ with the same individual
risks as F . We make the following observations:

Implications of lower bound: The lower bound in (13)
provides us with a fundamental limit on the adversarial
risk of RECs viz., it is impossible for any REC constructed
from M classifiers with sorted risks {ηi}Mi=1 to achieve
an adversarial risk smaller than mink∈[M ]{ηk/k} = ηm/m.
This limit is not always achievable and generalizes the one
in (10) which holds for M = 2. Theorem 3 states that
if the limit is achievable then the corresponding optimal
sampling probability α∗ =

[
1
m ... 1

m 0 ... 0
]⊤

. Note that
this does not imply that the optimal sampling probability is
always equiprobable sampling ∀F!

Additionally, the lower bound in (13) provides guidelines for
robustifying individual classifiers in order for randomized
ensembling to enhance the overall adversarial risk. Given
classifiers f1, ..., fm obtained via any sequential ensemble
training algorithm, a good rule of thumb for the classifier
obtained via the training iteration m+ 1 is to have:

ηm ≤ ηm+1 ≤
(
1 +

1

m

)
ηm (15)

Note that only for m = 1 does (15) become a necessary
condition: If η2 > 2η1, then f1 will always achieve better
risk than an REC of f1 and f2. If a training method gen-
erates classifiers f1, ..., fM with risks: η1 < 1 and ηi = 1
∀i ∈ {2, ...,M}, i.e., only the first classifier is somewhat
robust and the remaining M−1 classifiers are compromised
(such as BAT), the lower bound in (13) reduces to:

η(α) ≥ min

{
η1,

1

M

}
(16)

implying the necessary condition M ≥ ⌈η−1
1 ⌉ for RECs

constructed from F to achieve better risk than f1. Note: the
fact that this condition is violated by Pinot et al. (2020) hints
to the existence of strong attacks that can break it (Zhang
et al., 2022; Dbouk & Shanbhag, 2022).

4.4. Optimal Sampling

In this section, we leverage Proposition 1 to extend the
results in Section 4.2 to provide a theoretically optimal
and efficient solution for computing the optimal sampling
probability (OSP) algorithm (Algorithm 1) for M > 3.

Algorithm 1 The Optimal Sampling Probability (OSP) Al-
gorithm for Randomized Ensembles

1: Input: classifiers F = {fi}Mi=1, perturbation set S,
attack algorithm attack, training set {zj}nj=1, initial
step-size a > 0, and number of iterations T ≥ 1.

2: Output: optimal sampling probability α∗.
3: initialize α(1) ∈ ∆M , ηbest ← 1

4: /∗ we find that α(1) =
[

1
M ... 1

M

]⊤
performs well

5: for t ∈ {1, ..., T} do
6: g← 0, at ← a

t
7: for j ∈ {1, ..., n} do
8: δj ← attack

(
F ,S,α(t), zj

)
9: ∀i ∈ [M ]: gi ← gi + 1 {fi(xj + δj) ̸= yj}

10: end for
11: g← 1

ng ▷ sub-gradient of η(α(t))

12: η(t) ← g⊤α(t) ▷ η(α(t))
13: if η(t) ≤ ηbest then tbest ← t, ηbest ← η(t)

14: /∗ projection-update step
15: α(t+1) ← Π∆M

(
α(t) − atg

)
16: end for
17: return α(tbest)

In practice, we do not know the true data distribution D.
Instead, we are provided a training set z1, ..., zn, assumed
to be sampled i.i.d. from D. Given the training set, and a
fixed collection of classifiers F , we wish to find the optimal
sampling probability:

argmin
α∈∆M

η̂(α) = argmin
α∈∆M

1

n

n∑
j=1

(
max
δ∈S

r(zj , δ,α)

)
(17)

where r is the per-sample risk from (5). Note that the empir-
ical adversarial risk η̂ is also piece-wise linear and convex
in α, and hence all our theoretical results apply naturally.
In order to numerically solve (17), we first require access to
an adversarial attack oracle (attack) for RECs that solves
the internal maximization ∀S,F , z, and α.

Using the oracle attack, Algorithm 1 updates its solution
iteratively given the adversarial error-rate of each classifier
over the training set. The projection operator Π∆M

in Line
(15) of Algorithm 1 ensures that the solution is a valid
p.m.f.. Wang & Carreira-Perpinan (2013) provide a simple
and exact method for computing Π∆M

. Finally, we state the
following result on the optimality of OSP:

Theorem 4. The OSP algorithm output αT satisfies:

0 ≤ η̂(αT )− η̂(α∗)

≤
∥α(1) −α∗∥22 +Ma2

∑T
t=1 t

−2

2a
∑T

t=1 t
−1

−−−−→
T→∞

0
(18)

for all initial conditions α(1) ∈ ∆M , a > 0, where α∗ is a
global minimum.
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Algorithm 2 The Boosting Algorithm for Robust Random-
ized Ensembles (BARRE)

1: Input: Number of classifiers M , perturbation set S,
training set {zj}nj=1, learning rate ρ, mini-batch size B,
number of epochs E, OSP frequency Eo, OSP number
of iterations To.

2: Output: Robust randomized ensemble classifier (F ,α)
3: initialize θ0 ∈ Θ, F ← ∅
4: for m ∈ {1, ...,M} do
5: θm ← θm−1, F ← F ∪ {f(·|θm)}, α ←[

1
m ... 1

m

]⊤
6: for e ∈ {1, ..., E} do
7: for mini-batch {zb}Bb do
8: compute ∀b ∈ [B]: δb ← attack (F ,S,α, zb)
9: update θm via SGD:

θm ← θm−
ρ

B

B∑
b=1

∇θm
l
(
f̃(xb + δb|θm), yb

)
10: end for
11: /∗ update α every Eo epochs
12: if e mod Eo = 0 then
13: α← OSP(F ,S, {zj}nj=1, To)
14: end if
15: end for
16: end for
17: return F ,α

Theorem 4 follows from a direct application of the classic
convergence result of the projected sub-gradient method
for constrained convex minimization (Shor, 2012). The
optimality of OSP relies on the existence of an attack oracle
which may not always exist. However, attack algorithms
such as ARC (Dbouk & Shanbhag, 2022) were found to
yield good results in the common setting of differentiable
classifiers and ℓp-restricted adversaries.

5. A Robust Boosting Algorithm for
Randomized Ensembles

In this section, we leverage our theoretical results in Sec-
tion 4 as we explore designing robust RECs in prac-
tice. Specifically, we propose BARRE: a unified Boosting
Algorithm for Robust Randomized Ensembles described in
Algorithm 2. Given a dataset {zj}nj=1 and an REC attack
algorithm attack, BARRE iteratively trains a set of paramet-
ric classifiers f(·|θ1), ..., f(·|θM ) such that the adversarial
risk of the corresponding REC is minimized. The first it-
eration of BARRE reduces to standard AT (Madry et al.,
2018). Doing so typically guarantees that the first classifier
achieves the lowest adversarial risk and η(α∗) ≤ η1, i.e.,
Theorem 4 ensures the REC is no worse than single model

AT.

In each iteration m ≥ 2, BARRE initializes the m-th clas-
sifier f(·|θm) with θm = θm−1. The training procedure
alternates between updating the parameters θm via SGD
using adversarial samples of the current REC and solving
for the optimal sampling probability α∗ ∈ ∆m via OSP.
Including f(·|θm) in the attack (Line (8)) is crucial, as it
ensures that the robustness of f(·|θm) is not completely
compromised, thereby improving the bounds in Theorem 3.
Note that for iterations m ≤ 3, we replace the OSP proce-
dure in Line (12) with a simplified search over a finite set of
candidate solutions (see Section 4.2).

Furthermore, the rationale behind the sequence of steps in
BARRE can be better understood using Theorem 1 (for the
case of M = 2). Theorem 1 states that the optimal REC ad-
versarial risk would be η(α∗) = 1

2 (η1 + η2 − P {z ∈ R1})
(assuming (8) is met), therefore it is equally important to
minimize both η’s and maximize P {z ∈ R1}. BARRE does
so by initially adversarially training a robust classifier f1
(minimizing η1), then training f2 (initialized from f1 to
minimizes η2) on the adversarial examples of the REC of f1
and f2. Doing so increases P {z ∈ R1} while maintaining
η2 as small as possible.

Table 1. Comparing BARRE with other methods in constructing
robust RECs across network architectures and datasets. All meth-
ods incur the complexity of a single classifier. Robust accuracy is
measured against an ℓ∞ norm-bounded adversary using ARC with
ϵ = 8/255.

NETWORK METHOD SIZE M
CIFAR-10 CIFAR-100

Anat [%] Arob [%] Anat [%] Arob [%]

RESNET-20
(81 MFLOPS)

AT M = 1 73.18 41.99 38.34 17.69

IAT M = 5 73.90 45.77 38.57 19.65
MRBOOST-R M = 5 75.89 46.66 41.69 21.04
BARRE M = 5 76.28 47.35 41.86 21.11

MOBILENETV1
(312 MFLOPS)

AT M = 1 79.01 46.22 51.87 23.45

IAT M = 5 78.89 49.57 51.41 25.74
MRBOOST-R† M = 5 76.70 48.05 50.14 24.76
MRBOOST-R M = 5 78.65 48.91 52.96 25.95
BARRE M = 5 79.55 49.91 52.95 27.53

RESNET-18
(1.1 GFLOPS)

AT M = 1 80.96 48.72 53.85 24.15

IAT M = 4 80.99 51.43 54.30 26.73
MRBOOST-R† M = 4 83.13 51.82 51.06 24.04
MRBOOST-R M = 4 83.13 51.82 52.04 25.65
BARRE M = 4 83.54 52.13 54.63 26.93

† result obtained assuming equiprobable sampling instead of using OSP

5.1. Experimental Results

Setup. Per standard practice, we focus on defending against
ℓ∞ norm-bounded adversaries. We report results for three
network architectures with different complexities: ResNet-
20 (He et al., 2016), MobileNetV1 (Howard et al., 2017),
and ResNet-18, across CIFAR-10 and CIFAR-100 datasets
(Krizhevsky et al., 2009). Computational complexity is mea-
sured via the number of floating-point operations (FLOPs)
required per inference. The discrete nature of RECs allows

7
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Table 2. Comparison between BARRE and MRBoost across different network architectures and ensemble sizes on CIFAR-10. Robust
accuracy is measured against an ℓ∞ norm-bounded adversary using ARC with ϵ = 8/255.

NETWORK METHOD
M = 1 M = 2 M = 3 M = 4

Anat Arob FLOPS Anat Arob FLOPS Anat Arob FLOPS Anat Arob FLOPS

RESNET-20 MRBOOST
73.18 41.99 81 M 75.22 44.68 162 M 76.13 46.09 243 M 76.96 46.34 324 M

BARRE 74.63 44.38 81 M 75.55 45.41 81 M 75.95 46.44 81 M

MOBILENETV1 MRBOOST
79.01 46.22 312 M 80.19 48.58 624 M 79.79 49.39 936 M 80.14 49.36 1.2 B

BARRE 79.58 48.32 312 M 79.53 48.75 312 M 79.54 49.38 312 M

RESNET-18 MRBOOST
80.96 48.7 1.1 B 83.90 50.72 2.2 B 85.07 52.15 3.3 B 85.07 52.15 4.4 B

BARRE 82.66 50.51 1.1 B 83.40 51.57 1.1 B 83.54 52.13 1.1 B

us to compute the adversarial risk (or accuracy) exactly. To
ensure a fair comparison across different baselines, we use
the same hyper-parameter settings detailed in Appendix B.1.

Attack Algorithm. For all our robust evaluations, we
will adopt the state-of-the-art ARC algorithm (Dbouk &
Shanbhag, 2022) which can be used for both RECs and
single models. Specifically, we shall use a slightly modi-
fied version that achieves better results in the equiprobable
sampling setting (see Appendix B.3). For training with
BARRE, we adopt adaptive PGD (Zhang et al., 2022) for
better generalization performance (see Appendix B.4).

Results. We first explore the efficacy of BARRE in con-
structing RECs that are robust against strong adversarial
examples. Since there is an apparent lack of dedicated ran-
domized ensemble defense methods in the literature, ampli-
fied further by the recent vulnerability of BAT (Pinot et al.,
2020), we establish baselines by constructing RECs from
classifiers trained using MRBoost (denoted as MRBoost-R)
and independent adversarial training (IAT). While MRBoost
is dedicated to designing robust deterministic ensemble clas-
sifiers, it seems intuitive to investigate how well does the
same ensemble performs when we randomly sample it. IAT,
on the other hand, simply adversarially trains a set of classi-
fiers using different random initialization. Thus, IAT does
not enforce any explicit diversity within the ensemble, but
maintains the highest individual model robustness. We use
OSP (Algorithm 1) to find the optimal sampling probability
for each REC. All RECs share the same first classifier f1,
which is adversarially trained. Doing so ensures a fair com-
parison, and guarantees that none of the methods are worse
than AT.

Table 1 summarizes the performance of each method across
network architectures and datasets. We note that all meth-
ods provide significant improvement in robustness com-
pared to single model AT, indicating that RECs indeed
provide increased robustness in practice while maintain-
ing compute complexity. Table 1 provides evidence that
the proposed BARRE algorithm outperforms both IAT and
MRBoost. Interestingly, we find that MRBoost ensembles
can be quite ill-suited for RECs. This can be seen for Mo-

bileNetV1, where the MRBoost REC achieves good per-
formance only after completely disregarding the last clas-
sifier, i.e., the optimal sampling probability obtained was
α∗ = [0.25 0.25 0.25 0.25 0]

⊤. This is due to the fact that
MRBoost is meant for deterministic ensembles, and thus
does not guarantee good performance in the randomized set-
ting. In contrast, both IAT and BARRE-trained RECs utilize
all members of the ensemble with non-zero probabilities.

We now compare the robustness and complexity of BARRE-
trained RECs and MRBoost-trained deterministic ensem-
bles. While both methods have the same4 memory foot-
print, the computational complexity of RECs is 1/M of that
of deterministic ensembles for ensemble size M . Table 2
demonstrates that BARRE can successfully construct RECs
that achieve competitive robustness (within ∼ 0.5%) com-
pared to MRBoost-trained deterministic ensembles, across
three different network architectures on CIFAR-10. The
benefit of randomization can be seen for M ≥ 2, as we
obtain massive 2 − 4× savings in compute requirements.
These observations are further corroborated by CIFAR-100
experiments in Appendix B.5.

6. Discussion
We have demonstrated both theoretically and empirically
that robust randomized ensemble classifiers (RECs) are re-
alizable. Theoretically, we derive the robustness limits of
RECs, necessary and sufficient conditions for them to be
useful, and efficient methods for finding the optimal sam-
pling probability. Guided by theory, we propose BARRE, a
new boosting algorithm for constructing robust RECs and
demonstrate its effectiveness at defending against strong ℓ∞
norm-bounded adversaries.

Despite the empirical effectiveness of BARRE, there is a
decent gap between the theoretical limits of RECs and ro-
bustness achieved in practice, leading us to believe there is
much room for improvement in terms of achievable robust-
ness.

4ignoring the negligible memory overhead of storing α
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Tramèr, F., Carlini, N., Brendel, W., and Madry, A. On adap-
tive attacks to adversarial example defenses. Advances in
Neural Information Processing Systems, 33, 2020.
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A. Omitted Proofs and Derivations
A.1. Proof of Proposition 1

We provide the proof of Proposition 1 (restated below):

Proposition (Restated). For any F = {fi}Mi=1, perturbation set S ⊂ Rd, and data distribution D, the adversarial risk η is
a piece-wise linear convex function ∀α ∈ ∆M . Specifically, ∃K ∈ N configurations Uk ⊆ {0, 1}M ∀k ∈ [K] and p.m.f.
p ∈ ∆K such that:

η(α) =

K∑
k=1

(
pk · max

u∈Uk

{
u⊤α

})
(19)

Proof. Consider having one data-point z ∈ Rd × [C], then for any δ ∈ S and α ∈ ∆M we have:

r (z, δ,α) =

M∑
i=1

αi1 {fi(x+ δ) ̸= y} = u⊤α (20)

where u ∈ {0, 1}M such that ui = 1 if and only if δ is adversarial to fi at z. Since u is independent of α, we thus obtain a
many-to-one mapping from δ ∈ S to u ∈ {0, 1}M . Therefore, for any α and z, we can always decompose the perturbation
set S, i.e., S = G1 ∪ ... ∪ Gn, into n ≤ 2M subsets, such that: ∀δ ∈ Gj : r (z, δ,α) = α⊤uj for some binary vector uj

independent of α. Let U = {uj}nj=1 be the collection of these vectors, then we can write:

max
δ∈S

r (z, δ,α) = max
δ∈G1∪...∪Gn

r (z, δ,α) = max
j∈[n]

{
max
δ∈Gj

r (z, δ,α)

}
= max

u∈U

{
u⊤α

}
(21)

The vectors {uj}nj=1 define a unique classifier and data-point configuration that is independent of the sampling probability.
The function maxδ r is thus convex and piece-wise linear in α.

Partitioning the data-point spaceR ⊆ Rd × [C] into K subsetsR = R1 ∪ ... ∪RK such that all the data-points z ∈ Rk

share the same set “configuration” Uk, we obtain:

η(α) = Ez∼D

[
max
δ∈S

M∑
i=1

αi1 {fi(x+ δ) ̸= y}

]

=

∫
z∈R

pz(z) ·max
δ∈S

r (z, δ,α) dz

=

K∑
k=1

∫
z∈Rk

pz(z) ·max
δ∈S

r (z, δ,α) dz

=

K∑
k=1

∫
z∈Rk

pz(z) ·
(
max
u∈Uk

{
u⊤α

})
dz

=

K∑
k=1

(
max
u∈Uk

{
u⊤α

}
·
∫
z∈Rk

pz(z) dz

)

=

K∑
k=1

(
pk · max

u∈Uk

{
u⊤α

})

(22)

where the total size of the partition K is finite (exponential in the size M ) and p ∈ ∆K such that pk = P {z ∈ Rk}. Finally,
η is convex and piece-wise linear in α since the summation of convex and piece-wise linear functions is also convex and
piece-wise linear.

A.2. Proof of Theorem 1

First, we state and prove this useful lemma:
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Lemma 1. Let h : R→ R be a convex piece-wise linear, hence sub-differentiable, function of the form:

h(x) = max{a1x+ b1, a2x+ b2}+ a3x+ b3 (23)

such that a1 < a2. We wish to minimize h over x ∈ [c, d] where c ≤ y ≤ d, and y is the intersection point b2−b1
a1−a2

.

Then, the optimal value x∗ that minimizes h(x) in (23), is given by

x∗ =


y, if a3 ∈ (−a2,−a1)
c, if a3 ≥ −a1
d, if a3 ≤ −a2

Note: only in the first case is the solution unique.

Proof. From constrained convex optimization ((Boyd et al., 2004; Shor, 2012)), we know that x∗ is the minimizer of h over
[c, d] if there exists a sub-gradient g ∈ ∂h(x∗) such that:

g · (x− x∗) ≥ 0 ∀x ∈ [c, d] (24)

For x ̸= y, h is differentiable with∇h = a3 + a1 (if x < y) or∇h = a3 + a2 (if x > y), and for x = y the sub-differential
is given by ∂h(y) = {a3 + βa1 + (1− β)a2 : β ∈ [0, 1]}.

If a3 ∈ (−a2,−a1), then ∃β ∈ [0, 1] such that a3+βa1+(1−β)a2 = 0, and thus 0 ∈ ∂h(y), which is a sufficient condition
for global minimization, thus x∗ = y. Furthermore, x∗ = y is unique, since ∀x ̸= y, we will have ∇h = a1 + a3 < 0 (if
x < y) or∇h = a2 + a3 > 0 (if x > y) which in both cases implies ∀z ̸= y ∃x ∈ [c, d] such that∇h(z)(x− z) < 0.

If a3 /∈ (−a2,−a1), then either a3 ≥ −a1 or a3 ≤ −a2. If a3 ≥ −a1, then a1 + a3 = ∇h(c) ≥ 0, which implies that:
(a1 + a3)(x− c) ≥ 0 ∀x ∈ [c, d], hence x∗ = c. Otherwise if a3 ≤ −a2, then a2 + a3 = ∇h(d) ≤ 0, which implies that:
(a2 + a3)(x− d) ≥ 0 ∀x ∈ [c, d], hence x∗ = d.

We now provide the proof of Theorem 1 (restated below):

Theorem (Restated). For any two classifiers f1 and f2 with individual adversarial risks η1 and η2, respectively, subject to a
perturbation set S ⊂ Rd and data distribution D, if:

P {z ∈ R1} > |η1 − η2| (25)

where:
R1 = {z ∈ Rd × [C] : S1(z) ̸= ∅,S2(z) ̸= ∅,S1(z) ∩ S2(z) = ∅} (26)

then the optimum sampling probability α∗ = (1/2, 1/2)
⊤ uniquely minimizes η(α) resulting in η(α∗) =

1
2 (η1 + η2 − P {z ∈ R1}). Otherwise, α∗ ∈ {e1, e2} minimizes η(α), where eis are the standard basis vectors of
R2.

Proof. We know that, for M = 2, the adversarial risk η can be re-written ∀α ∈ ∆2:

η(α) = p1 ·max{α1, α2}+ p2 · 1 + p3 · α1 + p4 · α2 + p5 · 0 (27)

where pk = P {z ∈ Rk}, and the regions {Rk}Kk=1 partition the input space Rd × [C] as follows:

R1 = {z ∈ Rd × [C] : S1(z) ̸= ∅,S2(z) ̸= ∅,S1(z) ∩ S2(z) = ∅}
R2 = {z ∈ Rd × [C] : S1(z) ∩ S2(z) ̸= ∅}
R3 = {z ∈ Rd × [C] : S1(z) ̸= ∅,S2(z) = ∅}
R4 = {z ∈ Rd × [C] : S1(z) = ∅,S2(z) ̸= ∅}
R5 = {z ∈ Rd × [C] : S1(z) = S2(z) = ∅}

(28)

12
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Using α1 = 1− α2 = α, we have ∀α ∈ [0, 1]:

η
(
(α, 1− α)

⊤
)
= h(α) = p1 ·max{α, 1− α}+ (p3 − p4) · α+ p2 + p4 (29)

where we wish to find α∗ ∈ [0, 1] that minimizes h(α). Applying Lemma 1 with:

a1 = −p1, b1 = p1, a2 = p1, b2 = 0, a3 = p3 − p4, b3 = p2 + p4 (30)

and utilizing η1 = η(e1) = p1 + p2 + p3 and η2 = η(e2) = p1 + p2 + p4, yields the main result.

A.3. Proof of Corollary 1

We provide the proof of Corollary 1 (restated below):

Corollary. For any two classifiers f1 and f2 with individual adversarial risks η1 and η2, respectively, perturbation set S,
and data distribution D:

min
α∈∆2

η(α) = η(α∗) ≥ min

{
1

2
max{η1, η2},min{η1, η2}

}
. (31)

Proof. From Theorem 1, we have that:

η(α∗) = min

{
1

2
(η1 + η2 − P {z ∈ R1}) ,min{η1, η2}

}
(32)

Using the tight upper bound on P {z ∈ R1} ≤ min{η1, η2}, we obtain the main result.

A.4. Proof of Theorem 3

A.4.1. USEFUL LEMMAS

We first state and prove a few useful lemmas that are vital for proving Theorem 3. While some lemmas are trivial and have
been proven elsewhere, we nonetheless state their proofs for completeness.

Lemma 2. Let h : Rn → R be a convex function, and H(X ) ⊂ Rn be the convex hull of X = {x1, ...,xd} where
{xi}di=1 ∈ Rn, then there exists xm ∈ X such that:

max
u∈H(X )

h(u) = h(xm) (33)

Proof. Let u be any arbitrary vector inH(X ), that is ∃α ∈ ∆d:

u =

d∑
i=1

αixi (34)

Let m ∈ [d] such that h(xm) ≥ h(xi) ∀i ∈ [d]. From the convexity of h, we upper bound h(u) as follows:

h(u) = h

(
d∑

i=1

αixi

)
≤

d∑
i=1

αih(xi) ≤
d∑

i=1

αih(xm) = h(xm)

d∑
i=1

αi = h(xm) (35)

Thus, (33) holds for any u ∈ H(X ).

Lemma 3 (Redistribution Lemma). ∀p, q such that 0 ≤ p ≤ q ≤ 1, ∀α ∈ ∆M , and ∀I,J ⊆ [M ] such that I /∈ J /∈ I we
have:

p ·max
i∈I
{αi}+ q ·max

j∈J
{αj} ≥ p · max

i∈I∪J
{αi}+ (q − p) ·max

j∈J
{αj}+ p · max

k∈I∩J
{αk} (36)

13
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Proof.

p ·max
i∈I
{αi}+ q ·max

j∈J
{αj} = p · αi∗ + q · αj∗

= p · (αi∗ + αj∗) + (q − p) · αj∗

(a)
= p ·

(
max
i∈I∪J

{αi}+min{αi∗ , αj∗}
)
+ (q − p) · αj∗

(b)
≥ p · max

i∈I∪J
{αi}+ (q − p) · αj∗ + p · max

k∈I∩J
{αk}

= p · max
i∈I∪J

{αi}+ (q − p) ·max
j∈J
{αj}+ p · max

k∈I∩J
{αk}

(37)

where (a) holds because the maximum over I ∪J is either αi∗ or αj∗ , and (b) holds since the smallest of the two maximizers
cannot be smaller than the maximizer of the smaller set I ∩ J .

Lemma 4. Let {fi}Mi=1 be an arbitrary collection of C-ary classifiers with individual adversarial risks ηi such that
0 < η1 ≤ ... ≤ ηM ≤ 1. For any data distribution D and perturbation set S we have ∀α ∈ ∆M :

η(α) ≥
M∑
i=1

(
(ηi − ηi−1) · max

j∈{i,...,M}
{αj}

)
(38)

where η0
.
= 0.

Proof. From Proposition 1 we know that ∃K ∈ N, p ∈ ∆K , and Uk ⊆ {0, 1}M ∀k ∈ [K] such that:

η(α) =

K∑
k=1

(
pk · max

u∈Uk

{
u⊤α

})
(39)

Let Lk ⊆ [M ] represent the set of classifier indices i1, ..., in that are active in the configuration Uk, that is:

m ∈ Lk ⇐⇒ ∃v ∈ Uk such that vm = 1 (40)

We then lower bound η as follows:

η(α) =

K∑
k=1

(
pk · max

u∈Uk

{
u⊤α

})
≥

K∑
k=1

(
pk ·max

i∈Lk

{αi}
)

= η′(α) (41)

The bound trivially holds, since the sum of positive numbers is always larger than any summand. It is noteworthy to point
out that the RHS quantity η′(α) can be interpreted as the adversarial risk of an auxiliary set of classifiers F ′ with same
individual risks {ηi} such that for any z ∈ Rd × [C], the classifiers have no common adversarial perturbations, i.e.:

M⋂
i=1

S ′i(z) = ∅ (42)

and:
η′i = η′(ei) =

∑
k:i∈Lk

pk = η(ei) = ηi (43)

Assume that the conditions of Lemma 3 are met by two terms in η′, i.e., ∃k1, k2 ∈ [K] such that Lk1
/∈ Lk2

/∈ Lk1
and

pk1
≤ pk2

, then we can apply the bound in Lemma 3 and obtain:

η′(α)−
∑

k∈[K]\{k1,k2}

(
pk ·max

i∈Lk

{αi}
)

= pk1 · max
i∈Lk1

{αi}+ pk2 · max
i∈Lk2

{αi}

≥ pk1
· max
i∈Lk1

∪Lk2

{αi}+ (pk2
− pk1

) · max
j∈Lk2

{αj}+ pk1
· max
k∈Lk1

∩Lk2

{αk}

= η′′(α)−
∑

k∈[K]\{k1,k2}

(
pk ·max

i∈Lk

{αi}
) (44)

14



On the Robustness of Randomized Ensembles to Adversarial Perturbations

where η′′(α) is the modified ensemble adversarial risk. The application of Lemma 3 can be understood as a way to
“re-distribute” the classifiers’ adversarial vulnerabilities while preserving the adversarial risk identities ∀i ∈ [M ]:

ηi = η′(ei) =
∑

k:i∈Lk

pk = η′′(ei) (45)

The main idea of this proof is to keep applying Lemma 3 to the modified ensemble adversarial risks (if possible) to obtain a
better lower bound. The process stops when the conditions are no longer met, and we obtain an adversarial risk h(α):

η′(α) ≥ η′′(α) ≥ .. ≥ h(α) =

L∑
k=1

(
qk ·max

j∈Jk

{αj}
)

(46)

Without loss of generality, we will assume that {Jk} are distinct and qk ̸= 0. Furthermore, since the conditions of Lemma 3
cannot be met by any two sets in {Jk}, we must have (up to a re-ordering of the indices):

JL ⊂ JL−1 ⊂ ... ⊂ J1 ⊆ [M ] (47)

We now make the following observations:

1. Due to (47), we have that L ≤M and for all i ∈ [M ], ∃mi ∈ [L] such that:

ηi =
∑

k:i∈Jk

qk =

mi∑
k=1

qk (48)

2. Since {ηi} are sorted, we get that mi+1 = mi + 1 if ηi < ηi+1 or mi+1 = mi otherwise

3. J1 = [M ] since η1 ̸= 0

4. For any two consecutive sets Jk and Jk+1, we can always find n ≥ 1 indices from [M ] such that Jk = Jk+1 ∪
{i1, ..., in}. The indices i1, ..., in are consecutive, share the same mi (i.e., ηil is the same for all l ∈ [n]), and also
satisfy:

min
l∈[n]
{il} = max

j∈Jk+1

{j}+ 1 (49)

We first prove the lemma for the special case of distinct risks, i.e. ηi < ηi+1 ∀i.

Special Case. The risks are distinct, then we must have L = M , with every two consecutive sets Jk and Jk+1 differing by
one index. Therefore we have Jk = Jk+1 ∪ {k} and JM+1 = ∅. Furthermore, we will get ηi − ηi−1 = qi ∀i ∈ [M ] with
η0 = 0. Thus we can write:

h(α) =

M∑
k=1

(
qk ·max

j∈Jk

{αj}
)

=

M∑
i=1

(
(ηi − ηi−1) · max

j∈{i,...,M}
{αj}

)
(50)

General Case. For the general case we will have L ≤M distinct risks ηi1 < ... < ηiL and M − L repeated risks, where
i1 = 1. Thus we have qk = ηik − ηik−1

∀k ∈ [L], and ηi0 = η0 = 0 by definition. Using observations 3 and 4, we have
that Jk = {uk, ...,M} for some index uk ∈ [M ], with u1 = 1. Thus we have uk+1 − uk − 1 ≥ 0 to be the number of of
consecutive repeated risks equal to ηik . Let {J ′

k} be the M − L index sets missing from {i ∈ [M ] : {i, ...,M}}, then we
have:

h(α) =

L∑
k=1

(
qk ·max

j∈Jk

{αj}
)

=

L∑
k=1

((
ηik+1

− ηik
)
· max
j∈{uk,...,M}

{αj}
)

=

L∑
k=1

((
ηik+1

− ηik
)
· max
j∈{uk,...,M}

{αj}
)
+

M−L∑
k=1

(
0 ·max

j∈J ′
k

{αj}
)

(a)
=

M∑
i=1

(
(ηi − ηi−1) · max

j∈{i,...,M}
{αj}

)
(51)
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where (a) holds due to the fact ηi − ηi−1 = 0 for all the merged M − L terms.

Lemma 5. Given a sequence {γi}Mi=0 such that 0 = γ0 < γ1 ≤ ... ≤ γM ≤ 1, the vector α∗ =
[
1
m ... 1

m 0 ... 0
]⊤ ∈ ∆M

is a solution to the following minimization problem:

min
α∈∆M

h(α) = min
α∈∆M

M∑
i=1

(
(γi − γi−1) · max

j∈{i,...,M}
{αj}

)
=

γm
m

(52)

where γm

m ≤
γi

i , ∀i ∈ [M ].

Proof. We know that h is a piece-wise linear convex function over a closed and convex set, which implies the existence of a
global minimizer.

Define the mapping g : ∆M → [0, 1]M such that ∀i ∈ [M ]:

gi(α) = max
j∈{i,...,M}

{αj} − max
j∈{i+1,...,M}

{αj} (53)

We can re-write the function h via a simple re-arrangement to obtain:

h(α) =

M∑
i=1

γi ·
(

max
j∈{i,...,M}

{αj} − max
j∈{i+1,...,M}

{αj}
)

=

M∑
i=1

γi · gi(α) = γ⊤g(α) (54)

Define the decomposition over the probability simplex: ∆M = ∆1
M ∪∆2

M ∪ ... ∪∆M !
M , where ∀n ∈ [M !], ∃i1, i2, ..., iM

such that ∀α ∈ ∆n
M we have:

αi1 ≥ αi2 ≥ αi3 ≥ ... ≥ αiM (55)

In other words, ∆n
M is the set of all probability vectors that share the same sorting indices. Since we have M ! ways to

arrange M numbers, the size of the decomposition will be M !. We now make the following observations:

1. ∀n, ∆n
M is a convex set. quick proof : Let α,β ∈ ∆n

M , then ∃i1, i2, ..., iM such that αi1 ≥ ... ≥ αiM and βi1 ≥ ... ≥ βiM .
∀λ ∈ [0, 1] we have q = λα + (1 − λ)β ∈ ∆M , since

∑
qi =

∑
λαi + (1 − λ)βi = 1 and qi ≥ 0. We also have

∀l ∈ [M − 1]:
qil = λαil + (1− λ)βil ≥ λαil+1

+ (1− λ)βil+1
= qil+1

(56)

2. ∀n, ∃Pn = {pn
1 , ...,p

n
M} ⊂ ∆n

M such that ∆n
M = H(Pn), whereH(X ) is the convex hull of the set of points X . quick

proof : Let i1, ..., iM be the sorted indices associated with an arbitrary subset ∆n
M . Construct the M probability vectors as

follows: ∀k ∈ [M ] pnk,j =
1
k if j ∈ {i1, ..., ik} else pnk,j = 0. It is easy to verify that pn

k ∈ ∆n
M , since

∑
j p

n
k,j = k/k = 1,

and pnk,i1 ≥ ... ≥ pnk,iM . Since ∆n
M is convex (Claim 1), we thus have that H(Pn) ⊆ ∆n

M . What is left is to show that
∆n

M ⊆ H(Pn), which can be established if we show that ∀α ∈ ∆n
M , ∃λ ∈ ∆M such that α =

∑
k λkp

n
k . We shall prove it

by construction, specifically define:
λk = k · (αik − αik+1

) ≥ 0 (57)

This induces a valid convex coefficient vector λ, since
∑

k λk =
∑

k(αik − αik+1
) · k =

∑
k αik = 1. It is also easy to

verify that αil =
∑

k λkp
n
k,il

for all indices il ∈ [M ], since:

M∑
k=1

λkp
n
k,il

=
M

M
· (αiM − 0) +

M − 1

M − 1
· (αiM−1

− αiM ) + ...+
l

l
· (αil − αil+1

) = αil (58)

by construction of λ and Pn.

3. ∀n, the function g is linear over α ∈ ∆n
M . quick proof : Define the maximum index s(α, i) = argmaxj∈{i,...,M}{αj}. By

definition, α ∈ ∆n
M implies that s(i) = s(α, i) is independent of α. Therefore ∀i ∈ [M ] we have gi(α) = αs(i) − αs(i+1)

with the slight abuse of notation αM+1 = 0. Therefore ∃Gn ∈ {−1, 0, 1}M×M such that g(α) = Gnα for all α ∈ ∆n
M .
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Combining observations 1,2&3, we can re-write the original optimization problem as follows:

min
α∈∆M

h(α) = min
α∈∆1

M∪...∪∆M!
M

γ⊤g(α)

= min
n∈[M !]

{
min

α∈∆n
M

γ⊤g(α)

}
= min

n∈[M !]

{
min

α∈H(Pn)
γ⊤Gnα

}
(a)
= min

n∈[M !]

{
min
p∈Pn

γ⊤Gnp

}
= min

n∈[M !],k∈[M ]
γ⊤g(pn

k )

(59)

where (a) holds because the minimum of a linear function over the convex hull of a set of points X is obtained at one of the
points in X .

Thus, to solve the original optimization problem, we only need to evaluate M ! linear functions with M vectors each, and
pick the one that achieves the smallest value. Finally, we will now show that the search space can be significantly reduced
from M !×M to M possible solutions.

Let ∆n
M be an arbitrary subset of ∆M whose associated sorted indices are in1 , i

n
2 , ..., i

n
M , and Pn = {pn

k}k are the associated
extreme points. We first note that, ∀k ∈ [M ], g(pn

k ) =
[
0 ... 0 1

k 0 ... 0
]⊤

with jnk = max{in1 , ..., ink} is the non-zero index.
Therefore, we have that ∀n, k:

h(pn
k ) = γ⊤g(pn

k ) =
γjnk
k

(60)

Equation (60) reveals that, amongst all vectors pn
k with fixed k, the smallest error is always achieved by the subset n whose

associated jnk index is the smallest, since the robust errors are always assumed to be sorted. Furthermore, the smallest
value that jnk can achieve is k, since it is the largest index amongst k arbitrary indices from [M ]. Therefore, let ∆m

M be
the subset whose sorting indices are ik = k, i.e. α ∈ ∆m

M implies α1 ≥ ... ≥ αM . For this subset, we will always have
jmk = max{1, ..., k} = k which implies that ∀n ∈ [M !] and ∀k ∈ [M ]:

h(pn
k ) =

γjnk
k
≥ γk

k
= h(pm

k ) (61)

where pm
k =

[
1
k ... 1

k 0 ... 0
]⊤

. Combining (59)&(61) we obtain:

min
α∈∆M

h(α) = min
k∈[M ]

γ⊤g(pm
k ) = min

k∈[M ]

γk
k

=
γk∗

k∗
(62)

which can be achieved using α∗ =
[

1
k∗ ... 1

k∗ 0 ... 0
]⊤

.

A.4.2. MAIN PROOF

We now restate and prove Theorem 3:

Theorem (Restated). For a perturbation set S, data distribution D, and collection of M classifiers F with individual
adversarial risks ηi (i ∈ [M ]) such that 0 < η1 ≤ ... ≤ ηM ≤ 1, we have ∀α ∈ ∆M :

min
k∈[M ]

{ηk
k

}
≤ η(α) ≤ ηM (63)

Both bounds are tight in the sense that if all that is known about the setup F , D, and S is {ηi}Mi=1, then there exist no
tighter bounds. Furthermore, the upper bound is always met if α = eM , and the lower bound (if achievable) can be met if
α =

[
1
m ... 1

m 0 ... 0
]⊤

, where m = argmink∈[M ]{
ηk

k }.

Proof. We first prove the upper bound and then the lower bound.
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Upper bound: From Proposition 1, we have that η is convex in α ∈ ∆M . Using ∆M = H ({e1, ..., eM}) and applying
Lemma 2, we get ∀α ∈ ∆M :

η(α) ≤ max
α∈∆M

η(α) = max
i∈[M ]

η(ei) = ηM (64)

This establishes the upper bound in (63). The bound is tight, since η(eM ) = ηM is achievable.

Lower bound: From Lemmas 4&5, we establish ∀α ∈ ∆M , the following result:

η(α) ≥
M∑
i=1

(
(ηi − ηi−1) · max

j∈{i,...,M}
{αj}

)
= h(α) ≥ min

α∈∆M

h(α) = h(α∗) =
ηm
m

(65)

where m = argmink∈[M ]{
ηk

k } and α∗ =
[
1
m ... 1

m 0 ... 0
]⊤

. This establishes the lower bound in (63).

The bound is tight, since for fixed 0 < η1 ≤ ... ≤ ηM ≤ 1, we can construct F , S, and D such that η(α) = h(α) and
∀i ∈ [M ] : η(ei) = h(ei) = ηi, as shown next.

Let S ⊂ Rd be any closed and bounded set containing at least M distinct vectors {δj}Mj=1 ⊆ S. Let D be any valid
distribution overR = Rd × [C] such that ∀i ∈ [M ]: P {z ∈ Ti} = ηi, P {z ∈ TM+1} = 1, and ∅ = T0 ⊂ T1 ⊆ T2 ⊆ ... ⊆
TM ⊆ TM+1 ⊂ R. Finally, we construct classifiers fi (∀i ∈ [M ]) to satisfy the following assignment ∀z ∈ TM+1:

fi(x+ δ) = y ∀δ ∈ S \ {δi} & fi(x+ δi) =

{
y if (x, y) /∈ Ti
y′ ̸= y otherwise

(66)

i.e., the i-th classifier decision fi(x+ δ) is incorrect only if δ = δi and z ∈ Ti.

Given the above construction, we establish

η(α) = Ez∼D

[
max
δ∈S

M∑
i=1

αi1 {fi(x+ δ) ̸= y}

]
(a)
=

∫
z∈TM+1

pz(z) ·

(
max
δ∈S

M∑
i=1

αi1 {fi(x+ δ) ̸= y}

)
dz

(b)
=

M∑
k=1

∫
z∈Tk\Tk−1

pz(z) ·

(
max
δ∈S

M∑
i=1

αi1 {fi(x+ δ) ̸= y}

)
dz

(c)
=

M∑
k=1

∫
z∈Tk\Tk−1

pz(z) ·
(

max
j∈{k,..,M}

{αj}
)

dz

=

M∑
k=1

[(
max

j∈{k,..,M}
{αj}

)∫
Tk\Tk−1

pz(z) dz

]
(d)
=

M∑
k=1

[
(ηi − ηi−1) · max

j∈{k,..,M}
{αj}

]
= h(α)

(67)

where: (a) holds because P {z ∈ TM+1} = 1; (b) holds because we can partition TM+1 into M + 1 sets: T1 ∪ (T2 \ T1) ∪
. . . ∪ (TM+1 \ TM ), and because the max term is 0 ∀z ∈ TM+1 \ TM ; (c) holds by construction of F and S, and (d) holds
since ηi = P {z ∈ Ti} and Ti ⊆ Ti+1.

A.5. Proof of Theorem 2

In this section, we derive a simplified search strategy for finding the optimal sampling probability for the special case of
M = 3, akin to Section 4.2.
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Theorem (Restated). Define A ⊂ ∆3 to be the set of the following vectors:

A =


10
0

 ,

01
0

 ,

00
1

 ,

1/2
1/2
0

 ,

 0
1/2
1/2

 ,

1/2
0
1/2

 ,

1/2
1/4
1/4

 ,

1/4
1/2
1/4

 ,

1/4
1/4
1/2

 ,

1/3
1/3
1/3

 (68)

Then for any three classifiers f1, f2, and f3, perturbation set S ⊂ Rd, and data distribution D, we have:

min
α∈∆3

η(α) = min
α∈A

η(α) (69)

The set A is optimal, in the sense that there exist no smaller set A′ such that (69) holds.

Proof. Similar to (7), we can enumerate all possible classifiers/data-point configurations around S , which allows us to write
∀α ∈ ∆3:

η(α) = p1 ·max{α1, α2, α3}
+ p2 ·max{α1 + α2, α3}+ p3 ·max{α2 + α3, α1}+ p4 ·max{α1 + α3, α2}
+ p5 ·max{α1, α2}+ p6 ·max{α2, α3}+ p7 ·max{α1, α3}
+ p8 · α1 + p9 · α2 + p10 · α3 + p11 · 1 + p12 · 0

(70)

where p ∈ ∆12. We shall use the same technique used in the proof of Lemma 5. We can decompose ∆3 into 6 such
subsets ∆1

3, ...,∆
6
3, such that each subset contains vectors that share the same sorting indices. These subsets are convex,

and they can be represented as the convex hull of three vectors. Due to the symmetry of the problem, we shall focus on
one subset ∆1

3 = H
({

[1, 0, 0]
⊤
, [1/2, 1/2, 0]

⊤
, [1/3, 1/3, 1/3]

⊤
})

where ∀α ∈ ∆1
3, we have: α1 ≥ α2 ≥ α3. Notice that for

any α ∈ ∆1
3, all the terms in (70) become linear in α, except for the term max{α2 + α3, α1}. Therefore, we can further

decompose ∆1
3 into two convex subsets ∆1,1

3 and ∆1,2
3 , such that:

∆1,1
3 = {α ∈ ∆1

3 : α1 ≥ α2 + α3} ∆1,2
3 = {α ∈ ∆1

3 : α1 ≤ α2 + α3} (71)

and η is linear over both subsets (but not their union).

Claim: we have:

∆1,1
3 = H

({
[1, 0, 0]

⊤
, [1/2, 1/2, 0]

⊤
, [1/2, 1/4, 1/4]

⊤
})

∆1,2
3 = H

({
[1/3, 1/3, 1/3]

⊤
, [1/2, 1/2, 0]

⊤
, [1/2, 1/4, 1/4]

⊤
}) (72)

Since both ∆1,1
3 and ∆1,2

3 are convex, it is enough to show that:

∆1,1
3 ⊆ H

({
[1, 0, 0]

⊤
, [1/2, 1/2, 0]

⊤
, [1/2, 1/4, 1/4]

⊤
})

∆1,2
3 ⊆ H

({
[1/3, 1/3, 1/3]

⊤
, [1/2, 1/2, 0]

⊤
, [1/2, 1/4, 1/4]

⊤
}) (73)

for (72) to hold. For all α ∈ ∆1,1
3 , define:

λ1 = α1 − α2 − α3 ≥ 0, λ2 = 2 · (α2 − α3) ≥ 0, & λ3 = 4α3 ≥ 0 (74)

Then we always have:

α = λ1 ·

10
0

+ λ2 ·

1/2
1/2
0

+ λ1 ·

1/2
1/4
1/4

 (75)

where it is easy to verify that λ1 + λ2 + λ3 = 1. The same can be shown for any α ∈ ∆1,2
3 , using the following:

λ1 = 2 · (α2 − α3) ≥ 0, λ2 = 4 · (α1 − α2) ≥ 0, & λ3 = 3 · (α2 + α3 − α1) ≥ 0 (76)
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which establishes the claim in (72).

Using (72) and the linearity of η on each subset, we can write:

min
α∈∆1

3

η(α) = min

{
min

α∈∆1,1
3

η(α), min
α∈∆1,2

3

η(α)

}

= min

η

10
0

 , η

1/2
1/2
0

 , η

1/2
1/4
1/4

 , η

1/3
1/3
1/3


(77)

Finally, repeating this procedure for the remainder 5 sets ∆2
3, ...,∆

6
3 establishes (12). To show that the set A is minimal,

we provide 10 constructions of η using the p vector in (70) such that the ith vector α ∈ A is a unique (amongst A) global
optimum of η characterized by the ith p vector (listed below):

p1 =

[
0 0 0 0 0 0 0 0

1

2

1

2
0 0

]⊤
p2 =

[
0 0 0 0 0 0 0

1

2
0
1

2
0 0

]⊤
p3 =

[
0 0 0 0 0 0 0

1

2

1

2
0 0 0

]⊤
p4 =

[
0 0 0 0

1

2
0 0 0 0

1

2
0 0

]⊤
p5 =

[
0 0 0 0 0

1

2
0
1

2
0 0 0 0

]⊤
p6 =

[
0 0 0 0 0 0

1

2
0
1

2
0 0 0

]⊤
p7 =

[
0 0

1

2
0 0

1

2
0 0 0 0 0 0

]⊤
p8 =

[
0 0 0

1

2
0 0

1

2
0 0 0 0 0

]⊤
p9 =

[
0
1

2
0 0

1

2
0 0 0 0 0 0 0

]⊤
p10 = [1 0 0 0 0 0 0 0 0 0 0 0]

⊤

(78)

A.6. Proof of Theorem 4

First, we state the classic result on the convergence of the projected sub-gradient method for convex minimization ((Shor,
2012)):

Lemma 6 (Projected Sub-gradient Method). Let h : Rd → R be a a convex and sub-differentiable function. Let C ⊂ Rd be
a convex set. For iterations t = 1, .., T , define the projected sub-gradient method:

x(t+1) = ΠC

(
x(t) − atg

(t)
)

(79)

h
(t+1)
best = min

{
h
(t)
best, h(x

(t+1))
}

(80)

where at = a/t for some positive a > 0, x(1) ∈ C is an arbitrary initial guess, h(1)
best = h(x(1)), and g(t) ∈ ∂h(x(t)) is a

sub-gradient of h at x(t). Let tbest designate the best iteration index thus far. Then, if h has norm-bounded sub-gradients:
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∥g∥2 ≤ G for all g ∈ ∂h(x) and x ∈ C, we have:

h
(t)
best − h∗ ≤

∥x(1) − x∗∥22 +G2
∑t

k=1 a
2
t

2
∑t

k=1 ak
−−−→
t→∞

0 (81)

where:
h∗ = h(x∗) = min

x∈C
h(x) (82)

We then prove Theorem 4 (restated below) via a direct application of Lemma 6:

Theorem (Restated). The OSP algorithm output αT satisfies:

0 ≤ η̂(αT )− η̂(α∗) ≤
∥α(1) −α∗∥22 +Ma2

∑T
t=1 t

−2

2a
∑T

t=1 t
−1

−−−−→
T→∞

0 (83)

for any initial condition α(1) ∈ ∆M , a > 0, where α∗ is a global minimum.

Proof. The ensemble empirical adversarial risk η̂ is convex and sub-differentiable (Proposition 1), being minimized over a
convex set ∆M . At each iteration t in OSP, the vector g obtained at line (12) is norm-bounded with G =

√
M , the vector g

is also a sub-gradient of η̂ at α(t), therefore Lemma 6 applies.

A.7. Worst Case Performance of Deterministic Ensembles

In Section 4.3, we showed via Theorem 3 that the adversarial risk of any randomized ensemble classifier is upper bounded
by the worst performing classifier in the ensemble F . In this section, we will show that the same cannot be said regarding
deterministic ensemble classifiers. That is, there exist an ensemble F , data distribution D, and perturbation set S such that:

η(f̄) > max
i∈[M ]

η(fi) (84)

where f̄ is the deterministic ensemble classifier constructed via the rule:

f̄(x) = argmax
c∈[C]

[
M∑
i=1

f̃i(x)

]
c

(85)

Consider the following setup:

1. two binary classifiers in R2:

fi(x) =

{
1 if w⊤

i x ≥ 0

2 otherwise
(86)

which can be obtained from the “soft” classifiers:

f̃i(x) =

[
w⊤

i x
−w⊤

i x

]
(87)

using fi(x) = argmaxc∈{1,2}[f̃i(x)]c, where w1 = [1 1]
⊤ and w2 = [1 − 1]

⊤.

2. a Ber(p) data distribution D over two data-points in R2 × [2]:

z1 = (x1, y1) =

([
−1
2

]
, 1

)
and z2 = (x2, y2) =

([
−1
−2

]
, 1

)
(88)

3. the ℓ2 norm-bounded perturbation set S = {δ : ∥δ∥ ≤ ϵ} for some 0 < ϵ < 1/
√
2.

We first note that for binary linear classifiers and ℓ2-norm bounded adversaries, we have that:
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• the shortest distance between a point x and the decision boundary of linear classifier f with weight w and bias b is:

ζ =
|w⊤x+ b|
∥w∥

(89)

• if f(x) ̸= y, then the optimal adversarial perturbation is given by:

δ = −sign
(
w⊤x+ b

) ϵw

∥w∥
(90)

We can now evaluate the adversarial risks of each classifier:

η1 = p ·
(
max
∥δ∥≤ϵ

1
{
w⊤

1 (x1 + δ) < 0
})

+ (1− p) ·
(
max
∥δ∥≤ϵ

1
{
w⊤

1 (x2 + δ) < 0
})

= p ·
(
1

{
1−
√
2ϵ < 0

})
+ (1− p) · (1 {−3 < 0}) = 1− p

(91)

where we use ϵ < 1/
√
2. Due to symmetry, we also get η2 = p.

The average ensemble classifier f̄ constructed from f1 and f2 is defined via the rule:

f̄(x) =

{
1 if x1 ≥ 0

2 otherwise
(92)

whose adversarial risk can be computed as follows:

η̄ = p ·
(
max
∥δ∥≤ϵ

1 {x1,1 + δ1 < 0}
)
+ (1− p) ·

(
max
∥δ∥≤ϵ

1 {x2,1 + δ1 < 0}
)

= p · (1 {−1 < 0}) + (1− p) · (1 {−1 < 0}) = p+ 1− p = 1

(93)

which is strictly greater than max{p, 1− p} ∀p ∈ (0, 1). Therefore, we have constructed an example where deterministic
ensembling is always worse than using any of the individual classifiers, which proves that deterministic ensemble classifiers
do not satisfy the upper bound.
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B. Additional Experiments and Comparisons
B.1. Experimental Setup

In this section, we describe the complete experimental setup used for all our experiments.

Training. All models are trained for 100 epochs via SGD with a batch size of 256 and 0.1 initial learning rate, decayed by
0.1 first at the 50th epoch and twice at the 75th epoch. We employ the recently proposed margin-maximizing cross-entropy
(MCE) loss from (Zhang et al., 2022) with 0.9 momentum and a weight decay factor of 5×10−4. We use 10 attack iterations
during training with ϵ = 8/255 and a step size β = 2/255. For IAT, each classifier is indepdenelty trained from a different
random initialization, using a standard PGD adversary. For MRBoost, we use their public implementation from GitHub to
reproduce all their results. For BARRE, we use an adaptive PGD (APGD) adversary (discussed in detail in Section B.4) as
our training attack algorithm. We apply OSP for To = 10 iterations every Eo = 10 epochs.

To avoid catastrophic overfitting (Rice et al., 2020), we always save the best performing checkpoint during training. Since
all the ensemble methods considered reduce to adversarial training for the first iteration, we use a shared adversarially
trained first classifier. Doing so ensures a fair comparison between different ensemble methods. For both CIFAR-10, and
CIFAR-100 datasets, we adopt standard data augmentation (random crops and flips). Per standard practice, we apply input
normalization as part of the model, so that the adversary operates on physical images x ∈ [0, 1]d.

Evaluation. For all our robust evaluations, we will adopt the state-of-the-art ARC algorithm (Dbouk & Shanbhag, 2022)
which can be used for both RECs and single models. Specifically, we use 20 iterations of ARC, with an attack strength
ϵ = 8/255 and approximation parameter G = 2. Following the recommendations of (Dbouk & Shanbhag, 2022), we use a
step size of 2/255 when evaluating single models (M = 1) and a step size of 8/255 when evaluating RECs (M ≥ 2).

B.2. Individual model robustness

Table 3. Natural and robust accuracies of the individual classifiers of all ensembles methods trained on CIFAR-10 (from Table 1). Robust
accuracy is measured against an ℓ∞ norm-bounded adversary using ARC with ϵ = 8/255.

Network Method f1 f2 f3 f4 f5
Anat Arob Anat Arob Anat Arob Anat Arob Anat Arob

ResNet-20
IAT

73.18 41.99
73.42 41.94 74.44 42.25 74.27 42.06 74.17 42.14

MRBoost 76.00 41.42 76.59 39.60 77.25 38.38 76.43 36.62
BARRE 76.08 41.18 77.40 39.87 77.12 39.07 77.60 37.01

MobileNetV1
IAT

79.01 46.22
79.17 46.21 79.05 46.60 78.44 46.11 78.76 46.74

MRBoost 80.11 44.52 77.54 42.03 77.94 39.36 68.89 33.40
BARRE 80.15 44.56 79.43 42.67 79.56 39.65 79.60 38.28

ResNet-18
IAT

80.96 48.72
80.64 48.23 81.24 48.83 81.13 48.70 − −

MRBoost 84.01 47.56 83.67 45.72 83.88 43.38 − −
BARRE 84.35 46.48 84.89 45.86 83.88 43.09 − −

In Tables 3&4, we provide the clean and robust accuracies of all the individual classifiers constructed via the different
ensemble methods on CIFAR-10 and CIFAR-100, respectively. Robust accuracy is measured using ARC.

As expected, only ensembles produced via IAT consist of classifiers achieving near-identical robust and natural accuracies.
In contrast, ensembles produced via MRBosst or BARRE witness a degradation in individual classifier robust accuracy as
the ensemble size grows. However, since MRBoost was not initially designed for randomized ensemble classifiers, this
degradation in robust accuracy can be rather severe as seen for MobileNetV1 in both Tables 3&4. This explains why, for
such ensembles, the optimal sampling probability obtained for the constructed REC completely disregards the last classifier
as highlighted in Section 5.1.
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Table 4. Natural and robust accuracies of the individual classifiers of all ensembles methods trained on CIFAR-100 (from Table 1). Robust
accuracy is measured against an ℓ∞ norm-bounded adversary using ARC with ϵ = 8/255.

NETWORK METHOD
f1 f2 f3 f4 f5

Anat Arob Anat Arob Anat Arob Anat Arob Anat Arob

RESNET-20
IAT

38.34 17.69
38.64 17.68 38.40 17.89 39.13 17.63 38.36 18.13

MRBOOST 41.69 17.29 42.69 17.67 42.92 17.44 42.83 16.11
BARRE 41.57 18.22 42.96 17.24 42.69 17.14 43.72 16.30

MOBILENETV1
IAT

51.87 23.45
51.46 23.01 50.61 23.00 51.21 23.40 51.89 23.56

MRBOOST 53.96 22.63 53.45 20.48 52.55 19.90 38.88 11.34
BARRE 52.75 22.90 53.61 21.21 54.31 18.67 51.99 18.02

RESNET-18
IAT

53.85 24.15
53.85 24.17 54.80 24.30 54.71 24.50 − −

MRBOOST 54.78 22.28 47.49 16.28 48.13 15.98 − −
BARRE 55.21 22.26 55.69 21.05 53.73 17.99 − −

B.3. Attacks for Randomized Ensembles

Given a data-point z = (x, y) and a potentially random classifier f , the goal of an adversary is to find an adversarial
perturbation that maximizes the single-point expected adversarial risk:

δ∗ = argmax
δ:∥δ∥p≤ϵ

r(z, δ) = argmax
δ:∥δ∥p≤ϵ

Ef [1 {f(x+ δ) ̸= y}] = argmax
δ:∥δ∥p≤ϵ

P {f(x+ δ) ̸= y} (94)

where we adopt the ℓp norm-bounded adversary for the remainder of this section.

Projected gradient descent (PGD) (Madry et al., 2018) is perhaps the most popular attack algorithm for solving (94) for the
case of differentiable deterministic classifiers. Specifically, given a surrogate loss function l, such as the cross-entropy loss,
PGD finds an adversarial δ iteratively via the following:

δ(k) = Πp
ϵ

(
δ(k−1) + ηµp

(
∇xl

(
f̃
(
x+ δ(k−1)

)
, y
)))

(95)

where µp is the ℓp steepest direction projection operator, and Πp
ϵ is the projection operator on the ℓp ball of radius ϵ.

In order to adapt PGD for evaluating randomized ensemble classifiers, (Pinot et al., 2020) first proposed adaptive PGD
(APGD-L) using the expectation-over-transformation (EOT) method (Athalye et al., 2018), which uses (95) with the expected

Table 5. Comparing the success of different attack algorithms at fooling various RECs using ℓ∞ norm-bounded attacks with ϵ = 8/255 on
CIFAR-10. For adaptive CW, we use an ℓ2 adversary with ϵ = 2. All the RECs are constructed with equiprobable sampling.

Network Method ACW (ℓ2) AFGSM APGD-L APGD-S ARC ARC-R

ResNet-20
IAT 56.18 57.48 49.31 49.34 46.73 45.77
MRBoost-R 57.88 59.00 49.65 49.61 47.74 46.66
BARRE 58.96 59.53 49.79 49.75 48.05 47.35

MobileNetV1
IAT 59.55 62.27 52.94 52.91 50.68 49.57
MRBoost-R 56.06 60.45 51.19 51.02 49.37 48.05
BARRE 59.50 62.60 52.16 51.94 51.16 49.91

ResNet-18
IAT 59.57 64.37 54.50 54.49 52.42 51.43
MRBoost-R 59.86 64.51 54.51 54.23 53.19 51.82
BARRE 60.23 66.39 54.52 54.07 53.62 52.13
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Figure 4. The robust (left) and natural (right) accuracies of an REC of two ResNet-20’s trained on CIFAR-10 using BARRE vs. the
training epochs of the second classifier f2, where the first classifier f1 is pre-adversarially trained. Robust and natural accuracies are
reported on the test set, using ℓ∞ norm-bounded adversaries with ARC and ϵ = 8/255.

loss function as follows:
δ(k) = Πp

ϵ

(
δ(k−1) + ηµp

(
∇xE

[
l
(
f̃
(
x+ δ(k−1)

)
, y
)]))

(96)

Note that the discrete nature of randomized ensembles allows for an exact computation of the expectation in (96).

Recently, (Zhang et al., 2022) proposed a stronger version of adaptive PGD, where the expectation is taken at the softmax
level (APGD-S). Using APGD-S, (Zhang et al., 2022) were able to compromise the BAT defense. Independently, (Dbouk
& Shanbhag, 2022) studied the effectiveness of EOT-based adaptive attacks for evaluating the robustness of RECs, and
concluded that such methods are fundamentally ill-suited for the task. Instead, they proposed the ARC attack (Algorithm
2 of (Dbouk & Shanbhag, 2022)), which relied on iteratively updating the perturbation based on estimating the direction
towards the decision boundary of each classifier and using an adaptive step size method.

In this section, we propose a small modification to ARC (ARC-R) that proves to be quite more effective in the equiprobable
setting. Specifically, instead of looping over the classifiers in a deterministic fashion based on the order of the sampling
probability vector, we propose using a randomized order loop. This ensures that ARC is never biased towards certain
classifiers. In fact, Table 5 demonstrates that ARC-R is better than EOT-adapted single classifier attacks (PGD, FGSM,
and CW) and ARC (Dbouk & Shanbhag, 2022) at evaluating the robustness of RECs on CIFAR-10, constructed with
equiprobable sampling across various network architectures and ensemble training methods. Hence, we shall adopt this
version of ARC for all our experiments.

B.4. ARC vs. Adaptive PGD for BARRE

As highlighted in Section 5.1, we find that ARC, despite being the strongest adversary, leads to poor performance when
adopted as the training attack in BARRE. In this section, we investigate this phenomenon, as we study the performance
of BARRE using two different attacks during training, APGD (Zhang et al., 2022) and ARC (Dbouk & Shanbhag, 2022).
Specifically, we train two RECs on CIFAR-10 using the ResNet-20 architecture. Both RECs share the same first classifier
f1, which is adversarially trained using standard PGD. The second classifier f2 is trained via either APGD or ARC.

Figure 4 plots the evolution of both robust and clean accuracies of the two RECs across the 100 training epochs of f2,
measured on the test set. Note that in both RECs, the robust accuracy is evaluated via the stronger ARC adversary. When
evaluated on clean images, we find that BARRE with ARC leads to significantly more accurate RECs when compared to
BARRE with APGD. However, this comes at the expense of robust accuracy, as the REC obtained via BARRE with ARC is
much more vulnerable than the APGD counterpart. We hypothesize that the adversarial samples generated via ARC during
training do not generalize well to the test set. This explains why we observe that the REC obtained via BARRE with ARC
achieves much higher robust accuracies on the training set. Thus, for better generalization performance, we shall adopt
adaptive PGD during training in all our experiments.
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B.5. Additional Results

In this section, we complete the CIFAR-10 results reported in Table 2 for showcasing the benefit of randomization.
Specifically, Table 6 provides further evidence that BARRE can train RECs of competitive robustness compared to
MRBoost-trained deterministic ensembles, while requiring significantly less compute.

Table 6. Comparison between BARRE and MRBoost across different network architectures and ensemble sizes on CIFAR-100. Robust
accuracy is measured against an ℓ∞ norm-bounded adversary using ARC with ϵ = 8/255.

Network Method M = 1 M = 2 M = 3 M = 4
Anat Arob FLOPs Anat Arob FLOPs Anat Arob FLOPs Anat Arob FLOPs

ResNet-20 MRBoost
38.34 17.69 81 M 41.08 19.38 162 M 42.60 20.48 243 M 43.62 21.36 324 M

BARRE 39.95 19.13 81 M 40.96 19.85 81 M 41.40 21.41 81 M

MobileNetV1 MRBoost
51.87 23.45 312 M 54.41 25.73 624 M 54.91 26.63 936 M 55.03 26.97 1.2 B

BARRE 52.31 24.96 312 M 52.74 25.75 312 M 53.14 27.12 312 M

ResNet-18 MRBoost
53.85 24.15 1.1 B 55.83 25.99 2.2 B 55.39 26.09 3.3 B 55.80 26.50 4.4 B

BARRE 54.53 25.37 1.1 B 54.92 25.76 1.1 B 54.63 26.90 1.1 B
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