
Efficient Parametric Approximations of
Neural Network Function Space Distance

Nikita Dhawan 1 2 Sicong Huang 1 2 Juhan Bae 1 2 Roger Grosse 1 2 3

Abstract
It is often useful to compactly summarize impor-
tant properties of model parameters and training
data so that they can be used later without storing
and/or iterating over the entire dataset. As a spe-
cific case, we consider estimating the Function
Space Distance (FSD) over a training set, i.e. the
average discrepancy between the outputs of two
neural networks. We propose a Linearized Acti-
vation Function TRick (LAFTR) and derive an
efficient approximation to FSD for ReLU neu-
ral networks. The key idea is to approximate
the architecture as a linear network with stochas-
tic gating. Despite requiring only one parameter
per unit of the network, our approach outcom-
petes other parametric approximations with larger
memory requirements. Applied to continual learn-
ing, our parametric approximation is competitive
with state-of-the-art nonparametric approxima-
tions, which require storing many training exam-
ples. Furthermore, we show its efficacy in estimat-
ing influence functions accurately and detecting
mislabeled examples without expensive iterations
over the entire dataset.

1. Introduction
As machine learning models are trained on increasingly
large quantities of data or experience, it can be useful to
compactly summarize information contained in a training
set. In continual learning, an agent continues interacting
with its environment over a long time period — longer
than it is able to store explicitly. A natural goal is to avoid
overwriting previously learned knowledge as it learns new
tasks (Goodfellow et al., 2013) while controlling storage
costs. Even in cases where it is possible to store the entire
training set, a compact representation circumvents the need

1University of Toronto 2Vector Institute 3Anthropic. Correspon-
dence to: Nikita Dhawan <nikita@cs.toronto.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

for expensive iterative procedures over the full data.

We focus on the problem of estimating Function Space Dis-
tance (FSD) for neural networks: the amount by which
the outputs of two networks differ, in expectation over the
training distribution. Benjamin et al. (2018) observed that
regularizing FSD over the previous task data is an effec-
tive way to prevent catastrophic forgetting. Other tasks
such as influence estimation (Bae et al., 2022a), model edit-
ing (Mitchell et al., 2021), unlearning (Bourtoule et al.,
2021) and second-order optimization (Amari, 1998; Bae
et al., 2022b) have also been formulated in terms of FSD
regularization or similar locality constraints.

Methods for summarizing the training data can be catego-
rized as parametric or nonparametric. In the context of pre-
venting catastrophic forgetting, parametric approaches typi-
cally store the parameters of a previously trained network,
along with additional information about the importance of
different directions in parameter space for preserving past
knowledge. The canonical example is Elastic Weight Con-
solidation (Kirkpatrick et al., 2017, EWC), which uses a
diagonal approximation to the Fisher information matrix.
Nonparametric approaches explicitly store, in addition to
network parameters, a collection (coreset) of training exam-
ples, often optimized directly to be the most important or
memorable ones (Rudner et al., 2022; Pan et al., 2020; Tit-
sias et al., 2019). Currently, the most effective approaches
to prevent catastrophic forgetting are nonparametric due to
the lack of sufficiently accurate parametric models. How-
ever, this advantage comes at the expense of high storage
requirements.

In this paper, we formally formulate neural network FSD
estimation and propose novel parametric approximations.
To motivate our approach, notice that several parametric
approximations, like EWC, can be interpreted as a second-
order Taylor approximation to the FSD. This leads to a
quadratic form involving the Fisher information matrix Fθ

or some other metric matrix Gθ, where θ denotes the net-
work parameters. Second-order approximations are practi-
cally useful because one can estimate Fθ or Gθ by sampling
vectors from a distribution with these matrices as the covari-
ance (Martens & Grosse, 2015). Then, tractable probabilis-
tic models can be fit to these samples to approximate the

1

Efficient Parametric Approximations of Neural Network FSD

−10 −8 −6 −4 −2 0 2 4 6

x

−2

−1

0

1

2

3

4

5

t

f1

f2

fNTK2

fLAFTR2

−10 −8 −6 −4 −2 0 2 4 6

x

−2

−1

0

1

2

3

4

5

t

EWC NTK BGLN

Figure 1. Comparison of FSD regularization on a 1-D regression task. (Left) Training sequentially on two tasks (blue yields f1, then
yellow yields f2) results in catastrophic forgetting. The LAFTR approximation more closely matches the true function f2 than its NTK
approximation does. (Right) BGLN retains performance on task 1 after training on task 2 more accurately than EWC and NTK.

corresponding distribution. Unfortunately, these tend to be
inaccurate for continual learning compared to nonparamet-
ric approaches. We believe the culprit is the second-order
Taylor approximation: we show in several examples that
even the exact second-order Taylor approximation can per-
form poorly in terms of average classification accuracy and
backward transfer in sequentially learned tasks. Since such
an approximation can be interpreted as network lineariza-
tion (Grosse, 2021), this finding is consistent with a recent
line of results that find linearized approximations of neural
networks to be an inaccurate model of their behavior (Se-
leznova & Kutyniok, 2022a;b; Hanin & Nica, 2019; Bai
et al., 2020; Huang & Yau, 2020). In Section 2, we present
this network linearization perspective of some existing ap-
proaches for regularization in function space.

Our method, based on a Linearized Activation Function
TRick (LAFTR), does not make a second-order Taylor ap-
proximation in the parameter space, and hence is able to
capture nonlinear interactions between parameters of the
network. Specifically, it linearizes each step of the network’s
forward pass with respect to its inputs. In the case of ReLU
networks, our approximation yields a linear network with
stochastic gating, which we refer to as the Bernoulli Gated
Linear Network (BGLN). We derive a stochastic and a de-
terministic estimate of FSD, both of which rely only on the
first two moments of the data. This allows the application
of our methods in different scenarios where stochasticity is
or isn’t desirable.

We evaluate our BGLN approximation in the contexts of
continual learning and influence function estimation. Our
method significantly outperforms previous parametric ap-
proximations despite being much more memory-efficient.
For continual learning tasks, our method is competitive
with nonparametric approaches. For influence function es-
timation tasks, it closely matches an oracle estimate of a
network’s loss after a data point is removed, but without
having to iterate over the whole dataset.

The key contributions and findings of this work are:

• We introduce LAFTR, an idealized FSD approxi-
mation, which improves over parameter space lin-
earization by capturing nonlinear interactions between
weights in different layers.

• We propose the Bernoulli Gated Linear Network
(BGLN), an efficient parametric FSD approximation
for ReLU networks based on LAFTR which stores only
aggregate statistics of the data and the activations.

• In continual learning, BGLN outcompetes state-of-the-
art methods on sequential MNIST and CIFAR100 tasks,
with significantly lower memory requirements than
nonparametric methods.

• For influence function estimation, BGLN efficiently
approximates the effect of removing a single data point
without iterating over or storing the full dataset.

2. Background
Let z = f(x,θ) denote the function computed by a neural
network, which takes in inputs x and parameters θ. Consis-
tent with prior works, we use FSD to refer to the expected
output space distance1 ρ between the outputs of two neural
networks (Benjamin et al., 2018; Grosse, 2021; Bae et al.,
2022b) with respect to the training distribution, as defined in
equation 1. When the population distribution is inaccessible,
the empirical distribution is often used as a proxy:

D(θ0,θ1, pdata) = Ex∼pdata [ρ(f(x,θ0), f(x,θ1))] (1)

≈ 1

N

N∑
i=1

ρ(f(x(i),θ0), f(x
(i),θ1)), (2)

where pdata is the data-generating distribution. Constrain-
ing the FSD term has been successful in preventing catas-

1Note that we use the term distance throughout since we focus
on Euclidean distance in our derivation. However, other metrics
like KL divergence can also be used, as shown in Section 5.

2

Efficient Parametric Approximations of Neural Network FSD

trophic forgetting (Benjamin et al., 2018), computing influ-
ence functions (Bae et al., 2022a), training teacher-student
models (Hinton et al., 2015), and fine-tuning pre-trained
networks (Jiang et al., 2019; Mitchell et al., 2021). Natural
choices for ρ are Euclidean distance for networks trained us-
ing mean-squared error (e.g. regression) and KL divergence
for those trained with cross-entropy loss (e.g. classification).

Consider the continual learning setting as a motivating exam-
ple. Common benchmarks (Normandin et al., 2021) involve
sequentially learning tasks t ∈ {1, . . . , T}, using loss func-
tion L and a penalty on the FSD between the parameters θ,
and the parameters {θi} fit to previous tasks. The penalty is
computed over the previously seen data distribution pi and
then scaled by a hyperparameter λFSD:

θt = argmin
θ
L(θ) + λFSD

t−1∑
i=1

D(θ,θi, pi). (3)

Continuing with the notation in equation 2, one way to reg-
ularize the FSD is to store the training set and explicitly
evaluate the network outputs using both θ0 and θ1 (perhaps
on random mini-batches). However, this has the drawbacks
of having to store and access the entire training set through-
out training (precisely the thing continual learning research
tries to avoid) and necessarily estimating FSD stochastically.
Instead, we would like to compactly summarize information
about the training set or distribution.

Many (but not all) practical FSD approximations are based
on a second-order Taylor approximation:

D(θ0,θ1, pdata) ≈
1

2
(θ1 − θ0)

⊤Gθ(θ1 − θ0), (4)

where Gθ = ∇2
θD(θ0,θ, pdata) is the correspond-

ing Hessian. In the case where the network out-
puts parametrize a probability distribution and ρ
corresponds to KL divergence, Gθ reduces to the
more familiar Fisher information matrix Fθ =
Ex∼pdata,y∼Py|x(θ)[∇θ log p(y|θ,x)∇θ log p(y|θ,x)⊤],
where Py|x(θ) represents the model’s predictive distri-
bution over y. It is possible to sample random vectors
in parameter space whose covariance is Gθ (Martens
et al., 2012; Grosse & Martens, 2016; Grosse, 2021) and
some parametric FSD approximations work by fitting
simple statistical models to the resulting distribution. For
instance, assuming all coordinates are independent gives a
diagonal approximation (Kirkpatrick et al., 2017), and more
fine-grained independence assumptions between network
layers yield a Kronecker-factored approximation (Martens
& Grosse, 2015; Ritter et al., 2018). In practice, instead of
sampling vectors whose covariance is Gθ , many works use
the empirical gradients during training, whose covariance is
the empirical Fisher matrix. We caution the reader that the
empirical Fisher matrix is less well motivated theoretically
and can result in different behavior (Kunstner et al., 2019).

3. A Parametric Estimate with LAFTR
We introduce and apply LAFTR (Linearized Activation
Function TRick) to linear ReLU networks and propose
BGLN (Bernoulli Gated Linear Network) which approxi-
mates a given model architecture as a linear network with
stochastic gating. While it is applicable to different archi-
tectures, we first explicitly derive our approximation for
multilayer perceptrons (MLPs) with L fully-connected lay-
ers and ReLU activation function ϕ. We also discuss its
generalization to convolutional networks and empirically
evaluate the same in Section 5.

For MLPs with inputs x drawn from pdata, layer l weights
and biases (W (l), b(l)), and outputs z, the computation of
preactivations and activations at each layer is recursively
defined as follows:

s(l) = W (l)a(l−1) + b(l), a(l) = ϕ(s(l)) (5)

with a(0) = x, and s(L) = z. We denote z0 and z1 to be
samples of the output distribution obtained with parameters
θ0 and θ1, respectively.

3.1. Linearized Activation Function TRick

Given parameters θ0 and θ1 of two networks, we linearize
each step of the forward pass around its value under θ0.
For an MLP that alternates between linear layers and non-
linear activation functions, the linear transformations are un-
modified while the activation functions are replaced with a
first-order Taylor approximation around their inputs. Hence,
the network’s computation becomes linear in x (but, impor-
tantly, remains nonlinear in θ). Let (W (l)

i , b
(l)
i) denote the

weights and biases of layer l in network i.

s
(l)
0 = W

(l)
0 a

(l−1)
0 + b

(l)
0 (6)

a
(l)
0 = ϕ(s

(l)
0) (7)

s
(l)
1 = W

(l)
1 a

(l−1)
1 + b

(l)
1 (8)

a
(l)
1 = ϕ(s

(l)
0) + ϕ′(s(l)0)⊙ (s

(l)
1 − s

(l)
0), (9)

where ϕ′ is the derivative of the activation function.

We define some additional notation for differences between
preactivations and activations. For ∆s(l) = s

(l)
1 − s

(l)
0 ,

∆a(l) = a
(l)
1 −a

(l)
0 , ∆W (l) = W

(l)
1 −W

(l)
0 , and ∆b(l) =

b
(l)
1 − b

(l)
0 , we have the following formulae:

∆s(l) = ∆W (l)a
(l−1)
0 +W

(l)
1 ∆a(l−1) +∆b(l) (10)

∆a(l) = ϕ′(s(l)0)⊙∆s(l). (11)

Here, base cases are a
(0)
0 = x and ∆a(0) = 0. Written this

way, the ∆ terms at each step of computation rely linearly
on corresponding terms from the immediately preceding

3

Efficient Parametric Approximations of Neural Network FSD

step, making LAFTR conducive to implementation via prop-
agation of the base cases through the network. Observe that
with W0 held fixed, the model parametrized using W1 is a
linear network, i.e. the network’s exact outputs are a linear
function of its inputs.

There are two significant differences between LAFTR and
parameter space linearization (referred to as NTK (Jacot
et al., 2018) henceforth), which confer an advantage to the
former. First, our linearization is with respect to inputs
instead of parameters (Lee et al., 2019), hence capturing
nonlinear interactions between the parameters in different
layers. Second, the only computations that introduce lin-
earization errors into our approximation are those involving
activation functions; hence, our method is exact for linear
networks, whereas NTK is only approximate. We note that
linear networks are commonly used to model nonlinear train-
ing dynamics of neural networks (Saxe et al., 2013). Hence,
we regard our weaker form of linearity as a significant ad-
vantage over Taylor approximations in parameter space. We
note that LAFTR can be extended directly to other types of
linear layer, such as convolution layers.

In the following two sections, we use the intuition above to
motivate two probabilistic approximations which enable a
memory-efficient implementation of this algorithm. One is
to approximate preactivation signs and the other is for the
input data distribution.

3.2. Bernoulli Gating

In the specific case of ReLU networks, observe that LAFTR
depends on the training data only through the signs of preac-
tivations, which we denote as a mask m = 1{s > 0},
since ϕ(s) = m ⊙ s and ϕ′(s) ⊙ ∆s = m ⊙ ∆s.
Here, ϕ′ is the derivative of the ReLU function, given by
ϕ′(s) = 1{s > 0}. We approximate m as a vector of
independent Bernoulli random variables and fit its mean
vector µ using maximum likelihood estimation (i.e., com-
puting the fraction of times the unit is activated). We can
accordingly rewrite equations 7 and 11 as a(l)

0 = m(l)⊙s(l)0

and ∆a(l) = m(l) ⊙∆s(l), respectively, where ⊙ denotes
element-wise multiplication and m(l) ∼ Ber(µ(l)). For
efficiency, we compute the activation statistics over the last
epoch of training. We call this approximation the Bernoulli
Gated Linear Network (BGLN).

Note that this gating technique is not specific only to MLPs.
It can be implemented in ReLU convolutional networks by
replacing activations with Bernoulli random variables.

3.3. Propagating Moments of the Activations

A key insight enabling efficient computation is that when
the output distance ρ is chosen to be (squared) Euclidean
distance, the FSD depends only on the first and second

moments of the output difference ∆z := z1 − z0:

E
[
1
2 ||∆z||2

]
= 1

2 ||E[∆z]||2 + 1
2 tr (Cov(∆z)). (12)

We compute these terms recursively by propagating the first
two moments of a(l)

0 and ∆a(l) through the network. Using
equations 10 and 11, we obtain the following equations for
the first moments (see Appendix B for analogous equations
for second moments):

E[s(l)0] = W
(l)
0 E[a(l−1)

0] + b
(l)
0

E[a(l)
0] = µ(l) ⊙ E[s(l)0]

E[∆s(l)] = ∆W (l)E[a(l−1)
0] +W

(l)
1 E[∆a(l−1)] + ∆b(l)

E[∆a(l)] = µ(l) ⊙ E[∆s(l)]

Hence, LAFTR-based FSD approximation depends only
on the first two moments of the data. This view leads to
two insights: (1) we can store the first two moments of the
data instead of a coreset and compute a deterministic FSD
estimate and (2) we can approximate the data distribution
as a multivariate Gaussian parameterized by its moments
and compute an unbiased stochastic estimate of the LAFTR-
based FSD by sampling from it.

3.4. BGLN-D and BGLN-S

The most straightforward way to use the BGLN approxima-
tion is to draw Monte Carlo samples of the random variables.
When only the first and second moments matter, we are free
to assume Gaussianity of the inputs. We denote this method
BGLN-S (S for “stochastic”). This is sufficient in situations
where FSD is used as a regularization term in stochastic
gradient-based optimization (as we do in our continual learn-
ing experiments). In other situations, it is advantageous to
have a deterministic computation; for instance, optimization
with nonlinear conjugate gradient requires a deterministic
objective. In the case of Euclidean distance as the output
space metric, we can exactly compute the BGLN approxi-
mation by propagating the first and second moments of all
random variables through the forward pass, as described in
Section 3.3. We call this deterministic estimator BGLN-D.
BGLN-S is outlined in Algorithm 1 and BGLN-D in Algo-
rithm 2. We describe the analogous BGLN-S computations
for convolutional networks in Appendix C.

We present the above algorithms such that they depend on
storing the mean and covariance of the data. Note that stor-
ing moments of the data requires less memory than storing
sufficient subsets of the data itself in several practical set-
tings demonstrated in Table 4. We can further reduce the
memory requirement by approximating the covariance ma-
trix as a diagonal matrix, i.e., using only the variance of
each dimension of the inputs. This is equivalent in cost to
storing two data points per task. We empirically investigate

4

Efficient Parametric Approximations of Neural Network FSD

Algorithm 1 A stochastic version of BGLN (BGLN-S)

Require: E[x],Cov(x), {W , b}L1 , {µ}L−1
1

1: E[a0],E[a1]← E[x]
2: Cov(a0),Cov(a1)← Cov(x)
3: a0,a1 ∼ N (E[a0],Cov(a0)) {sample inputs}
4: ∆a← 0
5: for l← 1 to L− 1 do
6: m ∼ Ber(µ(l)) {sample Bernoullis}
7: s0 ←W

(l)
0 a0 + b

(l)
0

8: ∆s← ∆W (l)a0 +W
(l)
1 ∆a+∆b(l)

9: a0 ←m⊙ s0 {stochastic gating}
10: ∆a←m⊙∆s
11: s1 ←W

(l)
1 a1 + b1

12: a1 ← a0 +∆a {linearized activations}
13: end for
14: ∆z ← ∆W (L)a0 +W

(L)
1 ∆a+∆b(L)

15: return 1
2 ||∆z||2

the effect of this approximation on continual learning bench-
marks. Furthermore, capturing the expected FSD over the
training distribution in a single term, via a single forward
pass, is far less computationally expensive than iterative
alternatives.

3.5. Class-conditional Estimates

In the classification setting, it is also possible to a extend
BGLN to a more fine-grained, class-conditional approxi-
mation. In particular, we can fit a mixture model for our
probabilistic approximations, with one component per class.
In this case, each class has its own associated input moments
and Bernoulli mean parameters. The lower memory cost of
our method allows for this when number of classes is not too
large. We refer to theis variant as BGLN-CW. As expected,
it boosts performance in our continual learning experiments
at the expense of a slightly higher memory requirement, as
shown in Tables 1, 2 and 3.

4. Related Works
Several works (Benjamin et al., 2018; Bernstein et al., 2020;
Bae et al., 2022b) have highlighted the importance of mea-
suring meaningful distances between neural networks. Ben-
jamin et al. (2018) contrast training dynamics in parameter
space and function space and observe that function space dis-
tances are often more useful than, and not always correlated
with, parameter space distances. Bae et al. (2022b) pro-
pose an Amortized Proximal Optimization (APO) scheme
that regularizes an FSD estimate to the previous iterate for
second-order optimization. Natural gradient descent (Amari
et al., 1995; Amari, 1998) can also be interpreted as a steep-
est descent method, using a second-order Taylor approxima-

tion to the FSD (Pascanu & Bengio, 2014).

Parisi et al. (2019); De Lange et al. (2021); Ramasesh et al.
(2020); Normandin et al. (2021) have reviewed and sur-
veyed the challenge of catastrophic forgetting in contin-
ual learning, along with benchmarks and metrics to eval-
uate different methods. Parametric methods focus on dif-
ferent approximations to the weight space metric matrix,
like diagonal (Kirkpatrick et al., 2017, EWC) or Kronecker-
factored (Ritter et al., 2018, OSLA). As described in Sec-
tion 2, we interpret these as second-order Taylor approxi-
mations to the FSD with further structured approximations
to the Hessian. Several methods are motivated as approxi-
mations to a posterior Gaussian distribution in a Bayesian
setting (Ebrahimi et al., 2019), for instance through a varia-
tional lower bound (Nguyen et al., 2017) or via Gaussian pro-
cess inducing points (Kapoor et al., 2021). Non-parametric
methods (Kapoor et al., 2021; Titsias et al., 2019; Pan et al.,
2020; Rudner et al.; 2022; Kirichenko et al., 2021) usually
employ some form of experience replay of stored or opti-
mized data points. Some of these methods (Pan et al., 2020)
can also be related to the Neural Tangent Kernel (Jacot et al.,
2018, NTK), or in other words, network linearization. Doan
et al. (2021) directly study forgetting in continual learning
in the infinite width NTK regime. Mirzadeh et al. (2022)
further study the impact of network widths on forgetting.

In this paper, we also examine influence functions (Cook,
1979; Hampel, 1974) which is another application that in-
volves the FSD between networks. Influence functions are a
classical robust statistics technique that has since been used
in machine learning (Koh & Liang, 2017). Bae et al. (2022a)
formally study influence functions in neural networks and
show that they approximate an objective called the proximal
Bregman response function (PBRF). This approximation de-
pends on a FSD term that is typically computed by iterating
through the full training dataset.

5. Experiments
We empirically assess the effectiveness of LAFTR (our ideal-
ized method) and the BGLN (our practical algorithm) in ap-
proximating FSD as well as their usefulness for downstream
tasks: continual learning and influence function estimation.
The experiments investigate the following questions:

• Can LAFTR outperform NTK in approximating FSD?

• Does LAFTR improve performance and memory cost
on continual learning benchmarks relative to existing
methods?

• How do choice of output space metric ρ, or the use of
the Gaussian input and the Bernoulli activation approx-
imations, impact empirical performance?

• Can the BGLN perform competitively with iteration-
based influence function estimators without requiring

5

Efficient Parametric Approximations of Neural Network FSD

Method Split MNIST Permuted MNIST

Nonparametric
VCL (coreset) 98.40 95.50
VAR-GP (coreset) 90.57 ± 1.06 97.20 ± 0.08
FROMP (coreset) 99.00 ± 0.04 94.90 ± 0.04
S-FSVI (coreset) 99.54 ± 0.04 95.76 ± 0.02
NTK (coreset) 99.50 ± 0.09 96.46 ± 0.11
BGLN-S (coreset) 99.50 ± 0.03 96.36 ± 0.13

Parametric
EWC 63.10 84.00
OSLA 80.56 95.73
VCL 97.00 87.50 ± 0.61
BGLN-D 99.72 ± 0.03 96.03 ± 0.20
BGLN-D-CW 99.78 ± 0.02 96.85 ± 0.02
BGLN-S 99.64 ± 0.04 96.36 ± 0.12
BGLN-S-CW 99.77 ± 0.05 96.99 ± 0.07
BGLN-D-Var 99.64 ± 0.04 94.98 ± 0.18
BGLN-S-Var 99.50 ± 0.03 96.36 ± 0.13

Table 1. Average accuracies of nonparametric and parametric ap-
proaches on Split and Permuted MNIST datasets.

Method Split MNIST Permuted MNIST

FROMP −0.50 ± 0.20 −1.00 ± 0.10
S-FSVI −0.21 ± 0.06 −0.65 ± 0.21

BGLN-S −0.04 ± 0.03 −0.41 ± 0.08
BGLN-D −0.09 ± 0.04 −0.56 ± 0.04
BGLN-S-CW −0.18 ± 0.06 −0.37 ± 0.14
BGLN-D-CW −0.07 ± 0.07 −1.17 ± 0.07

Table 2. Backward transfer on Split and Permuted MNIST. Higher
is better.

iteration over the dataset?

5.1. Comparing FSD Estimators

To conduct further empirical analysis of our methods’ esti-
mation and minimization of the true (empirical) FSD, we
use tasks and models from standard continual learning set-
tings which are prone to forgetting. These include Split
MNIST, Permuted MNIST and Split CIFAR100 (Pan et al.,
2020; Rudner et al., 2022). In addition to directly evaluating
the continual learning performance, we also use a collec-
tion of networks trained in the course of this experiment
(with varying hyperparameter settings) to directly evaluate
the accuracy of the FSD estimates. Specifically, we vary
the learning rate and the number of training iterations, and
consider the set of trained networks that result; on each pair
of these networks, we compare the FSD estimates against
the true empirical FSD computed using the full training set.

Figure 2 (Left) shows that BGLN-S and BGLN-D consis-
tently estimate the true FSD more accurately than NTK.
Analogous analysis using CIFAR100 shows a similar trend
in Figure 4. We can also measure how the true FSD changes
when different FSD estimates are optimized during training,
as in Figure 2 (Middle), where BGLN methods more effec-

tively minimize true FSD as new task accuracy increases.
Finally, we train networks of varying depths on CIFAR100
tasks and measure correlation (Spearman rank-order (Spear-
man, 1961) and Kendall’s Tau (Kendall, 1938)) with true
FSD. Figure 2 (Right) shows that LAFTR has a higher cor-
relation using both metrics, and its advantage over NTK
increases with network depth, and hence with a number of
nonlinear interactions between parameters. This corrobo-
rates our intuition that LAFTR captures nonlinearities that
NTK is unable to account for.

5.2. Continual Learning

Recall the formulation of continual learning in terms of
FSD, as described in equation 3. We visualize our method’s
comparative performance on 1-D regression with two se-
quential tasks shown in Figure 1. More realistically, we
test our methods on standard benchmarks used in prior
works (Pan et al., 2020; Rudner et al., 2022), with standard
architectures for a fair comparison. See Appendix E.2 for
details on the datasets, architectures, and hyperparameters.
We evaluate average final accuracy across tasks, backward
transfer (Lopez-Paz & Ranzato, 2017) and memory cost.

Toy Regression. Figure 1 shows the functions learned by
different methods when sequentially trained on two one-
dimensional regression tasks. LAFTR gives a better approx-
imation of the learned function than NTK. When used to
regularize the network, BGLN retains good predictions on
both tasks, while EWC and exact parameter space lineariza-
tion (NTK) suffer catastrophic forgetting. We hypothesize
that this difference in performance is due to important non-
linearities between network parameters that EWC and NTK
approximations are unable to capture.

Split and Permuted MNIST. As shown in Tables 1 and
2, our LAFTR-based methods outperform other parametric
methods (EWC, OSLA, and VCL) on Split and Permuted
MNIST tasks and are competitive with the state-of-the-art
(SOTA) nonparametric methods, in terms of average accu-
racy. Class-conditional approximations further boost perfor-
mance and the diagonal approximation to input covariance
(BGLN-S-Var, BGLN-D-Var) does not harm it significantly.
With respect to the backward transfer, a more direct measure
of forgetting, BGLN methods significantly outperform the
SOTA. Finally, they are also amenable to successful adapta-
tion to the nonparametric setting when a coreset is available
for use in place of Gaussian samples.

Split CIFAR100. We consider the much more challenging
Split CIFAR100 task to compare our method to existing
approaches and tease apart the effects of our algorithmic
choices and approximations. Table 3 summarizes these re-
sults and analytically compares the memory costs associated
with each method (see Appendix E.1 for details). Coreset
refers to a coreset of real inputs vs. Gaussian samples,

6

Efficient Parametric Approximations of Neural Network FSD

Method ρ Coreset Bernoulli CW Average Accuracy ↑ Backward Transfer ↑ Memory Cost

Nonparametric
VCL (coreset) − 67.40± 0.60 − 2P +Nd
VAR-GP (coreset) − − − 2P +Nd+ C2N2

FROMP (coreset) − 76.20± 0.20 −2.60± 0.90 2P +Nd+ C2N2

S-FSVI (coreset) − 77.60± 0.20 −2.50± 0.20 2P +Nd+ C2N2

NTK (coreset) KL − 77.61± 0.20 −2.03± 0.04 2P +Nd
LAFTR (coreset) KL ✓ ✗ ✗ 78.33± 0.01 −0.73± 0.10 P +Nd
BGLN-S (coreset) KL ✓ ✓ ✗ 73.27± 0.01 −4.99± 0.28 P +A+Nd
LAFTR (coreset) Euclidean ✓ ✗ ✗ 76.22± 0.01 −2.64± 0.40 P +Nd

Parametric
EWC − 71.60± 0.40 − 2P

OSLA − 72.61 − P +
∑L

l=1 p
2
l

VCL − − − 2P
LAFTR KL ✗ ✗ ✗ 75.61± 0.01 −1.93± 0.59 P + d+ d2

LAFTR-CW KL ✗ ✗ ✓ 76.22± 0.01 −1.45± 0.63 P + C(d+ d2)
BGLN-S KL ✗ ✓ ✗ 72.37± 0.01 −8.20± 0.04 P +A+ d+ d2

BGLN-S-CW KL ✗ ✓ ✓ 74.02± 0.01 −2.44± 0.15 P + C(A+ d+ d2)
LAFTR Euclidean ✗ ✗ ✗ 75.51± 0.01 −3.12± 0.44 P + d+ d2

BGLN-S Euclidean ✗ ✓ ✗ 74.29± 0.01 −5.49± 0.05 P +A+ d+ d2

BGLN-S-CW Euclidean ✗ ✓ ✓ 77.78± 0.01 −1.75± 0.50 P + C(A+ d+ d2)

Table 3. Split CIFAR100: Average Accuracy and Backward Transfer. Notation for memory cost: pl = # parameters in layer l, P = #
parameters =

∑L
l=1 pl, A = # activations < P , d = data dimension, N = coreset size, C = # classes.

102 103

True FSD between pairs of networks

101

102

103

104

Es
tim

at
ed

 F
SD

x = y
NTK (coreset)

BGLN-S
BGLN-D

0.2 0.4 0.6 0.8 1.0
Task 2 Accuracy

100

101

102

Tr
ue

 F
SD

 fr
om

 T
as

k
1 EWC

NTK (coreset)
BGLN-D
BGLN-D-CW

4 8 12 16
Model depth

75

80

85

90

95

Co
rre

la
tio

n
wi

th
 tr

ue
 F

SD
NTK (coreset)
LAFTR
LAFTR (coreset)
Spearman rank-order
Kendall's Tau

Figure 2. Comparison of different FSD estimators. (Left) Compared to NTK, BGLN-S and BGLN-D consistently give closer FSD values
to the true empirical FSD. (Middle) While training on task 2, FSD from the optimal task 1 parameters increases with task 2 accuracy.
Optimizing BGLN-D and class-conditioned BGLN-D-CW effectively minimizes the true FSD. (Right) LAFTR has a higher correlation
with true FSD than NTK, with a more significant advantage as network depth (and hence a number of nonlinear interactions) increases.

Bernoulli refers to Bernoulli activations vs. simply passing
preactivations through the ReLU function (termed LAFTR
here) and CW refers to the class-conditonal estimate. Our
empirical analysis shows that given a random coreset of the
same size as comparable methods, LAFTR outperforms the
SOTA as well as the NTK baseline on average accuracy and
backward transfer significantly. Other LAFTR and BGLN
variants remain competitive with prior methods while incur-
ring lower memory costs. We also observe that performance
is hurt to some extent by the Gaussian and Bernoulli model-
ing assumptions, while it is improved by class-conditioning.
We present a more fine-grained task-wise comparison of
accuracies in Figure 5 and results on a longer task sequence
in Table 10 of Appendix E.3.

Memory Gains. To demonstrate the memory gains for our
LAFTR and LAFTR (coreset) methods in practical scenar-
ios, we compute the percentage reduction in memory costs
relative to those of typical nonparametric methods. Specifi-

cally, we fix the network architecture to be a convolutional
network used for training Split CIFAR100, and select rea-
sonable values of coreset size, number of classes per task
and data dimension from a range encountered in practice.
We then use equations in Table 3 to compute 100 × B−L

B ,
where B and L are the memory costs of a nonparametric
method and a LAFTR variant, respectively. As summarized
in Table 4, the gains in memory complexity enjoyed by
LAFTR methods increase as coreset size is increased, num-
ber of classes are increased or data dimension is decreased.
Further results on Split CIFAR100 performance as amount
of stored information (for example, coreset size) is varied
are included in Appendix E.4.

5.3. Influence Function Estimation

To further assess BGLN’s applicability to other settings
involving FSD estimation and regularization, we consider
influence function estimation (Cook, 1979; Hampel, 1974;

7

Efficient Parametric Approximations of Neural Network FSD

C
d 1000 2000 3000 N

10 66.27 24.08 −43.71 200
74.84 43.26 −7.60 250

20 87.86 72.15 46.33 200
91.81 81.18 63.68 250

50 97.78 94.87 90.03 200
98.57 96.69 93.56 250

C
d 1000 2000 3000 N

10 78.14 75.89 73.77 200
83.14 80.90 78.79 250

20 92.13 91.15 90.20 200
94.51 93.67 92.84 250

50 98.56 98.37 98.18 200
99.04 98.88 98.73 250

Table 4. Percentage reduction in memory cost of LAFTR (Left) and LAFTR (coreset) (Right) relative to typical nonparametric methods
for a fixed network architecture and varying values of C (number of classes), d (data dimension) and N (coreset size). Higher percentages
are better. In both cases, gains in memory complexity increase as N increases, C increases or d decreases.

Dataset EWC CG BGLN-D

P S P S P S

Concrete 0.78 0.57 0.92 0.94 0.96 0.97
Energy 0.68 0.39 0.97 0.98 0.99 0.98

Housing 0.86 0.33 0.92 0.89 0.95 0.83
Kinetics 0.36 0.30 0.88 0.86 0.99 0.99

Wine 0.97 0.70 0.99 0.94 0.99 0.90

Table 5. Comparison of training loss differences computed by
EWC, CG and BGLN-D. We show Pearson (P) and Spearman
rank-order (S) correlations with the PBRF estimates.

Koh & Liang, 2017). Given parameters θ0 trained on dataset
Dtrain of size N , influence functions approximate the param-
eters θ− that would be obtained by training without a par-
ticular point (x,y) ∈ Dtrain. The difference in loss between
θ0 and θ− is an indicator of the influence of (x,y) on the
trained network.

Bae et al. (2022a) show that influence functions in neural
networks can be formulated as solving for the proximal
Bregman response function (PBRF):

θ− = argmin
θ∈Rd

− 1

N
L(f(x,θ),y) +DB(θ,θ0, ptrain)

+
λ

2
∥θ − θ0∥2. (13)

Here, the first term maximizes the loss of the data point we
are interested in removing. The second term is the Breg-
man divergence defined on network outputs and measures
the FSD between θ and θ0 over training distribution ptrain
similar to the FSD term as defined in equation 1. For stan-
dard loss functions like squared error and cross-entropy, the
Bregman divergence term is equivalent to the soft training
error where the original targets are replaced with soft targets
produced by θ0. Finally, the last term is a proximity term
with strength λ > 0, which prevents large changes in weight
space. Intuitively, the PBRF maximizes the loss of data we
would like to remove while constraining the network in both
function and weight space so that the predictions and losses
of other training examples remain unaffected.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fraction of train data checked

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

of
co

rr
up

tio
n

fix
ed

Random
PBRF Retraining
EWC
CG
BGLN

Figure 3. Effectiveness of BGLN in detecting mislabeled examples.
BGLN can approximate the FSD term in the PBRF objective ac-
curately and be used in applications involving influence functions
without explicitly storing or iterating over the dataset.

Existing approaches for this optimization face two key chal-
lenges: (1) the entire training dataset must be stored and
iterated over, requiring as many forward passes as there are
mini-batches and (2) techniques like nonlinear Conjugate
Gradient (CG) (Hager & Zhang, 2006) do not work well
with the stochastic gradients produced by sampling batches
of data. LAFTR enables estimating the PBRF (or FSD) by
storing only the first two data moments, requires just a sin-
gle forward pass to compute it and provides a deterministic
function to optimize, implemented as BGLN-D.

Regression. We first train a MLP with two hidden lay-
ers and ReLU activations for 200 epochs on regression
datasets from the UCI benchmark (Dua & Graff, 2017).
Then, we randomly select 50 independent data points to
be removed. For each removed point, we sample batches
and use a Stochastic Gradient Descent (SGD) optimizer to
minimize the PBRF objective and compute the difference in
loss after removing that data point, commonly referred to
as the self-influence score (Koh & Liang, 2017; Schioppa
et al., 2022). Next, we follow the same procedure as above
but approximate the FSD term in the PBRF objective with
EWC, CG (Koh & Liang, 2017) and BGLN-D. Since the di-
rect minimization of PBRF can be considered as the ground
truth for influence estimation, we compare the alignment

8

Efficient Parametric Approximations of Neural Network FSD

of these methods’ estimates with that of PBRF via Pear-
son correlation (Sedgwick, 2012) and Spearman rank-order
correlation (Spearman, 1961). The results are shown in
Table 5. Without having to iterate over or store the entire
dataset, BGLN-D correlates with PBRF more strongly than
EWC and CG (Koh & Liang, 2017), which can be seen as
minimizing a linearized version of the PBRF objective.

Mislabeled Example Detection. Influence function esti-
mators are commonly evaluated in terms of their ability to
identify mislabeled examples. Intuitively, if some fraction
of the training labels is corrupted, they would behave as out-
liers and have a more significant influence on the training
loss (self-influence score). One approach to efficiently de-
tect and correct these examples is to prioritize and examine
training inputs with higher self-influence scores. Following
the evaluation setup from Bae et al. (2022a), we use 10% of
the MNIST dataset and corrupt 10% of it by assigning ran-
dom labels to it. We train a two layer MLP with 1024 hidden
units and ReLU activations using SGD with a batch size of
128. Then, we use EWC, CG and BGLN-D to approximate
the FSD term in equation 13 and compute individual self-
influence scores. We also compare these methods against
a baseline of randomly sampling data points to check for
corruption. The results are summarized in Figure 3. BGLN-
D significantly outperforms the random baseline and EWC
and closely matches the oracle PBRF and CG, while being
much faster, cheaper and more memory-efficient.

6. Conclusions
In this work, we addressed the problem of compactly sum-
marizing a model’s predictions on a given dataset, and for-
mulated it as approximating neural network FSD. We de-
veloped the Linearized Activation Function TRick as an
improvement over network linearization in parameter space
and proposed novel parametric methods, BGLN, to estimate
FSD. Our methods capture nonlinearities between network
parameters, are much more memory-efficient than prior
works and are amenable to adaptation to the nonparametric
setting when a coreset of data is available.

We empirically show that LAFTR-based estimates are
highly correlated with the true FSD across several settings.
In continual learning, our methods outcompete existing
methods without storing any data samples. Further, in in-
fluence function estimation, they estimate influence-scores
with high correlation and can efficiently detect mislabeled
examples without expensive iteration over the whole dataset.

Extending the formulation of FSD approximation to other
applications like model editing or unlearning are exciting
research avenues. We hope that our work inspires methods
to further enhance memory and computational efficiency in
settings where estimating or constraining FSD is relevant.

Acknowledgements
We would like to thank Florian Shkurti for useful discus-
sions, Cem Anil for feedback on the draft, and Gerald
Shen for assistance with the compute environment. Re-
sources used in preparing this research were provided, in
part, by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring the Vector Insti-
tute (www.vectorinstitute.ai/partners).

References
Amari, S. Natural gradient works efficiently in learning.

Neural Comput., 10(2):251–276, 1998. doi: 10.1162/
089976698300017746. URL https://doi.org/10.
1162/089976698300017746.

Amari, S., Cichocki, A., and Yang, H. H. A new learning
algorithm for blind signal separation. In Proceedings of
the 8th International Conference on Neural Information
Processing Systems, NIPS’95, pp. 757–763, Cambridge,
MA, USA, 1995. MIT Press.

Bae, J., Ng, N., Lo, A., Ghassemi, M., and Grosse, R. B.
If influence functions are the answer, then what is the
question? Advances in Neural Information Processing
Systems, 35:17953–17967, 2022a.

Bae, J., Vicol, P., HaoChen, J. Z., and Grosse, R. B. Amor-
tized proximal optimization. Advances in Neural Infor-
mation Processing Systems, 35:8982–8997, 2022b.

Bai, Y., Krause, B., Wang, H., Xiong, C., and Socher, R.
Taylorized training: Towards better approximation of
neural network training at finite width. arXiv preprint
arXiv:2002.04010, 2020.

Benjamin, A. S., Rolnick, D., and Kording, K. Measur-
ing and regularizing networks in function space. arXiv
preprint arXiv:1805.08289, 2018.

Bernstein, J., Vahdat, A., Yue, Y., and Liu, M.-Y. On the
distance between two neural networks and the stability
of learning. Advances in Neural Information Processing
Systems, 33:21370–21381, 2020.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A.,
Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot,
N. Machine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Cook, R. D. Influential observations in linear regression.
Journal of the American Statistical Association, 74(365):
169–174, 1979.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia,
X., Leonardis, A., Slabaugh, G., and Tuytelaars, T. A

9

www.vectorinstitute.ai/partners
https://doi.org/10.1162/089976698300017746
https://doi.org/10.1162/089976698300017746

Efficient Parametric Approximations of Neural Network FSD

continual learning survey: Defying forgetting in classifi-
cation tasks. IEEE transactions on pattern analysis and
machine intelligence, 44(7):3366–3385, 2021.

Deng, L. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

Doan, T., Bennani, M. A., Mazoure, B., Rabusseau, G.,
and Alquier, P. A theoretical analysis of catastrophic
forgetting through the ntk overlap matrix. In International
Conference on Artificial Intelligence and Statistics, pp.
1072–1080. PMLR, 2021.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Ebrahimi, S., Elhoseiny, M., Darrell, T., and Rohrbach,
M. Uncertainty-guided continual learning with bayesian
neural networks. arXiv preprint arXiv:1906.02425, 2019.

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and
Bengio, Y. An empirical investigation of catastrophic for-
getting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Grosse, R. University of toronto CSC2541, topics in ma-
chine learning: Neural net training dynamics, chapter 4:
Second-Order optimization. Lecture Notes, 2021. URL
https://www.cs.toronto.edu/˜rgrosse/
courses/csc2541_2021/readings/L04_
second_order.pdf.

Grosse, R. and Martens, J. A kronecker-factored approxi-
mate fisher matrix for convolution layers. In International
Conference on Machine Learning, pp. 573–582. PMLR,
2016.

Hager, W. W. and Zhang, H. A survey of nonlinear conjugate
gradient methods. Pacific journal of Optimization, 2(1):
35–58, 2006.

Hampel, F. R. The influence curve and its role
in robust estimation. Journal of the American
Statistical Association, 69(346):383–393, 1974.
doi: 10.1080/01621459.1974.10482962. URL
https://www.tandfonline.com/doi/abs/
10.1080/01621459.1974.10482962.

Hanin, B. and Nica, M. Finite depth and width corrections
to the neural tangent kernel. In International Conference
on Learning Representations, 2019.

Hinton, G., Vinyals, O., Dean, J., et al. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015.

Huang, J. and Yau, H.-T. Dynamics of deep neural networks
and neural tangent hierarchy. In International conference
on machine learning, pp. 4542–4551. PMLR, 2020.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
Advances in neural information processing systems, 31,
2018.

Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Zhao, T.
Smart: Robust and efficient fine-tuning for pre-trained
natural language models through principled regularized
optimization. arXiv preprint arXiv:1911.03437, 2019.

Kapoor, S., Karaletsos, T., and Bui, T. D. Variational auto-
regressive gaussian processes for continual learning. In
International Conference on Machine Learning, pp. 5290–
5300. PMLR, 2021.

Kendall, M. G. A new measure of rank correlation.
Biometrika, 30(1/2):81–93, 1938. ISSN 00063444. URL
http://www.jstor.org/stable/2332226.

Kirichenko, P., Farajtabar, M., Rao, D., Lakshminarayanan,
B., Levine, N., Li, A., Hu, H., Wilson, A. G., and Pas-
canu, R. Task-agnostic continual learning with hybrid
probabilistic models. arXiv preprint arXiv:2106.12772,
2021.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International conference
on machine learning, pp. 1885–1894. PMLR, 2017.

Krizhevsky, A., Nair, V., and Hinton, G. CIFAR-10 (cana-
dian institute for advanced research). a. URL http:
//www.cs.toronto.edu/˜kriz/cifar.html.

Krizhevsky, A., Nair, V., and Hinton, G. CIFAR-100 (cana-
dian institute for advanced research). b. URL http:
//www.cs.toronto.edu/˜kriz/cifar.html.

Kunstner, F., Hennig, P., and Balles, L. Limitations of the
empirical fisher approximation for natural gradient de-
scent. Advances in neural information processing systems,
32, 2019.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-
Dickstein, J., and Pennington, J. Wide neural networks of
any depth evolve as linear models under gradient descent.
Advances in neural information processing systems, 32,
2019.

10

http://archive.ics.uci.edu/ml
https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/readings/L04_second_order.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/readings/L04_second_order.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/readings/L04_second_order.pdf
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962
http://www.jstor.org/stable/2332226
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

Efficient Parametric Approximations of Neural Network FSD

Lopez-Paz, D. and Ranzato, M. Gradient episodic memory
for continual learning. Advances in neural information
processing systems, 30, 2017.

Martens, J. and Grosse, R. Optimizing neural networks with
kronecker-factored approximate curvature. In Interna-
tional conference on machine learning, pp. 2408–2417.
PMLR, 2015.

Martens, J., Sutskever, I., and Swersky, K. Estimating the
hessian by back-propagating curvature. arXiv preprint
arXiv:1206.6464, 2012.

Mirzadeh, S. I., Chaudhry, A., Yin, D., Hu, H., Pascanu,
R., Gorur, D., and Farajtabar, M. Wide neural networks
forget less catastrophically. In International Conference
on Machine Learning, pp. 15699–15717. PMLR, 2022.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Man-
ning, C. D. Fast model editing at scale. arXiv preprint
arXiv:2110.11309, 2021.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner,
R. E. Variational continual learning. arXiv preprint
arXiv:1710.10628, 2017.

Normandin, F., Golemo, F., Ostapenko, O., Rodriguez, P.,
Riemer, M. D., Hurtado, J., Khetarpal, K., Zhao, D.,
Lindeborg, R., Lesort, T., et al. Sequoia: A software
framework to unify continual learning research. arXiv
preprint arXiv:2108.01005, 2021.

Pan, P., Swaroop, S., Immer, A., Eschenhagen, R., Turner,
R., and Khan, M. E. E. Continual deep learning by func-
tional regularisation of memorable past. Advances in
Neural Information Processing Systems, 33:4453–4464,
2020.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and
Wermter, S. Continual lifelong learning with neural
networks: A review. Neural Netw., 113(C):54–71,
may 2019. ISSN 0893-6080. doi: 10.1016/j.neunet.
2019.01.012. URL https://doi.org/10.1016/
j.neunet.2019.01.012.

Pascanu, R. and Bengio, Y. Revisiting natural gradient for
deep networks. CoRR, abs/1301.3584, 2014.

Ramasesh, V. V., Dyer, E., and Raghu, M. Anatomy of
catastrophic forgetting: Hidden representations and task
semantics. arXiv preprint arXiv:2007.07400, 2020.

Ritter, H., Botev, A., and Barber, D. Online structured
laplace approximations for overcoming catastrophic for-
getting. Advances in Neural Information Processing Sys-
tems, 31, 2018.

Rudner, T. G., Smith, F. B., Feng, Q., Teh, Y. W., and
Gal, Y. Continual learning via function-space variational
inference.

Rudner, T. G. J., Smith, F. B., Feng, Q., Teh, Y. W., and Gal,
Y. Continual Learning via Sequential Function-Space
Variational Inference. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, Proceedings of
Machine Learning Research. PMLR, 2022.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact
solutions to the nonlinear dynamics of learning in deep
linear neural networks. arXiv preprint arXiv:1312.6120,
2013.

Schioppa, A., Zablotskaia, P., Vilar, D., and Sokolov, A.
Scaling up influence functions. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36,
pp. 8179–8186, 2022.

Sedgwick, P. Pearson’s correlation coefficient. Bmj, 345,
2012.

Seleznova, M. and Kutyniok, G. Analyzing finite neural
networks: Can we trust neural tangent kernel theory?
In Mathematical and Scientific Machine Learning, pp.
868–895. PMLR, 2022a.

Seleznova, M. and Kutyniok, G. Neural tangent kernel
beyond the infinite-width limit: Effects of depth and ini-
tialization. arXiv preprint arXiv:2202.00553, 2022b.

Spearman, C. The proof and measurement of association
between two things. 1961.

Titsias, M. K., Schwarz, J., Matthews, A. G. d. G., Pascanu,
R., and Teh, Y. W. Functional regularisation for con-
tinual learning with gaussian processes. arXiv preprint
arXiv:1901.11356, 2019.

11

https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012

Efficient Parametric Approximations of Neural Network FSD

Appendix

A. Notation

f Function corresponding to a neural network

ϕ ReLU activation function

ϕ′ Derivative of a function ϕ

sl Preactivations at layer l

al = ϕ(sl) Activations at layer l

x Input data

y Target data

x(i) Input data point i

pdata Data distribution from which x is sampled

d Data dimension

N Number of data points in a coreset

L Number of layers in a network

C Number of classes in a classification task

T Number of tasks

θ Parameters of a neural network

θt Parameters obtained after training on task t

pl Number of parameters in layer l

P Total number of parameters in a network =
∑L

l=1 pl

z = f(x;θ) Prediction of the network f on x parameterized by θ

ρ Output space distance, for instance Euclidean distance

D(θ0,θ1, pdata) FSD between networks parameterized by θ0 and θ1 over data distribution pdata

Gθ Weight space metric matrix

Fθ Fisher information matrix

m Mask vector or Bernoulli random variable

µ Bernoulli mean parameter

B. Recursion Equations for BGLN-D
We derive the deterministic version of our algorithm by taking expectations and covariances for the quantities in equations 6
to 11 (rewritten using Bernoulli variables). We use linearity of expectations and our Bernoulli modeling approximation.
We also assume Cov(a0,∆a) is close to 0 and ignore it in our computations. This assumption is tested empirically in our
experiments and we find that it does not severely move the FSD estimate away from the true empirical FSD (see Figures 2
and 4). The complete steps for BGLN-D computations are given in Algorithm 2.

C. Generalization to Convolutional Networks
The generalization of BGLN-S to convolutional networks involves passing the inputs sampled using the data moments
through the network. In convolutional networks, ReLU activation is usually applied after the convolutional and the fully

12

Efficient Parametric Approximations of Neural Network FSD

Algorithm 2 BGLN-D

Require: E[x],Cov(x), {W , b}L1 , {µ}L−1
1

E[a0],E[a1]← E[x]
Cov(a0),Cov(a1)← Cov(x)
E[∆a],Cov(∆a)← 0
for l← 1 to L− 1 do
E[s0]←W

(l)
0 E[a0] + b

(l)
0

E[∆s]← ∆W (l)E[a0] +W
(l)
1 E[∆a] + ∆b(l)

E[a0]← µ(l) ⊙ E[s0]
E[∆a]← µ(l) ⊙ E[∆s]

Cov(s0)←W
(l)
0 Cov(a0)W

(l)T
0

Cov(∆s)← ∆W (l)Cov(a0)∆W (l)T +W
(l)
1 Cov(∆a)W

(l)T
1

Cov(a0)← (µ(l)µ(l)T)⊙ Cov(s0)
Cov(∆a)← (µ(l)µ(l)T)⊙ Cov(∆s)

end for
E[∆z]← ∆W (L)E[a0] +W

(L)
1 E[∆a] + ∆b(L)

Cov(∆z)← ∆W (L)Cov(a0)∆W (L)T +W
(L)
1 Cov(∆a)W

(L)T
1

return 1
2 ||E[∆z]||2 + 1

2 tr (Cov(∆z))

connected layers. At each ReLU step, we use the Bernoulli mean parameters to sample activation signs and obtain the
difference of activations, ∆a. Finally, the Euclidean distance (or KL divergence) between the final layer outputs leads to the
stochastic estimate of the FSD. The complete procedure is shown in Algorithm 3.

D. Comparing FSD Estimators
To directly compare the NTK approximation with the linearized activation function trick, we compute the estimated FSD
between pairs of networks using these two kinds of linearization, when provided with the same information, and plot them
against the true empirical FSD. Hence, both estimators are provided with the same coreset of datapoints. In the case of
BGLN-S (coreset), activations are computed using this coreset directly instead of Bernoulli sampling. Figure 4 visualizes
this comparison for networks trained using tasks in Split CIFAR100. BGLN-S estimates correlate better with the true FSD
than NTK, hence corroborating our intuition about linearizing activation functions. To quantify this difference, we also
measure the Spearman rank-order and Kendall’s Tau correlation coefficients for each estimator with the true FSD. BGLN-S
obtains values 96.36 and 79.19, respectively, outperforming NTK, which obtains 86.42 and 71.71, respectively.

E. Continual Learning
E.1. Memory Cost Analysis

Table 6. Memory cost notation.

pl # parameters in layer l
P # parameters =

∑L
l=1 pl

A # activations < P
d data dimension
N coreset size
C # classes

We follow the notation in Table 6 to denote pl as the number of parameters in
layer l, P =

∑L
l=1 pl as the total number of parameters in the network, A as the

number of activations in the network (note that A < P), d as the data dimension,
N as the number of samples in a coreset, and C as the number of classes in the
continual learning classification setting. We can now write analytic expressions
for the memory cost incurred by the different methods considered in the continual
learning experiments, as shown in Table 3. Below we arrive at these expressions
for each task that the model is continually trained on.

• EWC: EWC requires storing one value for each parameter of the network and one value for each diagonal element of
the P × P Fisher information matrix, resulting in a cost of 2P .

• OSLA: OSLA approximates the Fisher information matrix as a block diagonal matrix, storing p2l elements for each
block corresponding to layer l. This gives a cost of P +

∑L
l=1 p

2
l .

13

Efficient Parametric Approximations of Neural Network FSD

Algorithm 3 BGLN-S (Conv)

Require: E[x],Cov(x), {layer}L−1
1 , {µ}L−1

1

1: E[a0],E[a1]← E[x]
2: Cov(a0),Cov(a1)← Cov(x)
3: a0,a1 ∼ N (E[a0],Cov(a0))
4: ∆a← 0
5: for l← 1 to L− 1 do
6: if layer is Conv or FC then
7: s0 ← layer(a0,grad=False)
8: s1 ← layer(a1)
9: else if layer is ReLU then

10: ∆s = s1 − s0
11: m ∼ Ber(µ(l))
12: ∆a←m⊙∆s
13: else
14: a0 ← layer(a0)
15: a1 ← layer(a1)
16: end if
17: end for
18: ∆z ← s1 − s0
19: return 1

2 ||∆z||2

0 50 100 150 200
True FSD between pairs of networks

0

50

100

150

200

250

300

Es
tim

at
ed

 F
SD

x = y
NTK (coreset)
LAFTR (coreset)

Figure 4. Estimating true FSD with LAFTR and NTK, given the same coreset of inputs, on networks trained using Split CIFAR100.

• VCL: VCL stores two pieces of information for the variational distribution for each parameter, one for the mean and
one for the variance in the diagonal approximation, incurring a cost equal to 2P .

• VCL (coreset): The “coreset” variant of VCL additionally stores N datapoints, increasing the memory cost by Nd.

• VAR-GP, FROMP, S-FSVI: These methods all store two values per parameter, similar to VCL. Further, they require a
coreset of datapoints and/or inducing points, as well as a NC ×NC kernel matrix.

• NTK (coreset): The NTK approximation stores one value for each parameter of the network and one for the
P−dimensional Jacobian-vector product used to linearize the network. It further requires a coreset of N datapoints,

14

Efficient Parametric Approximations of Neural Network FSD

result in a 2P +Nd cost.

• LAFTR: LAFTR methods store each parameter once and the first two moments of the data, incurring a cost of
P + d+ d2.

• LAFTR-CW: The classwise variants of LAFTR store separate data moments for each class, which scales those
corresponding memory costs by C, i.e., P + C(d+ d2).

• LAFTR (coreset): The “coreset”” ablation of LAFTR requires storing N datapoints instead of the data moments,
giving a P +Nd cost.

• BGLN-S, BGLN-D: BGLN methods store each parameter once, a Bernoulli mean value for each activation and the
first two moments of the data, incurring a cost of P +A+ d+ d2.

• BGLN-S-CW, BGLN-D-CW: The classwise variants of our methods store separate Bernoulli means and data moments
for each class, which scales those corresponding memory costs by C, i.e., P + C(A+ d+ d2).

• BGLN-S-Var, BGLN-D-Var: The “Var” variants of our methods make a diagonal approximation to the data covariance
(second moment), hence storing only d values for it. This further reduces memory cost to P +A2d.

• BGLN-S (coreset): The “coreset” ablation of BGLN-S requires storing N datapoints instead of the data moments,
giving a P +A+Nd cost.

E.2. Experimental Details

Datasets. Split MNIST consists of five binary prediction tasks to classify non-overlapping pairs of MNIST digits (Deng,
2012). Permuted MNIST is a sequence of ten tasks to classify ten digits, with a different fixed random permutation applied
to the pixels of all training images for each task. Finally, Split CIFAR100 consists of six ten-way classification tasks, with
the first being CIFAR10 (Krizhevsky et al., a), and subsequent ones containing ten non-overlapping classes each from the
CIFAR100 dataset (Krizhevsky et al., b).

Architectures. We use standard architectures used by existing methods for fair comparison. For regression and the MNIST
experiments, we use a MLP with two fully connected layers and ReLU activation. For Split CIFAR100, we use a network
with four convolutional layers, followed by two fully connected layers, and ReLU activation after each. For MNIST tasks,
we compute the FSD with Euclidean output space metric between logits. For CIFAR100, we do the same between softmax
outputs. Both Split MNIST and Split CIFAR100 models have a multiheaded final layer. Note that the VAR-GP method
included in the results in Section 5 is specific only to singleheaded architectures and does not generalize to the multiheaded
networks that our methods and all other comparable methods use.

Hyperparameters. We have performed a grid search over some key hyperparameters and used the ones that resulted in the
best final average accuracy across all tasks. All hyperparameter search was done with random seed 42. We then took that
best set of hyperparameters, repeated our experiments on seeds 20, 21, 22, and reported the average and standard deviation
of our results.

For all nonparametric methods that store and use a coreset of datapoints, we use 40 points for MNIST datasets and 200
points for CIFAR 100, in accordance with standard protocol followed by comparable methods.

For the learning rate, we used 0.001 for all CL experiments except the BGLN-S method for Split MNIST and BGLN-D
method for Permuted MNIST, where we used 0.0001 instead.

We used the same number of epochs on each CL task and the exact numbers are reported in Table 7. On the first task, all
MNIST experiments used the same number of epochs as the subsequent CL tasks while CIFAR100 experiments used 200
epochs on the first task.

To compute the Bernoulli mean parameters for our stochastic gating implementation, we used simple averaging as the
default, but also explored exponential moving averaging. While there was not much difference in performance, we report the
momentum values that reproduce our results. All MNIST experiments had a momentum value of 1/batch size. Note
that this momentum value of 1/batch size corresponds to simple moving average. For CIFAR100 experiments, we used
0.99 for BGLN-S (CW) and NTK, and 1/batch size for BGLN-S.

15

Efficient Parametric Approximations of Neural Network FSD

Table 7. CL tasks training epochs used in CL experiments.

Method Split MNIST Permuted MNIST Split CIFAR100

NTK (coreset) 15 5 80
BGLN-S 15 15 80
BGLN-D 15 15 -
BGLN-S-CW 15 15 50
BGLN-D-CW 15 15 -

Table 8. FSD scale used in CL experiments.

Method Split MNIST Permuted MNIST Split CIFAR100

NTK (coreset) 1 1 0.005
BGLN-S 5 1 1
BGLN-D 0.1 0.005 -
BGLN-S-CW 2 1 10
BGLN-D-CW 0.1 0.005 -

Table 9. Batch size used in CL experiments.

Method Split MNIST Permuted MNIST Split CIFAR100

NTK (coreset) 256 256 512
BGLN-S 32 128 512
BGLN-D 32 128 -
BGLN-S-CW 32 128 512
BGLN-D-CW 32 128 -

For each method and dataset, the scaling factor for FSD penalty, λFSD, is reported in Table 8. Similarly, batch size is reported
in Table 9.

Evaluation Metrics. In addition to average accuracy over tasks, we measure the backward transfer metric. For T tasks, let
Ri,j be the classification accuracy on task tj after training on task ti. Then, backward transfer is given by the following
formula.

1

T − 1

T−1∑
i=1

RT,i −Ri,i

E.3. Task-wise classification and task sequence length

We show in Figure 5 the task-wise accuracies on the Split CIFAR100 benchmark after training on all tasks is complete, for
our methods (LAFTR, LAFTR (coreset) and BGLN-S-CW), NTK (coreset) and a nonparametric state-of-the-art method,
FROMP. This draws a more fine-grained comparison and depicts the the benefits of LAFTR for each task.

To evaluate learning long sequences of tasks, we test our method’s performance on the extended, 11-task version of Split
CIFAR100 (longer than the typical 6-task benchmark). The results for both versions of the task are shown in Table 10 for
comparison.

We find that performance of our method is maintained even for longer sequences of tasks. In this case, training on more
tasks continually with LAFTR actually yields higher average accuracy. As we may expect, we observe a small decrease in
the backward transfer performance, which still outperforms existing nonparametric SOTA methods.

16

Efficient Parametric Approximations of Neural Network FSD

Task 0 Task 1 Task 2 Task 3 Task 4 Task 5
Tasks

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

FROMP
NTK (coreset)
LAFTR

LAFTR (coreset)
BGLN-S-CW

Figure 5. Comparison of task-wise accuracies on the Split CIFAR100 benchmark after training on all tasks is complete, for our methods,
NTK and a nonparametric state-of-the-art method, FROMP.

Table 10. LAFTR (coreset) performance for different task sequence lengths.

Number of tasks Average Accuracy Backward Transfer

6 78.33± 0.01 −0.73± 0.10
11 78.75± 0.01 −1.59± 0.47

E.4. Ablation of information stored

We present further results on the Split CIFAR100 task, with varying amounts of information stored and used in our method.
Specifcally, Table 11 summarizes the effect of coreset size on average accuracy and backward transfer for Split CIFAR100.
It is also possible to generalize our class-conditional variant, which operates on k = 10 clusters, to different number of
clusters. We can create clusters by grouping classes and storing the required statistics for each cluster separately. As shown
in Table 12, k = 1 is sufficient to compete with existing nonparametric methods in this setting. As expected, as k is increased
and more dataset-level statistics are used, continual learning performance improves.

Table 11. Effect of coreset size on Split CIFAR100 performance.

Coreset Size Average Accuracy Backward Transfer

20 73.26± 0.01 −2.51± 0.43
50 75.63± 0.01 −2.08± 0.51
100 76.70± 0.01 −1.65± 0.09
200 78.33± 0.01 −0.73± 0.10

17

Efficient Parametric Approximations of Neural Network FSD

Table 12. Effect of number of classwise clusters on Split CIFAR100 performance.

k Average Accuracy Backward Transfer

1 75.61± 0.01 −1.93± 0.59
5 75.74± 0.01 −1.58± 0.50
10 76.22± 0.01 −1.45± 0.63

F. Influence Function Estimation
F.1. Experimental Details

We used Concrete, Energy, Housing, Kinetics, and Wine datasets from the UCI collection (Dua & Graff, 2017). For all
datasets, we normalized the training dataset to have a mean of 0 and a standard deviation of 1. We used a 2-hidden layer
MLP with 128 hidden units and the base network was trained for 200 epochs with SGD and a batch size of 128. We
performed hyperparameter searches over the learning rate in the range {0.3, 0.1, 0.03, 0.01, 0.003, 0.001} and selected the
learning rate based on the validation loss.

For each random data point selected, we optimized the PBRF objective for additional 20 epochs from the base network. The
FSD term was computed stochastically with a batch size of 128. Similarly, both EWC and BGLN were trained with the
same configuration but with the corresponding approximation to the FSD term.

18

