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Abstract
Variational inference (VI) seeks to approximate a
target distribution π by an element of a tractable
family of distributions. Of key interest in statis-
tics and machine learning is Gaussian VI, which
approximates π by minimizing the Kullback–
Leibler (KL) divergence to π over the space of
Gaussians. In this work, we develop the (Stochas-
tic) Forward-Backward Gaussian Variational In-
ference (FB–GVI) algorithm to solve Gaussian
VI. Our approach exploits the composite struc-
ture of the KL divergence, which can be writ-
ten as the sum of a smooth term (the potential)
and a non-smooth term (the entropy) over the
Bures–Wasserstein (BW) space of Gaussians en-
dowed with the Wasserstein distance. For our pro-
posed algorithm, we obtain state-of-the-art con-
vergence guarantees when π is log-smooth and
log-concave, as well as the first convergence guar-
antees to first-order stationary solutions when π
is only log-smooth.

1. Introduction
Variational inference (VI) (Blei et al., 2017; Knoblauch et al.,
2022) has emerged as a tractable alternative to computation-
ally demanding Monte Carlo Markov Chain (MCMC) meth-
ods. Of particular interest is the problem of Gaussian VI, in
which we approximate a given distribution π ∝ exp(−V ),
where V is a smooth function, by the solution to

argmin
µ∈BW(Rd)

KL(µ ∥π) , (1)

where KL denotes the Kullback–Leibler divergence and
BW(Rd) the set of Gaussian distributions over Rd (see
Section 4.1 for formal definitions). Indeed, Gaussian VI
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has shown superior performance in practice, especially in
the presence of large datasets, see, for example, Barber &
Bishop (1997); Seeger (1999); Honkela & Valpola (2004);
Opper & Archambeau (2009); Quiroz et al. (2022).

In the literature on Gaussian VI, strong statistical prop-
erties have been shown for the solutions to Problem (1),
see, for example, Chérief-Abdellatif et al. (2019); Alquier
& Ridgway (2020); Katsevich & Rigollet (2023). For in-
stance, Katsevich & Rigollet (2023) showed that Gaussian
VI outperforms Laplace approximation for the estimation
of the mean of π. Besides, consider the case where π is
the posterior distribution of a sufficiently regular Bayesian
model. Then, the Bernstein–von Mises theorem (see Van der
Vaart (2000, Chapter 10) and recent non-asymptotic re-
sults (Kasprzak et al., 2022; Spokoiny, 2022) state that π
is well-approximated by a Gaussian distribution, with the
mean given by any asymptotically efficient estimator of the
true parameter, and covariance matrix given by the inverse
Fisher information matrix. These results collectively pro-
vide abundant motivation for efficiently computing the best
Gaussian approximation of the target π (Problem (1)).

We hence focus on the optimization aspect of Gaussian VI,
i.e., solving Problem (1). Several approaches have been pro-
posed which we summarize in the related works (Section 7).
In particular, Lambert et al. (2022b) recently proposed an
algorithm for Gaussian VI that can be seen as an analog of
stochastic gradient descent for Problem (1) over the space
BW(Rd) endowed with the Wasserstein distance, called
the Bures–Wasserstein (BW) space. This viewpoint was
inspired from the theory of gradient flows over the Wasser-
stein space, i.e., the space of distributions endowed with the
Wasserstein distance (Jordan et al., 1998; Ambrosio et al.,
2008). Moreover, this viewpoint has been instrumental for
many problems in probabilistic inference (see the related
works in Section 7). However, from an optimization stand-
point, the approach of Lambert et al. (2022b) relying on
the BW gradient of the objective is not the most natural
one. Indeed, over the BW space, the objective functional
KL(· ∥π) is composite: it can be canonically decomposed
as the sum of a “smooth” term called the potential and a
“non-smooth” term called the entropy.

The composite nature of the KL divergence has inspired
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more than two decades of research on forward-backward
methods on the Wasserstein space (see, for example, Jordan
et al., 1998; Bernton, 2018; Wibisono, 2018; Salim et al.,
2020). Unfortunately, this line of work is obstructed by
the computational intractability of the so-called JKO oper-
ator (Jordan et al., 1998) (i.e., the analog of the proximal
operator over the Wasserstein space) of the entropy.

In this paper, we introduce a novel algorithm called (Stochas-
tic) Forward-Backward Gaussian Variational Inference (FB–
GVI). Similarly to Lambert et al. (2022b), the rich dif-
ferential and geometric structure of the BW space com-
prises the linchpin of our approach. However, (Stochastic)
FB–GVI additionally incorporates celebrated ideas from
the literature on composite and non-smooth optimization.
A key insight in this work is that the JKO operator for
the entropy, when restricted to the BW space, admits a
closed form (Wibisono, 2018), and hence leads to an im-
plementable (stochastic) forward-backward (or proximal
gradient) algorithm for Gaussian VI. In turn, it yields new
state-of-the-art computational guarantees for Gaussian VI
under a variety of standard assumptions.

We summarize our contributions below.

• We propose a new (stochastic) forward-backward al-
gorithm, (Stochastic) FB–GVI, to solve Problem (1).
The algorithm relies on a closed-form formula for the
JKO operator of the entropy over the BW space.

• We prove state-of-the-art convergence rates for Gaus-
sian VI via our algorithm, leveraging recent techniques
of optimization over the space of probability mea-
sures (Ambrosio et al., 2008).

The rest of our paper is organized as follows. In Section 2,
we clarify our notation and provide some background ma-
terial on stochastic and non-smooth composite optimiza-
tion. In Section 3, we describe the geometric and dif-
ferential structure of the BW space, which is key to per-
forming optimization over BW(Rd). Then, in Section 4
we focus on Problem (1) and propose our algorithms: FB–
GVI and Stochastic FB–GVI. The convergence of our algo-
rithms is studied in Section 5 and preliminary simulation
results are provided in Section 6. Finally, we discuss related
works in Section 7 and conclude in Section 8. A Jupyter
notebook containing code for our experiments can be
found at https://github.com/mzydiao/FBGVI/
blob/main/FBGVI-Experiments.ipynb.

2. Background
In this section, we clarify our notation and provide back-
ground on (stochastic) forward-backward algorithms.

2.1. Notation

We will denote the space of real symmetric d× d matrices
by Sd and the space of real positive definite d× d matrices
by Sd

++. Additionally, we denote the d × d dimensional
identity matrix by I . Throughout, P2(Rd) is the set of
probability measures µ over Rd with finite second moment∫
∥x∥2 dµ(x) <∞. Let µ ∈ P2(Rd). The space L2(µ) is

the Hilbert space of Borel functions f : Rd → Rd such that

Eµ∥f∥2 =

∫
∥f(x)∥2 dµ(x) <∞ ,

endowed with the inner product

⟨f, g⟩µ :=

∫
⟨f(x), g(x)⟩dµ(x)

and the associated norm ∥f∥µ =
√
⟨f, f⟩µ. In particu-

lar, the identity map id : Rd → Rd belongs to L2(µ). If
µ ∈ P2(Rd) and T ∈ L2(µ), the pushforward measure
of µ by T is denoted by T#µ. This pushforward measure
satisfies

∫
φdT#µ =

∫
φ(T (x)) dµ(x) for any measurable

function φ : Rd → R+. The subset of P2(Rd) of all Gaus-
sian distributions with positive definite covariance matrix
is denoted by BW(Rd). For an element µ ∈ BW(Rd), we
denote its mean by mµ and its covariance matrix by Σµ.
The notation N (m,Σ) refers to the Gaussian distribution
with mean m ∈ Rd and covariance matrix Σ ∈ Sd

++.

2.2. Stochastic and non-smooth convex optimization
over Rd

Before introducing optimization concepts on the space of
probability measures, we review some details of stochastic
and convex non-smooth optimization over Rd. First, a func-
tion V : Rd → R is β-smooth if V is twice continuously
differentiable and its Hessian ∇2V (x) is bounded by β in
the operator norm, for every x ∈ Rd. In particular, V is dif-
ferentiable and its gradient∇V is β-Lipschitz. In addition,
V satisfies the Taylor inequality

|V (x+ h)− V (x)− ⟨∇V (x), h⟩| ≤ β

2
∥h∥2 . (2)

Consider the optimization problem

min
x∈Rd

{V (x) +H(x)} , (3)

where V : Rd → R is β-smooth and H : Rd → R is
convex but potentially non-smooth. To simplify the presen-
tation, we also assume that V is convex. Because of the
non-smoothness of H , the (sub)gradient descent algorithm
applied to Problem (3) may not converge to a minimizer of
V +H . However, in many situations of interest, the user
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has closed-form expressions1 for the proximal operator of
H defined by

proxH(x) := argmin
y∈Rd

{
H(y) +

1

2
∥x− y∥2

}
. (4)

Given access to the proximal operator of H and the gradient
of V , the forward-backward algorithm (Bauschke et al.,
2011) is one of the most natural and efficient techniques
to solve Problem (3). The forward-backward algorithm is
written as

xk+1 = proxηH(xk − η∇V (xk)) . (5)

In machine learning applications, the user often does not
have direct access to ∇V (xk) because computing the gra-
dient of V is expensive. Instead, the user has access to a
cheaper stochastic estimator ĝk of∇V (xk). In this situation,
the stochastic forward-backward algorithm has been proven
to be an efficient alternative to the forward-backward algo-
rithm (Atchadé et al., 2017; Bianchi et al., 2019; Gorbunov
et al., 2020). In the stochastic forward-backward algorithm,
∇V (xk) is replaced by ĝk as follows:

xk+1 = proxηH(xk − η ĝk) . (6)

We will now adapt the (stochastic) forward-backward algo-
rithm (6) to the BW space. In particular, the iterate at step k
will no longer be a random variable xk, but rather a random
Gaussian distribution pk. Despite the fact that the BW space
is not a Euclidean space, its inherent structure still allows
us to perform optimization, as explained next.

3. The Bures–Wasserstein space
A detailed presentation of the Wasserstein space and its ge-
ometry, which in turn enables optimization over that space,
can be found in Ambrosio et al. (2008). In this section,
we quickly review the BW space and its geometry, hence
providing the requisite tools to perform optimization over
the BW space and solve Problem (1). We start with formal
definitions of the Wasserstein and BW spaces.

3.1. Geometry of the BW space

The Wasserstein space is the metric space P2(Rd) endowed
with the 2-Wasserstein distance W2 (which we simply refer
to as the Wasserstein distance). We recall that the Wasser-
stein distance is defined for every µ, ν ∈ P2(Rd) by

W 2
2 (µ, ν) = inf

γ∈C(µ,ν)

∫
∥x− y∥2 dγ(x, y) , (7)

where C(µ, ν) is the set of couplings between µ and ν. The
BW space is the metric space BW(Rd) endowed with the

1See proximity-operator.net.

Wasserstein distance W2. In other words, the BW space is
the subset of the Wasserstein space consisting of all Gaus-
sian distributions with positive definite covariance matrix.

Given µ, ν ∈ BW(Rd), there exists a unique optimal trans-
port map from µ to ν, i.e., a map T : Rd → Rd such that
T#µ = ν and

W 2
2 (µ, ν) =

∫
∥x− T (x)∥2 dµ(x) . (8)

In other words, the coupling (id, T )#µ belongs to C(µ, ν)
and attains the infimum in (7). Moreover, since µ and ν
are Gaussian, T is an affine map with symmetric linear
part, i.e., can be written as T (x) = Sx+ b where S ∈ Sd

and b ∈ Rd (Olkin & Pukelsheim, 1982). In particular,
the BW space is a Riemannian manifold where at each
µ ∈ BW(Rd), the tangent space TµBW(Rd) corresponds
to the space of d-dimensional affine maps with symmetric
linear part. Using that µ ∈ P2(Rd), T#µ ∈ P2(Rd) implies
T ∈ L2(µ). Therefore, TµBW(Rd) is naturally endowed
with the L2(µ) inner product, making TµBW(Rd) a finite-
dimensional subspace of L2(µ).

3.2. Optimization over the BW space

In this section, we review the differential structure of the
BW space. Further background on differential calculus over
the BW space is provided in Appendix A.

3.2.1. A “SMOOTH” FUNCTIONAL

Consider a functional F : BW(Rd) → R. We say that F
is differentiable at µ if there exists gµ ∈ TµBW(Rd) such
that for every affine map h,

F((id + th)#µ) = F(µ) + t ⟨gµ, h⟩µ + o(t) . (9)

In this case, gµ is unique, called the Bures–Wasserstein
gradient of F at µ, and denoted ∇BWF(µ) = gµ. Given
a β-smooth function V : Rd → R, the potential energy
functional V : BW(Rd)→ R, defined by

V(µ) :=
∫
V dµ (10)

for every µ ∈ BW(Rd), is a useful example of a differen-
tiable functional over the BW space.

The next result states that the potential is differentiable and
gives a formula for its BW gradient. The formula for the
BW gradient can be obtained by a straightforward adapta-
tion of Lambert et al. (2022b, Section C.1) (see also Ap-
pendix A.3). Besides, the differentiability of V is well-
established in the literature on the Wasserstein space (Am-
brosio et al., 2008, Theorem 10.4.13); we adapt this to the
BW space.
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Lemma 3.1 (BW gradient of the potential). Consider the
potential functional V in (10) where V is β-smooth. Then,
V is differentiable at µ and the following Taylor inequality
holds: for h affine,

|V((id + h)#µ)− V(µ)− ⟨∇BWV(µ), h⟩µ| ≤
β

2
∥h∥2µ .

(11)

Moreover, the BW gradient of V is known in closed form:

∇BWV(µ) : x 7→ Eµ∇V + (Eµ∇2V )(x−mµ) , (12)

where mµ =
∫
xdµ(x) is the mean of µ.

Proof. The proof of Equation (12) can be found in Lambert
et al. (2022b, Section C.1) (see also Appendix A.3), and the
proof of Inequality (11) can be found in Appendix B.1.

Inequality (11) is stronger than differentiability and can be
interpreted as the potential V being β-smooth over the BW
space (note the analogy with Inequality (2)). Inequality (11)
is a consequence of the smoothness of V . As in optimization
over Rd, when dealing with a convex but potentially non-
smooth functional, the user may prefer to handle it through
its proximal operator.

3.2.2. A “CONVEX” FUNCTIONAL

We say that F is geodesically convex if for all µ0, µ1 ∈
BW(Rd),

F(µ0) + ⟨∇BWF(µ0), T − id⟩µ0 ≤ F(µ1) , (13)

where T is the optimal transport map from µ0 to µ1. In this
case, we can introduce an analog of the proximal operator
of F over the BW space, called the Bures–Wasserstein JKO
operator of F (Jordan et al., 1998)2, and defined by (note
the analogy with (4))

JKOF (µ) := argmin
ν∈BW(Rd)

{
F(ν) + 1

2
W 2

2 (µ, ν)
}
. (14)

We want to emphasize that, in our definition (14), the BW
JKO operator is defined over the BW space.

The entropyH is a useful example of a geodesically convex
functional over the BW space. More precisely, the entropy
is defined by

H(µ) =
∫

logµ(x) dµ(x) , (15)

for every µ ∈ BW(Rd), where we identify µwith its density
w.r.t. Lebesgue measure.

2In Jordan et al. (1998) the authors define the JKO operator
as an analog of the proximal operator over the Wasserstein space.
Inspired by their definition, we define the JKO operator over the
BW space, and we call it the BW JKO operator.

The next lemma states that the entropy is geodesically con-
vex and gives a formula for its BW JKO operator. The
formula for the BW JKO operator can be obtained by a
straightforward adaptation of Wibisono (2018, Example 7).
Besides, the geodesic convexity of H is well-established
in the literature on the Wasserstein space (Ambrosio et al.,
2008, Remark 9.3.10); we adapt this to the BW space.

Lemma 3.2 (BW JKO of the entropy). Consider the en-
tropy functionalH defined in (15). Then,H is geodesically
convex and the following stronger inequality holds: for all
ν, µ0, µ1 ∈ BW(Rd),

H(µ0) + ⟨∇BWH(µ0) ◦ T0, T1 − T0⟩ν ≤ H(µ1) , (16)

where T0 (resp. T1) is the optimal transport map from ν to
µ0 (resp. µ1).

Moreover, the BW JKO operator of H is known in closed
form: JKOηH(µ) (where η > 0) is a Gaussian distribution
with same mean as µ and with covariance matrix Σ1 where

Σ1 =
1

2

(
Σ+ 2ηI + [Σ (Σ + 4ηI)]

1/2)
, (17)

where Σ is the covariance matrix of µ.

Proof. The proof of Equation (17) can be found in Wibisono
(2018, Example 7), and the proof of Inequality (16) can be
found in Appendix B.2.

Inequality (16) is stronger than geodesic convexity and is a
consequence of the generalized geodesic convexity of the en-
tropy (Ambrosio et al., 2008, Remark 9.3.10). Finally, (17)
which gives the BW JKO of the entropy in closed form is
remarkable, and is at the core of our approach. As a com-
parison, Salim et al. (2020) proposed an algorithm relying
on the JKO of the entropy over the whole Wasserstein space,
but the latter JKO is not implementable.

4. (Stochastic) Forward-backward Gaussian
variational inference

4.1. Revisiting Gaussian VI

We now restate Problem (1) more formally. We assume
that the target distribution π admits a positive density w.r.t.
Lebesgue measure, denoted π as well in an abuse of notation.
We write π in the form π ∝ exp(−V ). Moreover, we
assume that the function V : Rd → R is β-smooth. Recall
that the KL divergence is defined for every µ ∈ BW(Rd) as

KL(µ ∥π) =
∫

log
µ(x)

π(x)
dµ(x) . (18)

Recall that our goal is to solve Problem (1). We denoteF :=
V+H as the sum of the potential (associated to the function
V ) and the entropy. Then, a quick calculation reveals that
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F(µ)−F(π) = KL(µ ∥π). Since F(π) is a constant (i.e.,
does not depend on µ), Problem (1) is equivalent to

min
µ∈BW(Rd)

{V(µ) +H(µ)} . (19)

4.2. Proposed algorithm

Recall that the potential V is “smooth” over the BW space
and that the BW gradient of V admits a closed form
(Lemma 3.1). Recall also that the entropy H is “convex”
over the BW space and that the BW JKO of H admits a
closed form (Lemma 3.2). To solve the equivalent prob-
lem (19), a natural idea is to adapt the forward-backward
algorithm to the BW space. This leads to the following
Forward-Backward Gaussian Variational Inference (FB–
GVI) algorithm (note the analogy with (5)):

pk+ 1
2
= (id− η∇BWV(pk))#pk , (20)

pk+1 = JKOηH(pk+ 1
2
) . (21)

The backward step (21) is tractable using (17). Although
the forward step (20) also admits a closed form, the forward
step involves computing integrals of∇V and∇2V w.r.t. pk,
see (12). These integrals can be intractable. Therefore, we
propose to build a stochastic estimate ĝk of∇BWV(pk), i.e.,
a stochastic gradient, by drawing a random sample from pk.
The resulting algorithm is called Stochastic FB–GVI, and
can be written as

pk+ 1
2
= (id− η ĝk)#pk ,

pk+1 = JKOηH(pk+ 1
2
) , (22)

where ĝk is the random affine function defined by

ĝk : x 7→ ∇V (X̂k) +∇2V (X̂k) (x−mk) , (23)

where X̂k is sampled from pk (i.e., Xk ∼ pk) and mk =∫
x dpk(x) is the mean of pk.

Stochastic FB–GVI is an analog, over the BW space, of
the stochastic forward-backward algorithm (note the anal-
ogy with (6)). In particular, (pk)k∈N defined by (22) is a
sequence of random Gaussian distributions, i.e., random
variables with values in BW(Rd). We denote the mean
(resp. covariance matrix) of pk by mk (resp. Σk). FB–GVI
and Stochastic FB–GVI can be implemented in terms of the
means and the covariance matrices of the iterates pk. The
iterations of FB–GVI and Stochastic FB–GVI in terms of
mk and Σk are given in Algorithm 1. Efficient algorithms
developed for computing the matrix square-root (see, for
example, Pleiss et al. (2020); Song et al. (2022)) can be
leveraged to improve the per-iteration complexity.

5. Convergence theory
In this section, we study the convergence of FB–GVI and
Stochastic FB–GVI using their equivalent forms (20)–(21)

Algorithm 1 FB–GVI and Stochastic FB–GVI
Require: Step size η > 0; Iteration count N ; Initial distri-

bution p0 = N (m0,Σ0)
for k = 0 to N − 1 do

if FB–GVI then
bk ← Epk

∇V , Sk ← Epk
∇2V

else if Stochastic FB–GVI then
draw X̂k ∼ N (mk,Σk)
bk ← ∇V (X̂k), Sk ← ∇2V (X̂k)

end if
mk+1 ← mk − η bk
Mk+1 ← I − η Sk

Σk+ 1
2
←Mk+1ΣkMk+1

Σk+1 ← 1
2 (Σk+ 1

2
+ 2ηI + [Σk+ 1

2
(Σk+ 1

2
+ 4ηI)]1/2)

end for
output pN = N (mN ,ΣN )

and (22). We will make use of standard complexity nota-
tions, such as ≳,≍. We also denote by π̂ = N (m̂, Σ̂) a
solution of Problem (1) (i.e., a minimizer of the KL objec-
tive), and we let Fk denote the σ-algebra generated up to
iteration k (but not including the random sample X̂k ∼ pk
in Stochastic FB–GVI).

We consider several assumptions on V . Given α ∈ R, V is
α-convex if αI ⪯ ∇2V . If α = 0, V is said to be convex,
and if α > 0, V is said to be (α-)strongly convex. For
either algorithm, define the (random) error function (see the
definitions of bk and Sk in Algorithm 1) as

ek : x 7→ (Sk − Epk
∇2V )(x−mk) + (bk − Epk

∇V ) ,

and denote its expected L2(pk) norm by σ2
k := E[∥ek∥2pk

|
Fk]. The expectation is taken over the possible random-
ness of (bk, Sk) (i.e., over the randomness of X̂k). For
Stochastic FB–GVI, ek = ĝk − ∇BWV(pk), where ĝk is
defined by (23). Since E[ek | Fk] = 0 (i.e., the BW
stochastic gradient is unbiased), σ2

k is the conditional vari-
ance of the BW stochastic gradient at iteration k. For FB–
GVI, ek = ∇BWV(pk) − ∇BWV(pk) = 0, hence σk = 0.
Our analysis of FB–GVI and Stochastic FB–GVI relies on
the following unified one-step-inequality for the iterates
(pk)k∈N of both (20)–(21) and (22).

Lemma 5.1 (One-step inequality). Suppose that V is α-
convex and β-smooth. Let (pk)k∈N be the iterates of FB–
GVI (20)–(21) or Stochastic FB–GVI (22). Let η > 0 be
such that

η ≤
{

1
β if σk = 0 (FB–GVI) ,
1
2β else .

Then, for all ν ∈ BW(Rd),

EW 2
2 (pk+1, ν) ≤ (1− αη)EW 2

2 (pk, ν)

5
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− 2η E[F(pk+1)−F(ν)] + 2η2 Eσ2
k .

(24)

Proof. The proof is given in Appendix C.

This one-step inequality is similar, by replacing the Wasser-
stein distance by the Euclidean distance, to the one-step
inequality classically used in the analysis of the stochastic
forward-backward algorithm (Gorbunov et al., 2020). The
proof of Lemma 5.1 heavily employs the differential and
geometric structure of the BW space presented in Section 3.

5.1. Convergence of FB–GVI

In this section, (pk)k∈N is the sequence of iterates defined by
FB–GVI ((20)–(21)). We obtain corollaries of Lemma 5.1
by setting σk = 0 in (24), when V is convex or strongly
convex.

Theorem 5.2 (Convex case, FB–GVI). Suppose that V is
convex and β-smooth and that 0 < η ≤ 1

β . Then,

F(pN )−F(π̂) ≤ W 2
2 (p0, π̂)

2Nη
.

In particular, when η = 1
β and N ≳ βW 2

2 (p0,π̂)
ε2 , we obtain

the guarantee

F(pN )−F(π̂) ≤ ε2 .

Proof. The proof is given in Appendix E.1.

Next, we establish the convergence of (pk) to a minimizer
of Problem (1).

Theorem 5.3 (Asymptotic convergence). Suppose that V is
convex and β-smooth and that 0 < η < 1

β . Then, there ex-
ists a minimizer π⋆ of Problem (1) such that W2(pk, π⋆)→
0 as k →∞.

Proof. The proof is given in Appendix E.2.

Note that Theorem 5.3 does not follow from Theorem 5.2.
Indeed, Theorem 5.2 only implies the weak convergence of
(pk)k≥0 to the set of minimizers of Problem (1). The ex-
istence of a single minimizer π⋆ to which the sequence
(pk)k≥0 converges follows from the one-step inequality
(Lemma 5.1) applied with η < 1

β and from recent results
on the topology of the Wasserstein space (Naldi & Savaré,
2021).

Theorem 5.4 (Strongly convex case, FB–GVI). Suppose
that V is α-strongly convex and β-smooth, and that 0 <
η ≤ 1

β . Then,

W 2
2 (pN , π̂) ≤ exp(−αNη)W 2

2 (p0, π̂) .

In particular, when η = 1
β and N ≳ β

α log W2(p0,π̂)
ε , we

obtain the guarantees

αW 2
2 (µN , π̂) ≤ ε2 , and F(p2N )−F(π̂) ≤ ε2 .

Proof. The proof is given in Appendix E.3.

Theorem 5.2 states the sublinear convergence of FB–GVI
for a convex V (in terms of objective gap) and Theorem 5.4
states the linear convergence of FB–GVI for a strongly
convex V . The convergence rates are of the same order as
the convergence rates of the deterministic forward-backward
algorithm over Rd (Gorbunov et al., 2020).

Finally, we also extend our results to the non-convex case,
where we obtain a stationary point guarantee.

Theorem 5.5 (Non-convex case, FB–GVI). Suppose that V
is β-smooth, and that 0 < η ≤ 1

β . Let ∆ := F(p0)−F(π̂).
Then,

min
k∈{0,...,N−1}

∥∇BWF(pk)∥2pk
≤ 150∆

ηN
.

In particular, when η = 1
β and N ≳ β∆

ε2 , we obtain the
guarantee

min
k∈{0,...,N−1}

∥∇BWF(pk)∥2pk
≤ ε2 . (25)

Proof. The proof is given in Appendix E.4.

To the best of our knowledge, this is the first stationary point
guarantee for Gaussian VI. The relevance of this result is
that according to Katsevich & Rigollet (2023), the favorable
statistical properties of Gaussian VI arise, not due to the
global minimization of the objective in (1), but rather from
the first-order optimality (25). Hence, Theorem 5.5 can be
viewed as an algorithmic result for posterior approximation,
even in the non-log-concave setting.

We also remark that in Theorem 5.5, although we assume
that V is smooth, it does not imply that the objective F
is smooth over the Bures–Wasserstein space, due to the
presence of the entropy termH. In fact, the proof of Theo-
rem 5.5 requires a careful control of the eigenvalues of the
iterates of FB–GVI.

5.2. Convergence of Stochastic FB–GVI

In this section, (pk)k∈N is the sequence of iterates defined
by (22). To use Lemma 5.1, we first prove a bound on σ2

k,
the variance of the BW stochastic gradient.

Lemma 5.6. If V is convex and β-smooth, then

σ2
k ≤ 6βd+ 12β3λmax(Σ̂)W

2
2 (pk, π̂) .

6
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Moreover, if V is α-strongly convex, the bound above be-
comes

σ2
k ≤ 6βd+

12β3

α
W 2

2 (pk, π̂) .

Proof. See Appendix F.1.

The bound on σ2
k is reminiscent of the common assumption

made in the literature on stochastic gradient algorithms over
Rd, that the stochastic gradient has sublinear growth (Kush-
ner & Yin, 2003; Bottou et al., 2018). We emphasize that we
do not assume this sublinear growth. Instead, Lemma 5.6
proves the sublinear growth for the BW stochastic gradient
used in Stochastic FB–GVI. Next, we obtain corollaries of
Lemma 5.1 for Stochastic FB–GVI by controlling σ2

k with
Lemma 5.6.

Theorem 5.7 (Convex case, Stochastic FB–GVI). Suppose
that V is convex and β-smooth and that 0 < η ≤ 1

2β . Define

c := 24β3λmax(Σ̂). Then,

E
[

min
k∈{1,...,N}

F(pk)
]
−F(π̂)

≤ 2W 2
2 (p0, π̂)

Nη
+ 2cηW 2

2 (p0, π̂) + 12βηd .

In particular, for sufficiently small values of ε2/d and with

η ≍ ε2

cW 2
2 (p0, π̂) ∨ βd

,

N ≳
cW 4

2 (p0, π̂) ∨ βdW 2
2 (p0, π̂)

ε4
,

we obtain the guarantee

E
[

min
k∈{1,...,N}

F(pk)
]
−F(π̂) ≤ ε2 .

Proof. See Appendix F.3.

Theorem 5.8 (Strongly convex case, Stochastic FB–GVI).
Suppose that V is α-strongly convex and β-smooth, and that
η ≤ α2

48β3 . Then,

EW 2
2 (pN , π̂) ≤ exp

(
−αNη

2

)
W 2

2 (p0, π̂) +
24βηd

α
.

In particular, for sufficiently small values of ε2/d and with

η ≍ ε2

βd
, and N ≳

βd

αε2
log

αW 2
2 (p0, π̂)

ε2
,

we obtain the guarantee

αEW 2
2 (pN , π̂) + E

[
min

k∈{1,...,2N}
F(pk)

]
−F(π̂) ≤ ε2 .

Proof. See Appendix F.4.

To our knowledge, Theorem 5.7 is the first result to provide
a complexity result in terms of the objective gap in Prob-
lem (1), for log-smooth log-concave target distributions.
Moreover, Theorem 5.8 improves upon the state-of-the-art
obtained in (Lambert et al., 2022b) for strongly log-concave
target distributions. In particular, ignoring logarithmic fac-
tors, their iteration complexity (when written in a scale-
invariant way) reads Õ( β2d

α2ε2 ), whereas ours reads Õ( βd
αε2 ).

Note that the linear dependence on the condition number
β/α is to be expected for gradient descent methods. We
remark that our analysis crucially makes use of the proximal
operator (the BW JKO) on the non-smooth entropy in order
to obtain our improved rates.

6. Simulations
In this section, via elementary simulations3, we demon-
strate that FBGVI is implementable, practical and competi-
tive with the Bures–Wasserstein gradient descent (BWGD)
method of (Lambert et al., 2022b). We consider two exam-
ples:

Gaussian targets. For the first experiment, we consider a
scenario where the target density is π(x) ∝ exp(− 1

2 ⟨(x−
µ),Σ−1 (x − µ)⟩), where µ ∼ Unif([0, 1]10) and Σ−1 =
U diag

[
10−9 10−8 · · · 1

]
UT, with U ∈ R10×10 cho-

sen as a uniformly random orthogonal matrix. In this case,
we have that π ∈ BW(R10), so the solution to Problem (1)
is precisely π, and furthermore we have that π is 10−9-
strongly log-concave and 1-log-smooth.

We run FB–GVI and stochastic FB–GVI with target poten-
tial π ∝ exp(−V ) initialized at p0 = N (0, I10), where I10
is the 10× 10 identity matrix. The step size η is varied, and
the resulting plots of logKL(pk ∥π) for different choices of
η are displayed in Figure 1.

Bayesian logistic regression. We consider the following
generative model: given a parameter θ ∈ Rd, we draw i.i.d.
samples {(Xi, Yi)}ni=1 ∈ (Rd × {0, 1})n with

Xi
i.i.d.∼ N (0, Id) , Yi | Xi ∼ Bern(e⟨θ,Xi⟩) .

Given these samples {(Xi, Yi)}ni=1 and a uniform (im-
proper) prior on θ, the posterior on θ is given by

V (θ) =

n∑
i=1

[
ln(1 + e⟨θ,Xi⟩)− Yi ⟨θ,Xi⟩

]
.

We run stochastic FB–GVI with π ∝ exp(−V ) initial-
ized at p0 = N (0, Id) with varying step sizes η. Since

3Code for our experiments can be found at https:
//github.com/mzydiao/FBGVI/blob/main/
FBGVI-Experiments.ipynb.
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in this scenario we do not know the true minimizer π̂ nor
the normalization constant of π, we cannot directly compute
KL(pk ∥π) nor W 2

2 (pk, π̂). However, we can still estimate
the objective function F(pk) as well as the squared BW
gradient norm Epk

∥∇BWF(pk)∥2 empirically by drawing
samples from pk. For each choice of step size η, we plot our
empirical estimates of F(pk) and Epk

∥∇BWF(pk)∥2 over
iterations in Figure 2.

Our results are illustrated in Figure 1 and Figure 2 in Ap-
pendix G. Based on the plots, we make the following obser-
vations:

1. (Stochastic) FB–GVI performs as well as BWGD, if
not better. In addition, for sufficiently small η, both
FB–GVI and BWGD attain lower objective than the
Laplace approximation as seen in Figure 2. This obser-
vation was also made in (Katsevich & Rigollet, 2023)
for BWGD.

2. FB–GVI is stable up to much larger step sizes than
BWGD, mirroring the comparative stability of proxi-
mal gradient methods versus gradient descent methods
in Euclidean space, especially when the step size is
large (see, e.g., (Toulis et al., 2016; 2021)).

Our empirical results, combined with our theoretical guaran-
tees, lend convincing evidence in support of using FB–GVI
for Gaussian variational inference.

7. Related works
We now discuss streams of work that are closely related
to ours, and place our work in the context of the larger
literature on sampling and variational inference.

Optimization algorithms for Gaussian VI. Algorithms
for solving Gaussian VI have been considered in Paisley
et al. (2012); Ranganath et al. (2014); Lambert et al. (2022a).
The general approach is to parametrize the set of Gaussian
distributions and to apply Euclidean optimization. In par-
ticular, Alquier & Ridgway (2020) noticed that when π
is the posterior distribution in a Bayesian logistic regres-
sion, Problem (1) becomes convex with a certain choice of
parametrization. In this case, they also characterized the sta-
tistical properties of the iterates of gradient descent. Other
settings in which the corresponding optimization problem
is convex are provided in Challis & Barber (2013); Domke
(2020). In particular, (Domke, 2020) showed under the pa-
rameterization of (Alquier & Ridgway, 2020), the Euclidean
smoothness/convexity properties of the negative log-density
of the model give rise to the same smoothness/convexity
properties on the parameter space. However, to obtain con-
vergence rates in the stochastic setting, one needs to control
the variance of the stochastic gradient. This non-trivial task

is not carried out in (Domke, 2020). In our work, the re-
quired variance control is established in Lemma 5.6, and
forms a crucial step in obtaining our convergence rates.

Algorithms based on natural gradient methods (Zhang
et al., 2018; Lin et al., 2019; 2020) and normalizing
flows (Rezende & Mohamed, 2015; Kingma et al., 2016;
Caterini et al., 2021) have also been proposed for variational
inference. However, to the best of our knowledge, conver-
gence results for such methods are lacking in the literature.

Finally, the closest related work to ours in this literature is
that of Lambert et al. (2022b), who similarly proposed an
optimization algorithm over the BW space, called Bures–
Wasserstein Stochastic Gradient Descent (BW–SGD), to
solve Problem (1). Their algorithm BW–SGD relies on tak-
ing the gradient of the non-smooth entropy, and in particular
they were only able to provide a (suboptimal) rate of conver-
gence when π is strongly log-concave. In this work, we not
only improve upon their convergence rate in the strongly
log-concave case, but also demonstrate a convergence rate
for the log-concave case as well.

Minimization of KL over the Wasserstein space. As
mentioned previously, our approach has roots in the recent
literature on viewing sampling methods as optimization
algorithms over the Wasserstein space.

For example, the Langevin Monte Carlo (LMC) algo-
rithm (Dalalyan, 2017) is an MCMC algorithm to sample
from the target distribution π. The theory of Wasserstein
gradient flows (Ambrosio et al., 2008) provides the math-
ematical tools to view LMC (and its many variants) as an
optimization algorithm over Wasserstein space. In the case
of LMC, the objective to minimize is KL(· ∥π). Therefore,
one can use optimization analysis (over the Wasserstein
space) to show convergence bounds for LMC (Wibisono,
2018; Durmus et al., 2019; Balasubramanian et al., 2022;
Chen et al., 2022; Chewi, 2023).

Stein Variational Gradient Descent (Liu & Wang, 2016; Liu,
2017) is another method that can be seen as an optimization
algorithm for minimizing KL(· ∥π). SVGD is a determinis-
tic algorithm that drives the empirical distribution of a set of
particles to fit π. The iterations of SVGD are computed by
iterating a well chosen map T such that T − I belongs to a
Reproducing Kernel Hilbert Space (RKHS). Little is known
about the convergence rates of SVGD (Duncan et al., 2019;
Lu et al., 2019; Chewi et al., 2020a; Korba et al., 2020;
Salim et al., 2022; He et al., 2022; Shi & Mackey, 2022).
However, there is an interesting connection between SVGD
and BW–GD (Lambert et al., 2022b): when the number of
particles of SVGD tends to infinity (the “mean-field” limit),
the iterations of BW–GD are equivalent to the iterations
of SVGD if the RKHS is the set of affine functions with
symmetric linear part. We also remark that other heuristic
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algorithms for particle-based optimization over Wasserstein
spaces have been proposed, for example, in (Carrillo et al.,
2019; Alvarez-Melis et al., 2022; Backhoff-Veraguas et al.,
2022; Wang et al., 2022a; Yao & Yang, 2022) without any
non-asymptotic convergence guarantees.

Another closely related work to ours is that of Salim et al.
(2020). In the same vein as our work, they view the objective
KL(· ∥π) as a composite functional over the Wasserstein
space. They propose a forward-backward algorithm, in-
volving the JKO of the entropy, with strong convergence
properties. However, they do not discuss the implementa-
tion of the JKO of the entropy. Therefore, to our knowledge,
their algorithm is not implementable. On the contrary, our
algorithm relies on the JKO of the entropy over the BW
space, which is shown to admit a closed form.

(Non–smooth) manifold optimization. Our work is also
morally related to recent works developing efficient algo-
rithms for solving non-smooth optimization problems over
certain manifolds. For example, in the deterministic set-
ting, Li et al. (2021) analyzed the sub-gradient method, Chen
et al. (2020); Huang & Wei (2022) analyzed the proximal
gradient method, Chen et al. (2021) analyzed the proxi-
mal point method, and Wang et al. (2022b) analyzed the
proximal linear method. Stochastic versions were consid-
ered in Li et al. (2022); Wang et al. (2022b). We also refer
to Zhang et al. (2021); Hu et al. (2022); Peng et al. (2022);
Zhang & Davanloo Tajbakhsh (2022) for other recent ad-
vances in non–smooth manifold optimization. Several of the
above works consider the general setting of a Riemannian
manifold. While the BW space is a Riemannian manifold,
it is also a subset of the Wasserstein space, a structure we
leverage in our work to prove our convergence results.

The geometry of the BW space was investigated in Modin
(2017); Malagò et al. (2018); Bhatia et al. (2019), and op-
timization over this space has proven to be fruitful for var-
ious applications, see, for example, Chewi et al. (2020b);
Altschuler et al. (2021); Han et al. (2021); Lambert et al.
(2022b); Luo & Trillos (2022); Maunu et al. (2022).

8. Conclusion
We proposed a novel optimization algorithm, (Stochastic)
FB–GVI, for solving the Gaussian VI problem in (1). We
view this algorithm as performing optimization over the
Bures–Wasserstein space, echoing a stream of successful
works on optimization-inspired design and analysis of sam-
pling and variational inference algorithms. Using this per-
spective, we also provided new or state-of-the-art conver-
gence rates for solving (1), depending on the regularity
assumptions on π. As immediate future work, it is intrigu-
ing to study the statistical properties (consistency, normal
approximation bounds, moment estimation bounds, and ro-

bustness properties) of the proposed (Stochastic) FW–GVI
algorithm on various specific practical problems of interest.

At a broader level, our work opens the door to the following
question: Can we develop a rigorous algorithmic framework
for general VI, i.e., Problem (1) where BW(Rd) is replaced
by a different or larger set of distributions (for example,
mixtures of Gaussians)? We believe that this paper provides
a concrete step toward this general goal.
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A. Differential calculus over the BW space
In this section, we derive a formula for the BW gradient of a generic functional, giving us the tools necessary to define the
updates of our forward-backward algorithm. In doing so, we demonstrate computation rules for differentiating a functional
F : BW(Rd)→ R along a curve of measures (µt)t≥0 ⊆ BW(Rd), which will be helpful for our proofs of convexity and
smoothness inequalities later on. Our derivation relies on specializing Otto calculus, which deals with the Wasserstein space
P2(Rd), to the BW space BW(Rd).

A.1. Background on Otto calculus

We first give an informal overview of the computation rules of Otto calculus (Otto, 2001), which endows the Wasserstein
space P2(Rd) with a formal Riemannian structure. We refer to Ambrosio et al. (2008) for a more rigorous development of
the mathematical theory.

Let µ be an arbitrary element of P2(Rd) admitting a density w.r.t. Lebesgue measure. The tangent space TµP2(Rd) is
identified as the space of gradients of scalar functions on Rd, i.e.,

TµP2(Rd) = {∇ψ | ψ ∈ C∞c (Rd)}L
2(µ)

.

For a functional F : P2(Rd) → R, we can formally define its W2 gradient at µ as the mapping ∇W2F(µ) ∈ TµP2(Rd)
satisfying

∂t|t=0F(µt) = ⟨∇W2
F(µ), v0⟩µ ,

for any sufficiently regular curve of measures (µt)t∈R ⊆ P2(Rd) with µ0 = µ and velocity vector fields (vt)t∈R with
vt ∈ L2(µt) for a.e. t satisfying the continuity equation

∂tµt + div(µtvt) = 0 . (26)

In fact, we can compute this W2 gradient via direct identification. Let δF(µ) : Rd → R denote a first variation of F at
µ (see Santambrogio, 2015, Chapter 7), for which

∂t|t=0F(µt) =

∫
δF(µ) ∂t|t=0µt .

Then, by Equation (26) and integration by parts,

∂t|t=0F(µt) =

∫
δF(µ) ∂t|t=0µt = −

∫
δF(µ) div(µv0) =

∫
⟨∇δF(µ), v0⟩dµ = ⟨∇δF(µ), v0⟩µ .

Hence, we conclude that

∇W2F(µ) ≡ ∇δF(µ) . (27)

Now we turn our attention to the BW space. The BW space BW(Rd) is a submanifold of P2(Rd) (Otto, 2001; Lambert
et al., 2022b), and hence inherits the formal Riemannian structure described above.

Let µ be an arbitrary element of BW(Rd). The tangent space TµBW(Rd) is identified as the space of affine functions on Rd

with symmetric linear term, i.e.,

TµBW(Rd) = {x 7→ b+ S (x−mµ) | b ∈ Rd, S ∈ Sd} .

In analogy to the above, for a functional F : BW(Rd) → R, we can formally define its BW gradient at µ as the element
∇BWF(µ) ∈ TµBW(Rd) satisfying

∂t|t=0F(µt) = ⟨∇BWF(µ), v0⟩µ ,

for any curve of measures (µt)t∈R ⊆ BW(Rd) with µ0 = µ and velocity vector fields (vt)t∈R, with each vt an affine map,
satisfying Equation (26). Using Equation (27) and integration by parts, we compute an expression for the BW gradient of F
in the following subsection.
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A.2. BW gradient calculation

The BW gradient of a functional F : BW(Rd)→ R can be derived analogously to Lambert et al. (2022b, Section C.1). We
present the derivation here for completeness, and in doing so we obtain a formula for the rate of change of F along a curve
of Gaussians for which the corresponding velocity vector fields are affine maps with linear parts which are not necessarily
symmetric; this will play a role in later proofs. The key idea is to use integration by parts repeatedly, exploiting the fact that
the gradient of a Gaussian density is simply that same density multiplied by an affine term.

Lemma A.1. Let F : P2(Rd)→ R be a functional on the Wasserstein space with first variation δF . Then, for µ ∈ BW(Rd),
we have that ∇BWF(µ) is given by

∇BWF(µ) : x 7→ (Eµ∇2δF)(x−mµ) + Eµ∇δF .

Proof. Let (µt)t∈R ⊆ BW(Rd) be a regular curve of Gaussians with µ0 = µ and (vt)t∈R be a family of affine maps
satisfying Equation (26). Furthermore, suppose that v0 is given by

v0 : x 7→ a+M (x−mµ) , (a,M) ∈ Rd × Rd×d ,

and that∇BWF(µ) ∈ TµBW(Rd) is given by

∇BWF(µ) : x 7→ bF + SF (x−mµ) , (bF , SF ) ∈ Rd × Sd .

Letting X ∼ µ, we find that

⟨∇BWF(µ), v0⟩µ = E⟨bF + SF (X −mµ), a+M (X −mµ)⟩
= ⟨bF , a⟩+ E⟨SF (X −mµ),M (X −mµ)⟩
= ⟨bF , a⟩+ E⟨SF ,M (X −mµ)(X −mµ)

T⟩
= ⟨bF , a⟩+ ⟨SF ,MΣµ⟩
= ⟨bF , a⟩+ ⟨SF ,ΣµM

T⟩ . (since SF = ST
F and ⟨A,B⟩ = ⟨AT, BT⟩)

On the other hand, from the definition of the W2 gradient, we obtain that

∂t|t=0F(µt) = ⟨∇W2
F(µ), v0⟩µ (definition of∇W2

F)

= ⟨∇δF(µ), v0⟩µ (by Equation (27))

= E⟨∇δF(X), a+M (X − EX)⟩
= E⟨∇δF(X), a⟩+ E⟨ΣµM

T∇δF(X),Σ−1
µ (X − EX)⟩

= ⟨E∇δF(X), a⟩ −
∫
⟨ΣµM

T∇δF ,∇µ⟩ (since∇µ(x) = −µ(x) Σµ (x− EX))

= ⟨E∇δF(X), a⟩+ E[div(ΣµM
T∇δF)(X)] (integration by parts)

= ⟨E∇δF(X), a⟩+ ⟨Eµ∇2δF(X),ΣµM
T⟩ .

Hence, by direct identification, we conclude that

(bF , SF ) = (Eµ∇δF , Eµ∇2δF) ,

proving our desired result.

A.3. Examples of BW gradients and stationary condition for Problem (1)

Consider the functional F = V +H defined by the sum of the potential (associated to the function V ) and the entropy, and
recall that Problem (1) is equivalent to minimizing F over the BW space, i.e., solving Problem (19). Using Lambert et al.
(2022b, Section C.1), we have the following formulas for the BW gradients of V andH.

∇BWV(µ) : x 7→ Eµ∇V + (Eµ∇2V )(x−mµ) ,

∇BWH(µ) : x 7→ −Σ−1
µ (x−mµ) .

(28)
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We can also derive the above formulas from Lemma A.1.

Moreover, by the proof of Lemma A.1, we can compute ∂tF(µt) = ⟨∇BWF(µt), vt⟩µt
along any curve of Gaussians

(µt)t∈R and any family of affine maps (vt)t∈R which together satisfy the continuity equation.

In particular, if π̂ is a minimizer of (1), the first-order stationary condition∇BWF(π̂) = 0 for Problem (1) reads as

Eπ̂∇V = 0 and Eπ̂∇2V = Σ̂−1 , (29)

where Σ̂ is the covariance matrix corresponding to the distribution π̂.

B. Convexity and smoothness inequalities in the BW space for the potential and the entropy
Having derived a formula for the BW gradient of a generic functional F : BW(Rd) → R in Appendix A, we may now
proceed to prove Lemma 3.1 (for the potential) and Lemma 3.2 (for the entropy).

For both lemmas, the key idea is to differentiate a functional F : BW(Rd) → R along a curve (µt)t∈[0,1] with velocity
vector fields (vt)t∈[0,1] satisfying the continuity equation (26), utilizing our calculation rules laid out in Appendix A. In
particular, we will use that

F(µ1)−F(µ0) =

∫ 1

0

∂tF(µt) dt

= ∂t|t=0F(µt) +

∫ 1

0

∫ t

0

∂2sF (µs) dsdt

= ⟨∇BWF(µ0), v0⟩µ0
+

∫ 1

0

(1− t) ∂2tF(µt) dt , (30)

for both the entropy and the potential.

B.1. Proof of Lemma 3.1

We prove the following result for the potential. This result is stronger than Lemma 3.1, and will be useful in our subsequent
analysis.
Lemma B.1. Suppose that αI ⪯ ∇2V ⪯ βI . Let µ ∈ BW(Rd) and let h : Rd → Rd be an affine map. Then the following
inequalities hold:

V((id + h)#µ)− V(µ) ≥ ⟨∇BWV(µ), h⟩µ +
α

2
∥h∥2µ ,

V((id + h)#µ)− V(µ) ≤ ⟨∇BWV(µ), h⟩µ +
β

2
∥h∥2µ .

Proof. Let X ∼ µ. Note that regardless of µ, we have that δV(µ) = V . Hence, ∇W2
V(µ) = ∇V . We thus compute that

V((id + h)#µ)− V(µ) = E[V (X + h(X))− V (X)]

≥ E
[
⟨∇V (X), h(X)⟩+ α

2
∥h(X)∥2

]
(since∇2V ⪰ αI)

= ⟨∇W2V(µ), h⟩µ +
α

2
∥h∥2µ

= ⟨∇BWV(µ), h⟩µ +
α

2
∥h∥2µ ,

proving the first inequality. The second inequality follows similarly, using the fact that∇2V ⪯ βI .

Lemma 3.1 then follows as a corollary of the above lemma.

Proof of Lemma 3.1. Note that if V is β-smooth, then we have by definition that −βI ⪯ ∇2V ⪯ βI . Hence, applying
Lemma B.1 with α = −β, we obtain that∣∣V((id + h)#µ)− V(µ)− ⟨∇BWV(µ), h⟩µ

∣∣ ≤ β

2
∥h∥2µ.
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Moreover, we have shown in Appendix A.3 that ∇BWV(µ) is given by

∇BWV(µ) : x 7→ Eµ∇V + (Eµ∇2V )(x−mµ) ,

completing the proof of our desired result.

B.2. Proof of Lemma 3.2

For the entropy, we follow the same strategy as in the previous proof, differentiating the entropyH along a particular curve.
This time, we will differentiate along the generalized geodesic (µν

t )t∈[0,1] ⊆ BW(Rd), which we define as follows:

Let T0, T1 be the optimal transport maps for which T0 − id, T1 − id ∈ TνBW(Rd) and (T0)#ν = µ0 and (T1)#ν = µ1,
respectively. Defining Tt := (1− t)T0 + t T1, the generalized geodesic with basepoint ν and endpoints µ0, µ1 is then the
curve of measures (µν

t )t∈[0,1] ⊆ BW(Rd) with µν
t = (Tt)#ν. We note that µν

0 = µ0 and µν
1 = µ1, and that (µν

t )t∈[0,1]

solves the continuity equation

∂tµ
ν
t + div(µν

t vt) = 0, where vt = (T1 − T0) ◦ T−1
t .

Generalized geodesics were used in Ambrosio et al. (2008) to study gradient flows in the Wasserstein space, and have since
been useful for various applications of this theory, e.g., Chewi et al. (2020b); Ahn & Chewi (2021); Altschuler et al. (2021).

Proof of Lemma 3.2. The JKO operator ofH over the Wasserstein space P2(Rd) is derived in Wibisono (2018, Example 7)
for a Gaussian measure µ = N (µ,Σ), and takes the form µ′ = N (µ,Σ1) where Σ1 is defined in the same manner as
Equation (17). Since µ′ is also an element of BW(Rd), we conclude that µ′ is also the result of applying the BW JKO
operator to µ, proving our desired closed form.

Now we demonstrate the desired generalized geodesic convexity inequality for the entropy. In fact, this claim follows from
general results on the Wasserstein space (see, e.g., Ambrosio et al., 2008, §9.4), but we give a proof here for completeness.
As mentioned above, to do so we will differentiateH along the generalized geodesic (µν

t )t∈[0,1] defined above. Abusing
notation, we identify a distribution µ with its density with respect to Lebesgue measure. We then have that

∂2tH(µν
t ) = ∂2t

∫
µν
t lnµ

ν
t = ∂2t

∫
ν ln(µν

t ◦ Tt) = ∂2t

∫
ν ln

ν

det∇Tt
(since (Tt)#ν = µν

t , change of variable)

= −
∫
(∂2t ln det∇Tt) dν = −

∫
∂t
〈
[∇Tt]−1, ∂t∇Tt

〉
dν

= −
∫
∂t
〈
[∇Tt]−1,∇T1 −∇T0

〉
dν =

∫ 〈
[∇Tt]−2, (∇T1 −∇T0)2

〉
dν

=
〈
[∇Tt]−2, (∇T1 −∇T0)2

〉
,

where the last line follows since Tt is an affine map, meaning that ∇Tt is constant on Rd. In addition, by Brenier’s
theorem (Villani, 2003, Theorem 2.12), Tt is the gradient of a convex function for all t ∈ [0, 1]. Hence, we know that
∇Tt ⪰ 0 for all t ∈ [0, 1], meaning that

〈
[∇Tt]−2, (∇T1 −∇T0)2

〉
≥ 0. Hence, using Equation (30) applied to H, we

obtain that

H(µ1)−H(µ0) = ⟨∇BWH(µ0) ◦ T0, T1 − T0⟩ν +

∫ 1

0

(1− t)
〈
[∇Tt]−2, (∇T1 −∇T0)2

〉
dt

≥ ⟨∇BWH(µ0) ◦ T0, T1 − T0⟩ν .

This proves the desired inequality for the entropy, and we conclude our proof.

Remark B.2. In fact, we can show a strong convexity inequality for the entropy along generalized geodesics connecting
distributions µ0, µ1 ∈ BW(Rd) with the same mean. Let m0,m1 be the means of µ0, µ1 respectively, and suppose that
Σµ0

,Σµ1
⪯ λI . We compute that〈

[∇Tt]−2, (∇T1 −∇T0)2
〉
=

〈
I, [∇Tt]−1 (∇T1 −∇T0)2 [∇Tt]−1

〉
≥ 1∥∥Σµν

t

∥∥
op

〈
Σν

µt
, [∇Tt]−1 (∇T1 −∇T0)2 [∇Tt]−1

〉
16
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=
1∥∥Σµν
t

∥∥
op

〈
[∇Tt]−1 Σµν

t
[∇Tt]−1, (∇T1 −∇T0)2

〉
=

1∥∥Σµν
t

∥∥
op

〈
Σν , (∇T1 −∇T0)2

〉
.

Since T0 is an affine map, we know that T0(x)− (∇T0)x is a constant for all x ∈ Rd, and similarly for T1. Hence, we find
that if Y ∼ ν, then

∥T1 − T0∥2ν = Tr(Covν [T1 − T0, T1 − T0]) + ∥Eν [T1 − T0]∥2 (by bias-variance decomposition)

= Tr(Cov[(∇T1 −∇T0)(Y ), (∇T1 −∇T0)(Y )]) + ∥m1 −m0∥2 (since T0, T1 are affine)

=
〈
Σν , (∇T1 −∇T0)2

〉
+ ∥m1 −m0∥2 . (31)

In addition, from Chewi et al. (2020b, Lemma 10), we know that the operator norm of the covariance matrix is convex along
generalized geodesics in BW(Rd), implying that Σµν

t
⪯ λI for all t ∈ [0, 1]. Thus, we obtain

〈
[∇Tt]−2, (∇T1 −∇T0)2

〉
≤ 1∥∥Σµν

t

∥∥
op

〈
Σν , (∇T1 −∇T0)2

〉
=

1∥∥Σµν
t

∥∥
op

(
∥T1 − T0∥2ν − ∥m1 −m0∥2

)
(by Equation (31))

≥ 1

λ

(
∥T1 − T0∥2ν − ∥m1 −m0∥2

)
. (by Chewi et al. (2020b, Lemma 10))

Hence, using Equation (30) applied toH, we obtain that

H(µ1)−H(µ0) = ⟨∇BWH(µ0) ◦ T0, T1 − T0⟩ν +

∫ 1

0

(1− t)
〈
[∇Tt]−2, (∇T1 −∇T0)2

〉
dt

≥ ⟨∇BWH(µ0) ◦ T0, T1 − T0⟩ν +
1

2λ

(
∥T1 − T0∥2ν − ∥m1 −m0∥2

)
.

This implies that the entropy is strongly convex along generalized geodesics between two Gaussians µ0, µ1 ∈ BW(Rd)
with the same mean. Similarly, the same computation can be used to show a smoothness inequality for the entropy along
geodesics. As before, we compute that〈

[∇Tt]−2, (∇T1 −∇T0)2
〉
=

〈
I, [∇Tt]−1 (∇T1 −∇T0)2 [∇Tt]−1

〉
≤ 1

λmin(Σµν
t
)

〈
Σν

µt
, [∇Tt]−1 (∇T1 −∇T0)2 [∇Tt]−1

〉
=

1

λmin(Σµν
t
)

〈
[∇Tt]−1 Σµν

t
[∇Tt]−1, (∇T1 −∇T0)2

〉
=

1

λmin(Σµν
t
)

〈
Σν , (∇T1 −∇T0)2

〉
=

1

λmin(Σµν
t
)

(
∥T1 − T0∥2ν − ∥m1 −m0∥2

)
≤ 1

λmin(Σµν
t
)
∥T1 − T0∥2ν .

Once again using Equation (30) applied toH, we obtain that

H(µ1)−H(µ0) = ⟨∇BWH(µ0) ◦ T0, T1 − T0⟩ν +

∫ 1

0

(1− t)
〈
[∇Tt]−2, (∇T1 −∇T0)2

〉
dt

≤ ⟨∇BWH(µ0) ◦ T0, T1 − T0⟩ν +

∫ 1

0

1− t
λmin(Σµν

t
)
∥T1 − T0∥2ν dt . (32)
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As a corollary of Inequality 32, we obtain a smoothness inequality for the entropy along geodesics, which will be useful for
our subsequent analysis.

Lemma B.3 (Smoothness of entropy along geodesics). Suppose that µ0, µ1 ∈ BW(Rd) satisfy Σ−1
µ0
,Σ−1

µ1
⪯ γI . Then if T

is the optimal transport map from µ0 to µ1, we have that

H(µ1)−H(µ0) ≤ ⟨∇BWH(µ0), T − id⟩µ0
+
γ

2
∥T − id∥2µ0

.

Proof. We apply Inequality 32 with ν = µ0, noting in this case that T1 = T and T0 = id, and that (µν
t )t∈[0,1] is precisely

the constant-speed geodesic (µt)t∈[0,1] connecting µ0, µ1. Furthermore, by Altschuler et al. (2021, Appendix B), we know
that λmin is concave along geodesics, so λmin(Σµt) ≥ γ−1I for all t. Hence, we obtain

H(µ1)−H(µ0) ≤ ⟨∇BWH(µ0), T − id⟩µ0
+

∫ 1

0

1− t
λmin(Σµt

)
∥T − id∥2µ0

dt

≤ ⟨∇BWH(µ0), T − id⟩µ0
+

∫ 1

0

1− t
γ−1

∥T − id∥2µ0
dt

= ⟨∇BWH(µ0), T − id⟩µ0
+
γ

2
∥T − id∥2µ0

,

proving the desired result.

C. Proof of the one-step inequality (Lemma 5.1)
The key idea of this proof is to decompose the difference F(pk+1)−F(ν) as the sum of three terms,

F(pk+1)−F(ν) = [V(pk+1)− V(pk)] + [V(pk)− V(ν)] + [H(pk+1)−H(ν)] ,

where each individual term may be controlled using the inequalities in Lemmas 3.2 and B.1. Recalling that Lemma 3.2
applies only to generalized geodesics, we must take care in defining couplings between pk, pk+ 1

2
, pk+1 and ν. We detail the

argument in the following proof.

Proof of Lemma 5.1. Recall from Section 5 that we defined Fk as the σ-algebra generated up to iteration k (but not
including the random sample X̂k ∼ pk in Stochastic FB–GVI)). We also have

ek : x 7→ (Sk − Epk
∇2V )(x−mk) + (bk − Epk

∇V )

to be defined as the (random) error of the gradient estimate at iteration k of (stochastic) FB–GVI, for which E[ek | Fk] = 0.
Conditioned on the filtration Fk, we construct the following random variables Xk, Xk+ 1

2
, Xk+1, YV and YH.

Let (Xk, YV) ∼ (pk, ν) be optimally coupled for the W2 distance, and let (Xk, YV) ⊥⊥ ek. Since η ≤ 1
β by assumption, we

have that
I − ηSk ⪰ (1− ηβ) I ⪰ 0 .

Recall that by Brenier’s theorem (Villani, 2003, Theorem 2.12), if Y = ∇φ(X) for a convex, proper, and lower-
semicontinuous function φ : Rd → R ∪ {∞}, then (X,Y ) is an optimal coupling for the 2-Wasserstein distance. The
condition I − ηSk ⪰ 0 above therefore ensures that (Xk, Xk+ 1

2
) ∼ (pk, pk+ 1

2
) is an optimal coupling for the W2 distance,

where we define

Xk+ 1
2
:= (I − ηSk)(Xk −mk) +mk − ηbk .

On the other hand, defining Xk+1 such that

Xk+1 := Xk+ 1
2
− η∇BWH(pk+1)[Xk+1]

= (I − ηΣ−1
k+1)

−1(Xk+ 1
2
−mk+1) +mk+1 ,

we also get that (Xk+ 1
2
, Xk+1) ∼ (pk+ 1

2
, pk+1) are optimally coupled. Finally, we construct the random variable YH ∼ ν

for which (Xk+ 1
2
, YH) are optimally coupled for the W2 distance.
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First, we bound the difference in energy. From Brenier’s theorem, we know that YH and Xk+1 can both be expressed as an
affine functions of Xk, thereby enabling the application of Lemma B.1. Doing so, we obtain that

E[V(pk+1)− V(ν)] = E[V(pk+1)− V(pk)] + E[V(pk)− V(ν)]
≤ E⟨∇BWV(pk)(Xk), Xk − YV⟩ −

α

2
E∥Xk − YV∥2

+ E⟨∇BWV(pk)(Xk), Xk+1 −Xk⟩+
β

2
E∥Xk+1 −Xk∥2 (by Lemma B.1)

= −α
2
E∥Xk − YV∥2 + E⟨∇BWV(pk)(Xk), Xk+1 − YV⟩

+
1

2η
E∥Xk+1 −Xk∥2 −

( 1

2η
− β

2

)
E∥Xk+1 −Xk∥2

= −α
2
E∥Xk − YV∥2 − E⟨ek(Xk), Xk+1 − YV⟩ −

1

η
E⟨Xk+ 1

2
−Xk, Xk+1 − YV⟩

+
1

2η
E∥Xk+1 −Xk∥2 −

( 1

2η
− β

2

)
E∥Xk+1 −Xk∥2

=
1

2η
(1− αη)E∥Xk − YV∥2 − E⟨ek(Xk), Xk+1 − YV⟩ −

( 1

2η
− β

2

)
E∥Xk+1 −Xk∥2

+
1

2η
E
[
∥Xk+1 −Xk∥2 − ∥Xk − YV∥2 − 2 ⟨Xk+ 1

2
−Xk, Xk+1 − YV⟩

]
.

Now we bound the difference in entropy. Since YH and Xk+1 are both optimally coupled with Xk+ 1
2

, we know that
(YH, Xk+1) are coupled along a generalized geodesic. Hence, we can apply Lemma 3.2 to obtain that

E[H(pk+1)−H(ν)] ≤ E⟨∇BWH(pk+1)[Xk+1], Xk+1 − YH⟩

= −1

η
E⟨Xk+1 −Xk+ 1

2
, Xk+1 − YH⟩

=
1

2η
E
[
∥Xk+ 1

2
− YH∥2 − ∥Xk+1 −Xk+ 1

2
∥2 − ∥Xk+1 − YH∥2

]
≤ 1

2η
E
[
∥Xk+ 1

2
− YV∥2 − ∥Xk+1 −Xk+ 1

2
∥2 − ∥Xk+1 − YH∥2

]
.

(since (Xk+ 1
2
, YH) are optimally coupled)

Now, we sum the above inequalities to obtain our desired bound on E[F(pk+1)−F(ν)]. We obtain that

E[F(pk+1)−F(ν)] = E[V(pk+1)− V(ν)] + E[H(pk+1)−H(ν)]

≤ 1

2η
E
[
(1− αη) ∥Xk − YV∥2 − ∥Xk+1 − YH∥2

]
+

1

2η
E
[
∥Xk+1 −Xk∥2 − ∥Xk − YV∥2 + ∥Xk+ 1

2
− YV∥2 − ∥Xk+1 −Xk+ 1

2
∥2
]

− 1

2η
E
[
2 ⟨Xk+ 1

2
−Xk, Xk+1 − YV⟩

]
− E⟨ek(Xk), Xk+1 − YV⟩ −

( 1

2η
− β

2

)
E∥Xk+1 −Xk∥2

=
1

2η
E
[
(1− αη) ∥Xk − YV∥2 − ∥Xk+1 − YH∥2

]
− E⟨ek(Xk), Xk+1 − YV⟩ −

( 1

2η
− β

2

)
E∥Xk+1 −Xk∥2 . (33)

Finally, it remains to bound the error term on the last line. For this, we consider two cases based on whether or not the error
term ek is identically zero:

• In the case of FB–GVI where we have access to the exact gradient∇BWV(pk), we have that ek ≡ 0, so

−E⟨ek(Xk), Xk+1 − YV⟩ = 0 .
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Combining this with Inequality 33, we obtain that with η ≤ 1
β ,

E[F(pk+1)−F(ν)] ≤
1

2η
E
[
(1− αη) ∥Xk − YV∥2 − ∥Xk+1 − YH∥2

]
−
( 1

2η
− β

2

)
E∥Xk+1 −Xk∥2

≤ 1

2η
E
[
(1− αη) ∥Xk − YV∥2 − ∥Xk+1 − YH∥2

]
.

Rearranging, we conclude that if ek ≡ 0 and η ≤ 1
β ,

EW 2
2 (pk+1, ν) ≤ E∥Xk+1 − YH∥2 (34)

≤ (1− αη)E∥Xk − YV∥2 − 2η E[F(pk+1)−F(ν)] (35)

= (1− αη)EW 2
2 (pk, ν)− 2η E[F(pk+1)−F(ν)] .

(since conditioned on Fk, (Xk, YV) are optimally coupled)

• Otherwise, if ek is not necessarily identically 0, we can still compute

−E⟨ek(Xk), Xk+1 − YV⟩ = −E⟨ek(Xk), Xk+1 −Xk⟩ (since ek ⊥⊥ (Xk, YV) by construction)

≤ η E∥ek(Xk)∥2 +
1

4η
E∥Xk+1 −Xk∥2 . (Cauchy–Schwarz and Young’s inequality)

Hence, combining this with Inequality 33, we obtain that for η ≤ 1
2β ,

E[F(pk+1)−F(ν)] ≤
1

2η
E
[
(1− αη) ∥Xk − YV∥2 − ∥Xk+1 − YH∥2

]
+ η E∥ek(Xk)∥2

−
( 1

4η
− β

2

)
E∥Xk+1 −Xk∥2

≤ 1

2η
E
[
(1− αη) ∥Xk − YV∥2 − ∥Xk+1 − YH∥2

]
+ η Eσ2

k .

Rearranging, we conclude that as long as η ≤ 1
2β ,

EW 2
2 (pk+1, ν) ≤ E∥Xk+1 − YH∥2

≤ (1− αη)E∥Xk − YV∥2 − 2η E[F(pk+1)−F(ν)] + 2η2 Eσ2
k

= (1− αη)EW 2
2 (pk, ν)− 2η E[F(pk+1)−F(ν)] + 2η2 Eσ2

k .
(since (Xk, YV) are optimally coupled)

Combining these two cases, we have demonstrated our desired inequality.

Remark C.1. Consider specializing the above proof to the case where ν = pk, for which YV = YH = Xk, so that
(Xk, Xk+ 1

2
) ∼ (pk, pk+ 1

2
) and (Xk+ 1

2
, Xk+1) ∼ (pk+ 1

2
, pk+1) are optimally coupled for the W2 distance. Then from

Inequality 35, we obtain that

E∥Xk+1 − YH∥2 ≤ (1− αη)E∥Xk − YV∥2 − 2η E[F(pk+1)−F(ν)] (Inequality 35)

=⇒ E∥Xk+1 −Xk∥2 ≤ −2η E[F(pk+1)−F(pk)] . (since ν = pk and YV = YH = Xk)

As a corollary, we obtain the following lemma, which will be useful in subsequent analysis.

Lemma C.2. Suppose that V is β-smooth. Let (pk)k∈N be the iterates of FB–GVI (20)–(21). Let η > 0 be such that η ≤ 1
β .

Let (Xk, Xk+ 1
2
) ∼ (pk, pk+ 1

2
) and (Xk+ 1

2
, Xk+1) ∼ (pk+ 1

2
, pk) be optimally coupled for the W2 distance. Then,

E∥Xk+1 −Xk∥2 ≤ −2η E[F(pk+1)−F(pk)] .
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D. Eigenvalue control of the iterates
We will show the following eigenvalue bound result:

Lemma D.1. At the k-th iteration of Algorithm 1, suppose that we have γ0I ⪯ Σ−1
k ⪯ γ1I . As long as 0 ≤ η ≤ 1

γ1
and

γ0I ⪯ Sk ⪯ γ1I , we then have that
γ−1
1 I ⪯ Σk+1 ⪯ γ−1

0 I .

Proof. Define the monotonically increasing function fη : R≥0 → R≥0 such that

fη(x) =
1

2

(
x+ 2η +

√
x (x+ 4η)

)
.

First, we make note of the following algebraic identity. Define xγ := (1− ηγ)2/γ. Then we have that

fη(xγ) =
1

2

(
(1− ηγ)2

γ
+ 2η +

√( (1− ηγ)2
γ

)( (1− ηγ)2
γ

+ 4η
))

=
1

2γ

(
1 + η2γ2 +

√
(1− ηγ)2 (1 + ηγ)2

)
=

1

2γ

(
1 + η2γ2 + (1− ηγ) (1 + ηγ)

)
=

1

γ
. (36)

Now, let λmin(M), λmax(M) denote the minimum and maximum eigenvalues of a matrixM ∈ Sd. The conditions η ≤ γ−1
1

and Sk ⪯ γ1I then imply that I − ηSk ⪰ 0. Hence, we then have that

λmin(Σk+ 1
2
) = λmin

(
(I − ηSk) Σk (I − ηSk)

)
≥ λ2min(I − ηSk)λmin(Σk)

≥ (1− ηγ1)2 λmin(Σk)

≥ (1− ηγ1)2
γ1

= xγ1
.

Now, we also note that Σk+ 1
2

and Σk+1 commute by construction, so since fη is a monotonically increasing function,

λmin(Σk+1) = fη
(
λmin(Σk+ 1

2
)
)
≥ fη(xγ1

) =
1

γ1
,

where the last equality follows from Equation (36).

Similarly, for the upper bound, we have that

λmax(Σk+ 1
2
) = λmax

(
(I − ηSk) Σk (I − ηSk)

)
≤ λ2max(I − ηSk)λmax(Σk) (since I − ηSk ⪰ 0)

≤ (1− ηγ0)2 λmax(Σk)

≤ (1− ηγ0)2
γ0

.

Thus, we similarly obtain

λmax(Σk+1) = fη
(
λmax(Σk+ 1

2
)
)
≤ fη(xγ0) =

1

γ0
.

Combining the above results, this proves that γ−1
1 I ⪯ Σk+1 ⪯ γ−1

0 I which is what we set out to show.
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Note that for (stochastic) FB–GVI, we have αI ⪯ Sk ⪯ βI , so Lemma D.1 holds with γ0 = α and γ1 = β. Hence, we
obtain the following corollary:

Corollary D.2. Suppose that Algorithm 1 is initialized with a matrix Σ0 such that β−1I ⪯ Σ0, that V is β-smooth, and that
the step size satisfies η ≤ 1

β . Then β−1I ⪯ Σk for all k.

E. Proofs of the noiseless algorithm convergence rates
We obtain the desired convergence rates for FB–GVI by rearranging and iterating the one-step inequality of Lemma 5.1.
First, we derive inequalities that hold for both the convex and strongly convex cases.

For FB–GVI, we can apply Lemma 5.1 with ν = π̂, η ≤ 1
β and σk = 0. Furthermore, FB–GVI is deterministic, so we may

remove the expectations in Lemma 5.1. In this case, the inequality in Lemma 5.1 implies that for all k,

W 2
2 (pk+1, π̂) ≤ (1− αη)W 2

2 (pk, π̂)− 2η (F(pk+1)−F(π̂)) (by Lemma 5.1)

≤ exp(−αη)W 2
2 (pk, π̂)− 2η (F(pk+1)−F(π̂)) . (37)

Rearranging Equation (37), we obtain

F(pk+1)−F(π̂) ≤
exp(−αη)W 2

2 (pk, π̂)−W 2
2 (pk+1, π̂)

2η
. (38)

On the other hand, we can also apply Lemma 5.1 with ν = pk, η ≤ 1
β and σ2

k = 0 to obtain that

W 2
2 (pk+1, pk) ≤ (1− αη)W 2

2 (pk, pk)− 2η (F(pk+1)−F(pk)) = −2η (F(pk+1)−F(pk)) .

Hence, rearranging this inequality, we obtain that

F(pk+1)−F(pk) ≤ −
W 2

2 (pk+1, pk)

2η
≤ 0 , (39)

meaning that the objective value decreases with each iteration of the algorithm.

E.1. Proof of Theorem 5.2

Proof. Since V is convex, Inequality 38 holds with the choice α = 0, from which we obtain that

F(pk+1)−F(π̂) ≤
W 2

2 (pk, π̂)−W 2
2 (pk+1, π̂)

2η
.

Telescoping this inequality, we obtain that

F(pN )−F(π̂) ≤ 1

N

N∑
k=1

[F(pk)−F(π̂)] ≤
1

2ηN

N−1∑
k=0

[W 2
2 (pk, π̂)−W 2

2 (pk+1, π̂)] ≤
W 2

2 (p0, π̂)

2ηN
,

where the first inequality holds by Inequality 39. Hence, with the choice

η =
1

β
, and N ≳

βW 2
2 (p0, π̂)

ε2
,

we obtain the guarantee F(pN )−F(π̂) ≤ ε2, proving our desired result.

E.2. Proof of Theorem 5.3

Proof. Our proof makes use of the recent results by (Naldi & Savaré, 2021). For every continuous function ζ : Rd → R,
denote Fζ the map defined over P2(Rd) by Fζ : µ 7→

∫
ζ dµ. We define the NS-topology over P2(Rd) to be the initial

topology induced by the family Fζ where ζ is a continuous function such that ζ(x)
1+∥x∥2 −→∥x∥→∞ 0. Denoting C the set of

such ζ functions, a sequence (µk)k≥0 converges to µ̂ for the NS-topology iff for every ζ ∈ C, Fζ(µk)→ Fζ(µ̂).
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The set of bounded continuous functions over Rd is included in C, therefore NS-convergence implies weak-convergence.
Moreover, the set of continuous functions ζ such that supx∈Rd

ζ(x)
1+∥x∥2 <∞ contains C, therefore the convergence in the

Wasserstein distance implies NS-convergence, see Naldi & Savaré (2021, Equations 1.9 and 1.10).

To prove Theorem 5.3, we apply Naldi & Savaré (2021, Theorem 6.9). This theorem implies the NS-convergence of FB–GVI
which in turn implies weak convergence. We now check the assumptions of Naldi & Savaré (2021, Theorem 6.9):

• First, the set A = BW(Rd) ∪ D, where D is the set of Dirac measures over Rd is NS-closed because it is weakly
closed.

• Then, denote T : A→ A the map defining FB–GVI (see Equation (21)), i.e., T (µ) = JKOηH((id− η∇BWV(µ))#µ)
and pk+1 = T (pk) where p0 ∈ A. We show that T is asymptotically regular. Using Lemma 5.1 with α = 0, if
η ≤ 1/β, then

W 2
2 (T (pk), ν) ≤W 2

2 (pk, ν)− 2η [F(T (pk))−F(ν)] . (40)

Inspecting the proof of Lemma 5.1, especially Equation (34), one can see that we actually have the following stronger
inequality if η < 1/β:

W 2
2 (T (pk), ν) ≤W 2

2 (pk, ν)− 2η [F(T (pk))−F(ν)]− (1− ηβ)W 2
2 (T (pk), pk) . (41)

Besides, if ν is a minimizer of Problem (1), then F(T (pk))−F(ν) ≥ 0, therefore

W 2
2 (T (pk), ν) ≤W 2

2 (pk, ν)− (1− ηβ)W 2
2 (T (pk), pk) . (42)

Iterating the last inequality, we obtain
∑

k≥0W
2
2 (T (pk), pk) <∞. In particular, W 2

2 (T (pk), pk)→ 0, for any initial
measure p0 ∈ A. Therefore, T is asymptotically regular.

• The proof of the non-expansiveness of T is similar to the proof of the asymptotic regularity: one can adapt Lemma 5.1
to show a one-step inequality where ν is varying and follows the FB–GVI algorithm. We skip this part of the proof as it
is similar to the proof of Lemma 5.1.

• Finally, (pk)k≥0 is bounded using Equation (42).

Therefore, using Naldi & Savaré (2021, Theorem 6.9), (pk)k≥0 converges weakly to some π⋆ ∈ A. Besides, using
Theorem 5.2, F(pk)−minBW(Rd) F → 0. Therefore, using the weak lower semicontinuity of the KL divergence we have
F(π⋆)−minBW(Rd) F ≤ 0. In particular, π⋆ ∈ BW(Rd) (π⋆ cannot be in D otherwise F(π⋆) = +∞). Therefore, we also
have F(π⋆)−minBW(Rd) F ≥ 0 which implies F(π⋆)−minBW(Rd) F = 0. Finally, π⋆ is a minimizer of Problem (1).

To conclude the proof, observe that (pk)k≥0 converges weakly to π⋆ and that all these distributions are Gaussian. Therefore
the convergence actually happens in Wasserstein distance.

E.3. Proof of Theorem 5.4

Proof. Since F(π̂) ≤ F(pk+1) as π̂ achieves the minimum of F among Gaussians, we may iterate Inequality 38 to obtain

W 2
2 (pN , π̂) ≤ exp(−Nαη)W 2

2 (p0, π̂) .

Hence, with the choice

η =
1

β
, and N ≳

1

αη
log

αW 2
2 (p0, π̂)

ε2
≍ β

α
log

αW 2
2 (p0, π̂)

ε2
,

we obtain the guarantee αW 2
2 (pN , π̂) ≤ ε2.

Now, for the guarantee in KL divergence, we “reinitialize” the algorithm with distribution pN and apply the convex result of
Theorem 5.2. With the same choice of N and η and assuming ε is sufficiently small, we can apply Theorem 5.2 to obtain the
guarantee

F(p2N )−F(π̂) ≤ W 2
2 (pN , π̂)

2ηN
≤ ε2

2αηN
≲

ε2

log
αW 2

2 (p0,π̂)
ε2

≲ ε2 ,

proving our desired result.
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E.4. Proof of Theorem 5.5

First, we need a lemma.

Lemma E.1. Let µ0, µ1 ∈ BW(Rd) be such that Σµ0 ,Σµ1 ⪰ β−1I . Then if (X0, X1) ∼ (µ0, µ1) are optimally coupled
for the W2 distance, we have that

E∥∇BWH(µ1)[X1]−∇BWH(µ0)[X0]∥2 ≤ 20β2W 2
2 (µ0, µ1) .

The proof proceeds as follows. First, we apply the triangle inequality and the Cauchy–Schwarz inequality to decompose
the LHS into two terms which we will control separately. For the first term, we appeal to the Lipschitzness of ∇BWH(µ1),
which is possible since Σ−1

µ1
⪯ βI . Then for the second term, we will utilize Lemma B.1 and Lemma B.3 to derive a bound

in terms of KL(µ0 ∥µ1), which we can then further bound in terms of W 2
2 (µ0, µ1). Combining these bounds, we obtain our

desired result.

Proof. Applying the triangle inequality and Cauchy–Schwarz, we obtain that

1

2
E∥∇BWH(µ1)[X1]−∇BWH(µ0)[X0]∥2 ≤ E∥∇BWH(µ1)[X1]−∇BWH(µ1)[X0]∥2

+ E∥∇BWH(µ1)[X0]−∇BWH(µ0)[X0]∥2 .

For the first term, we note that since Σ−1
µ1
⪯ βI by assumption, we have that

E∥∇BWH(µ1)[X1]−∇BWH(µ1)[X0]∥2 = E∥Σ−1
µ1

(X1 −X0)∥2 (by Equation (28))

≤ β2 E∥X1 −X0∥2 (since Σ−1
µ1
⪯ βI)

= β2W 2
2 (µ0, µ1) , (43)

where the last equality holds since (X0, X1) ∼ (µ0, µ1) are optimally coupled by assumption. Now, we bound the second
term. Define the functionals V1,F1 : BW(Rd)→ R such that

V1(µ) := −
∫

logµ1(x) dµ(x) ,

F1(µ) := V1(µ) +H(µ) .

Note that by Equation (28),∇BWV1(µ) = −∇ logµ1 = −∇BWH(µ1), so that

∇BWF1(µ) = ∇BWV1(µ) +∇BWH(µ) = ∇BWH(µ)−∇BWH(µ1) .

Furthermore, we also note that
KL(µ ∥µ1) = F1(µ)−F1(µ1) . (44)

Therefore, the second term that we want to control above can be interpreted as the squared norm of∇BWF1(µ0). We will
show that F1 is smooth, which will allow us to bound the squared gradient norm by a multiple of F1(µ0) − F1(µ1) =
KL(µ0 ∥µ1) by the descent lemma from optimization.

Let γ := c−1β, where c ∈ (0, 1) is chosen to satisfy c ≤ (1− c)2. Define the random variable X ′
0 as follows:

X ′
0 := X0 −

1

γ
∇BWF1(µ0)[X0]

= X0 −
1

γ
(∇BWH(µ0)−∇BWH(µ1))[X0]

= X0 −
1

γ

(
−Σ−1

µ0
(X0 −mµ0

) + Σ−1
µ1

(X0 −mµ1
)
)

(by Equation (28))

=
(
I +

1

γ
Σ−1

µ0
− 1

γ
Σ−1

µ1

)
︸ ︷︷ ︸

:=M0

X0 +
1

γ
(−Σ−1

µ0
mµ0

+Σ−1
µ1
mµ1

) .
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Let µ′
0 := law(X ′

0). Since we have 0 ⪯ Σ−1
µ0
,Σ−1

µ1
⪯ βI = cγI by assumption, we have that

M0 = I +
1

γ
Σ−1

µ0
− 1

γ
Σ−1

µ1
⪰ I − 1

γ
Σ−1

µ1
⪰ (1− c) I ⪰ 0 ,

so X ′
0 is equal to the gradient of a convex function of X0. Hence, by Brenier’s theorem, we conclude that (X0, X

′
0) ∼

(µ0, µ
′
0) are optimally coupled for the W2 distance. Thus, by Lemma B.1 applied to the potential V1, we find that

V1(µ′
0)− V1(µ0) ≤ E⟨∇BWV1(µ0)[X0], X

′
0 −X0⟩+

β

2
E∥X ′

0 −X0∥2 (since −∇2 logµ0 ⪯ βI)

= −E⟨∇BWH(µ1)[X0], X
′
0 −X0⟩+

β

2
E∥X ′

0 −X0∥2 . (45)

Additionally, we note that since β = cγ ≤ (1− c)2 γ, we have that

Σµ′
0
=M0Σµ0

M0 ⪰ (1− c)2 Σµ0
⪰ (1− c)2

β
I ⪰ 1

γ
I .

This implies that Σ−1
µ′
0
,Σ−1

µ0
⪯ γI . Hence, we can also apply the geodesic smoothness inequality of Lemma B.3 to obtain

H(µ′
0)−H(µ0) ≤ E⟨∇BWH(µ0)[X0], X

′
0 −X0⟩+

γ

2
E∥X ′

0 −X0∥2 . (46)

Hence, combining Equation (44) with Inequality 45 and Inequality 46, we obtain that

−KL(µ0 ∥µ1) ≤ KL(µ′
0 ∥µ1)− KL(µ0 ∥µ1) (since KL(µ′

0 ∥µ1) ≥ 0)
= F1(µ

′
0)−F1(µ0) (by Equation (44))

= [V1(µ′
0)− V1(µ0)] + [H(µ′

0)−H(µ0)]

≤ −E⟨∇BWH(µ1)[X0], X
′
0 −X0⟩+

β

2
E∥X ′

0 −X0∥2 (by Inequality 45)

+ E⟨∇BWH(µ0)[X0], X
′
0 −X0⟩+

γ

2
E∥X ′

0 −X0∥2 (by Inequality 46)

=
(
− 1

γ
+

β

2γ2
+

1

2γ

)
E∥∇BWH(µ0)[X0]−∇BWH(µ1)[X0]∥2 (definition of X ′

0)

= −1− c
2γ

E∥∇BWH(µ0)[X0]−∇BWH(µ1)[X0]∥2 . (47)

To bound the LHS of this inequality, we again apply Lemma B.1 to the potential V1 as well as Lemma B.3 toH to obtain

KL(µ0 ∥µ1) = F1(µ0)−F1(µ1)

= [V1(µ0)− V1(µ1)] + [H(µ0)−H(µ1)]

≤ E⟨∇BWV(µ1)[X1], X0 −X1⟩+
β

2
E∥X0 −X1∥2 (by Lemma B.1 since −∇2 logµ1 ⪯ βI)

+ E⟨∇BWH(µ1)[X1], X0 −X1⟩+
β

2
E∥X0 −X1∥2 (by Lemma B.3 since Σ−1

µ0
,Σ−1

µ1
⪯ βI)

= β E∥X0 −X1∥2 (since∇BWV1(µ1) +∇BWH(µ1) = ∇BWF1(µ1) = 0)

= βW 2
2 (µ0, µ1) . (48)

Finally, choosing c = 1
3 so that c ≤ (1− c)2 and combining our above inequalities, we find that

1

2
E∥∇BWH(µ1)[X1]−∇BWH(µ0)[X0]∥2 ≤ E∥∇BWH(µ1)[X1]−∇BWH(µ1)[X0]∥2

+ E∥∇BWH(µ0)[X0]−∇BWH(µ1)[X0]∥2

≤ β2W 2
2 (µ0, µ1) +

2γ

1− c KL(µ0 ∥µ1)

(by Inequality 43 and Inequality 47)

≤ 10β2W 2
2 (µ0, µ1) . (by Inequality 48)

Rearranging, we obtain our desired result.
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With this result in mind, we are ready to prove our desired stationary point guarantee.

Proof. Let (Xk, Xk+ 1
2
) ∼ (pk, pk+ 1

2
) and (Xk+ 1

2
, Xk+1) ∼ (pk+ 1

2
, pk) be optimally coupled for the W2 distance, noting

as in the proof of Lemma 5.1 that by construction,

Xk −Xk+1

η
= ∇BWV(pk)[Xk] +∇BWH(pk+1)[Xk+1] .

Applying Lemma C.2, we obtain that

E∥Xk+1 −Xk∥2 ≤ −2η E[F(pk+1)−F(pk)] .

Telescoping this inequality, we find that

min
k∈{0,...,N−1}

E∥Xk+1 −Xk∥2 ≤
1

N

N−1∑
k=0

E∥Xk+1 −Xk∥2

≤ −2η

N

N−1∑
k=0

E[F(pk+1)−F(pk)]

= −2η

N
E[F(pN )−F(p0)]

≤ 2η∆

N
. (49)

Now, let (Xk, X
⋆
k+1) ∼ (pk, pk+1) be optimally coupled for the W2 distance. By Corollary D.2, we have that Σ−1

k ⪯ βI
for all k, meaning that we can apply Lemma E.1 with µ0 = pk and µ1 = pk+1 to obtain that

E
∥∥∇BWH(pk)[Xk]−∇BWH(pk+1)[X

⋆
k+1]

∥∥2 ≤ 20β2W 2
2 (pk, pk+1) . (50)

Furthermore, we have that

E
∥∥∇BWH(pk+1)[X

⋆
k+1]−∇BWH(pk+1)[Xk+1]

∥∥2 = E
∥∥Σ−1

k+1 (X
⋆
k+1 −Xk+1)

∥∥2
≤ β2 E

∥∥X⋆
k+1 −Xk+1

∥∥2
≤ 2β2 E

∥∥X⋆
k+1 −Xk

∥∥2 + 2β2 E∥Xk+1 −Xk∥2

= 2β2W 2
2 (pk, pk+1) + 2β2 E∥Xk+1 −Xk∥2 . (51)

With these inequalities in mind, we obtain that

1

3
∥∇BWF(pk)∥2pk

=
1

3
E∥∇BWV(pk)[Xk] +∇BWH(pk)[Xk]∥2

≤ E∥∇BWV(pk)[Xk] +∇BWH(pk+1)[Xk+1]∥2 + E
∥∥∇BWH(pk)[Xk]−∇BWH(pk+1)[X

⋆
k+1]

∥∥2
+ E

∥∥∇BWH(pk+1)[X
⋆
k+1]−∇BWH(pk+1)[Xk+1]

∥∥2 (by triangle inequality)

≤ 1

η2
E∥Xk+1 −Xk∥2 + 22β2W 2

2 (pk, pk+1) + 2β2 E∥Xk+1 −Xk∥2

(by Inequality 50 and Inequality 51)

≤
( 1

η2
+ 24β2

)
E∥Xk+1 −Xk∥2 (since (Xk, Xk+1) is a coupling of (pk, pk+1))

≤ 25

η2
E∥Xk+1 −Xk∥2 . (since β ≤ η−1)

Combining the above with Inequality 49, we obtain that

min
k∈{0,...,N−1}

∥∇BWF(pk)∥2pk
≤ min

k∈{0,...,N−1}
75

η2
E∥Xk+1 −Xk∥2 ≤

150∆

ηN
.
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Finally, taking η = 1
β and N ≥ 150β∆

ε2 , we obtain that

min
k∈{0,...,N−1}

∥∇BWF(pk)∥2pk
≤ ε2 ,

as desired.

F. Proofs of the noisy algorithm convergence rates
We once again utilize Lemma 5.1 to obtain our desired rates of convergence. First, we must prove the bound on σk for
Stochastic FB–GVI given in Lemma 5.6.

F.1. Proof of Lemma 5.6

Proof. Let µ = N (m,Σ) be an element of BW(Rd). We first note that if X ∼ µ, then by integration by parts,

ΣE∇2V (X) = Σ

∫
∇2V dµ

= −Σ
∫
∇µ⊗∇V (integration by parts)

= −Σ
∫
∇ lnµ⊗∇V dµ

=

∫
(x−m)⊗∇V dµ(x) (since −Σ∇ lnµ(x) = x−m)

= E[(X −m)⊗∇V (X)] . (52)

Hence,

⟨E∇2V (X),Σ⟩ = ⟨E[Σ−1 (X −m)⊗∇V (X)],Σ⟩ (by Equation (52))

= E⟨Σ−1 (X −m)⊗∇V (X),Σ⟩ (linearity of expectation and trace)
= E⟨∇V (X), X −m⟩ . (cyclicity of trace)

Now, let (Xk, Z) ∼ (pk, π̂) be optimally coupled for the W2 distance and independent of X̂k. Recall also the Brascamp–
Lieb inequality (Brascamp & Lieb, 1976): if µ is a measure on Rd with density µ ∝ exp(−W ), where W is twice
continuously differentiable and strictly convex, then for any smooth test function f : Rd → R it holds that Varµ(f) ≤
E⟨∇f, (∇2W )−1∇f⟩. In particular, if we take f = ⟨∇V, e⟩ for a unit vector e and µ = pk, it follows that Varpk

⟨∇V, e⟩ ≤
Epk
⟨e,∇2V Σk∇2V e⟩. Summing this inequality as e ranges over an orthonormal basis of Rd, we obtain

Epk
∥∇V − Epk

∇V ∥2 ≤ Epk
⟨[∇2V ]2,Σk⟩ .

Thus, we get that

1

2
σ2
k ≤ E∥(∇2V (X̂k)− Epk

∇2V )(Xk −mk)∥2 + E∥∇V (X̂k)− Epk
∇V ∥2 (by triangle inequality)

=
〈
Epk

[(∇2V − Epk
∇2V )2],Σk

〉
+ Epk

∥∇V − Epk
∇V ∥2 (since Xk ⊥⊥ X̂k)

= Epk
⟨∇2V,Σk∇2V ⟩ − ⟨Epk

[∇2V ]2,Σk⟩+ Epk
∥∇V − Epk

∇V ∥2

≤ Epk
⟨∇2V,Σk∇2V ⟩+ Epk

∥∇V − Epk
∇V ∥2 (since ⟨Epk

[(∇2V )2],Σk⟩ ≥ 0)

≤ 2Epk
⟨∇2V,Σk∇2V ⟩ (by Brascamp–Lieb)

≤ 2β Epk
⟨∇2V,Σk⟩ (since∇2V ⪯ βI and ∇2V,Σk ⪰ 0)

= 2β E⟨∇V (Xk), Xk −mk⟩ (by Equation (52))
= 2β E⟨∇V (Z), Z − m̂⟩︸ ︷︷ ︸

err1

+ 2β E⟨∇V (Xk)−∇V (Z), (Xk −mk)− (Z − m̂)⟩︸ ︷︷ ︸
err2

+ 2β E⟨∇V (Z), (Xk −mk)− (Z − m̂)⟩︸ ︷︷ ︸
err3

+ 2β E⟨∇V (Xk)−∇V (Z), Z − m̂⟩︸ ︷︷ ︸
err4

.
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Now, we have the following:

err1 = E⟨∇V (Z), Z − m̂⟩ = ⟨E∇2V (Z), Σ̂⟩ = Tr(I) (by Equation (52) and the stationarity conditions in (29))
= d ,

err2 = E⟨∇V (Xk)−∇V (Z), (Xk −mk)− (Z − m̂)⟩

≤ 1

2β
E∥∇V (Xk)−∇V (Z)∥2 + β

2
E∥(Xk −mk)− (Z − m̂)∥2 (Young’s inequality)

≤ β E∥Xk − Z∥2 (since∇V is β-Lipschitz)

= βW 2
2 (µk, π̂) , (since (Xk, Z) are optimally coupled)

err3 = E⟨∇V (Z), (Xk −mk)− (Z − m̂)⟩

≤ 1

4β
E∥∇V (Z)∥2 + β E∥(Xk −mk)− (Z − m̂)∥2 (Young’s inequality)

≤ 1

4β
E⟨∇2V (Z)2, Σ̂⟩+ βW 2

2 (µk, π̂) (Brascamp–Lieb, optimal coupling of (Xk, Z))

≤ d

4
+ βW 2

2 (µk, π̂) , (since Eπ̂∇2V = Σ̂−1 by Equation (29) and ∇2V ⪯ βI)

err4 = E⟨∇V (Xk)−∇V (Z), Z − m̂⟩

≤ Tr(Σ̂)

d
E∥∇V (Xk)−∇V (Z)∥2 + d

4Tr(Σ̂)
E∥Z − m̂∥2 (Young’s inequality)

≤ β2 Tr(Σ̂)

d
E∥Xk − Z∥2 +

d

4Tr(Σ̂)
Tr(Σ̂) (since∇V is β-Lipschitz)

≤ β2 Tr(Σ̂)

d
W 2

2 (µk, π̂) +
d

4
.

Combining these, we obtain that

σ2
k ≤ 4β

4∑
i=1

erri ≤ 6βd+
(
8β2 +

4β3 Tr(Σ̂)

d

)
W 2

2 (µk, π̂) ≤ 6βd+ 12β3λmax(Σ̂)W
2
2 (µk, π̂) .

(since Σ̂−1 = Eπ̂∇2V ⪯ βI so λmax(Σ̂) ≥ 1/β)

Note that in the strongly convex case, by Equation (29), we obtain that

λmax(Σ̂) = λmax(Eπ̂[∇2V ]−1) ≤ 1

α
,

so this bound simplifies to

σ2
k ≤ 6βd+

12β3

α
W 2

2 (µk, π̂) .

This concludes our proof.

F.2. One-step inequality using the bound on σk

We apply the error bound in Lemma 5.6 along with the one-step inequality of Lemma 5.1 with ν = π̂ and η ≤ 1
2β . This

gives us the inequality

EW 2
2 (pk+1, π̂) ≤ (1− αη)EW 2

2 (pk, π̂)− 2η (EF(pk+1)−F(π̂)) + 2η2 Eσ2
k

≤
(
1− αη + 24β3η2λmax(Σ̂)

)
EW 2

2 (pk, π̂)− 2η (EF(pk+1)−F(π̂)) + 12βη2d

≤ exp
(
−αη + 24β3η2λmax(Σ̂)

)
EW 2

2 (pk, π̂)− 2η (EF(pk+1)−F(π̂)) + 12βη2d . (53)
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F.3. Proof of Theorem 5.7

Proof. Define c := 24β3λmax(Σ̂). Since V is convex by assumption, we may take α = 0 in Inequality 53 to obtain that

2η (EF(pk+1)−F(π̂)) ≤ ecη
2

EW 2
2 (pk, π̂)− EW 2

2 (pk+1, π̂) + 12βη2d .

Define SN (η) :=
∑N

k=1 e
−kcη2

. We then find that

N−1∑
k=0

2η e−(k+1)cη2

(EF(pk+1)−F(π̂)) ≤
N−1∑
k=0

e−(k+1)cη2 (
ecη

2

EW 2
2 (pk, π̂)− EW 2

2 (pk+1, π̂) + 12βη2d
)

=W 2
2 (p0, π̂)− e−Ncη2

EW 2
2 (pN , π̂) + 12βη2d

N−1∑
k=0

e−(k+1)cη2

≤W 2
2 (p0, π̂) + 12βη2dSN (η) .

Let p be drawn randomly from among {pk}Nk=1, with probability of choosing pk proportional to e−kcη2

. Then we have that

EF(p)−F(π̂) = 1

2ηSN (η)

N−1∑
k=0

2η e−(k+1)cη2

(EF(pk+1)−F(π̂))

≤ 1

2ηSN (η)

(
W 2

2 (p0, π̂) + 12βη2dSN (η)
)

=
W 2

2 (p0, π̂)

2ηSN (η)
+ 6βηd .

Now, we note that

SN (η) =

N∑
k=1

e−kcη2 ≥
N∧(cη2)−1∑

k=1

e−kcη2 ≥
N∧(cη2)−1∑

k=1

e−1 ≥ N ∧ ⌊(cη2)−1⌋
e

.

Thus, we obtain the inequality

E
[

min
k∈{1,...,N}

F(pk)
]
−F(π̂) ≤ EF(p)−F(π̂)

≤ W 2
2 (p0, π̂)

2ηSN (η)
+ 6βηd

≤ 2W 2
2 (p0, π̂)

η (N ∧ ⌊(cη2)−1⌋) + 6βηd

≲
W 2

2 (p0, π̂)

ηN
+ cηW 2

2 (p0, π̂) + βηd .

Hence, taking

η ≍ ε2

cW 2
2 (p0, π̂) ∨ βd

≍ ε2

β3λmax(Σ̂)W 2
2 (p0, π̂) ∨ βd

,

N ≳
W 2

2 (p0, π̂)

ηε2
≍ W 2

2 (p0, π̂)

ε4
(
β3λmax(Σ̂)W

2
2 (p0, π̂) ∨ βd

)
,

we get the guarantee E
[
mink∈{1,...,N} F(pk)

]
−F(π̂) ≤ ε2 .

F.4. Proof of Theorem 5.8

Proof. In the strongly convex case where 0 ≺ αI ⪯ ∇2V , we have the eigenvalue guarantee λmax(Σ̂) ≤ 1
αI , since

Eπ∇2V = Σ̂−1 by (29). Hence, under the assumption that η ≤ α2

48β3 , Inequality 53 implies that

EW 2
2 (pk+1, π̂) ≤ exp

(
−αη + 24β3η2

α

)
EW 2

2 (pk, π̂)− 2η (EF(pk+1)−F(π̂)) + 12βη2d
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≤ exp
(
−αη

2

)
EW 2

2 (pk, π̂)− 2η (EF(pk+1)−F(π̂)) + 12βη2d .

Since F(π̂) ≤ F(pk+1), we may iterate this inequality to obtain that

EW 2
2 (pN , π̂) ≤ exp

(
−Nαη

2

)
W 2

2 (p0, π̂) +
24βηd

α
.

Hence, with the choice

η ≍ ε2

βd
,

N ≳
1

αη
log

αW 2
2 (p0, π̂)

ε2

≍ βd

αε2
log

αW 2
2 (p0, π̂)

ε2
,

we obtain the guarantee

αEW 2
2 (pN , π̂) ≤ ε2 .

Now, for the guarantee in KL divergence, we “reinitialize” the algorithm with distribution pN and apply the weakly convex
result of Theorem 5.7. This argument is inspired by Durmus et al. (2019). Assuming ε is sufficiently small, we get that

cEW 2
2 (pN , π̂) ≤

cε2

α
≤ βd ,

meaning that for the above choice of η, we have

η ≍ ε2

βd
≍ ε2

cEW 2
2 (pN , π̂) ∨ βd

.

Furthermore, for our choice of N , we have that

EW 2
2 (pN , π̂)

ε4
(
cW 2

2 (p0, π̂) ∨ βd
)
≤ βd

αε2
≲ N .

Thus, applying Theorem 5.7 with our choice of step size η and iteration count N , we obtain that

E
[

min
k∈{1,...,2N}

F(pk)
]
−F(π̂) ≤ E

[
min

k∈{N+1,...,2N}
F(pk)

]
−F(π̂)

≲ E
[W 2

2 (pN , π̂)

ηN
+ cηW 2

2 (pN , π̂) + βηd
]

≲ ε2 ,

proving our desired result.

G. Experiment Figures
In Figures 1 and 2, we provide figures for the experiments in Section 6.
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Figure 1. Gaussian target experiment: results for FB–GVI (top) and stochastic FB–GVI (bottom).
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Figure 2. Bayesian logistic regression experiment: plots of log Êpk∥∇BWF(pk)∥2 (top) and of F̂(pk) (bottom) for stochastic FB–GVI.
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