
Bayesian Reparameterization of Reward-Conditioned
Reinforcement Learning with Energy-based Models

Wenhao Ding * 1 Tong Che * 2 Ding Zhao 1 Marco Pavone 2 3

Abstract
Recently, reward-conditioned reinforcement
learning (RCRL) has gained popularity due to
its simplicity, flexibility, and off-policy nature.
However, we will show that current RCRL
approaches are fundamentally limited and fail
to address two critical challenges of RCRL –
improving generalization on high reward-to-go
(RTG) inputs, and avoiding out-of-distribution
(OOD) RTG queries during testing time. To
address these challenges when training vanilla
RCRL architectures, we propose Bayesian
Reparameterized RCRL (BR-RCRL), a novel set
of inductive biases for RCRL inspired by Bayes’
theorem. BR-RCRL removes a core obstacle
preventing vanilla RCRL from generalizing on
high RTG inputs – a tendency that the model
treats different RTG inputs as independent values,
which we term “RTG Independence”. BR-RCRL
also allows us to design an accompanying
adaptive inference method, which maximizes
total returns while avoiding OOD queries that
yield unpredictable behaviors in vanilla RCRL
methods. We show that BR-RCRL achieves
state-of-the-art performance on the Gym-Mujoco
and Atari offline RL benchmarks, improving
upon vanilla RCRL by up to 11%.

1. Introduction
Reinforcement learning (RL) aims at learning policies to
maximize cumulative rewards by trial and error (Sutton
et al., 1998). It was shown that when combined with deep
neural networks, deep RL is able to learn powerful poli-
cies for complex decision-making tasks using only self-

*Equal contribution 1Carnegie Mellon University, Pittsburgh,
PA, US 2NVIDIA Research, Santa Clara, CA, US 3Stanford Uni-
versity, Palo Alto, CA, US. Correspondence to: Wenhao Ding
<wenhaod@andrew.cmu.edu>, Tong Che <tongc@nvidia.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

generated data (Mnih et al., 2013; Akkaya et al., 2019;
Kiran et al., 2021). RL algorithms can be divided into two
classes in terms of data usage: on-policy RL (Schulman
et al., 2017; 2015) algorithms have to be trained on data
that the current policy learner generates, while off-policy
RL algorithms (Haarnoja et al., 2018; Lillicrap et al., 2015)
can be trained on data that is generated by some different
policies. It is a common belief that off-policy algorithms are
more sample efficient than on-policy algorithms (Prudencio
et al., 2022).

One recent proposed off-policy RL paradigm is reward-
conditioned reinforcement learning (RCRL) (Kumar et al.,
2019b; Chen et al., 2021; Janner et al., 2021; Srivastava et al.,
2019; Ajay et al., 2022), which transforms the RL problem
into a conditional sequence modeling problem. The general
idea of RCRL is straightforward: we train an RTG (reward-
to-go)-conditioned generative model using off-policy data
and then set a target RTG when we roll out the policy during
training to collect more data (Kumar et al., 2019b) or during
testing (Chen et al., 2021; Janner et al., 2021). RCRL has
gained popularity due to its conceptual simplicity, flexibil-
ity, and off-policy nature. Moreover, its usage allows us
to leverage powerful neural architectures (e.g., Transform-
ers (Vaswani et al., 2017)) and large generative models (e.g.,
diffusion models (Yang et al., 2022) or masked language
models (Ghazvininejad et al., 2019)), which have been a
massive success in other parts of artificial intelligence, such
as natural language processing (Brown et al., 2020; Ouyang
et al., 2022) and computer vision (Dosovitskiy et al., 2020;
Ramesh et al., 2022).

Vanilla RCRL paradigms treat RTGs as standard inputs in
addition to the states and actions of the neural network. This
design choice makes it easy to employ modern architectures
such as Transformers (Vaswani et al., 2017). However, this
practice, although plausible, has largely ignored the central
challenge of RCRL. Training the RCRL model optimizes a
policy to fit a dataset or data buffer. However, during policy
rollout, we usually want to set a high target RTG in the hope
that the model can achieve higher performance than the
generating policy of the dataset. In other words, the central
challenge of RCRL methods is to achieve generalization
from low-return regions to high-return regions of the state

1

Bayesian Reprameterized RCRL

space. One core generalization obstacle in vanilla RCRL is
that the RTG inputs carry too little information. The model
tends to treat different RTGs inputs as independent and
unrelated tasks and then fails to find internal connections
between trajectories with different RTG levels. In most
cases, when we want to learn from sub-optimal datasets or
data buffers, high total return trajectories are scarce. Thus,
this problem makes learning and generalization in high-
return regions extremely difficult.

In this paper, we propose Bayesian Reparameterized RCRL
(BR-RCRL). Our main intuition behind the design is that (1)
in order to facilitate generalization from low-return regions
to high-return regions, one needs to encode more induc-
tive biases into the model, especially on how to deal with
RTGs. (2) one needs to modify the rollout procedure of
RCRL to filter out completely out-of-distribution inputs.
BR-RCRL is a novel set of inductive biases to parameterize
reward-conditioned policies inspired by Bayes’ theorem. In
BR-RCRL, we explicitly impose the prior knowledge that
different RTGs are competitive with each other, not inde-
pendent. From a causality perspective, BR-RCRL can also
be viewed as a causal generative model (Peters et al., 2017)
that respects the ground-truth causal relationships between
random variables. This causal viewpoint provides a con-
crete explanation of why BR-RCRL generalizes better than
vanilla RCRL models when distribution shifts occur.

In the experiment section, we show that BR-RCRL dramat-
ically boosts the performance of many RCRL algorithms
across commonly used offline RL benchmarks.

2. Related Works and Preliminaries
2.1. Off-policy and Offline RL

Reinforcement learning studies learning problems in the
setting of a Markov Decision Process (MDP) described by
the tuple (S , A, P , R). This tuple consists of action a ∈ A,
state s ∈ S, transition probability P (s′|s, a), and reward
function r = R(s, a). The goal of MDP is to maximize
the expected return E[

∑T
t=0 γ

trt], where we denote γ the
discount factor and at, st, rt = R(st, at) the action, state,
and reward at timestep t, respectively.

In the on-policy RL setting (Schulman et al., 2017; 2015), an
agent interacts with the environment and updates its current
policy using experiences gathered using the same current
policy. In off-policy RL (Mnih et al., 2013; Lillicrap et al.,
2015), the agent still interacts with the environment, but
can update its current policy using experiences collected
from any past policies as well. The off-policy framework
brings us two advantages: (1) More sample-efficient train-
ing since the agent does not have to discard all previous
transitions and can instead maintain a buffer where transi-
tions can be reused multiple times. (2) Better state space

exploration since the sample collection follows a behavior
policy different from the target policy.

Offline RL (Prudencio et al., 2022; Levine et al., 2020),
also known as Batch RL, moves one step further and be-
comes truly “off-policy” by learning only from static dataset
{si, ai, s′i, ri}Ni=1 collected from arbitrary policies. This
offline setting can be extremely valuable when an online
interaction is impractical due to expensive or dangerous
data collection such as robotics (Singh et al., 2021), health-
care (Liu et al., 2020b), and autonomous driving (Kiran
et al., 2021). However, the main challenge in offline RL is
the distributional shift between the dataset and the environ-
ment. This challenge is either addressed by constraining
the learned policy to the behavior policy used to collect the
dataset (Fujimoto et al., 2019; Kumar et al., 2019a; Wu et al.,
2019) or estimating a conservative value function (Kumar
et al., 2020; Yu et al., 2021).

2.2. Reward-Conditioned RL

A popular off-policy learning paradigm is Reward-
Conditioned Reinforcement Learning, which has been stud-
ied across multiple contexts (Janner et al., 2021; Chen et al.,
2021; Kumar et al., 2019b; Emmons et al., 2021; Srivas-
tava et al., 2019; Ajay et al., 2022). We denote the data-
generating behavior policy to be β, and then we define the
random variable of total return (RTG) after taking action a
at state s as

Zβ(s, a) =
∑
t≥0

γtr(at, st)|a0=a,s0=s. (1)

RCRL tries to learn the RTG-conditioned policy β̄θ(a|R, s)
parameterized by θ to match the ground-truth posterior pol-
icy β[a|s, Zβ(s, a) = R], where R is a target RTG. In
vanilla RCRL settings, the RTGs are treated as an input
variable and directly fed into a neural network, which could
be an MLP (Emmons et al., 2021), a Transformer (Chen
et al., 2021; Janner et al., 2021), or a diffusion model (Ajay
et al., 2022). Namely, the learned policy β̄θ(a|R, s) takes
R and current state s and outputs a distribution of ac-
tions that matches the posterior distribution of data gen-
erating policy β(a|s,R). More formally, given a data buffer
{si, ai, s′i, Ri}Ni=1, RCRL optimizes the following loss func-
tion:

LRCRL(θ) = −
∑
i

log β̄θ(ai|si, Ri) (2)

In an online RCRL setting (Kumar et al., 2019b), one inter-
leaves the policy fitting with data collection and dynamically
expands the dataset with new data collected.

2.3. Energy-based Models

Energy-based Models (EBMs) (LeCun et al., 2006; Song
& Kingma, 2021), also known as non-normalized prob-

2

Bayesian Reprameterized RCRL

abilistic models, are flexible and can model expressive
distributions since they do not have a restriction on the
tractability of the normalizing constant. The density given
by an EBM is pθ(x) = exp(−Eθ(x))/Zθ, where en-
ergy Eθ(x) is a nonlinear function parameterized by θ
and Zθ =

∫
exp(−Eθ(x))dx is a constant w.r.t x. Al-

though the likelihood of EBMs cannot be directly maxi-
mized, three surrogate principles for learning EBMs are
usually considered. Firstly, we can estimate the gradient
of the log-likelihood with MCMC approaches (Neal et al.,
2011; Welling & Teh, 2011), which use the fact that the
gradient of the log-probability w.r.t. x equals the gradi-
ent of the energy. Secondly, one can learn an EBM by
matching the first derivatives of the density function and the
data distribution (Song & Ermon, 2019; Song et al., 2020).
Finally, an EBM can be learned by contrasting it with an-
other distribution with a known density using Noise Con-
trastive Estimation (NCE) (Gutmann & Hyvärinen, 2010).
InfoNCE (Oord et al., 2018), inspired by NCE, uses cate-
gorical cross-entropy loss to identify the positive sample x
amongst a set of unrelated noise samples X ′.

LinfoNCE = −E
[
log

f(x, c)∑
x′∈X′ f(x′, c)

]
(3)

where c is the context indicating the label of x and the
scoring function is f(x, c) ∝ p(x|c)

p(x) .

Recently, EBM formulation has been considered the policy
representation (Haarnoja et al., 2017). Existing works also
use EBMs in a model-based planning framework (Boney
et al., 2020) or imitation learning (Liu et al., 2020a) with
an on-policy algorithm. Another trend to combine EBM
and RL is utilizing an EBM as part of the RL frame-
work (Kostrikov et al., 2021; Nachum & Yang, 2021).

3. Limitations of Vanilla RCRL
The pipeline of vanilla RCRL has two fundamental limita-
tions. Although the loss LRCRL is a reasonable surrogate of
−Eβ [log β̄(a|s,R)], optimizing such a loss is equivalent to
maximizing the average likelihood under the distribution
induced by β. However, we aim to achieve a higher reward
than we can get from β during test time. The mismatch
between the training and testing input distribution becomes
more severe when we try to set a higher RTG for the model.
In many cases, the input RTGs can become so high that
they turn out to be out-of-distribution inputs (c.f. Figure 2).
Thus, we argue that a fundamental challenge for RCRL is to
improve the model’s generalization performance on higher
RTG inputs while avoiding unpredictable behavior caused
by OOD inputs.

However, vanilla RCRL models lack appropriate inductive
biases to facilitate such generalization. One core issue that
makes the generalization to high RTG region extremely

Figure 1: Illustration of the Sampling Bias Dominance
problem. When conditioned on R = 1, only 3 noisy sam-
ples are available; thus, a huge sampling variance is intro-
duced. Our policy uses an amortized estimation of p(a|s)
and p(R|a, s), so it is less affected by the high sampling
variance.

difficult is that the model could treat inputs with specific
RTGs as independent, unrelated prediction problems and fail
to discover the connections across trajectories with different
RTGs (for which we term as RTG Independence). Since
RTGs contain minimal information, in our experiments, we
found that in contrast with what one may hope, many vanilla
RCRL models (Emmons et al., 2021; Chen et al., 2021) have
a tendency to treat each different RTG input simply as one
independent prediction task. This phenomenon prohibits
the model from learning useful information in low RTG
regions and tries to generalize to high RTG regions. (The
generalization is notoriously hard because, in almost all
RL tasks, low-reward trajectories look very different from
high-reward ones.)

In fact, these issues result in two serious problems for RCRL
during both training and testing. The first problem is Sam-
pling Bias Dominance. When conditioned on higher RTGs,
the training samples that can attain these high RTGs be-
come fewer. This means that empirical distribution in the
dataset, when conditioned on a high RTG, can look very
different from the ground-truth data-generating distribution
because of the large sampling variance. The sampling vari-
ance, when combined with the RTG Independence problem,
makes the generalization on high RTG regions notoriously
difficult. Consider a simple example environment in Fig-
ure 1, where we have 2 possible RTG values for a given
action. The RTG input tokens carry only one bit of informa-
tion, and it does not provide any information or hints about
how the target RTGs R = 1 and R = 0 are related to each
other. The model has no choice but to view p(a|R = 1, s)
and p(a|R = 0, s) as independent and unrelated prediction
problems. The model has no idea about simple facts such
as these two options R = 0 and R = 1 should be mutually
exclusive. What makes things worse, high RTG samples

3

Bayesian Reprameterized RCRL

Figure 2: Illustration of the OOD Conditioning problem,
where an agent accidentally takes a bad move and encoun-
ters an OOD, it then gets stuck there and is “panic”. Our
algorithm can dynamically select the RTG to maximize the
return when such bad things happen.

are rare. In this case, R = 1 consists of only 3 samples.
Thus, the empirical distribution pe(↑ |R = 1, s) = 0 based
on the dataset is quite different from the ground-truth dis-
tribution p(↑ |R = 1, s) = 0.5. The prediction problem
f : S → ∆(A) where f(s) = p(a|R = 1, s) is thus too
noisy to be trained on this dataset due to sampling bias.
Therefore, Vanilla RCRL methods have difficulties in gen-
eralization to high reward regions because of such large
sampling noises in the dataset.

The second problem, which mainly occurs in testing time,
is what we term as Out-of-Distribution (OOD) Condition-
ing. We provide a stair-climbing example in Figure 2 for
illustration. During testing time, a typical practice is first to
choose a high target RTG and then dynamically decrease the
RTG according to immediate rewards from the environment.
In this example, if the robot takes one bad move in s2, then
quickly the conditioning RTG would not be achievable from
the next state s3 (because the goal can never be achieved
with 1 remaining step), which means the RTG condition
turns into an OOD input to the policy model. The behavior
of the trained neural network is undefined on such inputs,
bringing in severe performance drops.

4. Methodology
4.1. Bayesian Reparameterization of RCRL

In our method, the goal is to learn a probabilistic model to
better approximate the posterior policy β[a|s, Zβ(s, a) =
R]. Instead of directly taking RTGs as inputs to the neural
network, our observation is that one could encode more
prior knowledge into the model. A core inductive bias we
introduce is that different RTGs should be competitive, not
independent of each other. In order to encode this competi-
tion between different RTGs into the model, we no longer
feed RTGs into the model as an extra input variable. Instead,
the RTG mechanism is replaced by an energy function de-

fined by two amortized neural network estimations of β(a|s)
and β(R|s, a).

More precisely, thanks to the Bayes formula, the posterior
policy can be written as:

β[a|s, Zβ(s, a) = R] ∝ β(a|s)β[Zβ(s, a) = R|s, a]. (4)

Inspired by the Bayesian representation of the posterior
policy, we define an energy-based model

Eθ(a|s,R) = − log β̄θ(a|s)− log β̄θ(R|s, a), (5)

in which β̄θ(·|s) and β̄θ(·|s, a) are represented as two pa-
rameterized neural networks. In this work, we further as-
sume that β̄θ(a|s) is easy to sample from, and its likeli-
hood can be computed exactly. Instead of directly fitting
a conditional model like vanilla RCRL, we reparameter-
ize RCRL with the policy defined by this energy function
β̄θ(a|s,R) = exp(−Eθ(a|s,R))/Z as an approximation to
real β(a|s,R), where Zθ =

∑
a exp(−Eθ(a|s,R)).

In vanilla RCRL, we optimize the following loss function:

L0(θ) = −
∑
i

log β̄θ(ai|si, Ri), (6)

where β̄θ(a|s,R) is parameterized as a normal neural net-
work with input s,R and output a. In our model, we still
optimize the above loss function but with a Bayesian way
of parameterization:

β̄θ(a|s,R) =
exp(−Eθ(a|s,R))

Zθ
=

β̄θ(a|s)β̄θ(R|s, a)
Zθ

(7)
In order to learn such a model, we need to calculate the
normalizing constant Z. Here we use samples from β̄θ(a|s)
to estimate it:

Zθ =
∑
a

β̄θ(a|s)β̄θ(R|s, a) = Ea∼β̄θ
[β̄θ(R|s, a)]. (8)

We then use InfoNCE (Oord et al., 2018) loss to optimize
objective (6) after rewriting the model as

β̄θ(a|s,R,A′) =
β̄θ(a|s)β̄θ(R|s, a)∑

a′∈A′ β̄θ(R|s, a′)
, (9)

where negative samples a′ ∈ A′. Thus, our loss function for
RCRL can be summarized as

L0(θ) =−
∑
i

[
log β̄θ(ai|si) + log

β̄θ(Ri|si, ai)∑
a′
i∈A′

i
β̄θ(Ri|si, a′i)

]
,

(10)

where a′i is sampled from β̄θ(a|si). In addition to the L0(θ)
loss that has the same goal as vanilla RCRL, we add term
L1(θ), which is the log-likelihood of the RTG:

L1(θ) = −
∑
i

log β̄θ(Ri|si, ai). (11)

4

Bayesian Reprameterized RCRL

This term is essential for our model since it addresses the
RTG independence problem. After having this loss, the
model is forced to capture the critical prior knowledge of
how different RTG inputs depend on each other. Finally, our
objective is to maximize the combination of the two losses
with an adjustable parameter λ:

LBR-RCRL(θ) = L0(θ) + λL1(θ). (12)

4.2. Adaptive Inference

In order to address the OOD Conditioning problem, we
propose a novel adaptive inference method to ensure that
our query is always in training distribution. After training
β̄θ(a|s,R), we aim to deduce a new policy that can perform
better than the data-generating policy β. To do so, we write
Z β̄(s) =

∑
t≥0 γ

tr(at, st)|s0=s the expected total return
under β̄. For a given δ ∈ (0, 1), we define a threshold
function

θδ(s) = max
r

{r ∈ R|P (Z β̄(s) ≥ r) ≥ δ}. (13)

Then, we define the new policy as

πδ(a|s) = β̄(a|Z β̄(s, a) ≥ θδ(s), s). (14)

During testing time, we sample from πδ(a|s). Intuitively,
this sampling method tries to dynamically adjust the RTG
as high as possible while preserving feasibility.

By definition we have β̄θ(a|s,R) = exp(−Eθ(a|s,R))/Z.
Combing these formulas, we have the following proposition:

Proposition 1. Define a new energy function : Eδ
θ(a|s) =

− log β̄θ(a|s)− log β̄θ(R > θδ(s)|s, a), where

β̄θ(R > θδ(s)|s, a) =
∑

r>θδ(s)

β̄θ(r|s, a) (15)

then we have πδ(a|s) ∝ Eδ
θ(a|s). Namely, πδ(a|s) is the

Boltzmann distribution of energy function Eδ
θ(a|s).

Proof. It directly follows from rewriting β̄(a|Z β̄θ (s, a) ≥
θδ(s), s) with Bayes formula.

In our implementation, θδ(s) is not exactly computable,
so we approximate it using samples. We first sample a
batch of actions {ai}Ni=1 ∼ β̄θ(a|s), then use these sam-
ples to compute an estimate of the distribution β̄θ(R|s) =
1
N

∑
i[β̄θ(R|s, ai)]. Then we use the threshold δ to select

the threshold θδ such that

θδ(s) = max
r

{r ∈ R|P (R ≥ r|s) ≥ δ} (16)

In summary, we illustrate the proposed adaptive inference
procedure in Algorithm 1.

Algorithm 1 Adaptive Inference for BR-RCRL

1: Input: threshold δ > 0, trained policy network β̄θ

2: Initialize s = s0.
3: while s is not a terminal state do
4: Sample a batch of actions {ai}Ni=1 ∼ β̄θ(a|s).
5: Compute β̄θ(R|s) = 1

N

∑
[β̄θ(R|s, ai)]

6: Compute θδ(s) = maxr{r ∈ R|P (R ≥ r|s) ≥ δ}
7: Perform iterative inference on energy function

Eδ
θ(a|s) and return the best action a′

8: Execute a′ in the environment and get s′

9: Update s′ → s
10: end while

Figure 3: Generative models of Vanilla RCRL (a), BR-
RCRL (b), and the ground-truth causal graphical model of
RTG generation (c).

4.3. Discrete Action

In the discrete action case, our model can be consider-
ably simplified. Following (Bellemare et al., 2017), we
model the distribution of RTG using a discrete distribution
parametrized by Vmin ∈ R, Vmax ∈ R, and N ∈ N. Specifi-
cally, we use a set of bucket B:

{bi = Vmin + i∆b : i ∈ [0, N)} ,∆b =
Vmax − Vmin

N − 1
,

(17)
to represent the discretized RTG. In this case, we can train
a joint probabilistic model β̄θ(a,R|s), which is parameter-
ized as f : S → ∆(A× R). The set of joint distributions
∆(A×R) is represented using a |A||B|-way Softmax func-
tion (Bridle, 1989), where |A| is the number of actions and
|B| is the number of reward buckets.

In this parameterization, the L1(θ) loss stays the same but
the InfoNCE (Oord et al., 2018) loss can be replaced by a
normal Softmax loss L0(θ) = −

∑
i log β̄θ(ai|si, Ri) be-

cause now the conditional distribution β̄θ(a|s,R) can be
easily computed.

4.4. Causal Perspective of BR-RCRL

We provide another explanation of why BR-RCRL can facil-
itate better generalization over vanilla RCRL. Consider the
ground-truth causality relationships between three random
variables (s, a,R) generated by the data-generating policy.
It is obvious that s is a direct cause of a since a is generated

5

Bayesian Reprameterized RCRL

by the behavior policy β. It is also apparent that both s
and a are immediate causes of the total return R, leading to
the true causal graph as shown in Figure 3(c). BR-RCRL
tries to fit two neural networks β̄θ(a|s) and β̄θ(R|s, a) that
are aligned with the true causal model. It is well-known
that generative models that respect the causality relation-
ships are more robust to distribution shifts because they
can avoid learning spurious relationships between random
variables (Arjovsky et al., 2019; Schölkopf et al., 2021; Lu
et al., 2021; Ding et al., 2022). This explains why our BR-
RCRL generalizes much better than vanilla RCRL when
the distribution shifts because of the user-specified value
of R, which can be viewed as an intervention (Eberhardt &
Scheines, 2007) from a causality point of view.

4.5. Theoretical Analysis

Now we provide an analysis of the proposed algorithm. In
the following, we sometimes write π = πδ for short if there
is no confusion. Theoretically, we expect our new policy πδ

satisfy two important properties:

(1) Its trajectory distribution should not diverge from β,
which means the model should not take OOD actions.
This can be quantitatively measured by KL divergence
KL[πδ(T)||β(T)]. If the KL divergence is bounded,
each sample trajectory in πδ has a positive probability
in β, thus eliminating the OOD problem.

(2) Policy πδ should be guaranteed to have better perfor-
mance than β. Otherwise, one can do behavior cloning
and ignore the reward information.

In summary, we have the following theorem to justify our
algorithm. The proof can be found in Appendix B.1.

Theorem 1. Let δ ∈ (0, 1), β be the data generating policy
and πδ be the conditional policy πδ(a|s) = β(a|Z(s, a) ≥
θδ(s), s). Then we have KL[πδ(T)||β(T)] ≤ −N log δ. On
the other hand, we have V β(s) ≤ V π(s),∀s ∈ S. V β(s) =
Ea∼β,β [Z

β(s, a)], and V π(s) = Ea∼π,π[Z
π(s, a)].

5. Experiment
In this section, we conduct several experiments on two stan-
dard benchmarks to answer the following questions:

• Q1: How is the performance of our proposed method
compared to existing offline RL methods?

• Q2: How do different target RTG strategies during in-
ference influence the results?

• Q3: How does the observed RTG match the target RTG
during the inference stage?

• Q4: How do different components in BR-RCRL influ-
ence the performance?

We first briefly introduce the datasets and settings used in
the experiment, then provide answers to the above questions
and additional analyses.

5.1. Benchmarks and Datasets

We evaluate our method in 9 Gym-MuJoCo tasks (Fu et al.,
2020) and 4 Atari games (Mnih et al., 2013), which are both
standard offline RL benchmarks and cover continuous and
discrete action spaces. Results of baselines are obtained
from the original papers except for DT on Atari because the
reported score is obtained with the 1% buffer dataset.

Datasets of the Gym-MuJoCo tasks are collected in locomo-
tion environments (HalfCheetah, Hopper, and Walker2D)
with three different data buffers. Medium is generated by
first training an online Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) model, early-stopping the training, and col-
lecting 1 million samples from this partially-trained pol-
icy. Medium-Replay consists of recording all sam-
ples in the replay buffer observed during training until
the policy reaches the “medium” level of performance.
Medium-Expert mixes one million expert demonstra-
tions and one million suboptimal data generated by a par-
tially trained policy or by unrolling a uniform-at-random
policy. The results are normalized to ensure that the well-
trained SAC model has a 100 score and the random policy
has a 0 score.

The Atari benchmark is more difficult due to the high-
dimensional state space and the long-horizon delayed re-
ward. The offline dataset of this benchmark is collected
from the replay buffer of an online DQN agent (Mnih et al.,
2015). The entire dataset has 50 million transitions, but we
follow the setting in (Kumar et al., 2020) and use 10% of
the buffer (5 million transitions). Following (Hafner et al.,
2020), we report the normalized score where the random
policy is 0 and the human performance is 100.

5.2. Overall Performance (Q1)

The overall performance in Gym-MuJoCo and Atari bench-
marks is reported in Table 1 and Table 2 with the comparison
of three types of baselines:

• Offline TD learning adds constraints to online RL meth-
ods that use TD error, leading to a pessimistic behav-
ior policy or a conservative value function. In this pa-
per, we compare with QR-DQN (Dabney et al., 2018),
REM (Agarwal et al., 2020), IQL (Kostrikov et al.,
2021), CQL (Kumar et al., 2020), and BEAR (Kumar
et al., 2019a).

• Reward-conditioned RL takes state and RTG (or re-
ward) as input and predicts actions for the next step. We
consider four representative works in the experiment:
Trajectory Transformer (TT) (Janner et al., 2021), De-
cision Transformer (DT) (Chen et al., 2021), Decision
Diffuser (DD) (Ajay et al., 2022), and RvS (Emmons
et al., 2021).

• Imitation learning uses supervised learning to train

6

Bayesian Reprameterized RCRL

Table 1: Normalized Scores on Gym-MuJoCo tasks. The results of our method are averaged over 5 random seeds.

Dataset Environment Ours DD TT DT RvS BC 10%BC IBC TD3+BC IQL CQL BEAR

Med-Expert HalfCheetah 95.2±0.8 90.6 95.0 86.8 92.2 55.2 92.9 34.8 90.7 86.7 91.6 53.4
Med-Expert Hopper 112.9±0.9 111.8 110.0 107.6 101.7 52.5 110.9 27.5 98.0 91.5 105.4 96.3
Med-Expert Walker2d 111.0±0.4 108.8 101.9 108.1 106.0 107.5 109.0 16.2 110.1 109.6 108.8 40.1

Medium HalfCheetah 48.6±1.1 49.1 46.9 42.6 41.6 42.6 42.5 35.2 48.3 47.4 44.0 41.7
Medium Hopper 78.0±1.3 79.3 61.1 67.6 60.2 52.9 56.9 75.3 59.3 66.3 58.5 52.1
Medium Walker2d 82.3±1.7 82.5 79.0 74.0 71.7 75.3 75.0 14.7 83.7 78.3 72.5 59.1

Med-Replay HalfCheetah 42.3±3.3 39.3 41.9 36.6 38.0 36.6 40.6 24.5 44.6 44.2 45.5 38.6
Med-Replay Hopper 98.3±2.6 100 91.5 82.7 73.5 18.1 75.9 12.4 60.9 94.7 95.0 33.7
Med-Replay Walker2d 80.6±2.5 75 82.6 66.6 60.0 26.0 62.5 9.4 81.8 73.9 77.2 19.2

Average Score 83.2 81.8 78.9 74.7 71.7 51.9 74.0 27.8 75.3 77.0 77.6 48.2

policy, which mimics the state-action pairs in the dataset
and usually ignores the reward information. We consider
Behavior Cloning (BC) (Pomerleau, 1988), BC with top
10% data (10%BC), Implicit BC (IBC) (Florence et al.,
2022), and TD3+BC (Fujimoto & Gu, 2021) as our
baselines.

According to Table 1, our method outperforms all baselines
in terms of the average score. We achieve the highest score
in 3 out of 9 Gym-MuJoCo tasks and are very close to the
highest score (within standard derivation) in the remaining
tasks. Unsurprisingly, our method works well in sub-optimal
datasets (i.e., Medium and Medium-Replay) since the
Bayesian reparametrization generalizes well even though
only trained with low-reward data. Compared to strong
architectures, i.e., Transformers (DT and TT) and diffu-
sion models (DD), our method still achieves improvement
in most dataset settings, demonstrating the advantages of
generalizability.

In the Atari benchmark, as shown in Table 2, our method
has the highest score in 3 out of 4 games and achieves a
significant improvement in the Breakout game over other
methods. We find that all methods have poor performance
in the Seaquest game compared to human players (score
of 100). The potential explanation for the low reward in this
game might be the complex rules of the game and the low
quality of the 10% dataset, both of which make the model
only see the low-reward region.

5.3. Different Target RTG Strategies (Q2)

The second problem we want to investigate is the influence
of target RTG during the inference stage. The results are
reported in Table 3. The easiest way to set the target RTG
is using a fixed value, e.g., the max value of RTG in the
dataset (named Max in Table 3). This may cause a severe
mismatch because lots of states correspond to low RTG.
Therefore, DT sets an initial target RTG with the max value
and gradually reduces it by subtracting the observed reward

Table 2: Normalized Score on Atari with the 10% dataset.
The results of our method are averaged over 5 random seeds.

Method Breakout Q*bert Pong Seaquest

BC 136.5 38.3 1.9 1.6
QR-DQN 496.7 52.1 119.3 14.5
REM 282.4 63.7 98.7 19.2
CQL 889.0 103.0 130.7 17.9
DT 293.6 60.1 113.0 7.2

Ours 1239.2±104.2 117.4±13.5 138.0±2.2 7.1±3.1

Table 3: Comparison between different inference strategies
in Walker2D task.

Target RTG Med-Reply Medium Med-Expert

Max 69.4 77.3 110.2
DT-Scheduler 72.2 78.1 109.6
Ours (δ = 0.1) 80.6 82.3 111.0

(named DT-Scheduler in Table 3). However, this scheduler
cannot avoid the OOD problem, where the RTG is unreach-
able since p(R|s) = 0. As shown in the results, our method
achieves better performance than using both max value and
DT scheduler. The reason is that we select the target RTG
according to the distribution p(R|s), which generalizes well
to different states s.

To further explore the selection of target RTG, we conduct
an ablation study of the critical threshold δ. We plot the
results in Figure 4 with Walker2D and Breakout environ-
ments. We can see that reducing the value of δ consistently
improves the performance, which is in line with our design
that a small δ corresponds to a high target RTG. region.
However, setting λ to a too-small value still has the risk of
causing the OOD conditioning problem.

5.4. Target RTG v.s. Observed RTG (Q3)

After analyzing the design choice of the target RTG, we
now look at the relationship between the target RTG and

7

Bayesian Reprameterized RCRL

Figure 4: Raw episode reward of different values of δ during
the inference stage in the Walker2D (Medium-Replay)
task and the Breakout game. As the value of δ decreases,
the performance improves.

the observed RTG, which further reveals the behavior of our
method. The results in Figure 5 indicate that the observed
RTG can generally match the same value of the target RTG.
We find that target RTG usually starts from a medium value
(250 ∼ 300) rather than a high value used in DT. The reason
is that the robot has not begun to move at the beginning,
thus leading to a medium RTG. As timestep increases, the
target RTG increases to the high RTG region, meaning that
the robot reaches the states corresponding to high RTG in
the dataset.

At the end of trajectories, there are some mismatch cases
where the observed RTG is lower or higher than the
target RTG. One explanation for the case observed
RTG > target RTG is that the model p(R|s) underes-
timates the value of RTG due to the sub-optimality of
the Medium-Replay dataset. In contrast, observed
RTG < target RTG is usually caused by the maximum
episode length, which compulsorily terminates a good state
that should have had a high RTG. This phenomenon hap-
pens when the quality of the dataset is high, for example,
the Expert dataset in the left-top corner of Figure 5.

5.5. Influence of Components (Q4)

To study the contribution of each module in our model,
we conduct ablation experiments by removing one com-
ponent at one time and show the results in Table 4. We
first test the model without using L1, which is important
to solve the RTG independence problem. We find that re-
moving this term causes a significant performance drop.
We also observe that the model with L1 tends to ignore
the RTG condition. We then modify the InfoNCE (Oord
et al., 2018) loss by using the uniform distribution instead
of sampling from β̄θ(a|s). This modification also harms the
performance since most negative samples from the uniform
distribution are far from the valid action space, especially
in high-dimensional action space. Finally, we remove the
Bayesian reparametrization (BR), which degenerates the

Figure 5: The relationship between target RTG and observed
RTG in the Walker2D task with 4 datasets. Color represents
the timestep in the trajectory.

Table 4: Ablation study of different components in our
method in the Walker2D task.

Model Med-Reply Medium Med-Expert

Full model 80.6 82.3 111.0
w/o L1(θ) 72.3 79.5 108.9
w/o a′ ∼ β̄θ(a|s) 77.1 80.6 110.3
w/o BR 67.1 75.4 109.1

model to a vanilla RCRL method. We find that this variant
achieves similar performance to the DT model.

6. Conclusion
How to design appropriate inductive biases to improve gen-
eralization on high RTG inputs during training time and
to avoid out-of-distribution RTG queries during the testing
time are two core challenges in RCRL that were largely
ignored by previous work. This paper addresses these
core challenges by proposing a novel set of inductive bi-
ases named Bayesian Reparameterized RCRL. Inspired by
Bayes’ theorem and causal relationships between random
variables, our method successfully encodes the critical in-
formation that different RTG values are not independent
classification problems but competitive. We also provide a
causality perspective of our method to show that our param-
eterization of RCRL is in line with the ground-truth data
generation process, which gains robustness to distribution
shifts. We demonstrate on standard offline benchmarks how
our method significantly improved the generalization perfor-
mance over previous methods. One potential limitation of
our method is the additional computation introduced by the
training and inference of the energy-based model compared
to discriminative models used in Vanilla RCRL.

8

Bayesian Reprameterized RCRL

Acknowledgements
Wenhao Ding gratefully acknowledges support from the
National Science Foundation under grant CAREER CNS-
2047454.

References
Agarwal, R., Schuurmans, D., and Norouzi, M. An opti-

mistic perspective on offline reinforcement learning. In
International Conference on Machine Learning, pp. 104–
114. PMLR, 2020.

Ajay, A., Du, Y., Gupta, A., Tenenbaum, J., Jaakkola,
T., and Agrawal, P. Is conditional generative model-
ing all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,
McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,
G., Ribas, R., et al. Solving rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113, 2019.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-
Paz, D. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 449–458.
PMLR, 2017.

Boney, R., Kannala, J., and Ilin, A. Regularizing model-
based planning with energy-based models. In Conference
on Robot Learning, pp. 182–191. PMLR, 2020.

Bridle, J. Training stochastic model recognition algorithms
as networks can lead to maximum mutual information
estimation of parameters. Advances in neural information
processing systems, 2, 1989.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Dabney, W., Rowland, M., Bellemare, M., and Munos, R.
Distributional reinforcement learning with quantile re-
gression. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

Ding, W., Lin, H., Li, B., and Zhao, D. Generalizing
goal-conditioned reinforcement learning with variational
causal reasoning. arXiv preprint arXiv:2207.09081, 2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Eberhardt, F. and Scheines, R. Interventions and causal
inference. Philosophy of science, 74(5):981–995, 2007.

Emmons, S., Eysenbach, B., Kostrikov, I., and Levine, S.
Rvs: What is essential for offline rl via supervised learn-
ing? arXiv preprint arXiv:2112.10751, 2021.

Florence, P., Lynch, C., Zeng, A., Ramirez, O. A., Wahid,
A., Downs, L., Wong, A., Lee, J., Mordatch, I., and
Tompson, J. Implicit behavioral cloning. In Conference
on Robot Learning, pp. 158–168. PMLR, 2022.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. Advances in neural information
processing systems, 34:20132–20145, 2021.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional conference on machine learning, pp. 2052–2062.
PMLR, 2019.

Ghazvininejad, M., Levy, O., Liu, Y., and Zettlemoyer, L.
Mask-predict: Parallel decoding of conditional masked
language models. arXiv preprint arXiv:1904.09324,
2019.

Gutmann, M. and Hyvärinen, A. Noise-contrastive estima-
tion: A new estimation principle for unnormalized statisti-
cal models. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pp.
297–304. JMLR Workshop and Conference Proceedings,
2010.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Rein-
forcement learning with deep energy-based policies. In
International conference on machine learning, pp. 1352–
1361. PMLR, 2017.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

9

Bayesian Reprameterized RCRL

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mas-
tering atari with discrete world models. arXiv preprint
arXiv:2010.02193, 2020.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. Ad-
vances in neural information processing systems, 34:
1273–1286, 2021.

Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Al Sallab,
A. A., Yogamani, S., and Pérez, P. Deep reinforcement
learning for autonomous driving: A survey. IEEE Trans-
actions on Intelligent Transportation Systems, 2021.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforce-
ment learning with implicit q-learning. arXiv preprint
arXiv:2110.06169, 2021.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy q-learning via bootstrapping error
reduction. Advances in Neural Information Processing
Systems, 32, 2019a.

Kumar, A., Peng, X. B., and Levine, S. Reward-conditioned
policies. arXiv preprint arXiv:1912.13465, 2019b.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative q-learning for offline reinforcement learning.
Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang,
F. A tutorial on energy-based learning. Predicting struc-
tured data, 1(0), 2006.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Liu, M., He, T., Xu, M., and Zhang, W. Energy-based imita-
tion learning. arXiv preprint arXiv:2004.09395, 2020a.

Liu, S., See, K. C., Ngiam, K. Y., Celi, L. A., Sun, X., Feng,
M., et al. Reinforcement learning for clinical decision
support in critical care: comprehensive review. Journal
of medical Internet research, 22(7):e18477, 2020b.

Lu, C., Wu, Y., Hernández-Lobato, J. M., and Schölkopf,
B. Invariant causal representation learning for out-of-
distribution generalization. In International Conference
on Learning Representations, 2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Nachum, O. and Yang, M. Provable representation learning
for imitation with contrastive fourier features. Advances
in Neural Information Processing Systems, 34:30100–
30112, 2021.

Neal, R. M. et al. Mcmc using hamiltonian dynamics. Hand-
book of markov chain monte carlo, 2(11):2, 2011.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama,
K., Ray, A., et al. Training language models to fol-
low instructions with human feedback. arXiv preprint
arXiv:2203.02155, 2022.

Peters, J., Janzing, D., and Schölkopf, B. Elements of causal
inference: foundations and learning algorithms. The MIT
Press, 2017.

Pomerleau, D. A. Alvinn: An autonomous land vehicle
in a neural network. Advances in neural information
processing systems, 1, 1988.

Prudencio, R. F., Maximo, M. R., and Colombini, E. L.
A survey on offline reinforcement learning: Taxon-
omy, review, and open problems. arXiv preprint
arXiv:2203.01387, 2022.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalch-
brenner, N., Goyal, A., and Bengio, Y. Toward causal
representation learning. Proceedings of the IEEE, 109(5):
612–634, 2021.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897. PMLR,
2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

10

Bayesian Reprameterized RCRL

Singh, B., Kumar, R., and Singh, V. P. Reinforcement
learning in robotic applications: a comprehensive survey.
Artificial Intelligence Review, pp. 1–46, 2021.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. Advances in Neural
Information Processing Systems, 32, 2019.

Song, Y. and Kingma, D. P. How to train your energy-based
models. arXiv preprint arXiv:2101.03288, 2021.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Srivastava, R. K., Shyam, P., Mutz, F., Jaśkowski, W., and
Schmidhuber, J. Training agents using upside-down re-
inforcement learning. arXiv preprint arXiv:1912.02877,
2019.

Sutton, R. S., Barto, A. G., et al. Introduction to reinforce-
ment learning. 1998.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In Proceedings of the 28th
international conference on machine learning (ICML-11),
pp. 681–688, 2011.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y.,
Shao, Y., Zhang, W., Cui, B., and Yang, M.-H. Diffu-
sion models: A comprehensive survey of methods and
applications. arXiv preprint arXiv:2209.00796, 2022.

Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine, S.,
and Finn, C. Combo: Conservative offline model-based
policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

11

Bayesian Reprameterized RCRL

A. Potential Negative Societal Impacts
The main negative social impact of offline RL is that the learned policy purely relies on the dataset. Therefore, the policy
could be subject to any bias in the dataset. Although our proposed method achieves strong out-of-distribution generalization,
it may still be influenced by damaged data points. One way to mitigate this problem is to add a sanity check process before
the training to ensure that the dataset is safe to use.

B. Theoretical Proof
B.1. Proof of Theorem 1

Proof. For the first claim, we know that KL(πδ(T)||β(T)) = ET ∼πβ [log πδ

β (T)]. Then, we can get

log πδ(T)/β(T) =

N∑
i=1

log πδ(ai|si)− log β(ai|si)

=

N∑
i=1

log β(Z ≥ θδ|ai, si)− log β(Z ≥ θδ|si)

≤−
N∑
i=1

log β(Z ≥ θδ|si)

≤−N log δ

Combine these two formulas, we have KL(πδ(T)||β(T)) ≤ −N log δ.

For the second claim, we first prove the following lemma:

Lemma 1. X is a random variable, then for any c ∈ R, we have E[X|X ≥ c] ≥ E[X].

We know that

E[X|X ≥ c] = EX [X · 1X≥c]/P (X ≥ c). (18)

On the other hand,

E[X] · P (X ≥ c) =E[X · 1X≥c]P (X ≥ c) + E[X · 1X<c]P (X ≥ c)

=E[X · 1X≥c][1− P (X < c)] + E[X · 1X<c]P (X ≥ c),
(19)

where 1X≥c is an indicator function that outputs 1 when X ≥ c is satisfied. Thus we only need to show

E[X · 1X<c]/P (X < c) ≤ E[X · 1X≥c]/P (X ≥ c). (20)

This is obvious because

E[X · 1X<c] ≤ c · P (X < c), (21)

E[X · 1X≥c] ≥ c · P (X ≥ c). (22)

Therefore, for a state s ∈ S, we can see that

V π(s) =Ea∼π,π[Z
π(s, a)]

≥Ea∼β,β [Z
β(s, a)|Zβ(s, a) ≥ θδ(s, a)]

≥V β(s)

(23)

12

Bayesian Reprameterized RCRL

C. Additional Experiment Results
C.1. RTG Independence Problem in DT

The policy model tends to isolate the prediction problems a = fRi(s), i = 1, 2 · · · according to different RTGs Ri, instead
of learning a generalizable mapping from R to action. In RCRL, this limitation can briefly be understood as the model
can only learn from high RTG samples, the low RTG samples cannot help improve the model’s performance in high RTG
regions. We confirm this tendency by conducting an additional experiment (results in Table 5). We fit three DT models
using different variants of the medium-replay dataset. Top x% means we only select the top x% of trajectories, ordered by
episode RTG. We observe that these models achieve similar performance, which indicates that the prediction conditioned on
high RTG is independent of the training samples with low RTG. In addition, we use the same setting to test our method and
find that removing the low RTG samples has a negative influence on the results.

Table 5: Performance on different portions of the dataset.

Dataset DT (top 100%) DT (top 50%) DT (top 20%) Ours (top 100%) Ours (top 50%) Ours (top 20%)

Halfcheetch 36.0 37.2 36.5 42.3 40.5 38.1
Hopper 77.3 78.5 77.1 98.3 94.1 90.3
Walker2D 65.5 64.4 66.2 80.6 76.4 73.2

C.2. Sampling Bias Dominance Problem in DT

Given state s, we assume c(s) is the threshold for our target RTG, which is usually high. The dataset is sub-optimal, so
pd(R > c(s)|s) < ϵ, where ϵ is a small number. Consider the training dataset D = {(si, ai, Ri)}Ni=1. As we show above,
due to RTG independence, the model in fact only can learn from Dc = {(s, a,R) ∈ D|R > c(s)}. However |Dc| << |D|.
Then the trained model will be affected by the large sampling bias due to |Dc| being small.

C.3. OOD Conditioning in DT

Figure 6: Example of the OOD condition problem.

Given a state s, during training, we have the
distribution of RTG pd(R|s) while during
testing we aim to sample high RTG from
pt(R|s). These two distributions can have
non-overlap supports, namely KL(pt||pd)
usually can be +∞. During test time, given
a state s and target RTG Rt ∼ pt(R|s),
the model try to predict a ∼ p(a|s,R =
Rt), however Rt may be out-of-distribution
(OOD) for pd in the sense that pd(Rt|s) = 0.
We provide a concrete example of the OOD
target RTG in the Atari Pong game. The im-
age is shown in Figure 6. The game ends
when one player gains 20 points. Since the RL agent already loses 19 points, it is almost impossible to obtain RTG = 20 in
this match. Therefore, RTG = 20 is an OOD condition for the DT model.

D. Experiment Details
D.1. Experiment Device

The experiments were conducted on a device with 256GB memory and 2 × NVIDIA RTX A6000 GPUs. The Atari
experiments require ∼150GB of memory to load the 10% Atari dataset.

D.2. Inference Optimizer of EBMs

In Gym-Mujoco experiments, we use a derivative-free optimizer (DFO) proposed in (Florence et al., 2022) to infer the
energy-based model. As stated in (Florence et al., 2022), other advantaged optimizers such as Langevin MCMC (Welling &

13

Bayesian Reprameterized RCRL

Teh, 2011) could improve the efficiency for high-dimensional cases.

We show the statistic of running time for inference of EBM in Table 6. Although the inference spends more time than
directly using conditional policy, the cost is still acceptable since we only need a few iterations.

Table 6: Inference time of EBM.

Environment Halfcheetch Hopper Walker2D Breakout Q*bert Pong Seaquest

Inference time 0.0082 s 0.0080 s 0.0082 s 0.0029 s 0.0031 s 0.0032 s 0.0031 s

D.3. Hyperparameters

The hyperparameters used in Gym-Mujoco experiments and Atari experiments are summarized in Table 7 and Table 8,
respectively. We use the same hyperparameters for all experiments in the same benchmark. The source code of our
experiments will be released after the blind review process.

Notation Parameter Description Value

training iteration 70,000
learning rate 0.0005

batch size 512
action penalty 0.0

λ weight of L1(θ) 1.0
|B| number of reward bucket 80
γ reward discount 0.99

Vmin minimal bucket RTG 0
Vmax maximal bucket RTG 1,200
NA′ number of negative samples during training 256

δ inference threshold 0.1
number of episodes for each testing point 10

Number of iterative in DFO 5
Number of samples in DFO 65,536

Noise shrink parameter in DFO 0.9
Scale of noise in DFO 0.5

Table 7: Hyperparameters for Gym-Mujoco experiments

Notation Parameter Description Value

training iteration 3,000,000
learning rate 0.00025

action penalty 0.5
target network update frequency 8,000

B batch size 32
λ weight of L1(θ) 20.0
|B| number of reward bucket 51
γ reward discount 0.95

Vmin minimal bucket of RTG 0
Vmax maximal bucket RTG 10

δ inference threshold 0.1
ϵ exploration ratio during test 0.01

number of episodes for each testing point 10

Table 8: Hyperparameters for Atari experiments

14

