
SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

Peiyan Dong * 1 2 Zhenglun Kong * 1 Xin Meng * 3 Peng Zhang 4 Hao Tang † 5 Yanzhi Wang 1

Chih-Hsien Chou 2

Abstract
Vision Transformers (ViTs) have continuously
achieved new milestones in object detection.
However, the considerable computation and mem-
ory burden compromise their efficiency and gen-
eralization of deployment on resource-constraint
devices. Besides, efficient transformer-based de-
tectors designed by existing works can hardly
achieve a realistic speedup, especially on multi-
core processors (e.g., GPUs). The main issue
is that the current literature solely concentrates
on building algorithms with minimal computa-
tion, oblivious that the practical latency can also
be affected by the memory access cost and the
degree of parallelism. Therefore, we propose
SpeedDETR, a novel speed-aware transformer for
end-to-end object detectors, achieving high-speed
inference on multiple devices. Specifically, we de-
sign a latency prediction model which can directly
and accurately estimate the network latency by
analyzing network properties, hardware memory
access pattern, and degree of parallelism. Fol-
lowing the effective local-to-global visual model-
ing process and the guidance of the latency pre-
diction model, we build our hardware-oriented
architecture design and develop a new family
of SpeedDETR. Experiments on the MS COCO
dataset show SpeedDETR outperforms current
DETR-based methods by 1.5%∼9.2% AP with
1.09×∼3.6× speedup on Tesla V100. Even ac-
ceptable speed inference can be achieved on edge
GPUs, i.e., 4 FPS for NVIDIA JETSON TX2
(1.4×∼4×faster than other counterparts), 1 FPS
for NVIDIA NANO (1.5×∼6.7×faster). Codes
release SpeedDETR.

*Equal contribution 1Northeastern University, Boston, MA,
U.S.A 2Futurewei Technologies, Santa Clara, CA, U.S.A 3Peking
University, Beijing, China 4Tsinghua University, Beijing, China
5CVL, ETH, Switzerland. Correspondence to: Hao Tang
<hao.tang@vision.ee.ethz.ch>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
With excellent long-range modeling capabilities, Transform-
ers (Bahdanau et al., 2015; Parikh et al., 2016) have recently
made a stunning resurgence in the form of Vision Trans-
formers (ViTs) (Dosovitskiy et al., 2021), showing strong
versatility in computer vision tasks, e.g., image classifi-
cation (Dosovitskiy et al., 2021), object detection (Carion
et al., 2020; Dai et al., 2022), semantic segmentation (Zheng
et al., 2021), depth estimation (Yang et al., 2021a), video
understanding (Zhou et al., 2018), pose estimation (Li et al.,
2022a), and house generation (Tang et al., 2023). Currently,
there are two main branches to apply the transformer struc-
ture in object detection. One is developing ViTs as effective
backbones (Dosovitskiy et al., 2021; Wang et al., 2021b;
Cao et al., 2021) in traditional frameworks such as Faster
RCNN (Ren et al., 2015), Mask RCNN (He et al., 2017),
and RetinaNet (Lin et al., 2017b), which constantly sets the
state-of-art for the object detection task. The other one is the
DETR series which utilizes an encoder-decoder transformer
design that reduces object detection to an end-to-end set
prediction problem. With removing components, e.g., non-
maximum suppression (NMS), the DETR series can be more
easily supported by a wide range of hardware platforms than
other detection methods, e.g., YOLO series (Redmon et al.,
2016). Thanks to its capability to process multimodal data,
DETR is largely deployed as the dominant technique in 3D
detection for autonomous driving (Wang et al., 2022a; Liu
et al., 2022b; Li et al., 2022c).

However, to fully unleash the advantages of transformer
architectures, we need to address the following challenges
before the DETR series becomes an indispensable staple
in future object detection systems. (i) Although the self-
attention mechanism is a key defining feature of transformer
architectures, a well-known concern is its computation and
memory complexity (e.g., at least 200 GFLOPs in tradi-
tional frameworks; 100 GFLOPs in DETR series). This
hinders scalability in many settings, let alone deployment
on resource-constrained devices. (ii) Despite the impressive
theoretical efficiency of some efficient designs (Zhu et al.,
2020; Roh et al., 2021; Chen et al., 2022a; Song et al., 2021),
researchers (Colleman et al., 2021) have found it challeng-
ing to transfer the theoretical results into real speedup, espe-
cially on multi-core processors, e.g., GPUs. The challenges

1

https://github.com/PeiyanFlying/SpeedDETR

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

(a) (b)
Figure 1: (a) Comparison with previous works in real-world object detection. (b) The trade-off between performance (AP)
and hardware efficiency (FPS) for different detection methods. SpeedDETR gets faster inference (1.09×∼3.6×) with
1.5%∼9.2% higher AP than state-of-the-art DETR-based detectors.

are two-fold: a) Most previous approaches do not have
optimizations for specific hardware deployment, such as
memory access cost, the degree of parallelism, and compiler
characteristics, which can have a non-trivial effect on hard-
ware throughput during inference. b) The existing literature
lacks speed-aware guidance for model design but solely uses
the hardware-agnostic FLOPs as an inadequate proxy for ef-
ficiency. For original self-attention operation, the quadratic
memory complexity further enlarges the discrepancy be-
tween the theoretical FLOPs and the practical speed. Note
that it has been validated by previous works that the latency
on CPUs has a strong correlation with FLOPs (Han et al.,
2021; Xie et al., 2020). Therefore, we mainly address this
low hardware efficiency on the GPU platform, which is
more challenging and less investigated.

In this paper, we build a novel detection method named
SpeedDETR: speed-aware transformer for end-to-end object
detector (see Figure 1), which achieves both higher detection
precision and realistic speedup across various computing
platforms (e.g., server GPUs and edge devices). Given a
target device, we directly use the latency, rather than the
FLOPs, to guide our detector design.

On-device efficiency. 1) Testing network latency on differ-
ent device platforms is laborious due to the wide variety
of candidates (transformer-based or CNN-based structures)
and their associated properties, in addition to the difficulty
in obtaining accurate results of tiny structures on edge de-
vices. To this end, we introduce a novel latency predic-
tion model to efficiently estimate the realistic latency of
a network by simultaneously considering the network and
hardware properties (memory access pattern and schedul-
ing strategies/degree of parallelism). 2) According to our
model profiling on high-end GPUs/low-end GPUs (NVIDIA
V100/GTX 1080 Ti), we figure out and modify the ineffi-
cient building blocks by proposed fusion techniques.

Decent detection performance. 1) Following the visual

modeling process from local to global, we introduce a
backbone design principle with a two-phase design space.
We further propose a new network pipeline consisting of
a hardware-oriented backbone followed by the semantic-
augmented module to enhance rich low-level semantics at
the current level. 2) With the help of global attention to
extract abstract-level semantics, the proposed task-coupled
single-level prediction system reduces conflicts between the
classification and regression tasks and provides consistent
predictions. 3) Starting from a supernet with the design
paradigm, we provide an effective speed-driven slimming
method to obtain a new family of SpeedDETR.

Compared with current DETR works, SpeedDETR achieves
1.09×∼3.6× speedup with superior detection performance
(1.5%∼9.2% higher AP) on high-end server GPUs, Nvidia
V100, and 1.2×∼3.2× speedup on server low-end GPUs,
GTX 1080 Ti; On edge GPUs, SpeedDETR reaches
1.4×∼4× speedup on NVIDIA JETSON TX2, and
1.5×∼6.7× speedup on NVIDIA NANO. It is worth not-
ing that SpeedDETR is proposed as a general framework.
The whole framework or the backbone design can be di-
rectly used for various downstream tasks, e.g., semantic
segmentation and multimodal on-vehicle 3D detection.

Our contributions are summarized as follows:

• We propose a latency prediction model, which can
efficiently estimate the latency of network candidates
by considering network properties, hardware memory
access pattern, and degree of parallelism.

• Combined with the effective visual modeling process
and the hardware specifications, we design Speed-
DETR , which builds the end-to-end speed-aware
transformer-based detector by the practical latency in-
stead of the theoretical FLOPs. To the best of our
knowledge, SpeedDETR is the first framework that
directly optimizes the real latency in the design phase
of transformer-based detectors.

2

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

• Results on MS COCO verify that SpeedDETR can sur-
pass other DETR-based methods in terms of precision
and runtime speed on various GPU platforms.

2. Background and Related Works
Transformer-based detection frameworks. ViTs have
been widely developed as powerful backbones in traditional
detection frameworks such as Faster RCNN and RetinaNet.
However, their backbones are usually inserted directly into
the frameworks without optimizing the efficiency issues so
that these detectors achieve high precision at the expense
of computational efficiency, which prevents their usage in
real-world applications with limited resources.

End-to-end detectors do not require sophisticated post-
processing like NMS and achieve matchings between targets
and candidates by the Hungarian algorithm. DETR (Carion
et al., 2020) utilizes an encoder-decoder transformer frame-
work. Since self-attention naturally has a high degree of
freedom due to the lack of inductive bias, similar to convo-
lutional layers, DETR holds on a large training cost (500
epochs). (Zhu et al., 2020) and (Wang et al., 2022b) ex-
ploit multi-scale deformable encoders or anchor points to
accelerate training. Although better performance and fast
convergence are achieved through these works, the compu-
tation cost has not yet been optimized (over 170 GFLOPs).
And these excellent detection performances are typically
obtained on high-end GPUs or servers with enormous com-
putation costs (e.g., 170∼500 GFLOPs). Compared with
them, SpeedDETR is the first work to explore the speed-
aware end-to-end transformer-based detectors to achieve
comparable detection precision and fast runtime inference
on multiple devices while maintaining efficiency training.

Hardware-aware network design. Some existing works
have considered the realistic latency at the network design
stage. Some test speed directly on targeted devices and
extract guidelines for hand-designed efficient models (Ma
et al., 2018). Some search for fast models by the neural archi-
tecture search (NAS) technique (Tan et al., 2019). However,
speed tests of our proposed structures on different hardware
can be very laborious due to the large variety of candidates
and the corresponding properties. In addition, it is not easy
to gather accurate results of tiny structures on edge. On the
contrary, our latency prediction model can directly predict
the inference speed on given computing platforms.

Network Architecture Search. Architecture search aims to
automate the process of designing neural network architec-
tures. The goal is to discover high-performing architectures
with minimal human intervention. One popular approach
to architecture search is the Supernet method (Guo et al.,
2020; Zoph et al., 2018). In this method, a single neural
network is constructed to represent a large space of possible

architectures. During training, the Supernet learns to assign
weights to different network parts, effectively selecting a
subset of the architecture to be used for a given task. This
approach can significantly reduce the computational cost of
searching for architectures since the Supernet can be trained
once and reused for different tasks. Therefore, to design the
backbone of different sizes and latency to meet the demands
of specific hardware, we build a supernet to search for the
desired architecture automatically.

3. Methodology
In this section, we first propose latency prediction modeling
to efficiently and accurately predict the on-device latency
of an architecture on the target device. Further, we describe
fusion implementation techniques with hardware-efficient
structures. Based on these structures and the process of
vision modeling, we design the basic design paradigm of
SpeedDETR. Specifically, we introduce the efficient embed-
ding module and hardware-oriented backbone, which is also
strong at feature capturing and fusing. Also, to remove the
training-inefficient decoder and ensure the non-destructive
recognition performance, we propose a strong transformer
encoder, i.e., TSP. Finally, under the guidance of the la-
tency prediction model, we generate a family of models,
SpeedDETR, by the search algorithm (Guo et al., 2020).

3.1. Overview

This paper mainly has two methodological designs: speed-
aware design on DETR and encoder-only design.

Speed-aware design on DETR. In contrast to other
works (Chen et al., 2022b; Mehta & Rastegari, 2021) that pri-
marily focus on computational requirements, our approach
directly optimizes the on-device speed of the model. Our
proposed approach involves two strategies: a) Latency pre-
diction modeling: Our method accurately considers vari-
ous factors such as target hardware properties, model type,
model size, and data granularity. It mathematically describes
computation latency and data movement latency, enabling
precise prediction of the actual throughput of each layer (
Figure 3). This theoretical model is compatible with general
GPU architectures, making it versatile and readily usable. b)
Fusion techniques and efficient design: We introduce practi-
cal model implementation optimization, combining it with
robust vision modeling. We explore the design space and
address the utilization of BN fusing in a transformer. Also,
we propose and validate the efficient modeling of global
attention through convolutional modulation.

Encoder-only design. The traditional DETR family (Zhu
et al., 2020; Carion et al., 2020) typically consists of an
encoder and a decoder. However, the decoder component
has been identified as a factor that hampers model training

3

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

Computation
Units

...

PE Memory

Computation
Units PE Memory

Computation
Units PE Memory

On-chip
Memory

(LLC/Global
Buffer)

Off-chip
Memory
(GDDR/

DDR/HBM)

Figure 2: Hardware Modeling.

Table 1: Hardware properties.
NAME PE FP32 FREQUENCY(MHZ) BANDWIDTH (G)

NVIDIA V100 80 64 1390 690
NVIDIA GTX 1080 20 64 1710 325

NVIDIA JETSON TX2 2 128 1280 58.9
NVIDIA NANO 1 128 925 26.1

efficiency (Sun et al., 2021; Gao et al., 2021; Zhu et al.,
2020; Carion et al., 2020). To overcome the performance
decline associated with removing the decoder, we propose
two robust transformer encoders in the feature capturing
and fusing stages (backbone Figure 5, Figure 6) and the
class/box network (TSP, Figure 5). For the backbone, unlike
other approaches (Liu et al., 2021b), we simultaneously
enhance texture-level and abstract-level information in each
stage. To reinforce texture-level semantics, we facilitate
information interaction between stages by fusing the low-
resolution feature from the last stage into the current feature
map. In the TSP, we leverage efficient global attention
to couple the classification and regression tasks, thereby
reducing conflicts between them.

3.2. Latency prediction modeling

We introduce a latency prediction model E, which can di-
rectly predict the latency of runtime design choices on any
target device to seek optimal model settings on any platform
efficiently. For one design choice, the latency predictor E
takes the hardware properties H , the layer type T , the chan-
nel dimension C, and the input granularity G as input and
predicts the latency l of the block: l = E(H,T,C,G).

Hardware modeling. We model a hardware device as mul-
tiple processing engines (PEs), and parallel computation
can be executed on these PEs (degree of parallelism). As
shown in Figure 2, we model the memory system as a three-
level structure (Hennessy & Patterson, 2011): 1) off-chip
memory, 2) on-chip global memory, and 3) memory in PE.
Thanks to such a hardware model, we can accurately predict
the latency of data movement and computation.

Latency prediction model. It can be mainly separated into
three steps: 1) Input/output shape definition. Calculating
the input and output shapes is the first step in determining
an operation’s latency. 2) Operation-to-hardware mapping.
We map the operations to hardware. We have modeled a
hardware device as multiple processing engines (PEs). We
first consecutively split the output feature map into multiple

30

205

Figure 3: Latency prediction results.

tiles. One tile is assigned to one PE to execute the computa-
tion. 3) Latency estimation. We evaluate each tile’s latency,
including the data movement latency and the computation
latency: l=ldata+lcompute. For the total data movement
latency ldata, based on the hardware modeling (Figure 2),
we add the input and output data movement latency together:
ldata=lin+lout, which is estimated by the hardware band-
width and the input granularity G (same as the resolution
scale). To simplify the prediction model, we assume that
each PE only moves the appropriate input feature maps and
weights once to compute an output tile. For the computa-
tion latency of each tile lcompute, we use PE’s maximum
throughput of FP32 computation and the FLOPs of comput-
ing an output tile. The total computation latency lcompute

can be deduced by the number of tiles and PEs. We test
four types of hardware devices, and their properties are
listed in Table 1. It shows that the server GPU V100 is the
most powerful hardware device with the most processing
engines (#PE). Therefore, the computation with quadratic
memory complexity, e.g., self-attention, could easily fall
into a memory-bounded operation on V100 because of its
high parallelism. A more detailed description of our latency
prediction model is presented in Appendix A.6.

Empirical validation. We use the public tool PyTorch
Profiler (Paszke et al., 2019) to measure the latency of the
network structure on target devices. In Figure 3, we uti-
lize one block (including MHSA and FFN parts) of the 1st
stage in Swin-T to evaluate the effectiveness of our latency
prediction model. And the resolution of the input image is
(3, 224, 224). We vary the input granularity G to evaluate
the performance of our prediction model. Figure 3 shows
the contrast between our predictions and the actual testing
latency on the Nvidia V100 GPU and GTX 1080 Ti. We
can see that our predictor can accurately estimate the actual
latency in a wide range of input granularities.

The latency prediction model is a training-free theoretical
model specifically designed for general-purpose GPU hard-
ware. In contrast to other works (Chen et al., 2022b; Mehta
& Rastegari, 2021) that primarily focus on computation

4

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

Patch Embedding

Attention

Linear

RepCNN

Norm

Others

ConvModulation

Total

78.5%

81.3%

81.2%

81.6%

82.7%

78.5%

81.3%

81.2%

81.6%

82.7%

Figure 4: Device speed profiling. Results are obtained on NVIDIA Tesla V100 and GeForce GTX 1080 Ti. The on-
device speed for frequently used backbone and various operators is reported. The accuracy is tested on the ImageNet-1K
dataset (Deng et al., 2009).

amounts, our approach directly optimizes the on-device
speed of the model, taking into consideration factors such
as memory access cost and degree of parallelism. More-
over, our method proves to be more efficient than the com-
monly used technique of hardware profiling for predicting
the on-device speed of networks. As a result, this model-
ing approach can be generalized to other networks as well.
Specifically, our approach transforms all networks into fixed
matrix operations on GPU platforms, utilizing techniques
such as General Matrix Multiply (GeMM). The latency
prediction model accurately evaluates the speed of matrix
multiplication and the associated data movement, making it
applicable to general networks.

3.3. Fusion techniques of model implementation

Designing and deploying efficient network architectures
for resource-limited devices have significantly improved by
consistently reducing parameter count and floating-point op-
erations (FLOPs) and improving accuracy. However, these
classical efficiency metrics, like FLOPs, do not consider the
memory cost and the degree of parallelism. In this work,
we simultaneously improve the network runtime speed and
detection performance by identifying and modifying the
building blocks that are not hardware-friendly. To achieve
that, we deploy the common neural networks to one high-
end GPU (V100) and one low-end GPU (GTX 1080 Ti) and
benchmark their speed, as shown in Figure 4, whereby the
following proposed fusion techniques.

Fusing batch normalization (BN) into the preceding
fully-connected layer. From the analysis of various
backbones compared in Figure 4, LN constitutes around
10%∼15% of the total latency for the entire network.
Dynamic normalization, such as layer norm (LN), gath-
ers running statistics at the inference stage, thus caus-
ing more speed delay. In contrast, BN is more memory-
friendly/computation-friendly because we fuse BN into
the preceding fully-connected layer so that the data move-
ment and the related PE computation can be excluded.

Thus, we modify the WMSA/SWMSA in Swin (Liu et al.,
2021b) by replacing LN-Linear with Linear-BN, dubbed
WMSAbn/SWMSAbn (see Appendix A.2). Compared to
the LN-based design, a 13%∼15% speedup is achieved with
negligible accuracy degradation (<0.3%). Therefore, we
use WMSAbn/SWMSAbn as our design candidates.

Fusing multiple branches into one single branch in repa-
rameterized CNNs. In a multi-branch structure, the data
movement cost is greatly increased because the activation
values of each branch are saved into PE memory or even
on-chip memory (when the PE memory is not enough) to
compute the subsequent tensor in the graph. Also, the
synchronization cost caused by multiple branches affects
the overall runtime (Hu et al., 2018). Hence, we apply
RepCNN (Ding et al., 2021) as a network component, fus-
ing multiple branches into more single-branch substructures
during inference. As a result, it is easy to evenly distribute
the computation among multiple PEs, preventing the imbal-
anced computation of PEs brought on by imbalanced compu-
tation overheads of multiple branches. Such operator fusion
benefits memory access and parallel computation on multi-
ple PEs (Detailed structures are shown in Appendix A.1).

3.4. Architecture design

In this section, we introduce SpeedDETR, a speed-aware
transformer-based object detector (Figure 5). The hardware-
oriented detector (HOD) backbone extracts feature at four
scales and sends them to the following task-coupled single-
level prediction (TSP) system. TSP first combines the multi-
scale features into single-level feature maps, then adjusts
feature maps to reduce conflicts between classification and
regression tasks, and finalizes the detection task.

Design principle. According to the granularity of the data
flow inside ResNet (He et al., 2016), we divide the backbone
into four stages S. Due to feature scales with a trend from
the local to the global visual receptive field, we introduce
the HOD block design 6(a). Then, one semantic-augmented
module is added after one HOD block (residual effect) to

5

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

C
O

N
V

 S
te

m

H
O

D
 B

lo
ck

 1

H
O

D
 B

lo
ck

 2

G
lo

ba
l A

tt
en

ti
on

Image
SAM

U
p

S
am

pl
e

D
ow

n
S

am
pl

e

H
O

D
 B

lo
ck

 3

G
lo

ba
l A

tt
en

ti
on

SAM

U
p

S
am

pl
e

D
ow

n
S

am
pl

e

H
O

D
 B

lo
ck

 4

G
lo

ba
l A

tt
en

ti
on

SAM

U
p

S
am

pl
e

HOD Stage 1 HOD Stage 2 HOD Stage 3 HOD Stage 4

hardware-oriented (HOD) backbone

semantic-augmented module (SAM)

scale-combined module (SCM)

task-couple module (TCM) G
lo

ba
l A

tt
en

ti
on

Up Sample

G
lo

ba
l A

tt
en

ti
on

SCM

G
lo

ba
l A

tt
en

ti
on

G
lo

ba
l A

tt
en

ti
on

C
la

ss
if

ic
at

io
n

R
eg

re
ss

io
n

TCM

 G
lo

ba
l A

tt
en

ti
on

D
ow

n
S

am
pl

e

 G
lo

ba
l A

tt
en

ti
on

D
ow

n
S

am
pl

e

Figure 5: The basic design of SpeedDETR. The TCM and SCM enable us to perform accurate detection on a single-level
feature map. We also propose a HOD backbone to maintain detection precision while improving the on-device speed. G is
the granularity and C is the channel-wise dimension of the feature map. G=8 for V100.

enhance the low-level semantic information in each HOD
stage. We provide the two-phase design space (DP) of HOD
backbone as Figure 6(a):

DP 1
i,local,s=1,2,3, ∈ {RepCNN i,WMSAi

bn, SWMSAi
bn},

DP 2
i,local,s=4, ∈ {WMSAi

bn, SWMSAi
bn},

DP 1,2
i,glocal ∈ {ConvModula},

(1)
where local represents the candidates of local-wise attention
while global for the candidates of global attention; the 1st
phase covers S1, S2, S3 of the backbone, and the 2nd phase
for S4; i denotes the ith block; instead of calculating the sim-
ilarity score matrix (sttention matrix (Vaswani et al., 2017)),
we simplify self-attention by modulating the value V with
convolutional features as Figure 6(b). Our approach uses
convolutional modulation rather than self-attention to build
relationships since they are more memory-efficient, particu-
larly when processing high-resolution images. More details
for convolutional modulation are shown in Appendix A.3.

Image embedding module. Figure 4 demonstrates that
patch embedding is a speed bottleneck on multiple platforms.
This is because patch embedding often employs a convolu-
tional layer that is non-overlapping and has a large kernel
size and stride, which is not well supported by most compil-
ers and acceleration techniques (e.g., Winograd). Thus, we
leverage a convolution stem with fast downsampling, con-
sisting of three hardware-efficient 3×3 convolutions with
stride 2. For an input image x∈RH×W×3, we first divide it
into H×W

G×G patches and feed these patches to the convolution
stem to obtain input embeddings L0 of size H

G × W
G × C.

Hardware-oriented detector backbone. Each HOD block
(Figure 6(a)) is designed to effectively capture the local
(texture-level semantics) and global information (abstract-
level semantics). So several consecutive local-wise attention

is applied to extract texture-level semantics. Then we en-
hance abstract-level semantics in the feature map through
global attention. A semantic-augmented module, which in-
cludes an upsampling layer and global attention, is inserted
into every two consecutive HOB blocks (except between
Stage 1,2) to further enhance low-level semantics in the
current stage as shown in Figure 5. Note that for hardware
efficiency, we introduce RepCNN into the design space of
local-wise attention, which can also act as a global inter-
connection, reducing the number of SWMSAbn, the speed
bottleneck for GPU structure (Pan et al., 2022).

Task-coupled single-level prediction system. To reduce
the large memory I/o overhead and the high parallelism
caused by multi-branch, we transform multi-level into
single-level prediction by scale-combined module (Fig-
ure 6(b)) with global attention. The process is

s0 = L1,

s1 = ConvModula(down(s0) + L2),

s2 = ConvModula(down(s1) + L3),

s3 = ConvModula(s2 + up(L4)),

(2)

sout=s3 is the final aggregated feature.

One-stage detectors perform object classification and lo-
calization independently with two separate branches (e.g.,
decoupled heads). We propose task-couple module in Fig-
ure 6(c), which guides learning task interactions and elim-
inates conflicts between task-specific features by stacking
global attention blocks Y=ConvModula. The global at-
tention block Y1 couples and splits the single-level feature
sout into two parts. After that, Y2 encodes one part for the
subsequent regression task:

ycls, yreg1 = Y1(sout), yreg2 = Y2(y
reg
1). (3)

6

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

Phase 1

Patch Merging

Local-wise

Attention

Global Attention

HOD Block

RepCNN WMSA

SWMSA

Phase 2

WMSASWMSA Convolutional

modulation

(a) HOD block and two-phase design space

Linear

Hadamard Product

DConv

LinearLinear

(b) Convolutional modulation

Figure 6: Some sub-structures deployed in the SpeedDETR.

3.5. Training

Supernet Design. We use the two-phase design space (DP)
as the search space and train the supernet for the HOD
backbone. We only search the backbone’s structures, dimen-
sions C, and input granularity G, while the TSP uses fixed
structures with dimensions adapted to the backbone.

Speed-aware model slimming. It has three steps:

1) We train the supernet with the Gumble Softmax sam-
pling (Liu et al., 2018) to get the importance score for the
blocks within each DP .

2) We utilize the latency prediction model E (Section 3.2)
to estimate the on-device speed of each candidate.

3) We perform speed-aware model slimming on the super-
net obtained from step 1) by FPS evaluated with predictor
E. Specifically, we use the score r of each candidates to

define the importance score of DPi as rRepCNN
i +rWMSA

i

rSWMSA
i

for S1, S2, S3, and rWMSA
i

rSWMSA
i

for S4. We obtain the impor-
tance score for each S by summing up the scores for all
DP within that S. Then we define the evolution process
(all performed in the current least important S): a) remove
the first SWMSA ; b) remove the first WMSA; c) reduce
the width by multiples of 16. Then we predict the cur-
rent latency l, evaluate the accuracy drop of each evolution,
and decide by latency AP drop(−% ∗ l). Our gradual
slimming on the single-width supernet is memory-efficient
compared to the multiple-width supernet. This process is
repeated until reaching target throughput (Appendix A.4).

4. Experiments
4.1. Settings

Object detection. We evaluate our proposed Speed-
DETR on the challenging MS COCO benchmark (Lin et al.,
2014) following the commonly used setting (Chen et al.,
2021). The standard mean average precision (AP) metric
is used to measure detection under different IoU thresholds

and object scales. It contains around 160K images of 80
categories. We train SpeedDETR with the standard 1×
(12 epochs) and 3× (36 epochs) training configurations as
introduced in (Cao et al., 2021). The HOD backbone is
pre-trained on ImageNet (Deng et al., 2009) with the same
setting as (Cao et al., 2021). We use the AdamW optimizer
with a batch size of 32, an initial learning rate of 1e−4, and
a weight decay of 0.05. The learning rate is stepped down
by a factor of 0.1 at the 67% and 89% of training epochs.
We conduct all experiments on 8 V100 GPUs. The model
configurations are provided in the Appendix A.7. Since
SpeedDETR conducts the single-level dense prediction on a
single feature map, we use the uniform matching strategy
proposed by YOLOF (Chen et al., 2021) to ensure that all
ground-truth boxes match with the same number of positive
anchors regardless of their sizes.

Latency prediction. We test the on-device efficiency for
four hardware platforms as shown in Table 1, including
server GPU (Tesla V100), desktop GPU (GTX1080), and
edge devices (Jetson TX2 and Nvidia Nano). The number of
PE, the floating-point computation (FP32) in a PE, the fre-
quency, and the bandwidth are the main factors considered
by our latency prediction model. The PE of server GPUs is
usually larger than that of IoT devices. For all models and
computing platforms, the batch size was set to 1.

4.2. Main results

Comparison with conventional frameworks. As shown
in Part (1&2) of Table 2, anchor-based methods converge
fast within only 12 epochs, and the transformer-based
methods generally outperform CNN-based methods but
with higher GFLOPs. Focal-Tiny-RetinaNet achieves 7.8%
higher AP than the original RetinaNet at the expense of
32% computation costs. Generally, such good performance
comes with over 170 GFLOPs high computational costs.
YOLOF is an efficient transformer-based one-stage method
with 103 GFLOPs, but with lower AP (<40%). Mobile-
Former aims at an efficient design, which concentrates on
the FLOPs reduction other than the real runtime speed.

7

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

Table 2: Comparison of SpeedDETR and common detection methods on MS COCO benchmark. The table is divided into
four parts: 1) anchor-based methods; 2) SpeedDETR trained for 12 epochs; 3) DETR-based methods; 4) SpeedDETR trained
for 36 epochs. SpeedDETR achieves competitive precision with fewer inference FPS and training epochs. FPS is measured
with a batch size 1 of 800×1333 resolution on a single Tesla V100 GPU.

Method Epochs AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%) GFLOPs FPS

Faster RCNN-FPN-R50 (Ren et al., 2015) 36 40.2 61.0 43.8 24.2 43.5 52 180 -
Focal-Tiny-RetinaNet (Yang et al., 2021b) 12 43.7 - - - - - 265 -
Swin-Tiny-RetinaNet (Liu et al., 2021b) 12 42.0 - - - - - 245 -
YOLOF-R50 (Chen et al., 2021) 12 39.2 58.6 42.7 22.3 43.9 50.8 103 24
RetinaNet (Lin et al., 2017b) 12 35.9 55.7 38.5 19.4 39.5 48.2 201 -
Mobile-Former (Chen et al., 2022b) 12 34.2 53.4 36.0 19.9 36.8 45.3 322 -

SpeedDETRtiny 12 41.2 60.2 43.5 21.4 44.6 55.7 67 26.2
SpeedDETRsmall 12 42.0 59.5 44.5 23.2 45.6 56.3 69 24.3
SpeedDETRmedium 12 43.2 60.9 46.2 23.9 47.1 58.7 73 23.5

DETR-R50 (Carion et al., 2020) 500 42.0 62.4 44.2 20.5 45.8 61.1 86 24
WB-DETR (Liu et al., 2021a) 500 41.8 63.2 44.8 19.4 45.1 62.4 98 -
PnP-DETR (Wang et al., 2021a) 500 41.8 62.1 44.4 21.2 45.3 60.8 - -
UP-DETR (Dai et al., 2021) 150 40.5 60.8 42.6 19.0 44.4 60.0 - -
YOLOS (Fang et al., 2021) 150 37.6 - - - - - 172 5.7
Anchor DETR-DC5-R50 (Wang et al., 2022b) 50 44.2 64.7 47.5 24.7 48.2 60.6 151 19
Deformable DETR (Zhu et al., 2020) 50 43.9 62.6 47.7 26.4 47.1 58.0 173 19.1
SMCA-R50 (Gao et al., 2021) 50 43.7 63.6 47.2 24.2 47.0 60.4 152 -
SAM-DETR-R50-DC5 (Zhang et al., 2022) 50 43.3 64.4 46.2 25.1 46.9 61.0 210 -
TSP-FCOS-R50 (Sun et al., 2021) 36 43.1 62.3 47.0 26.6 46.8 55.9 189 15
DAB-DETR-R50 (Liu et al., 2022a) 50 42.6 63.2 45.6 21.8 46.2 61.1 100 -
Conditional DETR-R50 (Meng et al., 2021) 50 40.9 61.8 43.3 20.8 44.6 59.2 90 -
VIDT (Song et al., 2021) 50 40.4 59.6 43.3 23.2 42.5 55.8 - 20
Sparse-DETR (Roh et al., 2021) 50 45.3 65.8 49.3 28.4 48.3 60.1 105 16.4
DFFT (Chen et al., 2022a) 36 44.5 63.6 48 24.5 49.0 60.7 62 22

SpeedDETRtiny 36 44.5 64.9 47.8 24.6 48.1 59.9 67 26.2
SpeedDETRsmall 36 45.3 64.2 48 25 48.9 60.5 69 24.3
SpeedDETRmedium 36 46.4 65.5 49.8 26.1 50.5 63.0 73 23.5
SpeedDETRlarge 36 46.8 66.2 50.4 28.5 50.6 63.2 108 20.5

Compared to the aforementioned approaches, our Speed-
DETR can improve both on-device speed and detection
performance. SpeedDETRtiny is 9% faster than YOLOF
with 1% higher AP (41.2%>39.2%); SpeedDETRmedium

reduces 192 GFLOPs from the best-precision Focal-Tiny-
RetinaNet at only a 0.5% AP reduction.

Comparison with DETR series. As shown in Part (3&4)
of Table 2, DETR only needs 24 FPS to achieve 42.0%
AP during inference but requires 500 epochs to converge.
WB-DETR and PnP-DETR need 500 epochs to achieve
41.8% AP as well. Other DETR-based methods improve
the convergence speed but less efficient. For example,
the GFLOPs of Deformable DETR, Anchor DETR, and
TSP-FCOS are around 1.7×∼2.2× larger than DETR. And
even though these three have 15∼19 FPS on the high-end
GPU, Tesla V100, they cannot achieve acceptable speeds on
resource-constraint devices, e.g., Nvidia Nano (Figure 7).
On the contrary, SpeedDETR can achieve superior detec-
tion precision, sacrificing neither convergence nor inference
speed. Compared with classical DETR, our SpeedDETRtiny

achieves superior detection performance (42.0% vs. 44.5%).
with 2.2 FPS faster inference and 14× training efficiency.
Considering current state-of-the-art DETR frameworks, our
model can reach 1.09×∼3.6× speedup with 1.5%∼9.2%
AP higher precision.

4.3. Runtime speed on multiple devices

To evaluate the hardware throughput, we implement the
model on the other three GPU platforms (Table 1). We re-
port the average FPS of over 100 inferences. As shown in
Figure 7, our method outperforms existing efficient DETR
frameworks on both hardware efficiency and detection per-
formance. Note that SpeedDETR even achieves acceptable
inference speed on edge GPU devices, i.e., 2.3 FPS ∼ 4 FPS
for NVIDIA JETSON TX2 and 1 FPS for NVIDIA NANO.
Other methods need to consider the memory limitations and
parallelism of the on-device runtime, so their performance
can be degraded further on resource-limited devices and
do not even give results in a reasonable time. This also
constrains their scalability for practical application scenar-
ios. Because of the low speed, Deformable-DETR, Sparse-
DETR, and Anchor DETR cannot be tested accurately on
the NVIDIA NANO (26.1 Gbps memory bandwidth), which
has the highest memory I/O limitation. The possible reason
is that the backbone of these works has a quadratic mem-
ory complexity, which can become the computation-bound
operation in some memory-limited devices.

4.4. Ablation study

We conduct ablation studies to validate the effectiveness of
the latency prediction modeling (Section 3.2, Section 3.3)

8

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
FPS

40

42

44

46

A
P

DETR

DETR-DC5 DETR-R101

DETR-DC5-R101

Deformable-DETR_1

Deformable-DETR_2Deformable-DETR_3
Sparse-DETR_1

Sparse-DETR_2

VIDT_2

VIDT_3

Anchor DETR

YOLOS-B

DFFT_nano

DFFT_tiny

DFFT_small

DFFT_medium

DFFT_large

SpeedDETR_nano
SpeedDETR_tiny

SpeedDETR_small

SpeedDETR_medium
SpeedDETR_large

(a) SpeedDETR on GeForce GTX 1080 Ti.

0 1 2 3 4 5
FPS

40

42

44

46

A
P

DETR

DETR-DC5 DETR-R101

DETR-DC5-R101

Deformable-DETR_1

Deformable-DETR_2
Deformable-DETR_3

Sparse-DETR_1

Sparse-DETR_2

VIDT_2

VIDT_3

Anchor DETR

YOLOS-B

DFFT_nano

DFFT_tiny

DFFT_small

DFFT_medium
DFFT_large

SpeedDETR_nano

SpeedDETR_tiny

SpeedDETR_small

SpeedDETR_medium
SpeedDETR_large

(b) SpeedDETR on Jetson TX2.

0.2 0.4 0.6 0.8 1.0 1.2
FPS

38

40

42

44

46

A
P

DETR

VIDT (28.7AP, 0.69FPS)

YOLOS-Ti (30AP, 0.78FPS)

DFFT_nano
DFFT_tiny

DFFT_small
SpeedDETR_nano

SpeedDETR_tiny
SpeedDETR_small

SpeedDETR_medium

(c) SpeedDETR on Nvidia Nano.

Figure 7: Comparison on multiple resource-limited devices of SpeedDETR.

Table 3: Major components.
HOD SCM TCM AP (%) GFLOPs

- - - 33.5 50
✓ - - 37.8 51
✓ ✓ - 39.7 63
✓ - ✓ 39.6 56
✓ ✓ ✓ 41.2 67

Table 4: Operator fusion.
BN Fusion Branch Fusion Latency

- - 38.1
✓ - 32.8
- ✓ 30.6
✓ ✓ 26.2

and architecture design (Section 3.4). We conduct all the ex-
periments on SpeedDETRtiny that is trained for 12 epochs.

4.4.1. ANALYSIS OF PREDICTION MODELING

More granularities settings. We test various granularity
settings on the HOD backbone of SpeedDETRtiny to exam-
ine the effects of G. The results on the Tesla-V100 GPU
are presented in Figure 8. We increase G from 2 and 64,
and this procedure consistently improves the realistic ef-
ficiency of the V100 GPU. It can be found that the finest
granularity (G=2) causes substantial inefficiency despite
the mAP improvement. Otherwise, the coarsest granularity
(G=64) benefits the speedup with large detection precision
degradation. This trend also holds on the GTX 1080 Ti,
Jetson TX2, and Nvidia Nano.

Fusion techniques. We investigate the effect of our model
fusion introduced in Section 3.3. SpeedDETRtiny (G=8)
is tested. The results in Table 4 present that each technique
of model fusion promotes the practical latency of a block,
as the overhead on memory access is effectively reduced.
Moreover, branch merging can also reduce the imbalanced
computation of PEs.

4.4.2. ANALYSIS OF COMPONENTS IN SPEEDDETR

Major components. We evaluate the efficiency of the major
components in SpeedDETR. We disable each component
by replacing it with a vanilla method, as they are not easily
removable from our detection framework. In Table 3, we
(1) use Swin-Transformer instead of our hardware-oriented
detector (HOD) backbone with similar GFLOPs (line 1 vs.
line 2); (2) disable the scale-combined module (SCM) (lines
1, 2, 4) by directly upsampling the last stage’s outputs to
H×W and feed them to task-couple module (TCM); (3)
replace the TAE module with YOLOF’s head (lines 1–3).

2
4
8

16

32

64

G
ranularity

Figure 8: Various granularity settings on the HOD back-
bone of SpeedDETR.

Firstly, the HOD backbone increases precision from 33.5%
to 37.8%, indicating that it can acquire stronger semantic
features that are more suited for the detection task. SCM
further improves the precision to 39.7% by aggregating
multi-scale features into one feature map. Disabling SCM
would decrease the precision by 1.6% (39.8% vs. 41.2%).
Finally, adding TCM would increase the prevision by 1.5%
(41.2% vs. 39.7%). This verifies the necessity of using TCM
to align and encode both the classification and regression
features. This also suggests that the SCM can capture multi-
scale information when aggregating semantic information.

5. Conclusion
In this paper, we propose a novel speed-aware transformer
for end-to-end object detectors, achieving high-speed infer-
ence on multiple devices. Combined with the visual mod-
eling process and the proposed latency prediction model,
SpeedDETR exceeds current DETR-based methods by
1.5%∼9.2% AP with 1.09×∼3.6× speedup on high-end
GPU. Compared to other approaches, SpeedDETR has more
potential for practical applications due to its scalability on
resource-limited devices. How to improve the precision of
transformer-based detectors on edge will be our next effort.

Acknowledgements
This work was supported by Futurewei Technologies, Inc.
in a research internship.

9

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

References
Bahdanau, D., Cho, K. H., and Bengio, Y. Neural machine

translation by jointly learning to align and translate. In
International Conference on Learning Representations
(ICLR), 2015.

Bolya, D., Zhou, C., Xiao, F., and Lee, Y. J. Yolact:
Real-time instance segmentation. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 9157–9166, 2019.

Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian,
Q., and Wang, M. Swin-unet: Unet-like pure trans-
former for medical image segmentation. arXiv preprint
arXiv:2105.05537, 2021.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In European Conference on Computer Vi-
sion (ECCV), pp. 213–229. Springer, 2020.

Chen, P., Zhang, M., Shen, Y., Sheng, K., Gao, Y., Sun, X.,
Li, K., and Shen, C. Efficient decoder-free object detec-
tion with transformers. arXiv preprint arXiv:2206.06829,
2022a.

Chen, Q., Wang, Y., Yang, T., Zhang, X., Cheng, J., and Sun,
J. You only look one-level feature. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 13039–13048, 2021.

Chen, Y., Dai, X., Chen, D., Liu, M., Dong, X., Yuan,
L., and Liu, Z. Mobile-former: Bridging mobilenet and
transformer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5270–
5279, 2022b.

Colleman, S., Verelst, T., Mei, L., Tuytelaars, T., and Ver-
helst, M. Processor architecture optimization for spatially
dynamic neural networks. In 2021 IFIP/IEEE 29th In-
ternational Conference on Very Large Scale Integration
(VLSI-SoC), pp. 1–6. IEEE, 2021.

Dai, L., Liu, H., Tang, H., Wu, Z., and Song, P. Ao2-detr:
Arbitrary-oriented object detection transformer. IEEE
Transactions on Circuits and Systems for Video Technol-
ogy, 2022.

Dai, Z., Cai, B., Lin, Y., and Chen, J. Up-detr: Unsupervised
pre-training for object detection with transformers. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1601–1610,
2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun,
J. Repvgg: Making vgg-style convnets great again. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13733–13742, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations (ICLR), 2021.

Fang, Y., Liao, B., Wang, X., Fang, J., Qi, J., Wu, R., Niu, J.,
and Liu, W. You only look at one sequence: Rethinking
transformer in vision through object detection. Advances
in Neural Information Processing Systems, 34:26183–
26197, 2021.

Gao, P., Zheng, M., Wang, X., Dai, J., and Li, H. Fast con-
vergence of detr with spatially modulated co-attention. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 3621–3630, 2021.

Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., and
Sun, J. Single path one-shot neural architecture search
with uniform sampling. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XVI 16, pp. 544–560. Springer,
2020.

Han, Y., Huang, G., Song, S., Yang, L., Zhang, Y., and Jiang,
H. Spatially adaptive feature refinement for efficient
inference. IEEE Transactions on Image Processing, 30:
9345–9358, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask r-
cnn. In Proceedings of the IEEE international conference
on computer vision, pp. 2961–2969, 2017.

Hennessy, J. L. and Patterson, D. A. Computer architecture:
a quantitative approach. Elsevier, 2011.

Hou, Q., Lu, C.-Z., Cheng, M.-M., and Feng, J.
Conv2former: A simple transformer-style convnet for
visual recognition. arXiv preprint arXiv:2211.11943,
2022.

Hu, J., Shen, L., and Sun, G. Squeeze-and-excitation net-
works. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
7132–7141, 2018.

10

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, W., Liu, H., Tang, H., Wang, P., and Van Gool, L. Mh-
former: Multi-hypothesis transformer for 3d human pose
estimation. In CVPR, 2022a.

Li, Y., Yuan, G., Wen, Y., Hu, E., Evangelidis, G.,
Tulyakov, S., Wang, Y., and Ren, J. Efficientformer:
Vision transformers at mobilenet speed. arXiv preprint
arXiv:2206.01191, 2022b.

Li, Z., Wang, W., Li, H., Xie, E., Sima, C., Lu, T., Yu, Q.,
and Dai, J. Bevformer: Learning bird’s-eye-view repre-
sentation from multi-camera images via spatiotemporal
transformers. arXiv preprint arXiv:2203.17270, 2022c.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In European conference on
computer vision, pp. 740–755. Springer, 2014.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. Feature pyramid networks for object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2117–2125,
2017a.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.
Focal loss for dense object detection. In Proceedings of
the IEEE international conference on computer vision,
pp. 2980–2988, 2017b.

Liu, F., Wei, H., Zhao, W., Li, G., Peng, J., and Li, Z. Wb-
detr: Transformer-based detector without backbone. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 2979–2987, 2021a.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055,
2018.

Liu, S., Li, F., Zhang, H., Yang, X., Qi, X., Su, H., Zhu,
J., and Zhang, L. Dab-detr: Dynamic anchor boxes are
better queries for detr. arXiv preprint arXiv:2201.12329,
2022a.

Liu, Y., Wang, T., Zhang, X., and Sun, J. Petr: Position
embedding transformation for multi-view 3d object de-
tection. arXiv preprint arXiv:2203.05625, 2022b.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 10012–10022, 2021b.

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. Shufflenet v2:
Practical guidelines for efficient cnn architecture design.
In Proceedings of the European conference on computer
vision (ECCV), pp. 116–131, 2018.

Mehta, S. and Rastegari, M. Mobilevit: light-weight,
general-purpose, and mobile-friendly vision transformer.
arXiv preprint arXiv:2110.02178, 2021.

Meng, D., Chen, X., Fan, Z., Zeng, G., Li, H., Yuan, Y.,
Sun, L., and Wang, J. Conditional detr for fast training
convergence. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 3651–3660,
2021.

Pan, Z., Cai, J., and Zhuang, B. Fast vision transformers
with hilo attention. arXiv preprint arXiv:2205.13213,
2022.

Parikh, A., Täckström, O., Das, D., and Uszkoreit, J. A
decomposable attention model for natural language in-
ference. In Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing, pp.
2249–2255, 2016.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Redmon, J. and Farhadi, A. Yolov3: An incremental im-
provement. arXiv preprint arXiv:1804.02767, 2018.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You
only look once: Unified, real-time object detection. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 779–788, 2016.

Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn:
Towards real-time object detection with region proposal
networks. Advances in neural information processing
systems, 28, 2015.

Roh, B., Shin, J., Shin, W., and Kim, S. Sparse detr: Effi-
cient end-to-end object detection with learnable sparsity.
arXiv preprint arXiv:2111.14330, 2021.

Song, H., Sun, D., Chun, S., Jampani, V., Han, D., Heo,
B., Kim, W., and Yang, M.-H. Vidt: An efficient and
effective fully transformer-based object detector. arXiv
preprint arXiv:2110.03921, 2021.

Sun, Z., Cao, S., Yang, Y., and Kitani, K. M. Rethinking
transformer-based set prediction for object detection. In
Proceedings of the IEEE/CVF international conference
on computer vision, pp. 3611–3620, 2021.

11

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,
Howard, A., and Le, Q. V. Mnasnet: Platform-aware
neural architecture search for mobile. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2820–2828, 2019.

Tang, H., Zhang, Z., Shi, H., Li, B., Shao, L., Sebe, N.,
Timofte, R., and Van Gool, L. Graph transformer gans
for graph-constrained house generation. In CVPR, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Wang, T., Yuan, L., Chen, Y., Feng, J., and Yan, S. Pnp-detr:
Towards efficient visual analysis with transformers. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 4661–4670, 2021a.

Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D.,
Lu, T., Luo, P., and Shao, L. Pyramid vision transformer:
A versatile backbone for dense prediction without convo-
lutions. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2021b.

Wang, Y., Guizilini, V. C., Zhang, T., Wang, Y., Zhao, H.,
and Solomon, J. Detr3d: 3d object detection from multi-
view images via 3d-to-2d queries. In Conference on Robot
Learning, pp. 180–191. PMLR, 2022a.

Wang, Y., Zhang, X., Yang, T., and Sun, J. Anchor detr:
Query design for transformer-based detector. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 2567–2575, 2022b.

Xie, Z., Zhang, Z., Zhu, X., Huang, G., and Lin, S. Spatially
adaptive inference with stochastic feature sampling and
interpolation. In European conference on computer vision,
pp. 531–548. Springer, 2020.

Yang, G., Tang, H., Ding, M., Sebe, N., and Ricci, E.
Transformer-based attention networks for continuous
pixel-wise prediction. In ICCV, 2021a.

Yang, J., Li, C., Zhang, P., Dai, X., Xiao, B., Yuan, L., and
Gao, J. Focal self-attention for local-global interactions
in vision transformers, 2021b.

Zhang, G., Luo, Z., Yu, Y., Cui, K., and Lu, S. Accelerat-
ing detr convergence via semantic-aligned matching. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 949–958, 2022.

Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y.,
Fu, Y., Feng, J., Xiang, T., Torr, P. H., et al. Rethink-
ing semantic segmentation from a sequence-to-sequence
perspective with transformers. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6881–6890, 2021.

Zhou, L., Zhou, Y., Corso, J. J., Socher, R., and Xiong, C.
End-to-end dense video captioning with masked trans-
former. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 8739–
8748, 2018.

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., and Dai, J. De-
formable detr: Deformable transformers for end-to-end
object detection. In International Conference on Learn-
ing Representations (ICLR), 2020.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 8697–8710, 2018.

12

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

A. Appendix
A.1. Ablation

Replacement of RepCNN in the HOB backbone. To analyze the trade-off between the detection precision and the
efficiency of the RepCNN utilization, we replace the WMSAbn/SWMSAbn with the RepCNN in the 1st and 2nd stage. We
experimentally find that detection performance is improved by 0.3%∼0.5% AP after replacing WMSA with RepCNN in S1

of our backbone. The precision is only improved by 0.1% AP after replacing with RepCNN layers in the whole S1, S2. So a
dedicated design is required here to extract the texture-level information effectively. The detailed structure of RepCNN is
illustrated in Figure 9.

Window-based MSA

Linear Projection

GELU

Fully-Connected

Fully-Connected

WMSA

FFN

Linear TransformationLinear Transformation

Block

BatchNorm

LayerNorm

LayerNorm

WMSA

FFN

Block BatchNorm

Training

Window-based MSA

Linear Projection

GELU

Fully-Connected

Fully-Connected

Linear Transformation

Inference

WMSAWMSA

Model-level comparison of WMAS and WMSA
with ImageNet-1K on Tesla V100.

Training (3-branch) Inference (1-branch) Perspective of structure

Figure 9: RepCNN structure. We also show the training status and the inference status of this structure, respectively.

Semantic-augmented module (SAM). Similar to FPN (Lin et al., 2017a), SAM enhances the semantic information from
high-level characteristics to low-level ones to produce richer low-level semantic features for object detection tasks. For a fair
comparison, we disable the two encoders and directly feed features from the backbone to RetinaNet’s head, a multi-level
feature head that accepts four-scale features. The results are shown in Table 6. While both SAM and FPN improve the
precision, SAM obtains 0.6% higher AP with 9GFLOPs less than FPN. Therefore, the global convolutional modulation suits
the transformer better than FPN. Including SAM within the forward pass can obtain an even stronger model.

HOD stage breakdown. We study how the global convolutional modulation (GCM) and the semantic-augmented module
(SAM) contribute to HOD’s performance. We only modify the backbone network without the SCM and TCM modules.
Table 5 shows that switching from SW-MSA to our global convolutional modulation can improve 1.1% precision (39.9% vs.
38.8%) without significantly impacting GFLOPs (44 vs. 45). Adding the SAM module further increases the precision from
39.9% to 41.2%. These two observations suggest that SAM can enhance performance, and attention is not the primary cause.

Scale-combined module (SCM). SCM aggregates multi-scale features into one feature map to reduce the computational
costs of the inference stage. We compare SCM with a similar design in YOLOF (Chen et al., 2021), which exploits a dilated
encoder to convert features from multiple scales. Table 7 shows that SCM improves 1.6% AP from the dilated encoder of
YOLOF.

Task-couple module (TCM). Benefiting from the global convolutional modulation’s capability of modeling semantic
relations, TCM handles task conflicts in a coupled head and generates task-aligned predictions in a single pass. As shown in
the first row of Figure 11, after replacing TCM with YOLOF’s head in the baseline model, the best anchors for classification
(red) and localization (orange) are distant. This is because YOLOF uses a task-unaligned decoupled head that leads to
inconsistent predictions of classification and localization. Comparatively, our TCM provides aligned predictions with high
classification and IOU scores.

13

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

Input Image Stage 1 Stage 2 Stage 3 Stage 4

Figure 10: Visualization of the feature map obtained by each
HOD stage.

handbag 100%

frisbee 100%
dog 100%

car 100%car 100%

cat 100%
cat 100%remote 100% remote 100%

frisbee 100%
car 100%
car 100%

dog 97%

person 100%

cat 100%cat 100%

remote 100% remote 100%

sofa 100%

sofa 100%

Inputs YOLOF Ours

person 100%

person 100%

person 100%
person 100%

train 100%

handbag 100%

handbag 100%

person 100%
person 100%

person 100%

person 100%
person 100%

train 100%

handbag 100%

handbag 100%

dog 100%

person 100%
person 100%

Figure 11: Object detection comparison.

Table 5: Hardware-oriented Detector
(HOD) breakdown.

GCM SAM AP (%) GFLOPs

- - 38.8 44
✓ - 39.9 45
✓ ✓ 41.2 67

Table 6: Semantic-augmented mod-
ule (SAM) breakdown.

SAA FPN AP (%) GFLOPs

- - 36.9 323
✓ - 38.4 336
- ✓ 37.8 345

Table 7: Scale-combined module
(SCM) breakdown.

Method AP (%) GFLOPs

YOLOF 39.6 62

SpeedDETR 41.2 67

Window-based MSA

Linear Projection

GELU

Fully-Connected

Fully-Connected

WMSA

FFN

Linear TransformationLinear Transformation

Block

BatchNorm

LayerNorm

LayerNorm

WMSA

FFN

Block BatchNorm

Training

Window-based MSA

Linear Projection

GELU

Fully-Connected

Fully-Connected

Linear Transformation

Inference

WMSAWMSA

Model-level comparison of WMAS and WMSA
with ImageNet-1K on RTX3090 Ti.

Figure 12: WMSAbn/SWMSAbn structure. 13%∼21% speedup can be achieved with <0.3 accuracy degradation on
ImageNet-1K.

A.2. BN-based Swin-Transformer

We modify the basic structure of Swin-Transformer, WMSA/SWMSA, into WMSAbn/SWMSAbn as shown in Figure 12.
Compared to the original design with LN-Linear, a 13%∼21% speedup is harvested with negligible accuracy degradation
(<0.3%) on small models. In this paper, we use WMSAbn/SWMSAbn as our design candidates.

A.3. Convolutional modulation

Following (Hou et al., 2022), we replace the self-attention inside the transformer layer with a convolutional modulation
layer. As shown in Figure 6(b), we modulate the value V with convolutional features. Let X∈RH×W×C be input tokens,
and we use depthwise convolution with kernel size k × k and the Hadamard product to calculate the output:

14

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

Z = A⊙ V,

A = DConvk×k(W1X),

V = W2X,

(4)

where ⊙ is the Hadamard product, W1 and W2 are the weight matrics of two linear layers, and DConvk×k denotes the
depthwise convolution. The linear layers can be used to achieve the information interaction between channels. The weighted
sum of all the pixels in the square area is the output for each spatial location. Our methods use convolution instead
of self-attention to create associations, which are more memory-efficient (linear memory complexity), especially when
processing high-resolution images. Due to the modulation operation, our method differs from traditional residual blocks and
can adapt to the input content.

A.4. Speed-aware model slimming strategy

We have introduced our training pipeline based on the search algorithm in this work (Li et al., 2022b). We have changed the
search space, the method to generate the runtime latency adapted to our task and application scenarios, and the evolution
step. Please refer to (Li et al., 2022b) for more training details.

We provide the details of the proposed fast speed-aware model slimming strategy in Algorithm 1. The proposed speed-aware
model slimming strategy is speed-oriented for the target device, which does not need retraining for each sub-network. The
importance score for each device-design choice is estimated based on the trainable architecture parameter r, which can be
obtained by Gumble Softmax.

Algorithm 1 Speed-aware Model Slimming.
Given: Latency prediction model E; Target latency (FPS) T ;
Two-phase design space DP = {RepCNN,WMSAbn, SWMSAbn}dim=16×, {WMSAbn, SWMSAbn}dim=16×;
Requirement: Final latency budget:

∑
l ≈ T

Super-net Pretraining:
foreach epoch do

foreach iteration do
foreach DPi,j do

κi+1 =
∑

n
e(r

n
i +εni)/τ∑

n e
(rn

i
+εn

i
)/τ ·DPi,j(κi)

end
£ = criterion loss function(output, label);
Backpropagate (£);
Update parameters;

end
end
∆ Obtain the Supernet.
Speed-Driven Model Slimming:
E ∈ {Layer Reduction (LR), Width Reduction (WR), WMSA Reduction (WMR), SWMSA Reduction (SR)};
Calculate the importance of DPi,j through Mi,j = r

RepCNN
i +rWMSA

i

rSWMSA
i

or rWMSA
i

rSWMSA
i

;

while
∑

L > ⊤ do
LR← argminMi,j (DPi,j),
SR← argmin∑

j Mi,j
, (DPi,j),

WMR← argmin∑
j Mi,j

(DPi,j),
WR← argmin∑

j Mi,j
(DPi,j),

Adjust the channel dimension C in argmin∑
j Mi,j

(DPi,j);

Conduct Evolution = argminAPdrop∗li,j (E)

end
∆ Obtain the Subnet with the target Latency/FPS.

Train the searched architecture from scratch:
SDG-Training method;
∆ Obtain the final model.

15

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

Table 8: Comparison of SpeedDETRand basic YOLO version on MS COCO dataset. FPS is measured on a single Tesla
V100 GPU.

Method AP (%) FPS

YOLOv3 + Darknet-53 (Redmon & Farhadi, 2018) 43.9 29.4

YOLACT-700+R-101 (Bolya et al., 2019) 39.6 23.4

SpeedDETRnano 43.9 29.5

A.5. Comparison with YOLO series

We also compare SpeedDETR with the basic version of the YOLO series as Table 8, YOLOv3, and YOLACT-700, and
validate the exceptional trade-off between the precision and speed. Note that SpeedDETR is freely ported to multimodal
domains, e.g., autonomous driving, which is demanding with the YOLO series.

A.6. Latency prediction model

The inputs of the latency prediction model include: 1) the structure configuration of a candidate block, 2) the spatial
granularity G, 3) the channel dimension C, and 4) the hardware properties are shown in Table 1. The latency of a candidate
block is predicted according to the following three steps.

Input/output shape definition. Calculating the input and output shapes is the first step in determining an operation’s latency.
Taking the MSA operation as an example, the input of this operation is the activation with the shape of Cin×H×W , where
Cin is the number of input channels, and H and W are the resolutions of the feature map. The shape of the output tensor is
H
G×W

G ×Cout, where H
G×W

G is the number of output patches, Cout is the number of output channels and G is the spatial
granularity.

Operation-to-hardware mapping. We map the operations to hardware. We have modeled a hardware device as multiple
processing engines (PEs). We first consecutively split the output feature map into multiple tiles. Specifically, the shape of
each tile is TP × TC × TS1 × TS2 (HG×W

G)×TC×TG×TG. These split tiles are assigned to multiple PEs. The computation
of each tile is executed in a PE.

Latency estimation. We evaluate each tile’s latency, including the data movement latency and the computation latency:
l=ldata+lcompute.

1)Data movement latency ldata. We model the memory system of hardware as a three-level architecture (Hennessy &
Patterson, 2011): off-chip memory, on-chip global memory, and local memory in PE. The input data and weight data first
move from the off-chip memory to the on-chip global memory. To simplify the latency prediction model, we assume that the
hardware can fully utilize the off-chip memory bandwidth.

The data used to calculate the output tiles is moved from the on-chip global memory to each PE’s local memory. The
latency of data movement to local memory is estimated by its bandwidth and efficiency. To make the prediction model
simpler, we assume that each PE only moves the appropriate input feature maps and weights once to compute an output
tile. The time from off-chip memory to on-chip global memory and the time from on-chip global memory to local
memory are added together to compute the input data movement latency lin: lin=loff2on+lglobal2local. The output data are
transferred from local memory to on-chip global memory and subsequently to off-chip memory, in contrast to the input data:
lout=llocal2global+lon2off . By combining the input and output data movement latency, we can determine the overall data
movement latency: ldata=lin+lout.

The granularity G impacts the latency of data movement because when it is small, more input data will be transferred to
numerous PEs to compute various output patches, dramatically increasing the number of on-chip memory movements. This
explains why a larger G will significantly increase the practical efficiency, according to the experiment results in the paper.

2)Computation latency lcompute. The maximal FP32 computation throughput of the PE and the FLOPs required to compute
an output tile are used to estimate the computation latency of each tile. The number of tiles and PEs can be used to determine
the overall computation latency.

16

SpeedDETR: Speed-aware Transformers for End-to-end Object Detection

Stage Resolution Type Config SpeedDETR
Nano Tiny Base

Image
Embed.

H
2 × W

2

Image
Embed.

Patch Size k=3x3,s=2
Embed. Dim. 48 64 64

H
4 × W

4

Image
Embed.

Patch Size k=3x3,s=2
Embed. Dim. 96 128 128

H
8 × W

8

Image
Embed.

Patch Size k=3x3,s=2
Embed. Dim. 96 128 128

1 H
8 × W

8

Local
Attention

RepCNN=
[
Embed. Kernel
Stride Exp

]
[96, 3, 1, 4]×1 [128, 3, 1, 4] ×1 [128, 3, 1, 4] ×1

SWMSAbn=
[
Embed. DQK

Heads Exp

]
[96, 96, 3, 4] ×1 [128, 128, 4, 4] ×1 [128, 128, 4, 4] ×1

Global
Attention Convolutional Modulation=

[
Embed. DQK

Heads Exp

]
[96, 96, 3, 4] ×1 [128,128, 4, 4] ×1 [128, 128, 4, 4]×1

2 H
16 × W

16

Patch
Embed.

Patch Size k=3X3, s=2
Embed. Dim. 96 128 128

Local
Attention

RepCNN=
[
Embed. Kernel
Stride Exp

]
[96, 3, 1, 4] ×1 [128, 3, 1, 4] ×1 [128, 3,1,4] ×1

SWMSAbn=
[
Embed. DQK

Heads Exp

]
[96, 96, 3, 4]×1 [128, 128, 4, 4]×1 [128, 128, 4, 4]×1

Global
Attention Convolutional Modulation=

[
Embed. DQK

Heads Exp

]
[96, 96, 3, 4]×1 [128, 128, 4, 4]×1 [128, 128, 4, 4]×1

SAM Convolutional Modulation=
[
Embed. DQK

Heads Exp

]
[96, 96, 3, 4] ×1 [128, 128, 4, 4]×1 [128, 128, 4, 4]×1

3 H
32 × W

32

Patch
Embed.

Patch Size k=3X3, s=2
Embed. Dim. 192 256 224

Local
Attention

{RepCNN=
[
Embed. Kernel
Stride Exp

]
,

SWMSAbn=
[
Embed. DQK

Heads Exp

]
}

{[192, 3,1,4] , [192, 192, 6, 4]}×2 {[256, 3,1,4] , [256, 256, 8, 4]}×2 {[224, 3,1,4] , [224, 224, 7, 4]}×5

{WMSAbn=
[
Embed. DQK

Heads Exp

]
,

SWMSAbn=
[
Embed. DQK

Heads Exp

]
}

{[192, 192, 6, 4], [192, 192, 6, 4]}×1 {[256, 256, 8, 4], [256, 256, 8, 4]}×1 {[224, 224, 7, 4], [224, 224, 7, 4]}×4

Global
Attention Convolutional Modulation=

[
Embed. DQK

Heads Exp

]
[192, 192, 6, 4]×1 [256, 256, 8, 4]×1 [224, 224, 7, 4]×1

SAM Convolutional Modulation=
[
Embed. DQK

Heads Exp

]
[96, 96, 3, 4]×1 [128, 128, 4, 4]×1 [128, 128, 4, 4]×1

4 H
64 × W

64

Patch
Embed.

Patch Size k=3X3, s=2
Embed. Dim. 288 384 384

Local
Attention

{WMSAbn=
[
Embed. DQK

Heads Exp

]
,

SWMSAbn=
[
Embed. DQK

Heads Exp

]
}

{[288, 288, 9, 4], [288, 288, 9, 4]}×1 {[384, 384, 12, 4], [384, 384, 12, 4]}×1 {[384, 384, 12, 4], [384, 384, 12, 4]}×1

Global
Attention Convolutional Modulation=

[
Embed. DQK

Heads Exp

]
[288, 288, 9, 4]×1 [384, 384, 12, 4]×1 [384, 384, 12, 4]×1

SAM Convolutional Modulation=
[
Embed. DQK

Heads Exp

]
[192, 192, 6, 4]×1 [256, 256, 8, 4]×1 [224, 224, 7, 4]×1

Table 9: Detailed architectures of the HOD backbone of SpeedDETR. DQK is the dimension of Queries and Keys. Exp
refers to the expansion ratio of the MLP block.

A.7. Model configuration of SpeedDETR

The detailed network architectures for the backbone of SpeedDETR-nano, SpeedDETR-tiny, and SpeedDETR-base are
provided in Table 9. We report the resolution and number of blocks for each stage. In addition, the width of SpeedDETR is
specified as the embedding dimension (Embed., Dim.). As for the MHSA block, the dimension of Query and Key is
provided.

17

