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Abstract
Despite the effectiveness of ELECTRA-style pre-
training, their performance is dependent on the
careful selection of the model size for the aux-
iliary generator, leading to high trial-and-error
costs. In this paper, we present the first systematic
study of this problem. Our theoretical investiga-
tion highlights the importance of controlling the
generator capacity in ELECTRA-style training.
Meanwhile, we found it is not handled properly
in the original ELECTRA design, leading to the
sensitivity issue. Specifically, since adaptive op-
timizers like Adam will cripple the weighing of
individual losses in the joint optimization, the
original design fails to control the generator train-
ing effectively. To regain control over the gener-
ator, we modularize the generator optimization
by decoupling the generator optimizer and dis-
criminator optimizer completely, instead of sim-
ply relying on the weighted objective combina-
tion. Our simple technique reduced the sensitivity
of ELECTRA training significantly and obtains
considerable performance gain compared to the
original design.

1. Introduction
ELECTRA-style pre-training, as introduced in Clark et al.
(2020), has demonstrated significant potential in enhancing
the effectiveness and efficiency of training LLMs. In spe-
cific, it trains the discriminator model (the main model that
is used in downstream tasks) to detect which tokens in an
input sequence were replaced by the generator model (the
auxiliary model that is not used in downstream tasks). This
approach has become increasingly popular among various
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Figure 1. Downstream task performance (MNLI accuracy, Avg
m/mm) for models trained with different generator sizes under
the “Original” design and our “DecoupledOptim” technique. Each
point is annotated by the best hyperparameter setting we found for
this experiment, namely (loss weight, learning rate) and (genera-
tor learning rate, discriminator learning rate) for “Original” and
“DecoupledOptim” respectively (learning rate is scaled by 104 for
simplicity). More experiment details can be found in Section 6.1.

pre-training settings and downstream applications (Clark
et al., 2020; Chi et al., 2021; Kanakarajan et al., 2021; Meng
et al., 2021; 2022; Bajaj et al., 2022).

Despite its effectiveness, the performance of ELECTRA is
sensitive to the choice of generator size (Clark et al., 2020).
As depicted in Figure 1, variations in generator size can lead
to a significant decline in the performance upon fine-tuning
the discriminator on downstream tasks 1. Such sensitivity
inevitably demands careful selection of the generator size
in real-world practices, which can be time-consuming and
resource-intensive. In this research, we investigate the issue
of performance degradation in a systematic manner.

First, by carefully evaluating the discriminator’s capability
of detecting replaced tokens, we confirm that large generator
capacity can indeed hurt the effectiveness of pre-training.
We also clarify that the performance degradation occurs dur-
ing the pre-training stage, instead of during the fine-tuning
stage. Upon further examination of the optimization in the

1Following previous works (He et al., 2021; Bajaj et al., 2022),
we use the evaluation results on MNLI (Williams et al., 2017) to
indicate the performance on downstream tasks
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original ELECTRA design, we recognize that it may fail
to control the generator capacity effectively in the course
of pre-training. The original ELECTRA relies on a weight
ratio that combines the training objectives of the genera-
tor and the discriminator, in the expectation of balancing
their optimization. However, this method is observed to be
largely ineffective since a constant scaling of the loss will
not affect adaptive optimizers like Adam (Kingma & Ba,
2015), the de facto for LLM pre-training (Liu et al., 2020a).
Such a deficiency results in the sensitivity of the original
ELECTRA to the generator size.

To regain control over the generator training, we modularize
the generator optimization by disentangling the generator
optimizer from the discriminator optimizer. This simple
technique, dubbed as DecoupledOptim, effectively mitigate
the sensitivity of ELECTRA-style pre-training to the gen-
erator size and regain the performance loss caused by a
large generator. Furthermore, our algorithm can foster the
flexibility of accelerating discriminator optimization with-
out being impeded by the instability of generator training,
thus bringing significant performance gain over strong base-
lines. We conduct experiments with the standard BERTbase
and BERTlarge (Devlin et al., 2019) pre-training setting on
the GLUE (Wang et al., 2018) benchmark, and our simple
technique consistently outperforms the original ELECTRA
design and alternative pre-training specifications that are
more recently proposed.

Motivated by the empirical evidence, we turn to explore the
underlying mechanism of how the generator and discrimina-
tor optimizations impact the ELECTRA-style pre-training.
Our theoretical analyses reveal that a well-performed gener-
ator will indeed impair discriminator learning, which high-
lights the importance of controlling generator learning. Our
analyses also corroborate the necessity of accelerating dis-
criminator optimization in order to excel in pre-training
performance.

To summarize, our main contributions are as follows.

• Our analysis identifies a deficiency in the original ELEC-
TRA optimization that leads to performance degradation
during the pre-training stage (Section 3).

• Guided by our analyses, we introduce a simple yet ef-
fective method (Section 4) that greatly improves training
robustness and downstream performance (Section 6).

• We conduct theoretical analyses to further gain insights
into how generator and discriminator optimizations im-
pact the ELECTRA performance (Section 5).

Our source code is publicly available 2.

2https://github.com/namisan/DecoupledOptim

2. Background and Related Work
Masked Language Modeling (MLM). MLM methods
such as BERT pretrain the language model to predict ran-
domly masked tokens in a sequence. Specifically, given
an input sequence x = [w1, w2, · · · , wn], MLM gener-
ates a masked sequence x̃ = [w1, · · · , [mask], · · · , wn]
by randomly selecting a few tokens at positions M =
[i1, i2, · · · , im] and replace them with [mask] token. The
model is then trained to predict the original tokens given the
masked sequence x̃. The training objective can be formu-
lated as

L(θ) = Ex

∑
i∈M

− log pθ(wi|x̃)i,

where θ denotes the model parameters and pθ(wi|x̃)i is the
predictive probability of the model at the i-th position on
token wi given the masked sequence x̃.

ELECTRA-style pretraining. Unlike MLM, ELECTRA
constructs a pretraining task called Replaced Token Detec-
tion (RTD) 3, which involves the joint training of two deep
neural models, a generator G (auxiliary model) and a dis-
criminator D (main model). Here the generator is pretrained
with MLM as usual, while the discriminator is pretrained to
detect tokens in a sequence that are replaced by a generator.

Specifically, given a masked sequence x̃ constructed for
MLM, a corrupted sequence x̂ is generated by replacing
each [mask] token in x̃ by a token that is sampled from
the generator’s predictive distribution at that [mask] token,
namely x̂ = [w1, · · · , ŵi, · · · , wn] and ŵi ∼ pG(·|x̃)i. We
refer to those sampled tokens as replaced tokens since they
will be different from the original tokens at correspond-
ing positions, as long as the generator does not predict the
masked tokens correctly with a one-hot probability distribu-
tion. The discriminator is then trained to predict whether the
replaced tokens in x̂ match the original tokens. The training
objective can thus be defined as

LG(θD) = Ex

∑
i∈M

Eŵi∼pG
ℓ(D(x̂)i,1ŵi=wi)

+ Ex

∑
i∈[n]\M

ℓ(D(x̂)i, 1),

where D(x̂)j is a scalar score output by the discriminator
quantifying the probability of the j-th token being replaced,
ℓ is a loss function, typically binary cross-entropy (BCE),
and 1ŵ=w is the indicator function, namely

1ŵ=w =

{
1, if ŵ = w,

0, if ŵ ̸= w.

Note that in ELECTRA, the training objective of the dis-
criminator is defined over all input tokens rather than the

3We will use ELECTRA-style pretraining and RTD pretraining
interchangeably in this paper.
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randomly masked subset such as that in MLM.

Analyses of ELECTRA-style pretraining. Extensive
analytical efforts have been attracted to understanding the
effectiveness of ELECTRA-style pretraining. It was origi-
nally believed that the RTD pretraining task gains mostly
because of the improved sample efficiency by posing the
objective on all tokens, as well as an alleviated pretraining
fine-tuning gap (Clark et al., 2020). Recent works also em-
pirically demonstrate that ELECTRA-style pretraining may
be advantageous because of the low task complexity of RTD
compared to MLM (Xu et al., 2020) or implicit learning
curriculum introduced by the generator (Meng et al., 2022),

Variations of ELECTRA-style pretraining. There exist
various pretraining methods built on top of ELECTRA. Xu
et al. (2020) proposes a pretraining variation alike a multi-
choice cloze test, where the main model predicts the original
token from a small candidate set. Meng et al. (2021) intro-
duces two additional training objectives including recov-
ery of the original token and alignment between corrupted
sequences from the same source. Hao et al. (2021) esti-
mates the discriminator loss on replaced tokens and learns
to sample difficult replace tokens from the generator. Meng
et al. (2022) proceeds to automatically construct a difficult
learning signal by an adversarial mixture of multiple gener-
ators. He et al. (2021) argues that embedding sharing may
hurt in ELECTRA-style pretraining and suggests prevent-
ing the discriminator gradients from back-propagating to
the generator embeddings. Bajaj et al. (2022) conducts a
comprehensive ablation study and highlights several impor-
tant improvements of ELECTRA such as large vocabulary
size and relative position embedding. Zhang et al. (2022)
observes the existence of “false negative” replaced tokens,
namely those that are not exactly same but are synonyms to
the original ones, and proposes to correct them by synonym
look-up and token similarity regularization.

3. Impact of Generator Capacity
In ELECTRA-style pretraining, it has been widely observed
that the optimal discriminator performance can only be
obtained by a generator that is neither too large nor too
small. As shown in Figure 1 for “Baseline”, generators with
more than 4 layers consistently hurt the discriminator perfor-
mance on downstream tasks. Here, we conduct systematic
analyses to explore the mechanism of this phenomenon.

3.1. Large Generator Capacities Slow Pre-training

Since the performance of the pre-trained model is evaluated
in a two-stage setting (i.e., pre-training and fine-tuning), we
first aim to understand whether the performance degradation
happens in the pre-training stage (i.e., the discriminator
is not trained properly) or the fine-tuning stage (i.e., the

discriminator is not fine-tuned properly).

Our exploration suggests that performance degradation has
already occurred during the pre-training stage. Specifically,
we compare the pre-training (RTD) performance of discrim-
inators trained with generators of different depths (4, 8, and
12 layers). As shown in Figure 2, discriminators trained with
deeper generators achieve consistently worse RTD perfor-
mance, echoing their inferior performance on downstream
tasks as shown in Figure 1.

Note that, we used the last checkpoint of the 12-layer gen-
erator for the evaluation in Figure 2. Rather surprisingly,
we observe that to achieve better RTD performance against
a deep generator, training the discriminator on a shallow
generator can be more effective than training the discrimina-
tor on that deep generator itself. As shown in Figure 2, the
discriminator trained with the 12-layer generator performed
the worst on replaced tokens sampled from this very same
generator, compared to other discriminators trained with
either the 4-layer or the 8-layer generator. This observation
implies that the discriminator trained with a deep generator
are not fully optimized in terms of their pre-training objec-
tives and that the performance degradation may be due to a
slow convergence in the course of pre-training.

It is worth mentioning that, since the relationship between
the generator capacity and the performance degradation re-
sembles overfitting, it may seem reasonable to speculate
overfitting plays an important role in this phenomenon.
However, in our analyses, we observe the impact of the
overfitting to be marginal. We summarized our analyses on
the impact of overfitting in Appendix D.
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Figure 2. RTD performance (F1-score) of discriminators trained
with generators of different depths (4, 8, 12 layers). We measure
the RTD performance on replaced tokens generated by the same
generator, which is the last checkpoint of the 12-layer generator
used to train one of the discriminators.

3.2. Limitations of the Original ELECTRA in
Generator Capacity Control

We can see that controlling the generator capacity is critical
to the optimization of ELECTRA. Nevertheless, we found
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that the original design of ELECTRA may be deficient in
controlling the generator capacity.

In ELECTRA, a loss weight λ is originally introduced to
balance the generator optimization and discriminator opti-
mization. In specific, the generator and the discriminator are
jointly optimized through the following combined training
loss (Clark et al., 2020)

L = L(θG) + λLG(θD).

Nevertheless, varying the value of λ may not take effect
as expected. First, a constant scaling of the loss will not
affect adaptive optimizers like Adam (Kingma & Ba, 2015),
which is commonly used in pretraining algorithms such as
ELECTRA to ensure training stability. In specific, Adam
updates a model parameter by the ratio between the first
moment and second moment of its gradient, namely 4

θ := θ − η · E[g(θ)]√
E[g(θ)2]

, (1)

where η is the learning rate, and g(θ) = ∇θL is the gradient
of the model parameter θ with respect to L.

Consequently, for all generator parameters that are not
shared with the discriminator (denoted as θ̂G) and all dis-
criminator parameters that are not shared with the generator
(θ̂D), we have 5

g(θ̂G) = ∇L(θG), g(θ̂D) = λ · ∇LG(θD).

It is important to note that the loss weight λ does not affect
the update rule of these parameters as any constant scaling of
the gradients will be canceled out in Equation (1). Therefore,
these parameters would always be trained with the same
learning rate regardless of the value of λ.

The only parameters in ELECTRA that are affected by the
loss weight λ are the embeddings θE shared between the
generator and the discriminator. The gradients would be

g(θE) = ∇L(θG) + λ · ∇LG(θD),

which means the update rule would become

θE := θE − η · E[∇L(θG) + λ · ∇LG(θD)]√
E[(∇L(θG) + λ · ∇LG(θD))2]

.

Therefore, the updates of these embeddings will be con-
tributed by the gradients from the discriminator more if λ is
larger.

Since the loss weight λ fails to balance the updates of the
majority of model parameters, it cannot control the generator

4In practice, the first and second moments here are estimated
as exponential moving averages.

5We neglect the subscript in ∇ for simplicity.

learning effectively. As shown in Figure 3, increasing the
loss weight λ has little effect on the generator performance
in the original ELECTRA design.

Alternative Ways to Control Generator in the original
ELECTRA design. Here we discuss methods other than
the loss weight λ to control the generator capacity. One
way is to change the learning rate η. However, this would
also alter the learning rate for discriminator learning and
ultimately results in worse pretraining performance.

Another way is to reduce the model size of the generator, as
also shown in Figure 3. This may be the only effective mech-
anism in the original ELECTRA design that can control
generator capacity without affecting discriminator learning.
However, it brings about the dependency of the pretrain-
ing performance on the careful selection of the generator
size, which can be time-consuming and resource-intensive
in practice.
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Figure 3. (Left): The effect of tuning the loss weight λ on the
generator performance in the original ELECTRA design. (Right):
The effect of tuning the generator learning rate ηG on the generator
performance with our DecoupledOptim technique. For the original
ELECTRA design, the learning rate is fixed as 5× 10−4 and for
our DecoupledOptim technique, the discriminator learning rate is
fixed as 1× 10−3.

4. DecoupledOptim

Decouple the generator optimizer and the discriminator
optimizer. To properly control the generator capacity, we
simply decouple the generator optimizer and the discrimina-
tor optimizer. Specifically, the generator and discriminator
parameters are now updated with separate rules, namely

θG := θG − ηG · E[g(θG)]√
E[g(θG)2]

,

θD := θD − ηD · E[g(θD)]√
E[g(θD)2]

.

To control the generator capacity, we can now directly adjust
the optimizer dedicated for the generator (e.g., adjusting ηG,
the generator learning rate). Figure 3 shows that, for a large
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generator, we can simply reduce ηG to effectively control
its capacity during the pre-training.

This implies that DecoupledOptim is capable to handle large
generators and reduce the sensitivity of ELECTRA-style pre-
training on the choice of the generator size. As elaborated
in Section 6, our proposed method is simple yet effective,
consistently outperforming the original ELECTRA design
and its recently proposed variants.

Note that for the simplicity of the implementation, we will
not share the embeddings between the generator and the
discriminator anymore. Despite the belief that embedding
sharing is crucial in ELECTRA-style pretraining since RTD
pretraining may not be as effective as MLM in learning
token representations (He et al., 2021), we found that with
our decoupled optimization, a discriminator learned from
randomly initialized embeddings can in fact achieve equiva-
lently good or even better performance.

Improve ELECTRA with Sufficient Discriminator Opti-
mization. With our decoupled-optimizer design, we can
in fact not only control generator capacity more easily but
also achieve significantly better pretraining performance by
optimizing the discriminator more sufficiently.

In the original ELECTRA design, the same learning rate is
assigned to the generator and discriminator as mentioned in
Section 3.2. Therefore, attempts to speed up discriminator
optimization by increasing the learning rate inevitably lead
to larger generator capacity, thus yielding worse pretraining
performance. Moreover, The increased learning rate may
even cause training failure since the generator training in
an MLM style can undergo strong instability with a large
learning rate. In our experiments, we found that the original
ELECTRA design diverges within 25K training steps, de-
spite a proper selection of the loss weight (e.g., 50) and the
generator size (e.g., 4 layers).
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Figure 4. Discriminator performance on downstream tasks (MNLI)
with different generator sizes and discriminator learning rates.
Here the generator learning rate is fixed as 2× 10−4.

However, with the optimizers decoupled in DecoupledOp-
tim, we can now accelerate discriminator optimization with-
out being impeded by generator learning. Empirical experi-
ments in Figure 4 show that, as we increase the discriminator
learning rate such that its optimization becomes more suffi-
cient, the pretraining performance is increasingly good. One

may notice that the discriminator learning rate can often be
as large as 1.5× 10−3, which is 3-7 times the learning rate
suitable for generator training. Furthermore, we observe
that with increasingly sufficient discriminator optimization,
the best generator shifts to one with a larger capacity, even
as large as the discriminator itself (12 layers).

5. Optimization of ELECTRA-style Methods
Here, we conduct theoretical analyses to gain insight into
how generator and discriminator optimizations impact the
performance of the ELECTRA-style pretraining.

Problem setup. We consider a simplified RTD task
where only one token in an input sequence is replaced. We
refer to the rest of those unchanged tokens in this sequence
as context. Let w be a word in the sentence, and let c be
the remaining context words in the same sentence. The
generator is trained to predict the original token given the
context, namely

L(θG) = Ec,w − log pG(w|c). (2)

For discriminator training, we focus on the detection of
this single replaced token exclusively. The optimization
objective of the discriminator D can be thus described as

L̄G(θD) = Ec,wEŵ∼pG
ℓ(D(c, ŵ),1ŵ=w). (3)

Ideal discriminator optimization objective. An ideal
discriminator optimization objective should align with the
discriminator performance on downstream tasks. How-
ever, discriminator performance evaluated against a given
replaced token distribution may not always be indicative
of the downstream performance (see more in Section D).
Ideally, a discriminator should be able to detect any possible
tokens replaced in a sequence, regardless of the specific
distribution from which such replaced tokens are sampled.
To this end, we define the ideal optimization objective of
the discriminator as the highest possible discriminator loss
achieved by any replaced token distribution, namely the
probability distributions from which the replaced tokens are
sampled.

Definition 1 (Ideal optimization objective of the discrimina-
tor). Let P be a family of replaced token distributions. The
ideal optimization objective of the discriminator D can be
defined as

L∗(θD) = Ec,w sup
p∈P

Eŵ∼pℓ(D(c, ŵ),1ŵ=w). (4)

Practical optimization of the discriminator. In practice,
such an ideal optimization objective cannot be used as a loss
function for training the discriminator since it is not feasi-
ble to enumerate all possible replaced token distributions.

5
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Fortunately, if we have an assumption on the “difficulty” of
the replaced token distributions, we can bound the highest
discriminator loss over all possible replaced token distribu-
tions. This upper bound can further be approached by the
discriminator loss on the generator’s predictive distribution
as a replaced token distribution. Hence, the optimization
objective defined by a generator (i.e., Equation (3)) can be a
fair surrogate of the ideal objective.
Assumption 1 (Difficulty of the replaced token distribution).
We assume a discriminator is more likely to make detection
errors if the sampled replaced tokens recover the original
token more frequently, namely

Eŵ∼pℓ(D(c, ŵ),1ŵ=w) = FD(Eŵ∼p[1ŵ=w]) (5)

where FD : [0, 1] → R+ is a concave and monotonically
increasing function that is dependent on the discriminator
D.

We can now show that the ideal discriminator objective is
bounded by the surrogate objective defined by a generator.
The intuition here is that, given Assumption 1, the predictive
distribution of the generator should approximate the most
difficult replaced token distribution, and the approximate
error happens to be bounded by the performance of the
generator.
Lemma 1 (The discriminator objective defined by a gen-
erator is a surrogate of the ideal objective). Let mD =
maxc,w ∥ℓ(D(c, ŵ),1ŵ=w)∥2 be the upper bound on the
discriminator loss given any context-token pairs. Then we
have

L∗(θD) ≤ L̄G(θD) + 2−1/2mDL(θG)
1/2. (6)

Lemma 1 implies that training towards a surrogate objec-
tive defined by a generator LG(θD) can indeed optimize
the ideal discriminator objective. This justifies the basic
ELECTRA design which employs a generator to sample
replaced tokens for discriminator training. It also implies
that an under-performed generator may not be as effective
for optimizing the ideal objective since the distribution ap-
proximation error (the 2-nd term) would be much higher.

Large generator capacity may hurt optimization. How-
ever, well-performed generators may be less effective for
optimizing the ideal objective as well. This is because
well-performed generators will approach the most difficult
replace token distribution based on Assumption 1, thus creat-
ing significantly higher discriminator loss LG(θD) in Equa-
tion (6). We have the following Lemma to demonstrate
this.
Lemma 2 (Dependence of the discriminator loss on gen-
erator performance). Let VG = Ec,w[(− log pG(w|c) −
L(θG))

2] be the variance of the generator loss, we have

L̄G(θD) ≤ FD

(
(1 + VG/2) e

−L̄(θG) + VG/2 eε
)
. (7)

Lemma 2 shows that the discriminator loss given a gener-
ator is inversely correlated with the generator loss. This
means strong generators may create significantly higher dis-
criminator loss. If such a high discriminator loss cannot
be sufficiently reduced through the optimization process,
which is likely since the training budget is always limited,
the ideal objective cannot be sufficiently optimized as well.

Modeling the generator and discriminator optimiza-
tion. To further illustrate the effects of both the generator
and discriminator optimizations, we introduce a simplified
modeling of the optimization process, which is based on
trajectory analysis of gradient descent for deep linear neural
networks (Arora et al., 2018).

Proposition 1 (Gradient descent trajectory of deep linear
neural networks (informal)). In gradient descent, let θ(t)
be the model parameters after t updates, η be the learning
rate that meets certain regularities, and N be the number
of layers in the model, then we have

L(θ(t)) ≤ L(θ(0)) · (1− η · c
2(N−1)

N )t, (8)

where c is a positive constant.

We can now derive a complete picture of the effect of the
generator performance on the optimization of the discrimi-
nator. Together with Lemmas 1 and 2, we have the following
result.

Theorem 1 (Optimization of the ideal discriminator ob-
jective). Consider the discriminator optimization after the
generator is trained with several updates. Let ηG be the
generator’s learning rate and NG be the generator depth.
The generator loss after tG updates is

L(θG(tG)) = L(θG(0)) (1− ηG · ξG)tG , (9)

where ξG = c2(NG−1)/NG . Subsequently, let ηD be the
discriminator’s learning rate and ND be the discriminator
depth. Then after tD discriminator updates, we have

L∗(θD(tD)) ≤F
(
e−L(θG(tG))

)
· (1− ηD · ξD)

tD

+ 2−1/2mD [L(θG(tG))]
1/2

,
(10)

where we have neglected some constants in Equation (7) for
simplicity.

One can see that, in terms of generator optimization, increas-
ing the generator learning rate first helps and then hurts the
discriminator performance for a given discriminator setting,
as also illustrated in Figure 5. This results in a sweet spot
where the generator learning rate is the best for the discrim-
inator performance. Similarly, since ξ ∝ N , increasing
the generator depth would also first help and then hurt the
discriminator performance.

6
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In terms of discriminator optimization, increasing the dis-
criminator learning rate or depth can almost always help
the discriminator performance. In an ideal case, if the dis-
criminator optimization is sufficient, for example, by letting
ηD · ξD ≈ 1 or tD ≈ ∞ in Equation (10), then the dis-
criminator performance will improve monotonically with
the generator performance, as also illustrated in Figure 5
where the discriminator learning rate is sufficiently large.
Unfortunately, it is not possible to always sufficiently opti-
mized the discriminator in practice given training instability
and/or limited training budgets.

Interestingly, Equation (10) shows that, with increasingly
sufficient discriminator optimization, the best generator
should shift to one with a larger capacity, as also illustrated
in Figure 5. One may find this echoes the empirical obser-
vation in Figure 4.

Finally, Equation (10) also reflects the limitation of the orig-
inal ELECTRA design mentioned in Section 3.2. As also
illustrated in Figure 5, since the generator and discrimina-
tor are assigned almost the same learning rate, the original
design can only reach a line (1-D subspace) in the entire
optimization space. Further, due to the training instability of
the generator, this line is truncated where the discriminator
learning rate is still small and thus the discriminator per-
formance is still suboptimal. In contrast, DecoupledOptim
can increase the discriminator learning rate without being
affected by the generator learning thus achieving better per-
formance by exploring the entire optimization space.
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Figure 5. Illustration of the discriminator performance in terms
of the ideal objective (denoted by the color, and the darker color
corresponds to better performance) with respect to the generator
learning rate (x-axis) and discriminator learning rate (y-axis). The
line represents the space that the original ELECTRA design can
possibly reach by modulating its learning rate in an ideal scenario.
The dashed line represents the space that the original ELECTRA
fails to reach in practice due to the training instability of the gener-
ator.

6. Experiments
6.1. Experiment Setup

Pretraining Setup. We conduct experiments with
two standard settings, Base and Large, following previous
works (Devlin et al., 2019; Meng et al., 2021; Bajaj et al.,
2022). Specifically, we employ Wikipedia and BookCor-
pus (Zhu et al., 2015) (16 GB of texts, 256M samples) for
pretraining with sequence length as 512. We use a cased
sentence piece BPE vocabulary of 128K tokens follow-
ing (He et al., 2020), since larger vocabulary size improves
LLMs without significant additional training and inference
cost (Bao et al., 2020).

We conduct pretraining for 125K updates with a batch size
of 2048. For our DecoupledOptim, we use the same hy-
perparameter combination in both Base and Large settings,
namely the generator learning rate is set as 2 × 10−4 and
the discriminator learning rate is set as 1.5×10−3. Detailed
hyperparameter settings can be found in Appendix B.

Model Architecture. Our main model (discriminator) in
the Base setting follows the BERTbase architecture (Devlin
et al., 2019), namely a 12-layer transformer with 768 hidden
dimensions plus T5 relative position encoding (Raffel et al.,
2019) with 32 bins. We employ Admin (Liu et al., 2020a;
2021) for model initialization to stabilize the training. Our
main model in the Large setting follows BERTLarge, namely
a 24-layer transformer with 1024 hidden dimensions and
128 relative position encoding bins. Our auxiliary model
(generator) in Base has the same architecture as the main
model, which is larger than the recommended size in previ-
ous works (Clark et al., 2020; Meng et al., 2021) (typically 4
layers), but yields significantly better results. Our auxiliary
model in Large has 8 layers with other settings same as the
main model.

Downstream evaluation setup. We conduct the evalu-
ation on downstream tasks following the setup in previous
works (Meng et al., 2021; Bajaj et al., 2022). Specifically,
we evaluate on GLUE (Wang et al., 2018) language under-
standing benchmark with a single-task, single-model fine-
tuning setting following previous works. We employ the
suggested training hyperparameters such as the AdaMax op-
timizer (Kingma & Ba, 2015) from Liu et al. (2019a; 2020b).
We report Spearman correlation on STS-B, Matthews corre-
lation on CoLA, and accuracy on the rest of the datasets. De-
tailed hyperparameter settings can be found in Appendix B.

Baselines. We compare with various pretrained mod-
els that are consistent with our basic settings (dataset and
training steps) (see Table 1). For the Large setting, we also
compare with pretrained models that consume similar com-
putation costs, for example, in terms of the total number of
processed tokens. We report the results of baseline models
from the corresponding papers and their follow-up works,
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Table 1. Results on the GLUE development set. “†” indicates the model is pretrained for 1M updates with batch size of 256. “‡” indicates
the model is pretrained for 100K updates with batch size of 8K. “-” indicates that no public reports are available.

Model MNLI-(m/mm) QQP QNLI SST-2 CoLA RTE MRPC STS-B AVG
(Acc.) (Acc.) (Acc.) (Acc.) (Mat. Corr.) (Acc.) (Acc.) (Spear. Corr.)

Base Setting

BERT (Devlin et al., 2019) 84.5/ - 91.3 91.7 93.2 58.9 68.6 87.3 89.5 83.1
RoBERTa (Liu et al., 2019b) 85.8/85.5 91.3 92.0 93.7 60.1 68.2 87.3 88.5 83.3
XLNet (Yang et al., 2019) 85.8/85.4 - - 92.7 - - - - -
DeBERTa (He et al., 2020) 86.3/86.2 - - - - - - - -
TUPE (Ke et al., 2020) 86.2/86.2 91.3 92.2 93.3 63.6 73.6 89.9 89.2 84.9
ELECTRA (Clark et al., 2020) 86.9/86.7 91.9 92.6 93.6 66.2 75.1 88.2 89.7 85.5
MC-BERT (Xu et al., 2020) 85.7/85.2 89.7 91.3 92.3 62.1 75.0 86.0 88.0 83.7
COCO-LM (Meng et al., 2021) 88.5/88.3 92.0 93.1 93.2 63.9 84.8 91.4 90.3 87.2
AMOS (Meng et al., 2022) 88.9/88.7 92.3 93.6 94.2 70.7 86.6 90.9 91.6 88.6
DeBERTaV3 (He et al., 2021) 89.3/89.0 - - - - - - - -
METRO (Bajaj et al., 2022) 89.0/88.8 92.2 93.4 95.0 70.6 86.5 91.2 91.2 88.6
METROReImp 89.0/88.9 92.0 93.4 94.4 70.1 86.3 91.4 91.2 88.5
DecoupledOptim 89.4/89.7 92.4 93.6 94.7 70.6 88.8 92.2 91.1 89.1

Large Setting

BERT† 86.6/ - - - - - - - - -
RoBERTa‡ 89.0/ - 91.9 93.9 95.3 66.3 84.5 90.2 91.6 87.8
XLNet† 88.4/ - 91.8 93.9 94.4 65.2 81.2 90.0 91.1 87.0
TUPE† 88.2/88.2 91.7 93.6 95.0 67.5 81.7 90.1 90.7 87.3
METROReImp 89.9/90.2 92.5 94.5 94.3 69.7 88.8 91.9 91.6 89.2
DecoupledOptim 90.5/90.6 92.4 94.7 96.1 72.1 88.4 91.2 92.2 89.7

whichever are higher. We also reimplement METRO as our
baselines 6.

6.2. Results

Main Results. Table 1 lists the downstream evaluation
results of DecoupledOptim and competitive baselines under
the Base and Large setting. DecoupledOptim outperforms
previous state-of-the-art by notable margins in terms of both
the overall GLUE score and specific results on large datasets,
which are considered to be more reliable.

Robustness to Generator Setting. We experiment with a
wide variety of pretraining hyperparameters in the Base set-
ting to validate the robustness of DecoupledOptim with re-
spect to the change of generator capacity, since it is the main
focus of this paper. We use our reimplemented METRO
as a strong baseline. As shown in Figure 6, DecoupledOp-
tim yields more stable downstream performance when the
generator capacity varies/the hyperparameter changes. De-
coupledOptim also achieves consistently better performance
when employing generators with larger sizes.

Pretraining Efficiency. In each pretraining step, De-
coupledOptim introduces no additional model parameters
or computation cost compared to the original ELECTRA

6Both the re-implemented METRO and our method are im-
plemented within the same codebase, which is built on top of
FAIRSEQ, a popular open-sourced package (Ott et al., 2019).
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Figure 6. Discriminator performance on downstream tasks (MNLI
Avg m/mm) versus the generator performance for a variety of hy-
perparameter combinations that can affect the generator training.
For the original ELECTRA design (denoted by “▲”) specifically,
we modulate the loss weight λ in {50, 70, 100, 200} and the learn-
ing rate in {10, 5, 2, 1} × 10−4. For our DecoupledOptim tech-
nique (denoted by “•”) specifically, we modulate the generator
learning rate also in {10, 5, 2, 1} × 10−4. For both, we modulate
the generator depth in {4, 8, 12}. For diverged training, the com-
bination of hyperparameters is not included in the figure.
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design. Note that separate generator and discriminator
embeddings in DecoupledOptim require exactly the same
amount of operations as the shared embeddings in the orig-
inal ELECTRA design, since the gradients of the embed-
dings have to be back-propagated from the generator and
discriminator loss separately in both scenarios. Decouple-
dOptim does induce additional memory consumption due
to separate embeddings. To mitigate this, one can maintain
the shared embedding while employing separate optimizers,
by merging the embedding gradients in a custom manner,
which we would like to leave as a future work.

7. Conclusion
In this study, we conduct systematic analyses on the impact
of generator capacity on the performance of the discrimina-
tor in ELECTRA-style pretraining. Our investigation begins
with the observation that using a large auxiliary generator of-
ten results in a degradation of the downstream performance
of the main discriminator model. Our analyses suggest that
such performance degeneration is due to inadequate control
of the generator capacity during pretraining, highlighting a
long-overlooked issue in ELECTRA-style training. Based
on our findings, we propose a simple-yet-effective method
that greatly improves the training robustness and down-
stream performance, which further verified our intuition.
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A. Proof
Bound the ideal discriminator objective. Given Assumption 1, it is easy to see that the ideal discriminator objective can
be bounded as L∗(θD) ≤ L̃∗(θD), where

L̃∗(θD) := Ec,wEŵ∼δw|c(ŵ)ℓ(D(c, ŵ),1ŵ=w), (11)

where δw|c(ŵ) is a Dirac measure defined by the original token, namely the discriminator loss is maximized if the original
token is always sampled.

We can now proceed to prove the two Lemmas in Section 5.

Lemma 1.

Proof. We mainly utilize the Cauchy-Schwartz inequality, the equivalence between p-norms and Pinsker’s inequality in this
proof.

First, we note that,

L∗(θD) ≤ L̃∗(θD) = L̄G(θD) + (L̃∗(θD)− L̄G(θD)),

where the second term, the difference between two objectives, can be further bounded as

L̃∗(θD)− L̄G(θD)

=Ec,wEŵ∼δw|cℓ(D(c, ŵ),1ŵ=w)− Ec,wEw∼pG
ℓ(D(c, ŵ),1ŵ=w)

=Ec,w

∑
ŵ

ℓ(D(c, ŵ),1ŵ=w)(δw|c(ŵ)− pG(ŵ|c))

≤Ec,wMD(c, w)
∥∥δw|c(ŵ)− pG(ŵ|c)

∥∥
2

≤Ec,wMD(c, w)
∥∥δw|c(ŵ)− pG(ŵ|c)

∥∥
1

≤2−1/2Ec,wMD(c, w)
[
DKL(δw|c(ŵ)∥pG(ŵ|c))

]1/2
=2−1/2Ec,wMD(c, w)

[
H(δw|c(ŵ), pG(ŵ|c))

]1/2
≤2−1/2mD

[
Ec,wH(δw|c(ŵ), pG(ŵ|c))

]1/2
=2−1/2mD [Ec,wH(δŵ(w|c), pG(ŵ|c))]1/2

=2−1/2mD [EcH(q(ŵ|c), pG(ŵ|c))]1/2

=2−1/2mDL(θG)
1/2

(12)

where MD(c, w) = ∥ℓ(D(c, ŵ),1ŵ=w)∥2 and mD = maxc,w MD(c, w).

Lemma 2.

Proof. We mainly utilize a corollary of Jensen’s inequality on concave functions, as well as a simple trick that expands
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E[log x] around logE[x].

L̄G(θD)

= Ec,wEŵ∼pG
ℓ(D(c, ŵ),1ŵ=w)

≤ Ec,w FD(Eŵ∼pG
1ŵ=w)

≤ Ec,w FD(pG(w|c))
= Ec,w FD(elogPG(w|c))

≤ FD(Ec,we
logPG(w|c))

= FD

(
Ec,w

[
eE log pG(w|c) + eE log pG(w|c)(log pG(w|c)− E log pG(w|c))+

1

2
eE log pG(w|c)+ε(log pG(w|c)− E log pG(w|c))2

])
= FD

(
eE log pG(w|c) +

VG

2
eE log pG(w|c)+ε

)
= FD

((
1 +

VG

2

)
e−L(θG) +

VG

2
eε
)
,

where VG = E(log pG(w|c)− E log pG(w|c))2.

Theorem 1.

Proof. This is a direct consequence of Lemma 1 and Lemma 2. We can write

L∗(θD) ≤ L̃∗(θD) = L̄G(θD) + (L̃∗(θD)− L̄G(θD))

≤ FD

(
(1 + VG/2) e

−L̄(θG) + VG/2 eε
)
+ 2−1/2mDL(θG)

1/2.
(13)

Note that the discriminator optimization only applies on the first term. Using the existing result Proposition 1 on both the
generator and discriminator optimization yields the theorem.

B. Hyperparameter settings
Our hyperparameter settings follow the standard practice in previous works. For MLM pretraining of the generator, we fix
the mask ratio as 15%. When sampling sequences for pretraining, we respect document boundaries and avoid concatenating
texts from different documents. We did not mask special tokens following the standard BERT practice. We conduct
pretraining on NVIDIA Tesla V100 with 32GB memory and fine-tuning on NVIDIA Tesla P100 with 16GB memory.
Table 2 lists the detailed hyperparameters used in pretraining. Table 3 lists the detailed hyperparameters used for fine-tuning.

C. A Roadmap to Hyperparameter Tuning
The separate generator and discriminator optimizers introduced by DecoupledOptim are in line with our understanding
of the distinct roles of generator optimization and discriminator optimization in ELECTRA-style training. Therefore,
DecoupledOptim is much more friendly to hyperparameter tuning, which often requires excessive efforts especially for
LLM pre-training. Here we provide a guideline on the hyperparameter selection in DecoupledOptim to achieve the best
pretraining performance.

First, since DecoupledOptim is no longer sensitive to the generator size, one can choose a generator as large as possible
given hardware constraints. Next, one can find a discriminator learning rate as large as possible with the generator learning
rate fixed as any value, provided that the training is stable. This is based on our understanding that a larger discriminator
learning rate can almost always benefit the pretraining. Finally, one can locate the best generator learning rate through an
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Table 2. Hyperparameter settings used in pretraining.

Hyperparameters Base Large

Max Steps 125K 125K
Optimizer Adam Adam
Peak Learning Rate (Generator) 2× 10−4 2× 10−4

Peak Learning Rate (Discriminator) 1.5× 10−3 1.5× 10−3

Batch Size 2048 2048
Warm-Up Steps 10K 10K
Sequence Length 512 512
Relative Position Encoding Buckets 32 128
Relative Position Encoding Max Distance 128 256
Adam ϵ 1e−6 1e−6
Adam (β1, β2) (0.9, 0.98) (0.9, 0.98)
Clip Norm 2.0 2.0
Dropout 0.1 0.1
Weight Decay 0.01 0.01

Table 3. Hyperparameter search space in fine-tuning.

Hyperparameters Base Large

Sequence Length 256 256
Optimizer AdaMax AdaMax
Peak Learning Rate {5e-5,1e-4, 3e-4} {5e-5,1e-4, 3e-4}
Max Epochs {2,3,5,10, 20} {2,3,5,10, 20}
Batch size {16, 32, 64, 128} {8, 16, 32, 64}
Learning rate decay Linear Linear
Weight Decay {0, 0.01} {0, 0.01}
Warm-up Proportion {6 %, 10 %, 30%} {6 %, 10 %, 30%}
Adam ϵ 1e-6 1e-6
Adam (β1, β2) (0.9, 0.98) (0.9, 0.98)
Gradient Clipping 1.0 1.0
Dropout 0.1 0.1
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efficient binary search, since increasing the generator learning rate first helps and then hurts the training. In Figure 7, we
show our practice of finding the best hyperparameter combination for the Base setting.
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Figure 7. Practice of finding the best hyperparameter combination for the Base setting. (Left): We search the largest possible discriminator
learning rate as long as the training is stable. (Right): Upon locate the largest discriminator learning rate, we binary search the best
generator learning rate since the its correlation with the performance is an unimodal curve.

D. Understand Generator “Overfitting” in ELECTRA
In ELECTRA-style pretraining, it has been widely observed that a large generator consistently hurts the discriminator
performance, as also shown in Figure 1 for “Baseline”. It has been speculated that a large generator may prevent the
discriminator from learning effectively (Clark et al., 2020), yet the exact reason remains largely unclear.

Does a large generator hurt cross-domain generalization? A natural explanation to the “overfitting” phenomenon
in ELECTRA-style pretraining is that a large generator may impair the cross-domain generalization, namely, it hurts the
transferability of the discriminator to downstream tasks since the gap between pretraining performance and downstream
performance is commonly seen, especially when the pretraining task and the downstream task are significantly different (Zoph
et al., 2020; Wei et al., 2021).

However, we show that the generator “overfitting” phenomenon is not, or at least not completely, due to a larger transferring
gap between RTD-based pretraining and downstream tasks such as MNLI. A large generator may already hurt the pretraining
performance, in that the discriminator becomes less effective on detecting replaced tokens.
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Figure 8. The binary classification performance of the discriminators on detecting replaced tokens generated by their individual jointly-
trained generators versus that by a standalone generator. (Left): Accuracy (Right): F1-score. Here the standalone generator has 4 layers
and is trained for 125k steps.

Fair evaluation of RTD performance. To demonstrate this, we need to first measure the RTD performance of
discriminators jointly trained with different generator sizes in a fair manner. The standard binary classification performance
reported in RTD-based pertraining is clearly not a measure that is comparable across different discriminators, as they are
evaluated with different jointly-trained generators.

Alternatively, we propose to use a standalone generator to measure the RTD performance fairly. A standalone generator
is pretrained and shared across evaluations which means we can maintain the difficulty of the generated replaced tokens
for different discriminators. As shown in Figure 8, the binary classification performance of discriminators against such a
standalone generator ranks consistently with different metrics, while the jointly-trained generators report mixed rankings.
This suggests the standalone generator is more reliable to measure the RTD performance.

Large generators cause inferior RTD performance. With a fair measure of the RTD pretraining performance, we can
now observe that a larger generator in fact hurts the pretraining. As shown in Figure 9, when trained with a larger generator,
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Figure 9. (Left): Averaged matched/mismatched accuracy on the MNLI dataset by fine-tuning discriminators trained along with different
generator sizes. (Right): Fair measure of the RTD performance of discriminators jointly trained with generators of different sizes. Here
the standalone generator has 4 layers and is trained for 125k steps.

the discriminator is not able to detect the replaced tokens as effectively. Subsequently, the performance on downstream tasks
degrades as well. Therefore, to understand and potentially and rectify generator “overfitting”, it is necessary to first dig into
the pretraining stage of ELECTRA.

D.1. Does a large generator hurt in-domain generalization?

We conjecture that a large generator hurts RTD-based pretraining because the replaced tokens generated by it may lack
diversity and be overfitted easily, thus hurting RTD performance.
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Figure 10. RTD performance (F1-score) of discriminators jointly trained with generators of different sizes (2, 4, 8, 12 layers), measured
against standalone generators of different sizes (2, 4, 8, 12 layers)

Overfitting the jointly-trained generator? One possibility is that a large generator may predict the token at some
masked positions with a low-entropy distribution, which means the replaced token at this particular position may almost
always be the same. This prevents the discriminator from learning to detect other diverse replaced tokens. However, we find
that this might not be the case. For example, a BERT-Base discriminator gets an RTD performance of 31.4% in terms of
F1-score against its jointly-trained generator with 12 layers. In comparison, when evaluated against a standalone generator
sharing the exact same architecture as the jointly-trained generator, but initialized with a different random seed, it gets an
F1-score of 30.9%, which shows no significant discrepancy. Therefore, it is not likely that the discriminator is overfitting a
jointly-trained large generator itself.

Overfitting the size? It is also possible that large generators may generate replaced tokens with similar properties. For
example, the replaced tokens generated by different generators, albeit randomly initialized, are the same or follow similar
distributions. In this case, the discriminator may overfit generators of this particular size. However, Figure 10 shows that this
may not be the case. A large generator also hurts the RTD performance against a standalone generator of exactly the same
size. Furthermore, one may find that a larger generator in fact hurts the RTD performance against standalone generators of
multiple different sizes, which suggests that a large generator may hurt RTD-based pretraining “universally”.
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D.2. How to reliably measure the performance of RTD pretraining?

In the above sections we mentioned that to reliably measure the performance of RTD pretraining, it is better to evaluate
the discriminator against a standalone generator. However, we note that not all standalone generators can reliably measure
the RTD performance such that it can reflect the downstream performance. As shown in Figure 10, a standalone generator
with 2 layers will erroneously report the discriminator trained with a 2-layer generator is better than the one trained with a
4-layer generator, while on downstream tasks the latter is better. Therefore, we speculate that this is because the replaced
token distributions generated by a 2-layer generator is too simple in the verge of random, thus is not able to reflect the
discriminator’s capacity of language understanding. Based on this observation, we believe to reliably measure the RTD
performance we should sample replaced tokens from a distribution that is sufficiently difficult, for example, a generator with
a reasonably large size.
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