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Abstract
Many compression techniques have been pro-
posed to reduce the communication overhead of
Federated Learning training procedures. How-
ever, these are typically designed for compress-
ing model updates, which are expected to decay
throughout training. As a result, such methods are
inapplicable to downlink (i.e., from the parameter
server to clients) compression in the cross-device
setting, where heterogeneous clients may appear
only once during training and thus must down-
load the model parameters. Accordingly, we pro-
pose DoCoFL – a new framework for downlink
compression in the cross-device setting. Impor-
tantly, DoCoFL can be seamlessly combined with
many uplink compression schemes, rendering it
suitable for bi-directional compression. Through
extensive evaluation, we show that DoCoFL of-
fers significant bi-directional bandwidth reduction
while achieving competitive accuracy to that of a
baseline without any compression.

1. Introduction
In recent years, there has been an increasing interest in fed-
erated learning (FL) as a paradigm for large-scale machine
learning over decentralized data (Konečnỳ et al., 2016a;
Kairouz et al., 2021). FL enables organizations and/or de-
vices, collectively termed clients, to jointly build better and
more robust models by relying on their collective data and
processing power. Importantly, the FL training procedure
occurs without exchanging or sharing client-specific data,
thus ensuring some degree of privacy and compliance with
data access rights and regulations (e.g., the General Data
Protection Regulation (GDPR) implemented by the Euro-
pean Union in May, 2018). Instead, in each round, clients
perform local optimization using their local data and send
only model updates to a central coordinator, also known as
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the parameter server (PS). The PS aggregates these updates
and updates the global model, which is then utilized by the
clients in subsequent rounds.

One of the main challenges in FL is the communication bot-
tleneck introduced during the distributed training procedure.
To illustrate this bottleneck, consider the following exam-
ple of a real FL deployment presented by McMahan et al.
(2022): their training involves a small neural network with
1.3 million parameters; in each round there are 6500 partici-
pating clients; and the model is trained over 2000 rounds. A
simple calculation shows that the total required bandwidth
to and from the PS during this training is ≈ 61.5 TB. Since
modern machine learning models have many millions (or
even billions) of parameters and we might have more partic-
ipants, FL may result in excessive communication overhead.

To deal with this overhead, many bandwidth reduction tech-
niques have been proposed. These include taking multiple
(rather than a single) local optimization steps (McMahan
et al., 2017), quantization techniques (Seide et al., 2014; Al-
istarh et al., 2017; Wen et al., 2017; Bernstein et al., 2018a;b;
Karimireddy et al., 2019; Jin et al., 2020; Shlezinger et al.,
2020), low-rank decomposition (Vogels et al., 2019), sketch-
ing (Ivkin et al., 2019; Rothchild et al., 2020), and dis-
tributed mean estimation (Lyubarskii & Vershynin, 2010;
Suresh et al., 2017; Konečnỳ & Richtárik, 2018; Vargaftik
et al., 2021; 2022; Safaryan et al., 2022). However, as we
detail in §2, a direct application of these techniques is less
suitable for downlink compression, i.e., from the PS to the
clients, in the cross-device setup in which new and hetero-
geneous clients may participate at each round and thus must
download the model parameters. This is in contrast to the
cross-silo setup in which the PS can compress and send a
global update (i.e., clients’ aggregated update) to all silos.

To the best of our knowledge, only a handful of works
consider bi-directional compression, i.e., compression from
the clients to the PS and vice versa. These works mainly rely
on per-client memory mechanism (Tang et al., 2019; Zheng
et al., 2019; Liu et al., 2020; Philippenko & Dieuleveut,
2020; 2021; Gruntkowska et al., 2022) or require keeping
an updated copy of the model on all clients (Horvóth et al.,
2022), thus targeting either distributed learning or FL with
full or partial but recurring participation (e.g., cross-silo FL).
Such solutions are less suitable for large-scale cross-device
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FL, where a client may appear only a handful of times, or
even just once, during the entire training procedure.

It is important to stress that the significance of bi-directional
bandwidth reduction for cross-device FL goes far beyond
cost reduction, energy efficiency, and carbon footprint con-
siderations. In fact, inclusion, fairness, and bias are at
the very heart of cross-device FL as, according to recent
sources (Sumra, 2020; Howdle, 2022), the price of a wire-
less connection and its quality admits differences of orders
of magnitude among countries. This may prevent large pop-
ulations from contributing to cross-device FL training due
to costly and unstable connectivity, resulting in biased and
less accurate models.

Accordingly, in this work we introduce DoCoFL, a novel
downlink compression framework specifically designed for
cross-device FL. Importantly, it operates independently of
many uplink compression techniques, making it suitable for
bi-directional compression in cross-device setups.

The primary challenge addressed by DoCoFL is that clients
must download model parameters (i.e., weights) instead of
model updates. Unlike updates, which are proportional to
gradients and thus their norm is expected to decrease dur-
ing training, the model parameters do not decay, rendering
low-bit compression methods undesirable. As a result, and
since clients can only download the updated model weights
during their designated participation round, this can lead to
a network bottleneck for low-resourced clients.

To address this bottleneck, DoCoFL decomposes the down-
load burden by utilizing previous models, referred to as
anchors, which clients can download prior to their partici-
pation round. Then, at the designated participation round,
clients only need to download the correction, i.e., the dif-
ference between the updated model and the anchor. As
the correction is proportionate to the sum of previous up-
dates, it is expected to decay, allowing for the use of low-bit
compression methods. To ensure the correction term, PS
memory footprint, and PS computational overhead remain
manageable, the available anchors are updated periodically.
This approach reduces the amount of bandwidth required
by the clients online (i.e., at their participation round). To
reduce the overall downlink bandwidth usage, we further de-
velop and utilize an efficient anchor compression technique
with an appealing bandwidth-accuracy tradeoff.

Contributions. We summarize our contributions below,

• We propose a new framework (DoCoFL) that both en-
larges the time window during which clients can obtain
the model parameters and reduces the total downlink band-
width requirements for cross-device FL.

• We show that DoCoFL provably converges to a stationary
point when not compressing anchors and give an asymp-
totic convergence rate.

• We design a new compression technique with strong em-
pirical results, which DoCoFL uses for anchor compres-
sion and can be of independent interest. We provide the
theoretical intuition and empirical evidence for why Do-
CoFL with anchor compression works.

Finally, we show over image classification and language
processing tasks that DoCoFL consistently achieves model
accuracy that is competitive with an uncompressed baseline,
namely, FedAvg (McMahan et al., 2017) while reducing
bandwidth usage in both directions by order of magnitude.

2. Background and Related Work
In this section, we overview mostly related work and de-
tail the challenges in designing a bi-directional bandwidth
reduction framework for cross-device FL.

2.1. Uplink vs. Downlink Compression

In the context of FL, uplink (i.e., client to PS) and downlink
(i.e., PS to client) compression are inherently different and
should not be treated in the same manner. In particular,
many recent uplink compression solutions (e.g., Konečnỳ
et al. (2016b); Alistarh et al. (2017)) partially rely on two
properties to obtain their effectiveness:

Averaging. A fundamental property arises when many
clients send their compressed gradients for averaging at
the PS. If the clients’ estimates are independent and unbi-
ased, the error in estimating their mean by calculating their
estimations’ mean is decreasing linearly with respect to the
number of clients. Thus, having more clients in each round
allows for more aggressive and more accurate compression.

Error Decay. Essentially, unbiased compression of updates
results in an increased variance in their estimation. This
increase can be compensated by decreasing the learning rate.
Moreover, the effect of update compression is expected to
diminish since the expected update decays as the training
process approaches a stationary point. This is not the case
when compression model parameters.

For downlink compression, we immediately lose the averag-
ing property since, by design, there is only one source with
whom the clients communicate, namely, the PS. Regard-
ing the error decay property, we must further distinguish
between different FL setups as described next.

2.2. Cross-silo vs. Cross-device FL

FL can be divided into two types based on the nature of the
participating clients (Kairouz et al. (2021), Table 1).

Silos. In cross-silo FL, the clients are typically assumed
to be active throughout the training procedure and with
sufficient compute and network resources. Silos are typi-
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Table 1. Averaging and Error Decay in different setups.

Averaging Error Decay
Uplink ✓ ✓

Cross-silo × ✓Downlink Cross-device × ×

cally associated with entities such as hospitals that jointly
train a model for better diagnosis and treatment (Ng et al.,
2021) or banks that jointly build better models for fraud and
anomalous activity detection (Yang et al., 2019).

Indeed, silos allow for the design of efficient compression
techniques that rely on client persistency and per-client
memory mechanisms that are used for, e.g., compressing
gradient differences, employing error feedback, and learning
control variates (Alistarh et al., 2018; Karimireddy et al.,
2020; Philippenko & Dieuleveut, 2020; Gorbunov et al.,
2021; Richtárik et al., 2021). While most of these techniques
consider only uplink compression, some recent works target
bi-directional compression by utilizing the same property
of using per-client memory and relying on repeated client
participation (Tang et al., 2019; Liu et al., 2020; Philippenko
& Dieuleveut, 2020; 2021; Gruntkowska et al., 2022).

Devices. In cross-device FL, clients are typically assumed
to be heterogeneous and not persistent to the extent that a
client often participates in a single out of many thousands
of training rounds. Also, in this setup, clients may often
admit compute and network constraints. Devices are usu-
ally associated with entities such as laptops, smartphones,
smartwatches, tablets, and IoT devices. A typical example
of a cross-device FL application is keyboard completion for
android devices (McMahan & Ramage, 2017).

Unlike in silos with full or partial but repeated participation,
compression techniques for devices that appear only once or
a handful of times cannot rely on having some earlier state
for or on that device. This renders methods that rely on per-
client memory or learned control variates less suitable for
such cross-device FL setups. Indeed, recent gradient com-
pression techniques can be readily used for bi-directional
compression in the cross-silo setup or only uplink compres-
sion in both setups (Konečnỳ et al., 2016b; Alistarh et al.,
2017; Suresh et al., 2017; Ramezani-Kebrya et al., 2021;
Vargaftik et al., 2021; 2022; Safaryan et al., 2022).

2.3. Putting It All Together

As summarized in Table 1, differences in the clients’ nature
and the compression direction (i.e., uplink vs. downlink)
significantly affect the efficiency of bandwidth reduction
techniques. In the considered setups, downlink compression
is more challenging than uplink compression due to the lack
of averaging and received considerably less attention in the

literature. Moreover, for the cross-device setup, the problem
is more acute due to not having error decay as well.

3. DoCoFL

In this section, we present DoCoFL. We start with describ-
ing our design goals, which are derived from the challenges
outlined in the previous section, followed by a formal defi-
nition of the federated optimization problem. Then, in §3.1,
we give intuition and introduce our framework. In §3.2, we
detail about an important element of DoCoFL, namely, the
client selection process employed by the PS. Finally, we
provide a theoretical convergence result in §3.3.

Design Goals. Motivated by the discussion in the previous
section, we aim at achieving two goals to deal with the low
bandwidth and slow and unstable connectivity conditions
that edge devices may experience:

1. Enlarging the time window during which a client can
download the model weights from the PS.

2. Reducing the bandwidth requirements in the downlink
direction.

Achieving both these goals will enable more heterogeneous
clients to participate in the training process, which in turn
may reduce bias and improve fairness1.

Preliminaries. We use ∥·∥ to denote the L2 norm and
for every n ∈ N, [n] := {1, . . . , n}. Let N be the number
of clients participating in the federated training procedure.
Each client i ∈ [N ] is associated with a local loss function
fi, and our goal is to minimize the loss with respect to all
clients, i.e., to solve

min
w∈Rd

f(w) :=
1

N

N∑
i=1

fi(w) . (1)

Unlike in standard distributed optimization or cross-silo
FL with full or partial but repeated participation, in cross-
device FL, only a subset of S clients participate in each
optimization round and typically S ≪ N (e.g., S in the hun-
dreds/thousands and N in many millions). Thus, clients are
not expected to repeatedly participate in the optimization.

Since FL mostly considers non-convex optimization (e.g.,
neural networks), and global loss minimization of such mod-
els is generally intractable, we focus on finding an approxi-
mate stationary point, i.e., a point w for which the expected
gradient norm E∥∇f(w)∥ tends to zero.

For the purpose of formal analysis, we make a few standard
assumptions, namely, that f is bounded from below by

1By fairness, we refer to the situation where clients in regions
with limited, unstable, and costly connectivity are keen to partici-
pate in the training procedure.
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f∗, the local functions {fi} are β-smooth, i.e., ∥∇fi(w)−
∇fi(u)∥ ≤ β∥w − u∥,∀w, u ∈ Rd, and the access to each
local function is done via a stochastic gradient oracle, i.e.,

Assumption 3.1. For any w ∈ Rd, client i computes an
unbiased gradient estimator gi(w) with a variance that is
upper bounded by σ2, i.e.,

E[gi(w)] = ∇fi(w), E∥gi(w)−∇fi(w)∥2≤σ2 . (2)

Additionally, we assume that the dissimilarity of the local
gradients is bounded (i.e., limited client data heterogeneity).

Assumption 3.2. There exist constants G,B ∈ R+ such
that for every w ∈ Rd:

1

N

N∑
i=1

∥∇fi(w)∥2 ≤ G2 +B2∥∇f(w)∥2 . (3)

While some works consider milder (Khaled & Richtárik,
2020; Haddadpour et al., 2021) or no (Gorbunov et al., 2021)
assumptions on client heterogeneity in some settings (e.g.,
exact gradients and/or full participation), this assumption is
standard in heterogeneous federated learning (Karimireddy
et al., 2020; Wang et al., 2020; Reddi et al., 2021).

3.1. Overview

A naive approach to reduce bandwidth in the downlink di-
rection is to apply some compression to the model weights
and have all participating clients download the compressed
weights. That is, in each round t, the participating clients
St ⊆ [N ] obtain a compressed version of the model weights
ŵt = Cw(wt), for some compression operator Cw. The
clients can then compute an unbiased gradient estimator at
ŵt and send it back to the PS for aggregation.

While this method is fairly simple, it has inherent disad-
vantages with respect to our goals. First, there is no en-
larged time window during which clients can download the
compressed model weights, as they can only do so at their
participation round. Second, unlike with gradient compres-
sion, convergence in this setting can be guaranteed only to
a proximity that is proportional to the compression error,
rendering standard low-bit compression schemes unusable.
Indeed, this is the case even for strongly convex functions,
as shown by Chraibi et al. (2019) and reinforced by our
counter-example in Appendix A.

To tackle these challenges, our approach relies on the fol-
lowing relation: for any τ ≥ 0, we can decompose wt into
two ingredients: Anchor and Correction. Formally,

wt = wt−τ︸ ︷︷ ︸
(i) Anchor

+wt − wt−τ︸ ︷︷ ︸
(ii) Correction

.

This implies that:

Algorithm 1 DoCoFL – Parameter Server

Input: Initial weights w0 ∈ Rd, learning rate η, weights (an-
chors) compression Cw , correction compression Cc, anchor com-
pression rate K, compressed anchors queue Q← ∅ with capac-
ity V , client participation process P(·)
for t = 0, . . . , T − 1 do

▷ Anchor Deployment
if t mod K == 0 then

Compress anchor, Cw(wt)
Q.enqueue(Cw(wt)) ▷ If Q is full, Q.dequeue()

end if
▷ Client Participation Process
St ← P(t) ▷ |St| = S; see §3.2

▷ Optimization
for client i ∈ St in parallel do

Send compressed correction, ∆̂i
t ▷ See Algorithm 2

Obtain compressed local gradient, Cg(ĝit)
end for
Aggregate local gradients, ĝt := 1

S

∑
i∈St
Cg(ĝit)

Update weights, wt+1 = wt − ηĝt

end for

Algorithm 2 DoCoFL – Client i
Input: Gradient compression Cg
Notification round s (by process P):
Obtain participation round t ▷ i ∈ P(t), s ≤ t
Obtain latest compressed anchor, yi

t ← Q.top() ▷ Within time
window [s, t]

Participation round t:
Obtain compressed correction, ∆̂i

t = Cc(wt − yi
t)

Construct current model estimate, ŵi
t = yi

t + ∆̂i
t

Compute local gradient, ĝit = git(ŵ
i
t)

Compress and send local gradient, Cg(ĝit), to PS

(i) If a client is notified at round t− τ about its upcoming
participation at round t, it can start downloading the
anchor, that is, wt−τ , ahead of its participation round,2

(ii) and thus, at round t, the client only needs to download
the correction, that is, wt − wt−τ .

Yet, merely relying on this relation is not sufficient to
achieve our goals; additionally, we seek to compress both
(i) and (ii). However, these terms are inherently different
and therefore, should not be treated in the same manner.
Essentially, the client has more time to download (i), which
is the main ingredient that forms the model weights. In-
troducing a large error in this term may prevent the model
from converging. Conversely, (ii) must be downloaded at
the participation round of the client, but it is just the sum of
τ recent gradients.

For (i), we develop a new compression technique (see §4),
that achieves a better accuracy-bandwidth tradeoff than gra-
dient compression techniques at the cost of higher complex-

2The client can start downloading wt−τ ′ at round t − τ ′ for
some τ ′ ≤ τ , as long as the download is complete before round t.
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Figure 1. DoCoFL’s training procedure. Here, we illustrate the interaction between the PS and a single client. Typically, multiple clients
participate in each training round, and each client may be notified about its participation in a different round.

ity; we amortize its complexity over several rounds. Using
this technique with only several bits per coordinate (e.g.,
4) results in a negligible error. For (ii), we use standard
gradient compression techniques with as low as 0.5 bit per
coordinate. Since (ii) is only a sum of τ recent gradients,
this error is expected to decay as training progresses.

Overall, we achieve both goals as (1) the download time win-
dow is enlarged, with only a small bandwidth fraction that
must be used online; and (2) the total downlink bandwidth
usage is reduced by up to an order of magnitude compared
to existing solutions and without degrading model accuracy.

In Figure 1, we show a timeline that illustrates the training
procedure of DoCoFL, as we now formally detail on the
role of the PS and the clients in our framework.

Parameter Server. As detailed in Algorithm 1, our PS
executes three separate processes throughout the training
procedure. First, it performs 1 ‘anchor deployment’ – once
in every K rounds, it compresses the model weights and
stores the compressed weights in a queue Q of length V . Sec-
ond, the PS employs a client participation process, which we
elaborate on in §3.2; this process determines which clients
will participate in a given round. Finally, in each round, the
PS obtains the local model updates (i.e., gradients) from the
clients participating in that round, computes their average,
and 7 updates the model weights.

Client. Consider a client that is 2 chosen by the PS at
some round s to participate in some future round t. This
means that in round s ≤ t, the client is notified about its
upcoming participation. It can then start 3 downloading the
latest anchor stored by the PS; note that the client has a time
window of length t− s rounds to download the compressed
anchor. At its participation round t, the client 4 obtains
the compressed correction from the PS, i.e., the compressed
difference between the updated model and the compressed
anchor obtained earlier, to 5 construct an unbiased estimate

of the updated model weights.3 It then 6 locally computes a
stochastic gradient, compresses it, and sends the compressed
gradient to the PS; see Algorithm 2.

3.2. Client Participation Process

An important element in DoCoFL is the client participation
process P . For a round number t, it returns a subset of
clients St ⊆ [N ] of size S to participate in that round.
Crucially, in DoCoFL, clients can be notified about their
participation prior to their actual participation round.

This discrepancy between the notification and the partic-
ipation rounds gives DoCoFL the desired versatility that
opens the door for more clients to participate in the opti-
mization process. While current frameworks follow a se-
lection process that notifies a client about its participation
just before it takes place, it is possible to consider useful
selection/notification processes where some clients (e.g.,
with weaker connectivity) are notified earlier than others.

Another point to consider is the bias-utility tradeoff, where
some choices of P can allow more clients to participate but
may introduce bias in the participation rounds of clients with
an untractable effect on the optimization process. Instead,
we focus on processes that preserve the property where
at each round, the PS can obtain an unbiased estimate of
the gradient, which means that we require P to satisfy the
following property: all clients have the same probability of
participating in any given round t, i.e., P(i ∈ P(t)) = S/N .
Surprisingly, such a restriction allows for a wide range of
useful selection policies.

For example, consider a simple scenario where the PS has

3The client obtains the (unbiasedly) compressed difference
between wt and the compressed anchor rather than the exact anchor.
Thus, the model estimate is unbiased, even if the compressor Cw
is biased. A similar mechanism was used by Horváth & Richtárik
(2020) for gradient compression, i.e., ‘induced compressor’.
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predetermined time windows Ts and Tw that it associates
with “strongly connected” and “weakly connected” devices,
respectively. Then, at each round t, the PS randomly selects
clients but assigns their participation rounds to t + Ts or
t+ Tw according to their strength. Observe that this simple,
yet very useful scenario satisfies the property we seek after
Tw rounds (the first Tw rounds may take longer since, during
these initial rounds, the weakly connected clients cannot be
notified enough rounds prior to their participation).

3.3. Theoretical Guarantee

The primary challenge in analyzing downlink compression
schemes for cross-device FL is that, even when using an un-
biased compression method, for which E[Cw(w)] = w, the
resulting gradient estimate∇f(Cw(w)) may be biased. This
is because, in general, the gradient is not a linear mapping.
As mentioned, the resulting bias can hinder convergence;
in Appendix A we show that gradient descent with weights
compression may not reach the optimal solution even for
strongly convex functions.

Accordingly, we show that DoCoFL converges to a station-
ary point when Cw is the identity mapping, i.e., Cw(w) =
w,∀w ∈ Rd – a setup that achieves our first goal (i.e., en-
larged time window). As our analysis suggests, this identity
assumption enables us to effectively bound the gradient bias
resulting from the compression. For simplicity, we also
assume no uplink compression (i.e., Cg is also identity),
although including it in our analysis is straightforward for
unbiased Cg4, and we do incorporate it in our experiments.

Following this result, and the result of Chraibi et al. (2019)
in the convex case, in Appendix B we give a theoretical intu-
ition and empirical evidence for why DoCoFL works well
in setups of interest, when Cw is not the identity function –
achieving our second goal (i.e., total bandwidth reduction).

Before we state our convergence result, we require an ad-
ditional standard assumption about the correction compres-
sion operator Cc, namely, that it has a bounded Normalized
Mean-Squared-Error (NMSE) (Philippenko & Dieuleveut,
2020; Richtárik et al., 2021; Vargaftik et al., 2021).

Assumption 3.3. There exists an ω ∈ R+ such that

E
[
∥Cc(w)− w∥2

]
≤ ω2∥w∥2, ∀w ∈ Rd . (4)

We now give a convergence result for DoCoFL, namely,
Theorem 3.4. Its full proof is deferred to Appendix C; here,
we discuss the result and give a proof sketch.

4Unbiasedness in the uplink direction is highly desired since
(together with independence) it ensures linearly decaying mean
estimation error with respect to the number of clients. For biased
Cg , in light of existing results on biased compressors (Beznosikov
et al., 2020), it may be the case that for some biased compressors
the theoretical guarantee, with additional challenges, holds.

Theorem 3.4. Let M=f(w0)−f∗, σ̃2=σ2+4
(
1− S

N

)
G2,

and γ = 1 +
(
1− S

N

)
B2

S . Then, DoCoFL with Cw and Cg
as identity mappings (and appropriate η) guarantees

E

[
1

T

T−1∑
t=0

∥∇f(wt)∥2
]
∈ O

(√
Mβσ̃2

TS
+

(M2β2ω2KVσ̃2)1/3

T 2/3S1/3
+

γMβ(ωKV + 1)

T

)
.

The convergence rate in Theorem 3.4 consists of three terms:

• The first term
√

Mβσ̃2

TS is a slow statistical term that
depends only on the noise level σ̃2 (and the objec-
tive’s properties); importantly, it is independent of Do-
CoFL’s hyperparameters, K,V , and ω.

• The last term γMβ(ωKV+1)
T is a fast deterministic term.

When ωKV ∈ O(1) it decreases proportionally to
1/T , and otherwise, it is proportional to ωKV/T .

• The middle term (M2β2ω2KVσ̃2)1/3

T 2/3S1/3 is a moderate term
that depends on both noise level and DoCoFL’s hyper-
parameters through the multiplication ω2KVσ̃2; it is
proportionate to (T 2/3S1/3)−1.

We next derive observations from Theorem 3.4. Henceforth,
we omit from O(·) the dependence on M,β, and γ.
Corollary 3.5. When Cc is the identity mapping, i.e., ω=0,
clients obtain the exact model, and thus our method is equiv-
alent to FedAvg. Indeed, we get the same asymptotic rate as
FedAvg (McMahan et al., 2017; Karimireddy et al., 2019),
namely, O(

√
σ̃2/TS + 1/T ).

Corollary 3.6. Suppose ωKV ∈ Θ(1). In that case, we get
the following asymptotic rate:

O
(√

σ̃2

TS
+

(ωσ̃2)1/3

T 2/3S1/3
+

1

T

)
.

Compared to Corollary 3.5, we note that the middle term
is the additional cost incurred for utilizing compression.
Importantly, it decreases when we improve the correction
compression, i.e., reduce ω.
Corollary 3.7. Consider ω=Θ(1). If KV ∈ O(

√
σ̃2T/S),

the slow term dominates the rate, which is O(
√
σ̃2/TS);

that is, we can set KV as large as O(
√
σ̃2T/S) and still

get, similarly to FedAvg, a speed-up with S, the number of
participating clients per-round.

Proof Sketch. Denote: ∇t :=∇f(wt) and ∇̂t :=E[ĝt]. By
the update rule, the smoothness of the objective and standard
arguments, we obtain that

E[f(wt+1)− f(wt)] ≤−
η

2
E∥∇t∥2 +

βη2

2
E∥ĝt∥2

+
η

2
E∥∇̂t −∇t∥2 . (5)
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Using the smoothness of f , we can bound the last term in
the right-hand side, corresponding to the gradient bias, by
the clients’ average compression error:

E∥∇̂t −∇t∥2 ≤ β2 · E
[
1

S

∑
i∈St

∥ŵi
t − wt∥2

]
. (6)

Additionally, in Lemma C.1, we derive the following bound
on the second moment of the stochastic aggregated gradient:

E∥ĝt∥2≤
σ̃2

S
+4γE∥∇t∥2+

2β2

S
E
∑
i∈St

∥ŵi
t − wt∥2. (7)

Plugging these bounds back to Eq. (5), we obtain:

E[f(wt+1)− f(wt)] ≤
(
−η

2
+2γβη2

)
E∥∇t∥2+

βη2σ̃2

2S

+

(
β2η

2
+β3η2

)
E

[
1

S

∑
i∈St

∥ŵi
t − wt∥2

]
. (8)

Recall that each client constructs the current model estimate
by summing an anchor and a compressed correction, i.e.,
ŵi

t = yit + Cc(wt − yit), where yit (i.e., the anchor) is some
model from up to KV rounds ago; for simplicity, assume
that all clients obtain the oldest anchor, i.e., yit = wt−KV .
Therefore, using Assumption 3.3, we can bound the com-
pression error by the difference between the current model
and the obtained anchor, which is proportional to the sum
of the last few (aggregated) gradients:

E∥ŵi
t−wt∥2 ≤ ω2E∥wt − yit∥2 = ω2η2E

∥∥∥∥ t−1∑
k=t−KV

ĝk

∥∥∥∥2.
Denote the client compression error by eit := E∥ŵi

t − wt∥2.
Decomposing each gradient into bias and variance as ĝk =
∇̂k + ξ̂k, where E[ξ̂k] = 0, we get:

eit ≤ 2ω2η2E
∥∥∥∥ t−1∑

k=t−KV

∇̂k

∥∥∥∥2 + 2ω2η2E
∥∥∥∥ t−1∑

k=t−KV

ξ̂k

∥∥∥∥2

≤ 2ω2η2KV
t−1∑

k=t−KV

E∥∇̂k∥2+2ω2η2
t−1∑

k=t−KV

E∥ξ̂k∥2,

where we used the orthogonality of the noises, i.e.,
E[ξ̂⊤k ξ̂ℓ] = 0 for k ̸= ℓ. Plugging-in ξ̂k = ĝk − ∇̂k, we
obtain:

eit≤6ω2η2KV
t−1∑

k=t−KV

E∥∇̂k∥2+4ω2η2
t−1∑

k=t−KV

E∥ĝk∥2.

Using Eq. (6) and (7) to bound E∥∇̂k∥2 and E∥ĝk∥2, respec-
tively, we get a recursive relation as the client compression
error at round t depends on all prior errors. This is due to er-
ror accumulation from computing the aggregated gradients

at inaccurate iterates. Lemma C.2 provides a (non-recursive)
bound on the compression error at round t. Plugging this
bound back to Eq. (8), summing over t = 0, . . . , T − 1,
and using some algebra, we get:

E[f(wT )− f(w0)] ≤−
η

4

T−1∑
t=0

E∥∇t∥2

+

(
βη2

2
+ 12β2ω2KVη3

)
T σ̃2

S
.

Rearranging terms and tuning η concludes the proof. □

It is important to note that our framework may also intro-
duce some opportunities for system-wise improvements that
are not captured by standard analysis. For example, with a
larger pool of clients that are able to participate in a training
procedure, it may be easier and faster to reach the desired
threshold of participants in each round. Also, it may of-
fer access to more data overall with a different resulting
model. How to capture and model such potential benefits in
a way that is consistent with and useful in real deployments?
Indeed, this is an interesting and significant challenge for
future work that may yield new FL policies.

4. Anchor Compression
Compressing the anchors is an essential building block of
DoCoFL for reducing the total downlink bandwidth. While
many compression techniques exist, most techniques were
designed for gradient compression. Although we can use
many such methods in our framework, it is less desirable to
use a gradient compression scheme for anchor compression
since the compression error of the anchor has a larger impact
on the resulting model accuracy than the correction error;
recall that the model weights, unlike the correction, do not
decay throughout training. Accordingly, we designed a
compression technique for that purpose.

We first observe that this technique is considerably less re-
stricted on the PS side (i.e., compression) than on the client’s
side (i.e., decompression). On the PS side, we typically have
more resources and time (a new anchor is deployed only ev-
ery K rounds) to employ more complex calculations, where
at the client side we seek speed and lighter computations.

Consequently, we devised a compression method called
Entropy-Constrained Uniform Quantization (ECUQ). The
main idea behind this approach is to approximate Entropy-
Constrained Quantization (ECQ), which is an optimal
scheme among a large family of quantization tech-
niques (Chou et al., 1989). Intuitively, given some vec-
tor, ECQ finds the best quantization values (i.e., those that
minimize the mean squared error) such that after quantiza-
tion and entropy encoding (e.g., Huffman coding, Huffman
(1952)) of the resulting quantized vector, a given budget
constraint is respected. However, this approach is slow,
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Figure 2. ECUQ vs. gradient compression methods: NMSE (top)
and encoding time (bottom) for three different cases – recorded
model parameters of a CNN (left); LSTM (middle); and vectors
drawn from synthetic LogNormal(0, 1) distribution (right).

complex, and unstable (sensitive to hyperparameters), which
renders it unsuitable for online compression of large vectors.

As we detail in Appendix D, ECUQ employs a double binary
search to efficiently find the maximal number of uniformly
spaced quantization values (between the minimal and maxi-
mal values of the input vector), such that after quantization,
the entropy of the vector would be within a small threshold
from a given bandwidth constraint. Since computing the
entropy of a vector does not require to actually encode it, the
double binary search is executed fast, and only after finding
these quantization values, we encode the vector.

In Appendix D, we compare ECUQ, ECQ and a technique
based on K-Means clustering (ECK-Means), which also
approximates ECQ (see Figure 6); our results indicate that
ECUQ is always better than ECK-Means and competitive
with ECQ while being orders of magnitude faster.

We also compare ECUQ with four recent gradient com-
pression techniques: (1) Hadamard followed by stochastic
quantization (SQ) (Suresh et al., 2017); (2) Kashin’s repre-
sentation followed by SQ (Lyubarskii & Vershynin, 2010;
Safaryan et al., 2022); (3) QSGD followed by Elias Gamma
encoding (Alistarh et al., 2017); and (4) EDEN (Vargaftik
et al., 2022). We test these in three different scenarios: (1)
Model parameters of a convolutional neural network (CNN)
with ≈ 11M parameters; (2) Model parameters of an LSTM
network with ≈ 8M parameters; and (3) Vectors from a
LogNormal(0, 1) distribution with 1M entries. We repeat
each experiment ten times and report the mean.

As shown in Figure 2, ECUQ consistently offers the best
NMSE, which is by up to an order of magnitude better
than that of the second best. We also find that ECUQ is
sufficiently fast to be used by the PS every several rounds (a
typical cross-device FL round may take minutes to hours).

While our comparison here focuses on quantization-based

Table 2. Tasks configuration.

Dataset Net. (# params) # clients (S) Partition
CIFAR-100 ResNet-9 (4.9M) 200 (10) I.I.D
EMNIST LeNet (65K) 1000 (20) Non-I.I.D
Amazon LSTM (8.3M) 500 (10) I.I.D
Shakespeare LSTM (820K) 1129 (20) Non-I.I.D

methods, in Appendix E we compare ECUQ with three pop-
ular compression techniques that do not rely on quantization,
namely, Rand-K, Top-K (Alistarh et al., 2018), and Count-
Sketch (Charikar et al., 2002) and show similar trends. Nev-
ertheless, we note that quantization is mostly orthogonal to
such techniques and they can be used in conjunction5.

5. Experiments
As previously mentioned, most prior downlink compression
methods rely on repeated client participation and/or con-
trol variates and are, therefore, less suitable for large-scale
cross-device FL where a client may participate only once
or a handful of times during the training procedure. Also,
there are prior methods that target model size reduction via
sketching (Rabbani et al., 2021) and sparsification (Shah
& Lau, 2021), but rely on restrictive assumptions and typ-
ically result in longer training times and lower accuracy
with an increasing number of clients and decreasing par-
ticipation ratio. Some other model size reduction methods,
such as low-rank approximation (e.g., Tai et al. (2016)) are
orthogonal to DoCoFL and they can be used in conjunction.

Accordingly, we compare DoCoFL with an uncompressed
baseline obtained by running FedAvg (McMahan et al.,
2017) without any (i.e., uplink or downlink) compression,
utilizing full precision (i.e., 32-bit floats) in both directions.
Then, we perform an ablation study that shows the consis-
tency of DoCoFL with respect to its hyperparameters.

We cover a wide range of use cases that include two im-
age classification and two language processing tasks with
different configurations and data partitioning, as shortly
summarized in Table 2 and further detailed in Appendix F.

Image Classification. We use the CIFAR-100 and EM-
NIST datasets. For CIFAR-100 (Krizhevsky et al., 2009),
the data distribution among the clients is i.i.d. For EMNIST
(Cohen et al., 2017), the dataset of each client is composed
of 10% i.i.d samples from the entire dataset and 90% i.i.d
samples of 2 out of 47 classes (Karimireddy et al., 2020).

Language Processing. For language processing, we per-
form a sentiment analysis task on the Amazon Reviews
dataset (Zhang et al., 2015) with i.i.d data partitioning;
and a next-character prediction task on the Shakespeare

5For example, Vargaftik et al. (2022) use Rand-K as a subrou-
tine alongside quantization to reach a sub-bit compression ratio.
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Table 3. Best validation accuracy for different tasks. The configuration triplet (bw, bc, bg) means using bw, bc, and bg bits per coordinate
for the anchor, correction, and gradient (uplink) compression, respectively. For all tasks, we use K = 10 and V = 3.

CIFAR-100 EMNIST Amazon Shakespeare
(bw, bc, bg) Accuracy (bw, bc, bg) Accuracy (bw, bc, bg) Accuracy (bw, bc, bg) Accuracy

FedAvg – 65.03 – 85.85 – 92.5992.5992.59 – 46.10

DoCoFL Config 1 (2, 2, 1) 64.94 (4, 4, 3) 85.94 (6, 6, 2) 92.51 (4, 4, 4) 45.86
Config 2 (2, 1/2, 1) 65.8165.8165.81 (2, 2, 3) 86.8386.8386.83 (4, 4, 2) 92.24 (2, 2, 4) 46.5546.5546.55

dataset (McMahan et al., 2017), where each client holds
data associated with a single role and play.

In all simulations, we run DoCoFL with ECUQ for anchor
compression (i.e., Cw), and EDEN (Vargaftik et al., 2022)
for correction and uplink compression (i.e., Cc and Cg).

Main Results. In Table 3, we report the best validation
accuracy achieved during training for FedAvg and two rep-
resentative configurations of DoCoFL. It is evident that the
validation accuracy of DoCoFL and FedAvg is always com-
petitive; in some tasks, DoCoFL performs somewhat better.
For example, for EMNIST, DoCoFL reduces the online
and total downlink bandwidth by 16×and 8×, respectively,
while achieving higher validation accuracy.

As is often the case in FL, our evaluation indicates that using
more bandwidth does not necessarily lead to higher valida-
tion accuracy. While using less bandwidth usually impacts
the train accuracy, as it implies a larger compression error,
it may positively affect the model’s generalization ability.
We further reinforce these observations in Appendix G.

Hyperparameters Ablation. In Figure 3, we report
the final train accuracy of DoCoFL for the CIFAR-100
task with varying values of K ∈ {10, 50, 100, 500} and
V ∈ {3, 5, 10} under two bandwidth configurations. The re-
sults indicate that our framework performs as expected for a
wide range of anchor deployment rates and queue capacities.
Additionally, in line with our theoretical findings, when the
multiplication KV is too large, the norm of the correction
becomes sizable, which can hinder the final accuracy and
even convergence. To allow the use of large KV , one may
increase the correction bandwidth, trading online bandwidth
for a larger anchor download time window. We defer an ab-
lation study of the anchor and correction bandwidth budgets
to Appendix G.2. These results indicate that DoCoFL per-
forms well for a wide range of budgets and provide further
intuition for configuring these parameters.

The Value of the Correction Term. When ignoring the
correction, DoCoFL may resemble other frameworks such
as delayed gradients (e.g., Stich & Karimireddy (2019))
and asynchronous SGD (e.g., Lian et al. (2015)). In Ap-
pendix G.3 we discuss this similarity and convey that ignor-
ing the correction leads to a significant performance drop.
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Figure 3. Final train accuracy of DoCoFL for two bandwidth con-
figurations and various values of K and V on the CIFAR-100 task.

DoCoFL and EF21. In Appendix G.4, we focus on recent
advancements based on the EF21 technique (Richtárik et al.,
2021), which relies on client-side memory. Specifically, we
extend EF21-PP (Fatkhullin et al., 2021) to support down-
link bandwidth reduction using DoCoFL while matching
baseline accuracy, where naive model compression results
in performance degradation. Also, we discuss some similar-
ities with EF21-P + DIANA (Gruntkowska et al., 2022).

6. Conclusion
In this work, we presented DoCoFL, a framework for down-
link compression in the challenging cross-device FL setup.
By enlarging the clients’ model download time window,
reducing total downlink bandwidth requirements, and al-
lowing for uplink compression, DoCoFL is designed to
allow more resource-constrained and diverse clients to par-
ticipate in the training procedure. Experiments over various
tasks indicate that DoCoFL indeed significantly reduces
bi-directional bandwidth usage while performing competi-
tively with an uncompressed baseline. In Appendix H, we
discuss some directions for future research.
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Khaled, A. and Richtárik, P. Better theory for SGD in
the nonconvex world. arXiv preprint arXiv:2002.03329,
2020.
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A. Suboptimality of Gradient Descent with Weights Compression
In this section, we give an example of a (strongly) convex function on R, for which we show that running gradient descent
with gradients computed at estimated (i.e., lossily compressed and then decompressed) iterates (rather than at the exact
iterates) does not converge to the global minimum. Instead, it converges to a suboptimal solution.

Let f : R→ R be the following convex and smooth function:

f(w) =
1

2
(w − 1)2 +

1

2
[w − 1]

2
+ ,

where [w]+ = max (0, w). Note that w∗ = 1 is the global minimizer of f . We analyze the following update rule:

wt+1 = wt − η∇f(ŵt)

ŵt = Cw(wt) ,

where η > 0 is the step size, and C : R→ R is a randomized, unbiased compression operator with bounded NMSE, i.e.,

E[Cw(w)] = w, E|Cw(w)− w|2 ≤ ω2
w|w|2, ∀w ∈ R .

We can alternatively write: ŵt = wt + ϵt|wt|, where E[ϵt] = 0, E[ϵ2t ] ≤ ω2
w, and {ϵt}t are independent. Thus, we can

rewrite the above update rule as
wt+1 = wt − η∇f(wt + ϵt|wt|) . (9)

In Eq. (9), we repeatedly apply the stochastic mapping: w 7→ w − η∇f(w + ϵ|w|). If this process converges in expectation,
it converges to a point w̃ for which E[∇f(w̃ + ϵ|w̃|)] = 0. We show that w∗ = 1 does not satisfy this condition, which
will imply that this process does not converge to w∗. First, note that f is differentiable, and ∇f(w) = (w − 1) + [w − 1]+.
Thus,

E [∇f(w∗ + ϵ|w∗|)] = E [∇f(1 + ϵ)] = E
[
ϵ+ [ϵ]+

]
= E [ϵ]+ ,

where the last equality follows from the linearity of expectation, E[ϵ] = 0. Now, note that unless ϵ = 0 almost surely, we
necessarily have E[max {0, ϵ}] > 0, which implies that the iterative update in Eq. (9) does not converge in expectation to
w∗ = 1.

B. Why DoCoFL with Anchor Compression Works
To support Theorem 3.4, in which we establish the convergence of DoCoFL when the anchor compression Cw is identity, in
this section we give theoretical intuition and numerical results that convey as for why DoCoFL works when Cw is not the
identity mapping.

Consider the framework we analyze in Appendix C, namely the generalization of DoCoFL given by Algorithm 3. Adding
an anchor compressor (i.e., Cw) implies that each client now obtains a compressed outdated model ŷit = Cw(yit) and a
corresponding correction ∆̂i

t = Cc(wt − ŷit), and constructs ŵi
t = ŷit + ∆̂i

t. Thus, adding an anchor compression affects the
client’s model estimation error E∥ŵi

t − wt∥2, which we bound in Eq. (23).

Denote by e2t,i := ∥yit + ∆̂i
t − wt∥2 the client’s squared estimation error when not using anchor compression (i.e., when Cw

is identity), and by ê2t,i := ∥ŷit + ∆̂i
t − wt∥2 the squared estimation error when using anchor compression. If one could

show that the following condition holds:
E[ê2t,i] ≤ C2E[e2t,i] , (10)

for some moderate C > 0, then we can simply bound E[ê2t,i] in the left-hand side of Eq. (23), and the rest of our analysis
holds. However, we know that, in general, this condition does not hold (recall the counter-example in Appendix A).

Nevertheless, we empirically show that it holds in our evaluation where we have non-convex and noisy optimization. More
generally, in cross-device FL, client sampling and stochastic gradient estimation add natural noise to the optimization
process, and we empirically show that the additional estimation error due to anchor compression with ECUQ is sufficiently
low and allows convergence, as conveyed above.
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Figure 4. Client estimation error ratio ρt on the CIFAR-100 and Amazon Reviews tasks for different anchor compression budgets. For
both tasks, we used 2 bits per coordinate for the correction and gradients (uplink) compression.

In Figure 4 we present the ratio ρt :=
∑

i∈St
ê2t,i/

∑
i∈St

e2t,i for different anchor compression budgets in CIFAR-100 and
Amazon Reviews experiments. First, note that the ratio is mostly stable throughout the entire training. Additionally, when
we increase the bandwidth for anchor compression, the ratio decreases, to the extent that for 8 bits per coordinate, the ratio
is ≈ 1; this is when the error induced by the correction compression dominates the estimation error.

We note that our intuition gives rise to using an adaptive budget for anchor compression; since ρt can be measured by
the PS (i.e., it has access to yit, ŷ

i
t, wt and the correction compressor Cc), we can keep track of it, and increase the anchor

compression budget if ρt is too large. We leave such investigation to future work.

C. Proof of Theorem 3.4
In this section we prove Theorem 3.4, which we restate here for convenience,

Theorem 3.4. Let σ̃2 := σ2 + 4
(
1− S

N

)
G2, γ := 1 +

(
1− S

N

)
B2

S , and M := f(w0)− f∗. Then, running DoCoFL with
Cw and Cg as the identity mappings (and with appropriately selected η) guarantees

E

[
1

T

T−1∑
t=0

∥∇f(wt)∥2
]
∈ O

(√
Mβσ̃2

TS
+

(M2β2ω2KVσ̃2)1/3

T 2/3S1/3
+

γMβ(ωKV + 1)

T

)
.

Proof. To simplify mathematical notations and computations, we analyze a more general framework than DoCoFL, where
at each round, each client can download any model from up to T rounds prior to their participation round as anchor. This
generalized policy is described in Algorithm 3.

Using Theorem 1, that proves the convergence of Algorithm 3 (see Appendix C.1), we prove Theorem 3.4. Namely, DoCoFL
with Cw and Cg as identity mappings is a private case of Algorithm 3 where T = KV and clients can only download models
from specific prior rounds (multiplications of K). Thus, plugging-in T = KV to Theorem 1 concludes the proof.

C.1. Proof of Theorem 1

Theorem 1. Suppose Assumptions 3.1-3.3 are satisfied. Let σ̃2 := σ2+4
(
1− S

N

)
G2, γ := 1+

(
1− S

N

)
B2

S , θ := ωT +1,

and M := f(w0)− f∗. Then, running Algorithm 3 with η = min

{
1

30γβθ ,
√

2MS
βσ̃2T ,

(
MS

12β2ω2T σ̃2T

)1/3}
guarantees

E

[
1

T

T−1∑
t=0

∥∇f(wt)∥2
]
≤ 4

√
2Mβσ̃2

TS
+ 8

(12M2β2ω2T σ̃2)1/3

T 2/3S1/3
+

120γMβθ

T
. (11)
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Algorithm 3 Meta-Algorithm (generalization of DoCoFL)

Input: Initial weights w0 ∈ Rd, learning rate η, correction compression Cc, client participation process P(·)
for t = 0, . . . , T − 1 do

Obtain participating clients, St ← P(t) ▷ |St| = S
for client i ∈ St in parallel do

Obtain model weights (anchor), yit = wt−τ i
t

▷ τ it ∈ [0, T ]
Obtain compressed correction, ∆̂i

t = Cc(wt − yit)
Construct model estimate, ŵi

t = yit + ∆̂i
t

Compute local gradient, ĝit = git(ŵ
i
t)

Communicate ĝit back to server
end for
Aggregate local gradients, ĝt := 1

S

∑
i∈St

ĝit
Update weights, wt+1 = wt − ηĝt

end for

Proof. For the ease of notation, let ∇t := ∇f(wt) and σ̃2
S := σ̃2/S. Throughout our analysis, we sometimes use ŵi

t even
when i /∈ St, which is not well-defined. To resolve this, one can think about the following mathematically equivalent
process, where at each round, all clients i ∈ [N ] obtain some previous model (anchor) yit and the corresponding correction
∆̂i

t, but only i ∈ St actually participate in the optimization. In that sense, for all i /∈ St, ŵi
t is the estimated model of client i

if it were to participate in round t.

Let ∇̂t :=
1
N

∑
i∈[N ]∇fi(ŵi

t) = E[ĝt]. From the β-smoothness of the objective,

E[f(wt+1)− f(wt)] ≤ −ηE[ĝ⊤t ∇t] +
βη2

2
E∥ĝt∥2

= −ηE[∇̂⊤
t ∇t] +

βη2

2
E∥ĝt∥2

= −ηE∥∇t∥2 + ηE[∇⊤
t (∇t − ∇̂t)]︸ ︷︷ ︸
=(A)

+
βη2

2
E∥ĝt∥2 , (12)

where the first equality follows from the law of total expectation, and the second equality from the linearity of expectation.

Bounding (A): Using the inequality a⊤b ≤ 1
2∥a∥2 + 1

2∥b∥2, we get that

ηE[∇⊤
t (∇t − ∇̂t)] ≤

η

2
E∥∇t∥2 +

η

2
E∥∇t − ∇̂t∥2 .

Focusing on the second term in the right-hand side, we have:

E∥∇t − ∇̂t∥2 = E

∥∥∥∥∥ 1

N

N∑
i=1

(
∇fi(wt)−∇fi(ŵi

t)
)∥∥∥∥∥

2

≤ 1

N

N∑
i=1

E∥∇fi(wt)−∇fi(ŵi
t)∥2

≤ β2

N

N∑
i=1

E∥ŵi
t − wt∥2 , (13)

where in the first inequality we used Lemma C.5, and the second inequality follows from the β-smoothness of each fi.
Plugging back this bound, we get:

ηE[∇⊤
t (∇t − ∇̂t)] ≤

η

2
E∥∇t∥2 +

β2η

2N

N∑
i=1

E∥ŵi
t − wt∥2 .
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Using Lemma C.1 to bound E∥ĝt∥2 and the bound on (A), we get from Eq. (12) that

E[f(wt+1)− f(wt)] ≤−
η

2
E∥∇t∥2 +

β2η

2N

N∑
i=1

E∥ŵi
t − wt∥2

+
βη2

2

(
σ̃2
S + 4γE∥∇t∥2 +

2β2

N

N∑
i=1

E∥ŵi
t − wt∥2

)

=
(
−η

2
+ 2γβη2

)
E∥∇t∥2 +

βη2σ̃2
S

2

+

(
β2η

2
+ β3η2

)
· 1
N

N∑
i=1

E∥ŵi
t − wt∥2 .

Applying Lemma C.2, we can bound 1
N

∑N
i=1 E∥ŵi

t − wt∥2 to get that

E[f(wt+1)− f(wt)] ≤
(
−η

2
+ 2γβη2

)
E∥∇t∥2 +

βη2σ̃2
S

2

+

(
β2η

2
+ β3η2

)[
α

(
1 +

t∑
k=1

k(ρT )k
)
σ̃2
S +

2γ

β2T

t∑
k=1

(ρT )k
t−k∑

ℓ=t−kT

E∥∇ℓ∥2
]

=
(
−η

2
+ 2γβη2

)
E∥∇t∥2 +

[
βη2

2
+ α

(
β2η

2
+ β3η2

)(
1 +

t∑
k=1

k(ρT )k
)]

σ̃2
S

+

(
β2η

2
+ β3η2

)
2γ

β2T

t∑
k=1

(ρT )k
t−k∑

ℓ=t−kT

E∥∇ℓ∥2︸ ︷︷ ︸
=(B)

, (14)

where α = 4ω2η2T and ρ = 20β2ω2η2T . Since η ≤ 1
30γβ(ωT +1) ≤ 1√

40βωT , it holds that ρT = 20β2ω2T 2η2 ≤ 1/2 < 1,

and thus we can bound the coefficient of σ̃2
S using Lemma C.7 as

t∑
k=1

k(ρT )k ≤
∞∑
k=1

k(ρT )k =
ρT

(1− ρT )2 ≤ 4ρT ≤ 2 , (15)

where we used 1
(1−ρT )2 ≤ 4, and ρT ≤ 1/2.

Bounding (B): To bound (B), we change the summation order. Consider a fixed ℓ ∈ N. Note that (ρT )k appears as a
coefficient of E∥∇ℓ∥2 if and only if t− kT ≤ ℓ ≤ t− k, which is equivalent to t−ℓ

T ≤ k ≤ t− ℓ. Therefore, we have

t∑
k=1

(ρT )k
t−k∑

ℓ=t−kT

E∥∇ℓ∥2 =

t−1∑
ℓ=0

 t−ℓ∑
k=⌈ t−ℓ

T ⌉

(ρT )k
E∥∇ℓ∥2

≤
t−1∑
ℓ=0

 ∞∑
k=⌈ t−ℓ

T ⌉

(ρT )k
E∥∇ℓ∥2

=
1

1− ρT
t−1∑
ℓ=0

(ρT )⌈ t−ℓ
T ⌉E∥∇ℓ∥2

Plugging this bound and Eq. (15) back to Eq. (14) gives

E[f(wt+1)− f(wt)] ≤
(
−η

2
+ 2γβη2

)
E∥∇t∥2 +

(
βη2

2
+ 3α

(
β2η

2
+ β3η2

))
σ̃2
S

+
(
η + 2βη2

) γ

(1− ρT )T
t−1∑
k=0

(ρT )⌈ t−k
T ⌉E∥∇k∥2 .
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Summing over t = 0, . . . , T − 1, we obtain

E[f(wT )− f(w0)] =

T−1∑
t=0

E[f(wt+1)− f(wt)]

≤
(
−η

2
+ 2γβη2

) T−1∑
t=0

E∥∇t∥2 +
(
βη2

2
+ 3α

(
β2η

2
+ β3η2

))
T σ̃2

S

+
(
η + 2βη2

) γ

(1− ρT )T
T−1∑
t=0

t−1∑
k=0

(ρT )⌈ t−k
T ⌉E∥∇k∥2︸ ︷︷ ︸

=(C)

. (16)

Focusing on (C), we can change the outer summation bounds as

T−1∑
t=0

t−1∑
k=0

(ρT )⌈ t−k
T ⌉E∥∇k∥2 =

T−1∑
t=1

t−1∑
k=0

(ρT )⌈ t−k
T ⌉E∥∇k∥2 ≤

T∑
t=1

t−1∑
k=0

(ρT )⌈ t−k
T ⌉E∥∇k∥2 . (17)

Now, we can bound the right-hand side using Lemma C.8 with a = ρT < 1 and xk = E∥∇k∥2 ≥ 0 to get that

T∑
t=1

t−1∑
k=0

(ρT )⌈ t−k
T ⌉E∥∇k∥2 ≤ T

ρT
1− ρT

T−1∑
t=0

E∥∇t∥2 .

Plugging this bound back to Eq. (16) and using 1
(1−ρT )2 ≤ 4 gives

E[f(wT )− f(w0)] ≤
(
−η

2
+ 2γβη2

) T−1∑
t=0

E∥∇t∥2 +
(
βη2

2
+ 3α

(
β2η

2
+ β3η2

))
T σ̃2

S

+
(
η + 2βη2

) γρT
(1− ρT )2

T−1∑
t=0

E∥∇t∥2

≤
(
−η

2
+ 2γβη2 + 4γρT

(
η + 2βη2

)) T−1∑
t=0

E∥∇t∥2

+

(
βη2

2
+

3αβ2

2

(
η + 2βη2

))
T σ̃2

S

≤
(
−η

2
+ 2γβη2 + 8γρT η

) T−1∑
t=0

E∥∇t∥2 +
(
βη2

2
+ 3αβ2η

)
T σ̃2

S ,

where in the last inequality we used the fact that η ≤ 1
30γβθ ≤ 1

30β to bound 2βη2 ≤ η.

Substituting α and ρ, we obtain:

E[f(wT )− f(w0)] ≤
(
−η

2
+ 2γβη2 + 160γβ2ω2T 2η3

) T−1∑
t=0

E∥∇t∥2

+

(
βη2

2
+ 12β2ω2T η3

)
T σ̃2

S .

Since η ≤ 1
30γβθ , we can bound the coefficient of

∑T−1
t=0 E∥∇t∥2 using Lemma C.9. We get:

E[f(wT )− f(w0)] ≤ −
η

4

T−1∑
t=0

E∥∇t∥2 +
(
βη2

2
+ 12β2ω2T η3

)
T σ̃2

S . (18)
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Rearranging terms, multiplying by 4/ηT , and plugging σ̃2
S = σ̃2/S then gives

E

[
1

T

T−1∑
t=0

∥∇t∥2
]
≤ 4M

ηT
+

2βσ̃2

S
η +

48β2ω2T σ̃2

S
η2 ,

where we also used E[f(w0)− f(wT )] ≤ f(w0)− f∗ ≤M . Applying Lemma C.10 with our learning rate η, we finally
obtain:

E

[
1

T

T−1∑
t=0

∥∇t∥2
]
≤4M

T

(
30γβθ +

√
βσ̃2T

2MS
+

(
12β2ω2T σ̃2T

MS

)1/3
)

+
2βσ̃2

S
·
√

2MS

βσ̃2T

+
48β2ω2T σ̃2

S
·
(

MS

12β2ω2T σ̃2T

)2/3

=4

√
2Mβσ̃2

TS
+ 8

(12M2β2ω2T σ̃2)1/3

T 2/3S1/3
+

120γβθ

T
,

which concludes the proof.

C.2. Technical Lemmata

In this section, we introduce some technical results used throughout our analysis. We start with the following lemma,
yielding a bound on the second moment of the aggregated gradients that our PS uses to update its model.

Lemma C.1. Consider the notations of Theorem 1. For every t ∈ [T ], it holds that

E∥ĝt∥2 ≤ σ̃2
S + 4γE∥∇t∥2 + 2β2 · 1

N

N∑
i=1

E∥ŵi
t − wt∥2 . (19)

Proof. Since ĝt is an aggregation of local gradient, we can write,

E∥ĝt∥2 = E

∥∥∥∥∥ 1S ∑
i∈St

ĝit

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1S ∑
i∈St

(
ĝit −∇fi(ŵi

t) +∇fi(ŵi
t)
)∥∥∥∥∥

2

= E

∥∥∥∥∥ 1S ∑
i∈St

(
ĝit −∇fi(ŵi

t)
)∥∥∥∥∥

2

+ E

∥∥∥∥∥ 1S ∑
i∈St

∇fi(ŵi
t)

∥∥∥∥∥
2

,

where the last equality follows from Assumption 3.1 as E[(ĝit(ŵi
t)−∇fi(ŵi

t))
⊤∇fi(ŵi

t)] = 0. Note that the first term in
the right-hand side is the variance of the average of S independent random variables with zero mean and variance bounded
by σ2; therefore, it is bounded by σ2/S. Thus, we get that

E∥ĝt∥2 ≤
σ2

S
+ E

∥∥∥∥∥ 1S ∑
i∈St

∇fi(ŵi
t)

∥∥∥∥∥
2

. (20)

Focusing on the second term in the right-hand side, we have that

E

∥∥∥∥∥ 1S ∑
i∈St

∇fi(ŵi
t)

∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥ 1S ∑
i∈St

(
∇fi(ŵi

t)−∇fi(wt)
)∥∥∥∥∥

2

︸ ︷︷ ︸
(A)

+2E

∥∥∥∥∥ 1S ∑
i∈St

∇fi(wt)

∥∥∥∥∥
2

︸ ︷︷ ︸
=(B)

, (21)

where we used the inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2.
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Bounding (A): Using Lemma C.5 and the β-smoothness of the objective, we get that

2E

∥∥∥∥∥ 1S ∑
i∈St

(
∇fi(ŵi

t)−∇fi(wt)
)∥∥∥∥∥

2

≤ 2

S
E

[∑
i∈St

∥∇fi(ŵi
t)−∇fi(wt)∥2

]

≤ 2β2

S
E

[∑
i∈St

∥ŵi
t − wt∥2

]

=
2β2

S
E

[
N∑
i=1

∥ŵi
t − wt∥2 · 1{i∈St}

]

=
2β2

N

N∑
i=1

E∥ŵi
t − wt∥2 ,

where the last equality follows from our assumption about the client participation process P(·), which guarantees that
P(i ∈ St) = S/N , independently of the optimization process.

Bounding (B): By the law of total expectation, (B) can be written as follows,

2E

∥∥∥∥∥ 1S ∑
i∈St

∇fi(wt)

∥∥∥∥∥
2

= 2E

∥∥∥∥∥
N∑
i=1

(
1

S
∇fi(wt) · 1{i∈St}

)∥∥∥∥∥
2

= 2E

E
∥∥∥∥∥

N∑
i=1

(
1

S
∇fi(wt) · 1{i∈St}

)∥∥∥∥∥
2

wt

 .

(22)
Thus, we can use Lemma C.3 with Xi =

1
S∇fi(wt) · 1{i∈St}, i ∈ [N ] to bound the inner expectation. Using P(i ∈ St) =

S/N , we have that

E[Xi|wt] =
1

S
∇fi(wt) ·

S

N
=

1

N
∇fi(wt),

and,

E[∥Xi − E[Xi|wt]∥2|wt] = ∥∇fi(wt)∥2 · E
[(

1

S
· 1{i∈St} −

1

N

)2
]
= ∥∇f(wt)∥2 · Var

(
1

S
· 1{i∈St}

)
=
∥∇f(wt)∥2

S2
· S
N

(
1− S

N

)
=
∥∇fi(wt)∥2

SN

(
1− S

N

)
,

where we used the fact that for any event A, the following holds: Var(1A) = P(A) · (1 − P(A)). Therefore, using
Lemma C.3, we obtain that

E

∥∥∥∥∥
N∑
i=1

(
1

S
∇fi(wt) · 1{i∈St}

)∥∥∥∥∥
2

wt

 ≤ 2

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(wt)

∥∥∥∥∥
2

+
2

SN

(
1− S

N

) N∑
i=1

∥∇fi(wt)∥2

≤ 2∥∇t∥2 +
2

S

(
1− S

N

)(
G2 +B2∥∇t∥2

)
=

(
1− S

N

)
2G2

S
+ 2

(
1 +

(
1− S

N

)
B2

S

)
︸ ︷︷ ︸

:=γ

∥∇t∥2 ,

where in the second inequality we used the bounded gradient dissimilarity assumption (Assumption 3.2). Plugging back to
Eq. (22), we get the following bound on (B):

2E

∥∥∥∥∥ 1S ∑
i∈St

∇fi(wt)

∥∥∥∥∥
2

≤
(
1− S

N

)
4G2

S
+ 4γE∥∇t∥2 .
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Plugging the bounds on (A) and (B) in Eq. (20) finally gives

E∥ĝt∥2 ≤
σ2

S
+

(
1− S

N

)
4G2

S︸ ︷︷ ︸
=σ̃2/S

+4γE∥∇t∥2 +
2β2

N

N∑
i=1

E∥ŵi
t − wt∥2

= σ̃2
S + 4γE∥∇t∥2 +

2β2

N

N∑
i=1

E∥ŵi
t − wt∥2 ,

which concludes the proof.

The next result establishes a bound on the model estimation error of the clients.
Lemma C.2. Consider the notations of Theorem 1. Let α := 4ω2η2T , ρ := 20β2ω2η2T , and ∇−ℓ := 0, ∀ℓ ∈ N. Then,
the following result holds:

1

N

N∑
i=1

E∥ŵi
t − wt∥2 ≤ α

(
1 +

t∑
k=1

k(ρT )k
)
σ̃2
S +

2γ

β2T
t∑

k=1

(ρT )k
t−k∑

ℓ=t−kT

E∥∇ℓ∥2

Proof. We use strong induction. Particularly, to prove the result holds at round t, we rely on its correctness over the T prior
rounds, i.e., for every s = t− T , . . . , t− 1. Thus, in our base case, we show that the result holds up to round T .
We start with some general observations that hold for any t. Recall that ŵi

t = yit + C(wt − yit). From Assumption 3.3, we
have

E∥ŵi
t − wt∥2 = E∥Cc(wt − yit)− (wt − yit)∥2 ≤ ω2E∥wt − yit∥2 . (23)

Unrolling the update rule for wt, we have for all i ∈ [N ] that

wt = wt−τ i
t
− η

t−1∑
k=t−τ i

t

ĝk = yit − η

t−1∑
k=t−τ i

t

ĝk .

Let ĝ−k := 0 for all k ∈ N. Additionally, let ξ̂k = ĝk − ∇̂k for all k, where ∇̂k = E[ĝk], as defined in the proof of
Theorem 1. Plugging back to Eq. (23), we get that

E∥ŵi
t − wt∥2 ≤ ω2η2E∥

t−1∑
k=t−τ i

t

ĝk∥2 ≤ 2ω2η2E∥
t−1∑

k=t−τ i
t

∇̂k∥2 + 2ω2η2E∥
t−1∑

k=t−τ i
t

ξ̂k∥2 , (24)

where the last inequality follows from ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2. Using Lemma C.5, we can bound the first term in the
right-hand side, as

E∥
t−1∑

k=t−τ i
t

∇̂k∥2 ≤ τ it

t−1∑
k=t−τ i

t

E∥∇̂k∥2 ≤ T
t−1∑

k=t−T

E∥∇̂k∥2 ,

where the last inequality follows from τ it ≤ T . Since E[ξ̂k] = 0, and E[ξ̂⊤k ξ̂ℓ] = 0 for all k, ℓ, we can apply Lemma C.4 to
bound the second term in the right-hand side as follows:

E∥
t−1∑

k=t−τ i
t

ξ̂k∥2 =

t−1∑
k=t−τ i

t

E∥ξ̂k∥2 ≤
t−1∑

k=t−T

E∥ξ̂k∥2 ≤ 2

t−1∑
k=t−T

E∥∇̂k∥2 + 2

t−1∑
k=t−T

E∥ĝk∥2 ,

where we used τ it ≤ T , and ∥a− b∥2 ≤ 2∥a∥2 + 2∥b∥2.

Plugging-in both bounds to Eq. (24), we obtain:

E∥ŵi
t − wt∥2 ≤ (2ω2η2T + 4ω2η2)

t−1∑
k=t−T

E∥∇̂k∥2 + 4ω2η2
t−1∑

k=t−T

E∥ĝk∥2

≤ 6ω2η2T
t−1∑

k=t−T

E∥∇̂k∥2 + 4ω2η2
t−1∑

k=t−T

E∥ĝk∥2 . (25)
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Note that we can bound E∥∇̂k∥2 as:

E∥∇̂k∥2 ≤ 2E∥∇̂k −∇k∥2 + 2E∥∇k∥2 ≤
2β2

N

N∑
i=1

E∥ŵi
k − wk∥2 + 2E∥∇k∥2 ,

where in the last inequality we used Eq. (13) to bound E∥∇̂k −∇k∥2.

For the ease of notation, denote: eit := E∥ŵi
t − wt∥2, and et :=

1
N

∑N
i=1 e

i
t. Therefore, we obtain from Eq. (25) that

eit ≤ 12β2ω2η2T
t−1∑

k=t−T

ek + 12ω2η2T
t−1∑

k=t−T

E∥∇k∥2 + 4ω2η2
t−1∑

k=t−T

E∥ĝk∥2 . (26)

Base Case: For t = 0, each client obtains the exact model weights, i.e., ŵi
0 = w0, which trivially implies result. For every

t = 1, . . . , T and i ∈ [N ], we have from Eq. (26) that

eit ≤ 12β2ω2η2T
t−1∑
k=0

ek + 12ω2η2T
t−1∑
k=0

E∥∇k∥2 + 4ω2η2
t−1∑
k=0

E∥ĝk∥2 . (27)

Using Lemma C.1 to bound E∥ĝk∥2, we get:

eit ≤ 12β2ω2η2T
t−1∑
k=0

ek + 12ω2η2T
t−1∑
k=0

E∥∇k∥2 + 4ω2η2
t−1∑
k=0

(
σ̃2
S + 4γE∥∇k∥2 + 2β2ek

)
≤ 4ω2η2T σ̃2

S +
(
12ω2η2T + 16γω2η2

) t−1∑
k=0

E∥∇k∥2 +
(
12β2ω2η2T + 8β2ω2η2

) t−1∑
k=0

ek

≤ 4ω2η2T σ̃2
S + 28γω2η2T

t−1∑
k=0

E∥∇k∥2 + 20β2ω2η2T
t−1∑
k=0

ek .

Note that this bound on eit is independent of i, and thus, it holds for the average of eit over i ∈ [N ], namely, et. Therefore,
Eq. (26) implies a recursive bound on et; for every t = 1, . . . , T :

et ≤ ασ̃2
S + ν

t−1∑
k=0

E∥∇k∥2 + ρ

t−1∑
k=0

ek , (28)

where we denoted ν := 28γω2η2T . Plugging-in this bound instead of ek in the right-hand side, we obtain:

et ≤ ασ̃2
S + ν

t−1∑
k=0

E∥∇k∥2 + ρ

t−1∑
k=0

(
ασ̃2

S + ν

k−1∑
ℓ=0

E∥∇ℓ∥2 + ρ

k−1∑
ℓ=0

eℓ

)

≤ α (1 + ρT ) σ̃2
S + ν

t−1∑
k=0

E∥∇k∥2 + νρ

t−1∑
k=0

k−1∑
ℓ=0

E∥∇ℓ∥2 + ρ2
t−1∑
k=0

k−1∑
ℓ=0

eℓ ,

where we used t ≤ T . Note that we can bound the double sums in right-hand side using Lemma C.6 as

t−1∑
k=0

k−1∑
ℓ=0

E∥∇ℓ∥2 ≤ t

t−2∑
k=0

E∥∇k∥2 ≤ T
t−2∑
k=0

E∥∇k∥2 ,

and similarly,
t−1∑
k=0

k−1∑
ℓ=0

eℓ ≤ T
t−2∑
k=0

ek .
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Plugging-back, we get:

et ≤ α (1 + ρT ) σ̃2
S + ν

t−1∑
k=0

E∥∇k∥2 + νρT
t−2∑
k=0

E∥∇ℓ∥2 + ρ2T
t−2∑
k=0

ek .

We can once again apply Eq. (28) to bound ek, and obtain:

et ≤α (1 + ρT ) σ̃2
S + ν

t−1∑
k=0

E∥∇k∥2 + νρT
t−2∑
k=0

E∥∇ℓ∥2 + ρ2T
t−2∑
k=0

(
ασ̃2

S + ν

k−1∑
ℓ=0

E∥∇ℓ∥2 + ρ

k−1∑
ℓ=0

eℓ

)

≤α
(
1 + ρT + ρ2T 2

)
σ̃2
S + ν

t−1∑
k=0

E∥∇k∥2 + νρT
t−2∑
k=0

E∥∇ℓ∥2 + νρ2T
t−2∑
k=0

k−1∑
ℓ=0

E∥∇ℓ∥2 + ρ3T
t−2∑
k=0

k−1∑
ℓ=0

eℓ

≤α
(
1+ρT +ρ2T 2

)
σ̃2
S+ν

t−1∑
k=0

E∥∇k∥2+νρT
t−2∑
k=0

E∥∇ℓ∥2+νρ2T 2
t−3∑
k=0

E∥∇ℓ∥2 + ρ3T 2
t−3∑
k=0

ek ,

where in the last inequality we used Lemma C.6. Repeating this process of alternately applying Eq. (28) to bound ek and
Lemma C.6, finally gives:

et ≤ α

(
1 +

t∑
k=1

(ρT )k
)
σ̃2
S +

ν

ρT
t∑

k=1

(ρT )k
t−k∑
ℓ=0

E∥∇ℓ∥2 .

Plugging ν and ρ, we can bound the coefficient ν/ρT as:

ν

ρT =
28γω2η2T
20β2ω2η2T 2

≤ 2γ

β2T .

Using (ρT )k ≤ k(ρT )k, which holds for any k ≥ 1, we then obtain:

et ≤ α

(
1 +

t∑
k=1

k(ρT )k
)
σ̃2
S +

2γ

β2T
t∑

k=1

(ρT )k
t−k∑
ℓ=0

E∥∇ℓ∥2 .

Note that for all t ≤ T and k ≥ 1, we have t− kT ≤ 0. Therefore, since for ∇−ℓ = 0 for all ℓ ∈ N, we can equivalently
write:

et ≤ α

(
1 +

t∑
k=1

k(ρT )k
)
σ̃2
S +

2γ

β2T
t∑

k=1

(ρT )k
t−k∑

ℓ=t−kT

E∥∇ℓ∥2 ,

which establishes the result for the base case.

Induction step: The induction hypothesis is that the following holds:

es ≤ α

(
1 +

s∑
k=1

k(ρT )k
)
σ̃2
S +

2γ

β2T
s∑

k=1

(ρT )k
s−k∑

ℓ=s−kT

E∥∇ℓ∥2, ∀s = t− T , . . . , t− 1 . (29)

We focus on Eq. (26). Using Lemma C.1 to bound E∥ĝk∥2 and following similar steps to those used to derive Eq. (28), we
get:

eit ≤ 12β2ω2η2T
t−1∑

k=t−T

ek + 12ω2η2T
t−1∑

k=t−T

E∥∇k∥2 + 4ω2η2
t−1∑

k=t−T

(
σ̃2
S + 4γE∥∇k∥2 + 2β2ek

)
≤ ασ̃2

S + ν

t−1∑
k=t−T

E∥∇k∥2 + ρ

t−1∑
k=t−T

ek︸ ︷︷ ︸
=(†)

. (30)
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From the induction hypothesis (29), we can bound ek for every k ∈ [t− T , t− 1] as follows:

ek ≤ α

(
1 +

k∑
ℓ=1

ℓ(ρT )ℓ
)
σ̃2
S +

2γ

β2T
k∑

ℓ=1

(ρT )ℓ
k−ℓ∑

m=k−ℓT

E∥∇m∥2 .

Denote this bound by B(k) := α
(
1 +

∑k
ℓ=1 ℓ(ρT )ℓ

)
σ̃2
S + 2γ

β2T
∑k

ℓ=1 (ρT )ℓ
∑k−ℓ

m=k−ℓT E∥∇m∥2; that is, ek ≤ B(k).
We can therefore bound (†) as

t−1∑
k=t−T

ek ≤
t−1∑

k=t−T

B(k) ≤ T B(t− 1) ,

where the last inequality holds because B(k) is monotonically increasing. Plugging back to Eq. (30) and substituting
B(t− 1) gives

eit ≤ασ̃2
S + ν

t−1∑
k=t−T

E∥∇k∥2 + ρ · T B(t− 1)

=ασ̃2
S+ν

t−1∑
k=t−T

E∥∇k∥2+ρT
(
α

(
1 +

t−1∑
k=1

k(ρT )k
)
σ̃2
S +

2γ

β2T
t−1∑
k=1

(ρT )k
t−1−k∑

ℓ=t−1−kT

E∥∇ℓ∥2
)

=α

(
1+ρT +

t−1∑
k=1

k(ρT )k+1

)
︸ ︷︷ ︸

=(A)

σ̃2
S + ν

t−1∑
k=t−T

E∥∇k∥2 +
2γ

β2T
t−1∑
k=1

(ρT )k+1
t−1−k∑

ℓ=t−1−kT

E∥∇ℓ∥2︸ ︷︷ ︸
=(B)

. (31)

Bounding (A): Using simple algebra, we have that

ρT +

t−1∑
k=1

k(ρT )k+1 = ρT +

t∑
k=2

(k − 1)(ρT )k ≤ ρT +

t∑
k=2

k(ρT )k =

t∑
k=1

k(ρT )k . (32)

This implies that (A) is bounded by α
(
1 +

∑t
k=1 k(ρT )k

)
.

Bounding (B): Focusing on the first term in (B), we can bound:

ν

t−1∑
k=t−T

E∥∇k∥2 =
ν

ρT · ρT
t−1∑

k=t−T

E∥∇k∥2 ≤
2γ

β2T · ρT
t−1∑

k=t−T

E∥∇k∥2 . (33)

Focusing on the second sum in (B), we can bound

2γ

β2T
t−1∑
k=1

(ρT )k+1
t−1−k∑

ℓ=t−1−kT

E∥∇ℓ∥2 =
2γ

β2T
t∑

k=2

(ρT )k
t−1−(k−1)∑

ℓ=t−1−(k−1)T

E∥∇ℓ∥2

=
2γ

β2T
t∑

k=2

(ρT )k
t−k∑

ℓ=t−kT +T −1

E∥∇ℓ∥2

≤ 2γ

β2T
t∑

k=2

(ρT )k
t−k∑

ℓ=t−kT

E∥∇ℓ∥2 , (34)

where the last inequality holds since T − 1 ≥ 0 and E∥∇ℓ∥2 ≥ 0 for all ℓ. Combining the bounds in Eq. (33) and (34), we
can then bound (B) as

ν

t−1∑
k=t−T

E∥∇k∥2+
2γ

β2T
t−1∑
k=1

(ρT )k+1
t−1−k∑

ℓ=t−1−kT

E∥∇ℓ∥2 ≤
2γ

β2T · ρT
t−1∑

k=t−T

E∥∇k∥2 +
2γ

β2T
t∑

k=2

(ρT )k
t−k∑

ℓ=t−kT

E∥∇ℓ∥2

=
2γ

β2T
t∑

k=1

(ρT )k
t−k∑

ℓ=t−kT

E∥∇ℓ∥2 . (35)

23



DoCoFL: Downlink Compression for Cross-Device Federated Learning

Plugging back to Eq. (31) the bounds on (A) and (B) (from Eq. (32) and (35), respectively), we get:

eit ≤ α

(
1 +

t∑
k=1

k(ρT )k
)
σ̃2
S +

2γ

β2T
t∑

k=1

(ρT )k
t−k∑

ℓ=t−kT

E∥∇ℓ∥2 .

Since this bound is independent of i, it also holds for the average et =
1
N

∑N
i=1 e

i
t, establishing the result.

In the following two lemmas, we characterize the second moment of the sum of independent random variables.
Lemma C.3 (Lemma 4, Karimireddy et al., 2020). Let X1, . . . , XN ∈ Rd be N independent random variables. Suppose
that E[Xi] = µi and E∥Xi − µi∥2 ≤ σ2

i . Then, the following holds

E

∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥
N∑
i=1

µi

∥∥∥∥∥
2

+ 2

N∑
i=1

σ2
i .

Lemma C.4. Let X1, . . . , XN ∈ Rd be N orthogonal, zero mean random variables, i.e., E[Xi] = 0 for all i ∈ [N ], and
E[X⊤

i Xj ] = 0 for all i ̸= j. Then, the following holds:

E

∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
2

=

N∑
i=1

E∥Xi∥2 .

Proof. By the linearity of expectation, and the following property: E[X⊤
i Xj ] = 0, ∀i ̸= j, we immediately get that

E∥∑N
i=1 Xi∥2 = E

[∑N
i=1

∑N
j=1 X

⊤
i Xj

]
=
∑N

i=1 E∥Xi∥2.

Next, we state a simple result about the squared norm of the sum of vectors.
Lemma C.5. For any u1, . . . , uN ∈ Rd, it holds that ∥∑N

i=1 ui∥2 ≤ N
∑N

i=1 ∥ui∥2.

Proof. By the convexity of ∥·∥2 and Jensen’s inequality: ∥ 1
N

∑N
i=1 ui∥2≤ 1

N

∑N
i=1 ∥ui∥2, which implies the result.

The next result is a simple bound on a double sum of non-negative numbers.
Lemma C.6. Let t, τ ∈ N such that t ≥ τ+1. For any sequence of non-negative numbers x0, x1, . . . , xt−τ−1, the following
holds

t−τ∑
k=0

k−1∑
ℓ=0

xℓ ≤ t ·
t−τ−1∑
k=0

xk .

Proof. Immediately:
∑t−τ

k=0

∑k−1
ℓ=0 xℓ =

∑t−τ−1
k=0 (t− τ − k)xk ≤ t ·∑t−τ−1

k=0 xk.

The following lemma gives a bound on the derivative of a power series.
Lemma C.7. Let a < 1. Then,

∞∑
k=1

kak =
a

(1− a)2
.

Proof. Let fk(a) = ak.
∞∑
k=1

kak = a

∞∑
k=1

kak−1 = a

∞∑
k=1

f ′
k(a) .

Using term-by-term differentiation (Stewart, 2015), we have that

∞∑
k=1

f ′
k(a) =

( ∞∑
k=1

fk(a)

)′

=

( ∞∑
k=1

ak

)′

=

(
a

1− a

)′

=
1

(1− a)2
.

Multiplying by a gives the result.
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Next, we state a non-trivial inequality to bound the double sum that appears on the right-hand side of Eq. (17).

Lemma C.8. Let a ∈ (0, 1) and T, T ∈ N. Moreover, let x0, . . . , xT−1 be a sequence of non-negative numbers. Then,

T∑
t=1

t−1∑
k=0

a⌈
t−k
T ⌉xk ≤ T

a

1− a

T−1∑
k=0

xk .

Proof. We start with changing the order of summation in the left-hand side. Note that for any fixed k, the element xk

appears in the inner sum if k ≤ t− 1, or equivalently, t ≥ k + 1. Therefore,

T∑
t=1

t−1∑
k=0

a⌈
t−k
T ⌉xk =

T−1∑
k=0

(
T∑

t=k+1

a⌈
t−k
T ⌉

)
xk =

T−1∑
k=0

(
T−k∑
t=1

a⌈
t
T ⌉

)
xk . (36)

Focusing on the inner sum in the right-hand side,
∑T−k

t=1 a⌈t/T ⌉, we can divide the interval of integers from 1 to T − k into
non-overlapping intervals of length T (and possibly a small residual) and get that

T−k∑
t=1

a⌈
t
T ⌉ ≤

⌈T−k
T ⌉∑

m=1

T∑
ℓ=1

a⌈
(m−1)T +ℓ

T ⌉ (†)
=

⌈T−k
T ⌉∑

m=1

T∑
ℓ=1

am = T
⌈T−k

T ⌉∑
m=1

am ≤ T a

1− a
.

where (†) holds because for every ℓ = 1, . . . , T we have ⌈ (m−1)T +ℓ
T ⌉ = m, and the last inequality follows from∑⌈T−k

T ⌉
m=1 am ≤∑∞

m=1 a
m = a

1−a as a < 1. Plugging back to Eq. (36) concludes the proof.

The next lemma establishes that for small enough η, we have −η/2 +O(η2) ≤ −η/4.

Lemma C.9. Let γ, θ ≥ 1. For every η ≤ 1
30γβθ , it holds that

−η

2
+ 2γβη2 + 160γβ2θ2η3 ≤ −η

4
.

Proof. We equivalently prove that
2γβη2 + 160γβ2θ2η3 ≤ η

4
.

Since both γ ≥ 1 and θ ≥ 1, we have

2γβη2 + 160γβ2θ2η3 ≤ 2γβθη2 + 160γ2β2θ2η3

=
η

4

(
8γβθη + 640γ2β2θ2η2

)
≤ η

4

(
8γβθ

30γβθ
+

640γ2β2θ2

900γ2β2θ2

)
=

η

4
· 44
45
≤ η

4
,

where the second inequality follows from the upper bound on η.

We also make use of the following result, which we prove using simple algebra.

Lemma C.10. Suppose η = min {η1, η2, η3} for some η1, η2, η3 > 0, and let A,B,C > 0. Then, the following holds:

A

η
+Bη + Cη2 ≤ A

(
1

η1
+

1

η2
+

1

η3

)
+Bη2 + Cη23 .

Proof. Since η is the minimum of three terms, 1/η is the maximum of their inverses. Thus, we can bound 1/η by the sum
of the inverses as follows:

A

η
= Amax

{
1

η1
,
1

η2
,
1

η3

}
≤ A

(
1

η1
+

1

η2
+

1

η3

)
.

The terms Bη and Cη2 are monotonically increasing with η. We can therefore bound η by η2 and η2 by η23 .
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D. Entropy-Constrained Uniform Quantization
In this section, we describe a new compression technique entitled Entropy-Constrained Uniform Quantization (ECUQ),
which we developed for anchor compression, although it can be of independent interest. ECUQ is described in Algorithm 4.
Let x = (x(1), . . . , x(d)) ∈ Rd be some input vector we wish to compress using ECUQ. Denote: xmin := mini x(i),
xmax := maxi x(i). Given some bandwidth budget of b bits/coordinate, ECUQ initially divided the interval [xmin, xmax]
into K = 2b non-overlapping bins of equal size ∆ = (xmax − xmin)/K. Then, it sets the quantization values, which we
denote by Q, to be the centers of these bins. Afterwards, the vector x is quantized into elements of Q, that is, each element
x(i) is assigned to its closest quantization value q ∈ Q to generate the quantized vector x̂Q, whose elements are all in Q.
We then compute the empirical distribution of the quantized vector by counting for every q ∈ Q the number of times it
appears in x̂Q, and the entropy of the resulting distribution. Note that the entropy is upper bounded by logK = b. Finally,
for some small tolerance parameter ϵ (we use ϵ = 0.1), we check whether the entropy is within ϵ distance from the budget
b: if it is not the case, then we perform a double binary search, repeating the above procedure with increased number of
quantization values K, to find the maximal number of uniformly spaced quantization values such that the entropy of the
empirical distribution of the resulting quantized vector is within ϵ distance from b. Only after this entropy condition is
satisfied, we encode x̂Q using some entropy encoding (we use Huffman coding).

Algorithm 4 Entropy-Constrained Uniform Quantization (ECUQ)

Input: Vector x ∈ Rd, bandwidth budget b (bits/coordinate), tolerance ϵ.
xmax ← maxi x(i), xmin ← mini x(i) ▷ Get max/min values of input vector
K ← 2b, ∆← (xmax − xmin)/K ▷ Initialize # of quantization values and bin length
Q ←

{
xmin +

(
k + 1

2

)
·∆ : k = 0, . . . ,K − 1

}
▷ Set uniformly spaced quantization values

x̂Q ← Quantize(x,Q) ▷ x̂Q(i) = argminq∈Q ∥x(i)− q∥
pQ ← Empirical Density(x̂Q) ▷ pQ(q) =

1
N

∑
i∈[N ] 1 {x̂Q(i) = q}, ∀q ∈ Q

H(pQ)← Entropy(pQ) ▷H(pQ) = −
∑

q∈Q pQ(q) log pQ(q)
ifH(pQ) < b− ϵ then

x̂Q ← DOUBLE BINARY SEARCH NUM QUANTIZATION LEVELS(x, b)
end if
x̂e ← Huffman Coding(x̂Q) ▷ Entropy encoding of the quantized vector
Return: x̂e

Procedure DOUBLE BINARY SEARCH NUM QUANTIZATION LEVELS(x, b)
Initialize: low← 2b, high←∞, p← −1
while low ≤ high do

if high ==∞ then
p← p+ 1
mid← 2b + 2p ▷ Increase # of levels exponentially

else
mid← (low + high)/2

end if
K ← mid, ∆← (xmax − xmin)/mid
Q ←

{
xmin +

(
k + 1

2

)
·∆ : k = 0, . . . ,K − 1

}
x̂Q ← Quantize(x,Q)
pQ ← Empirical Density(x̂Q)
H(pQ)← Entropy(pQ)
ifH(pQ) > b then

high← mid− 1
else ifH(pQ) < b− ϵ then

low← mid + 1
else

return x̂Q
end if

Figure 5 illustrates ECUQ’s encoder, as described in the text above. The corresponding decoder is fairly simple as it only
performs entropy decoding in linear time (Huffman decoding).
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Figure 5. ECUQ encoder’s illustration.

While devising ECUQ, we also considered an additional method
to approximate ECQ. It is similar to ECUQ, but instead of
using uniformly spaced quantization values, it uses K-Means
clustering to find the quantization values that minimize the
overall squared error. We used a double binary search to find
the largest number of levels K such that, after entropy encoding,
the bandwidth constraint is satisfied. We termed this method
Entropy-Constrained K-Means (ECK-Means).

We compare the performance of ECUQ with ECQ and ECK-
Means in terms of their NMSE, and we also measure their encoding time. As we mentioned in the Section 4, ECQ is
sensitive to hyperparameters; thus, we implemented it using a grid search over its hyperparameters to guarantee near-
optimal performance.6 We evaluate the three methods on vectors drawn from three different synthetic distributions: (1)
LogNormal(0, 1); (2) Normal(0, 1); and (3) Normal(1, 0.1). In Figure 6 (top) we show the NMSE and encoding time for
different sizes of input vectors when the budget constraint is b = 2 bits/coordinate. As a complementary result, in Figure 6
(bottom) we fix the dimension of the input vectors to d = 212 = 4096 and vary the bandwidth budget constraint from 2
to 5 bits/coordinate. The results imply that ECUQ exhibits a good speed-accuracy trade-off: it consistently outperforms
ECK-Means while being an order of magnitude faster, and it is competitive with ECQ but about three orders of magnitude
faster. Note additionally that it takes≈ 20 minutes for ECQ to encode even a small vectors of size 212 with budget constraint
of 4 bits/coordinate; this means that ECQ without some acceleration is not suitable for compressing neural networks with
millions and even billions of parameters.
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Figure 6. ECQ vs. ECK-Means vs. ECUQ: NMSE and encoding time for different input distributions: (top) as a function of the bandwith
budget for fixed input dimension of d = 212; and (bottom) as a function of the input dimension for fixed bandwidth budget of 2
bits/coordinate.

6While such implementation may increase the encoding time, we are not aware of any other approach to guarantee an optimal
performance. ECQ aims at solving a hard non-convex problem, and different hyperparameters may result in different local minima.
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E. Additional ECUQ Evaluations
Since ECUQ is a quantization-based method, in Section 4 and Appendix D we compare it with quantization-based techniques.
In Figure 7, we give a complementary result comparing it with sparsification methods (Rand-K, Top-K) and sketching (Count-
Sketch), where similar trends are observed. Note, however, that such techniques are mostly orthogonal to quantization-based
methods and they can be used in conjunction.
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Figure 7. ECUQ vs. sparsification and sketching: NMSE (top) and encoding time (bottom) as a function of the bandwidth budget for
different input distributions and a fixed dimension of d = 220.

F. Experimental Details
We implemented DoCoFL in PyTorch (Paszke et al., 2019). In all experiments, the PS uses Momentum SGD as optimizer
with a momentum of 0.9 and L2 regularization (i.e., weight decay) with parameter 10−5. The clients, on the other hand,
use vanilla SGD for all tasks but Amazon Reviews, for which Adam provided better results. In Table 4 we report the
hyperparameters used in our experiments. To ease the computational burden and long training times, in the Shakespeare task
we reduced the amount of train and validation data for each speaker (i.e., client) by a factor of 10 by using only the first 10%
of train and validation data, but no less than 2 samples per speaker.

Table 4. Hyperparameters for our experiments.

Task Batch size Client optimizer Client lr Server lr
EMNIST 64 SGD 0.05 1
CIFAR-100 128 SGD 0.05 1
Amazon Review 64 Adam 0.005 0.1
Shakespeare 4 SGD 0.5 1

G. Additional Results
In this section we present additional results that were deferred from the main text.

G.1. Learning Curves

We next provide the learning curves for the experiments we conducted in § 5. In Figures 8 and 9 we show the validation and
train accuracy throughout training, respectively. We measure train and validation accuracy every 50 rounds for EMNIST and
Amazon Reviews, every 500 rounds for CIFAR-100, and every 1000 rounds for Shakespeare.

Following the discussion in § 5, Figure 8 demonstrates that using less bandwidth may improve the generalization ability
as it can serve as a form of regularization. For example, consider the EMNIST task, where DoCoFL(2, 2, 3) (i.e., 2 bits
per coordinate for anchor and correction compression, and 3 bits per coordinate for uplink compression) outperforms both
FedAvg and DoCoFL(4, 4, 3). Unsurprisingly, examining Figure 9 reveals a reverse image – less bandwidth implies lower
train accuracy. This suggests that in some settings using less bandwidth (but not too little) may help to prevent overfitting.
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Figure 8. Validation accuracy for different tasks.

0 2500 5000
0

50

100

T
ra

in
A

cc
.

CIFAR-100

0 5000 10000

50

100
EMNIST

0 500 1000

60

80

100
Amazon Reviews

0 15000 30000
0

25

50

Shakespeare

5000 5500 6000
85

90

95

100

T
ra

in
A

cc
.

–
Z

oo
m

-i
n

FedAvg

DoCoFL(2, 2, 1)

DoCoFL(2, 1/2, 1)

9600 9800 10000
80

90

100

FedAvg

DoCoFL(4, 4, 3)

DoCoFL(2, 2, 3)

1000 1100 1200

90

95

100
FedAvg

DoCoFL(6, 6, 2)

DoCoFL(4, 4, 2)

26000 28000 30000
50

55

60

FedAvg

DoCoFL(4, 4, 4)

DoCoFL(2, 2, 4)

Rounds

Figure 9. Train accuracy for different tasks.

G.2. Bandwidth Budget Ablation

Next, we provide numerical results that demonstrate the effect of the downlink (anchor and correction) bandwidth budget on
DoCoFL’s performance. We consider the CIFAR-100 with ResNet-9 experiment with anchor deployment rate K = 10 and
anchor queue capacity V = 3.
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Figure 10. Train and validation accuracy for different anchor bandwidth budgets (32, 3, 2, and 1.5 bits per coordinate) as a function of the
number of rounds (left) and the number of communicated bits in the downlink direction (right).
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Figure 11. Train and validation accuracy for different correction bandwidth budgets (32, 4, 2, 1, and 0.5 bits per coordinate) as a function
of the number of rounds (left) and the number of communicated bits in the downlink direction (right).

In Figure 10 we show the train and validation accuracy for different anchor bandwidth budgets bw, namely, 32 (full-precision),
3, 2 and 1.5 bits per coordinate, while the correction budget is fixed and equals bc = 2 bits per coordinate, as a function
of both number of rounds and number of communicated bits in the downlink direction. The results indicate that one can
significantly reduce the bandwidth used for communicating the anchors and use as low as bw = 2 bits per coordinate for
anchor compression (16× reduction), without degrading validation accuracy. Again, similarly to evidence from the previous
section, less bandwidth typically results in lower train accuracy.

In Figure 11 we show the train and validation accuracy for different correction bandwidth budgets bc (32, 4, 2, 1 and 0.5 bits
per coordinate), while the anchor budget is fixed and equals bw = 2 bits per coordinate. We observe similar trends, where
less bandwidth leads to lower train accuracy but possibly higher validation accuracy. Additionally, we see that one may
even use a sub-bit compression ratio for the correction term, allowing for significant online bandwidth reduction, which is
especially important in our context.

G.3. The Value of the Correction term

In this section, we discuss the effect of ignoring the correction term on DoCoFL’s performance, namely, we consider the
case where clients only obtain an anchor (i.e., a previous model) and use it perform local optimization. As mentioned in §5,
ignoring the correction may resemble other frameworks such as delayed gradients. Delayed SGD (DSGD, Arjevani et al.
(2020)) is well-studied in the literature both theoretically and empirically. Indeed, theory supports that optimization with
delay can work, e.g., Stich & Karimireddy (2019) showed that as long as the maximal delay is bounded by O(

√
T ), DSGD

enjoys the same asymptotic convergence rate as SGD; Cohen et al. (2021) later improved the dependence on the maximal
delay to average delay with a variant of DSGD, allowing for arbitrary delays. However, it has also been observed that, in
practice, introducing delay can slow down and even destabilize convergence, and as a result hyperparameters should be
chosen with great care to ensure stability (Giladi et al., 2020). We thus convey that sending the correction is crucial and
allows for improved performance.
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Figure 12. The effect of ignoring the correction term. Train (left) and validation (middle) accuracy for different configurations, and
average client’s model estimation error (right).
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To reinforce this, we conducted an experiment to numerically evaluate the effect of ignoring the correction. We consider the
CIFAR-100 with ResNet-9 experiment. We test DoCoFL with and without sending the correction to the clients for three
different configurations: (1) V = 3 and no anchor compression (i.e., 32 bits per coordinate); (2) V = 3 and Cw is ECUQ
with 2 bits per coordinate; and (3) V = 1 with Cw as in the second configuration. For all configurations, we use an anchor
deployment rate of K = 10. In Figure 12 we present the train and validation accuracy, and also the average client squared
model estimation error, i.e., 1

S

∑
i∈St
∥wt − ŵi

t∥2, for the first configuration. The results clearly indicate that accounting
for the correction term results in faster convergence. While ignoring the correction may eventually still result in similar
performance, it is expected to take significantly more communication rounds; this is evident even when the anchor is sent
with full precision. Examining the rightmost plot, we observe that ignoring the correction leads to larger model estimation
error, which provides insight into why the performance deteriorates when the correction is ignored.

G.4. DoCoFL and EF21

While our focus in on setups where a client may participate in training only once or a few times, in some setups, partial but
repeated participation can be expected. For such setups, we consider some additional related work. Specifically, we focus on
EF21 (Richtárik et al., 2021) and some of its extensions. To assess the value of DoCoFL in this context, we attempted to
extend EF21-BC (Algorithm 5 of Fatkhullin et al. (2021)) to the partial participation setting, but were not able to achieve
convergence. We suspect that it is attributed to an accumulated discrepancy between the models of the clients and the server,
and thus a more sophisticated extension is required, which is out of scope. Instead, we extended EF21-PP (Algorithm 4
of Fatkhullin et al. (2021)) to support downlink compression in two different ways: (1) direct compression of the model
parameters using EDEN; and (2) using DoCoFL. We compare these approaches with a baseline that sends the exact model
to the clients (i.e., no downlink compression).
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Figure 13. Train and validation accuracy for EF21-PP (Fatkhullin et al., 2021) (baseline) and its extensions supporting downlink
compression, either directly with EDEN, or with DoCoFL, over EMNIST. Results are displayed against the number of communication
rounds (left), the total number of downlink communicated bits (middle), and the number of online downlink communicated bits (right).
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Figure 14. Repeating the experiments from Figure 13 for CIFAR-100.

We consider two tasks: (1) EMNIST + LeNet with N = 200 clients and S = 10 participating clients per-round; and (2)
CIFAR-100 + ResNet-9 with N = 25 clients and S = 5 participating clients per-round. We used less clients here compared
to the experiments in the main text due to GPU memory limitations (EF21 requires keeping all N clients persistent). In both
experiments we use EDEN with 1 bit/coordinate for uplink compression. Figures 13 and 14 depict the train and validation
accuracy as a function of the number of communication rounds, the total number of communicated bits in the downlink
direction, and the number of communicated bits in the downlink direction required online (i.e., at the clients’ participation
round) for EMNIST and CIFAR, respectively. We note that using a direct compression of the model with 1 or 2 bits per
coordinate results in a notable drop in validation accuracy compared to the baseline. Indeed, using EDEN with 3 bits per
coordinate performs similarly to the baseline. Examining DoCoFL with 2 and 1 bits/coordinate for anchor and correction,
respectively, reveals that it performs similarly to direct downlink compression with 3 bits/coordinate, i.e., when using
the same overall downlink bandwidth; however, it requires 3× less online bandwidth. This is especially important in our
context since online bandwidth demand directly translates to client delays; indeed, this is a main design goal of DoCoFL.
Additionally, one may improve the results even further by increasing the anchor budget to 3 bits/coordinate, while keeping
the online bandwidth usage the same or even lower (e.g., see Figure 11).

Another important point of comparison is the EF21-P + DIANA method (Gruntkowska et al., 2022), which supports
bi-directional compression. In particular, their server compression mechanism is similar to ours in the following sense: their
server and clients hold control variates that track the global model; these control variates can be seen as an anchor that is
being updated in each round and the server sends to the clients a compressed correction with respect to the control variates.
However, their approach requires client-side memory with full participation (i.e., updated control variates). The authors
propose to study an extension of their framework to partial participation as future work. It is interesting to investigate
whether DoCoFL can be used in conjunction with this framework to achieve this.
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H. Future Work
We point out several directions for future research: (1) an interesting avenue would be to investigate how to combine DoCoFL
with the delayed gradients framework (Stich & Karimireddy, 2019). While delayed gradients do not reduce downlink
bandwidth, they are especially useful for clients that may require a long time to perform local updates and communicate
them back to the PS. Thus, accounting for delayed gradients may enhance DoCoFL’s versatility and robustness in real FL
deployments; (2) our theoretical framework focuses on the SGD optimizer. Exploring the implications of using adaptive
optimizers, such as Adam, on the theoretical analysis and guarantees would be of great interest; (3) as we convey in
Appendix B, an intriguing extension of DoCoFL involves the incorporation of adaptive bandwidth budget for anchor and
correction compression; although it introduces a significant theoretical challenge due to the coupling between optimization
and compression, it may yield a convergence guarantee for DoCoFL with anchor compression and achieve even larger
bandwidth savings; (4) while we employ extensive simulations and account for various overheads of DoCoFL, it is desired
to further strengthen our conclusions through real deployments.
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