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Abstract

Gaussianization (Chen & Gopinath, 2000) is a
simple generative model that can be trained with-
out backpropagation. It has shown compelling
performance on low dimensional data. As the di-
mension increases, however, it has been observed
that the convergence speed slows down. We show
analytically that the number of required layers
scales linearly with the dimension for Gaussian in-
put. We argue that this is because the model is un-
able to capture dependencies between dimensions.
Empirically, we find the same linear increase in
cost for arbitrary input p(x), but observe favor-
able scaling for some distributions. We explore
potential speed-ups and formulate challenges for
further research.

1. Introduction
Generative modeling is one of the most active areas of re-
search in Machine Learning. A plethora of different archi-
tectures based on neural networks have been proposed, in-
cluding: generative adversarial networks (Goodfellow et al.,
2020), variational auto-encoders (Kingma et al., 2019), nor-
malizing flows (Rezende & Mohamed, 2015), and most
recently denoising diffusion models (Ho et al., 2020).

Diffusion models currently take the lead in efficient training
and high-quality sampling. However, evidence so far is
mostly empirical and subject to change. This calls for a
rigorous comparison of the different approaches.

For all models, universal approximation theorems guarantee
that all reasonable distributions can be represented by the
different models (e.g. Teshima et al. (2020a;b); Koehler et al.
(2021)). This is a strong statement in the sense that with
enough resources, anything can be represented. However,
these theorems are not useful for model selection, mainly as
no statements about the required resources (model complex-
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ity, training speed, sample complexity) to achieve a speci-
fied performance are made. Also, existing results often limit
themselves to relatively weak measures of convergence.

In this work, we consider a variant of normalizing flows
called Gaussianization (Chen & Gopinath, 2000) and its
variants rotation-based iterative Gaussianization (RBIG)
(Laparra et al., 2011), sliced iterative normalizing flows
(SINF) (Dai & Seljak, 2021) and Gaussianization Flow (GF)
(Meng et al., 2020). For the first time, we provide an explicit
convergence rate for Gaussianization.

In particular, we contribute:

• We analytically derive that the number of Gaussianiza-
tion layers required to achieve the same improvement
in loss grows linearly with the dimensionality of the
problem for Gaussian input and random rotations (see
Figure 1 and Section 4.1).

• We demonstrate limits of determining better-than-
random rotations from finite training data (see Sec-
tion 4.2).

• We argue that this is due to the model being unable
to capture dependencies between dimensions, which
dominates in high dimensions (see Section 4.3).

• We empirically determine the scaling behavior for real
world datasets, where we find a similar linear increase
in complexity with dimension, and favorable scaling
for some distributions (see Section 5.2).1

Broadly speaking, we analyze the scaling behaviour of
Gaussianization with dimension analytically and empiri-
cally. This draws a general picture over the convergence
behavior of different invertible layers, see Section 6.

2. Related Work
There is a large collection of different methods which it-
eratively transform between distributions via rotations and
single-dimensional transforms. Originally, the idea of itera-
tively transporting input data to standard normal latent codes

1Code available at: https://github.com/vislearn/
Gaussianization-Bound
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Figure 1. Empirical scaling of learning Gaussian distributions
as a function of dimension D in the limit of low loss. Gaussian-
ization requires at least Ω(D) layers (Section 4.1), while only at
most constant (i.e. O(1)) number of coupling layers are needed
(Section 4.3, based on Draxler et al. (2022)). The solid lines are
the exact values predicted by the theories, the dots indicate experi-
mental measurements. The shades show the inter-quartile range.

has been proposed by Chen & Gopinath (2000). Laparra
et al. (2011) extended the idea with rotation-based iterative
Gaussianization (RBIG), by also considering the reverse
transport from latent codes to the data distribution. Other
variants like Iterative Distribution Transfer (IDT) replace
the standard normal by an arbitrary other distribution (Pitié
et al., 2007). Meng et al. (2020) leave the iterative scheme
and train the flow end-to-end. They demonstrate that the
resulting performs favorable in sitations of little data.

An important part in all these works is to find meaningful
non-Gaussian projections of the data. Originally, random
orthogonal matrices, ICA and PCA were suggested (Chen &
Gopinath, 2000). Meng et al. (2020) learn rotations jointly
with the dimension-wise transforms. Sliced Iterative Nor-
malizing Flow (SINF) uses max K-SWD, which optimizes
for the K most non-Gaussian directions in terms of Sliced
Wasserstein Distance (SWD) (Dai & Seljak, 2021). Sliced
Wasserstein Flows (SWF) had previously suggested utiliz-
ing SWD, but used this to iteratively solve a PDE (Liutkus
et al., 2019).

There has been significant work on showing convergence
guarantees for normalizing flows. Most work considers
convergence under weak convergence or convergence un-
der Wasserstein distance, both for Gaussianization (Chen
& Gopinath, 2000; Meng et al., 2020) and for coupling
normalizing flows (Teshima et al., 2020b; Koehler et al.,
2021). While these measures of convergence ensure ac-
curate samples “x ∼ q(x) → x ∼ p(x)”, they do not
show convergence of the corresponding densities “q → p”
(Gibbs & Su, 2002). Like Draxler et al. (2022) for coupling

f1(x) f 1
1 (z)

Q1

f2(x) f 1
2 (z)

f5(x) f 1
5 (z)

f17(x) f 1
17 (z)

Figure 2. Gaussianization learns a Gaussian mixture with three
modes. (Left) Gaussianization makes marginals normal and rotates
randomly. Iterating makes the latent distribution gradually Gaus-
sian. (Right) The first layer approximates p(x) via the product
of its marginals, see first row: q1(x) ≈ p(x1)p(x2). Subsequent
rows show the effect of additional later layers. The rows show the
effect of layer 1, 2, 5, and 17.

flows, we fill this gap by considering the KL divergence,
a stronger notion of convergence. We also give explicit
convergence rates instead of asymptotic guarantees. Our
theoretical derivations are limited to Gaussian distributions
close to convergence, however.

3. Gaussianization Fundamentals
3.1. Model

Gaussianization is a variant of Normalizing Flows. Here,
we follow the presentation in our previous work Draxler
et al. (2022). Flows represent a probability distribution
via an invertible function fθ(x) that maps samples x from
the unknown data distribution p(x) to latent variables z =
fθ(x) so that z follow a simple distribution, typically the
standard normal. The function fθ then yields an estimate
q(x) for the true data distribution p(x) via the change of
variables formula (e.g. Rezende & Mohamed (2015)):

q(x) = N (fθ(x); 0, I)|det J |, (1)

where J = ∇fθ(x) is the Jacobian of fθ(x). This is visual-
ized in Figure 2.

A normalizing flow is often trained and evaluated using
maximum likelihood, which is equivalent to minimizing the
Kullback-Leibler divergence between the distribution of the
latent code q(z), as given by z = fθ(x) when x ∼ p(x),
and the standard normal:

L = DKL(q(z)∥N (0, I)) (2a)

= Ex∼p(x)

[
1
2

∥∥fθ(x)∥∥2 − log |det J |
]
+ C. (2b)
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The additional term C consists of the log partition sum of a
standard normal distribution, and the unknown entropy of
the data: C = (D/2) log(2π)−H[p(x)]. It is independent
of the model parameters and can therefore be dropped for
optimization.

For sampling from q(x), draw a latent code z ∈ N (0, I)
and apply the inverse: x = f−1

θ (z).

A useful invertible architecture fθ has to (i) be computation-
ally easy to invert, (ii) be able to represent complex trans-
formations, and (iii) have a tractable Jacobian determinant
|det J | (Ardizzone et al., 2018). A plethora of such archi-
tectures have been suggested, e.g. (Kobyzev et al., 2021).

In this work, we focus on Gaussianization, first presented by
(Chen & Gopinath, 2000), and its variants rotation-based it-
erative Gaussianization (RBIG) (Laparra et al., 2011), sliced
iterative normalizing flows (SINF) (Dai & Seljak, 2021) and
Gaussianization Flow (GF) (Meng et al., 2020). It is a deep
architecture that consists of several blocks, each containing
a rotation, and a dimension-wise nonlinear transform:

fblock(x) = (fdim ◦ frot)(x). (3)

The dimension-wise nonlinear transform fdim treats each
dimension xi, i = 1, . . . , D independently:

x′i = fdim,θi(xi), (4)

where θi is a parameter vector defining the function for each
dimension i = 1, . . . , D. Crucially, xi does not depend on
xj , for i ̸= j. Given this structure, “sliced (iterative) normal-
izing flows” is a precise term in the context of normalizing
flows, but we stick with Gaussianization in accordance with
the early literature.

Treating each dimension separately is motivated by an exact
decomposition of the loss defined earlier in Equation (2):

L = DKL(q(z)∥N (0, I)) (5a)
= DKL(q(z)∥q(z1) · · · q(zD))︸ ︷︷ ︸

Dependence D

(5b)

+
∑
i

DKL(q(zi)∥N (0, 1))︸ ︷︷ ︸
marginal loss Ji

. (5c)

This representation makes clear that the loss is composed of
two parts: The dependence D, which measures how far q(z)
deviates from the product of its marginal q(z1) · · · q(zD),
and the marginal loss for each dimension, which measure
the deviation of each marginal q(zi) from the univariate
standard normal. Such a result is known as a generalized
Pythagorean Theorem in information geometry (Amari &
Nagaoka, 2007). Equation (5) is due to (Cardoso, 2003).

A single layer can reduce the marginal losses Ji in all di-
mensions (close) to zero if each fdim,θi is sufficiently rich.

This leaves only the dependence D as the loss. Note that
fundamentally, the dependence D cannot be changed by a
single-dimensional transformation.

If all layers worked with the same set of dimensions, the
dependency D part of the loss would never change. Here,
the rotation frot layer in each block comes into play (see
Equation (3)). It is parameterized by an orthogonal matrix
Q ∈ O(D) that rotates the data, varying the directions of
action of the dimension-wise transforms:

frot, Q(x) = Qx. (6)

Rotating the data does not affect the sum of the loss con-
tributions L = D +

∑
i Ji, but it redistributes it between

the dependence D and the marginal losses Ji. This makes
choosing rotations Q crucial. We elaborate on this issue in
Section 3.3.

Together, this model is sufficiently rich so that with ran-
dom rotations and enough expressive layers, Gaussianiza-
tion can approximate arbitrary distributions, i.e. map any
input dataset p(x) to normally distributed codes (Chen &
Gopinath, 2000; Meng et al., 2020). Note that the existing
guarantees only consider weak convergence, whereas no
convergence guarantee on the KL divergence L is known.
In this work, we consider the KL divergence, since this
stronger notion of convergence ensures that both samples
and density estimates converge.

3.2. Training

Gaussianization can be trained layer-by-layer (iterative) or
by training all blocks jointly (end-to-end).

In iterative training, one adds layers one by one: The data
set is used to train the first block fblock to maximally reduce
the loss in Equation (2). The second block is then trained
with the data transformed by the first layer.

In end-to-end training (Meng et al., 2020), we would con-
catenate a pre-specified number of blocks at initialization.
The parameters of each block are then trained jointly using
Equation (2). The advantage of end-to-end training is that
blocks can collaborate as the training signal is the gradient
of the entire pipeline and not just of a single block.

Iterative training has the advantage that there are fast ap-
proaches for learning the one-dimensional transforms. The
cumulative distribution function (CDF) may be estimated
on each 1D slice using the quantiles of the data, which by-
passes gradient descent on the loss. For example, Dai &
Seljak (2021) use rational-quadratic splines to fit the CDF
due to their flexibility and analytical invertibility.

In practice, end-to-end training requires fewer layers than
iterative training when learning a given distribution in low
dimensions (Meng et al., 2020). As the dimension increases,
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however, the convergence of the training saturates. State-of-
the-art Gaussianization results in high dimensions (MNIST,
CIFAR10) are currently held by iterative training with SINF
(Dai & Seljak, 2021).

3.3. Choosing rotations

Looking at the loss in Equation (2), it becomes clear that
the rotation layers have a strong impact on the performance.
The KL divergence DKL(q(z)∥N (0, I)) itself is symmetric
under rotations, and so the total loss L in Equation (2) does
not change with the rotation. Instead, it distributes the loss
between the dependence D and the marginal losses Ji. To
illustrate this, consider two special examples:

First, we take a distribution p(x) ̸= N (0, I) which can be
written as the product of marginals in some rotation of the
data Q∗:

p(Q∗x) = p((Q∗x)1) . . . p((Q
∗x)D). (7)

If we evaluate the loss in this orientation, the dependence
D becomes zero and all loss is contained in the marginals
Ji. This allows Gaussianization to fit p(x) in one layer:
The rotation layer chooses Q = Q∗ and the element-wise
transforms fit p((Q∗)xi).

On the other end, consider a Gaussian distribution p(x) =
N (0,Σ) where tr Σ = D. Then, there exists a rotation Q+

for which the standard deviations along the axis are one,
i.e. (Σ′)ii = ((Q+)TΣQ+)ii = 1. Then, Ji = 0 and all
the loss is contained in the dependence D. The element-
wise transformation layer cannot make any progress in this
situation.

For the two examples given, it is in principle known how
to obtain the optimal choice for Q: In the case of the first
distribution, ICA aims to find Q∗ such that the axes are
independent. For the case of Gaussian distributions, PCA
yields the optimal Q∗ such that Σ′ is diagonal and can be
solved using one block.

For most real-world distributions, an orientation Q∗ does
not exist where the data dimensions become independent.

The Cramér-Wold theorem (Cramér & Wold, 1936) guar-
antees that the learned latent codes are exactly Gaussian if
and only if there is no orientation Q with a non-Gaussian
marginal. To visualize this result, imagine projecting the
data set along a unit vector and looking at the histogram:

zproj = wTz. (8)

If the codes z are distributed like a multivariate standard
normal distribution, then each projection zproj will be dis-
tributed like a univariate standard normal distribution. If
however, z is not normally distributed, then there must be
some projection for which the data is also not distributed
like a normal distribution.

This implies that for a single layer we want to choose Q
such that the marginal projections are as non-Gaussian as
possible. Then, as much loss as possible is contained in
Ji, which can then be removed by the single-dimensional
transformations fdim,θi .

There is a rich history in identifying interesting marginal
directions in high-dimensional data. These are the most
common choices for computing Q from data:

• Random rotations are randomly sampled asQ ∈ O(D).
We give several guarantees in Section 4 for this case.

• Principal Component Analysis (PCA) transforms any
distribution with nontrivial covariance Σ such that
its principal axes coincide with the coordinate axes,
i.e. such that the resulting covariance matrix is diago-
nal QTΣQ = Diag(S) with eigenvalues S.

• Independent Component Analysis (ICA) identifies the
space in which a p(u) = p(u1) · · · p(uD), if x = Au
and u can be factorized in this form.

• max K-SWD identifies the directions in which the
sliced Wasserstein distance can be maximally reduced.
The sliced Wasserstein distances can be a proxy for
the marginal KL divergences, as both measure a diver-
gence between distributions.

We consider limitations of learned rotations in Section 4.2.

4. Analytic scaling behavior with dimension
In this section, we derive the scaling behavior of Gaussian-
ization with the dimensionality of p(x): We show that the
number of required layers grows at least linearly with the di-
mensionality of the problem in the case of random rotations.
We adopt the notation for asymptotic convergence behavior
with dimension D from (Knuth, 1997), replacing O → O
to avoid name collision with the orthogonal group O(D):

O(f(D)) := {g(D) ≤ Cf(D) for D > D∗}, (9a)
Ω(f(D)) := {g(D) ≥ Cf(D) for D > D∗}, (9b)
Θ(f(D)) := O(f(D)) ∩ Ω(f(D)). (9c)

4.1. Random rotations

We compute the convergence scaling for the special case
where the data distribution to be learned is a multivariate
Gaussian p(x) = N (0,Σ). This may seem like a large
restriction compared to the general distributions Gaussian-
ization promises to learn. However, the goal of Gaussian-
ization is to map the data to a standard normal, so after
enough Gaussianization blocks the latent estimate will be
close to a normal distribution N (0,Σ) with Σ ≈ I . As we
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Figure 3. Parameter counting argument: The goal is to trans-
form the covariance matrix Σ to the unit matrix I . The covariance
has D(D + 1)/2 degrees of freedom, of which Gaussianization
can learn D per layer, and couplings D2/4 +D per layer.

only give lower bounds on the number of required layers,
our bounds will be correct even if coming close to this case
is hard. Together, we expect that difficulties in learning
simple distributions like Gaussians will also occur when
learning complicated distributions. We provide experiments
in Section 5 that show how the central insights transfer to
arbitrary distributions.

Assumption 1. The covariance is normalized: tr Σ = D.

Assumption 2. The eigenvalues of the covariance matrix Σ
are distinct: λi ̸= λj for i ̸= j.

Both assumptions are weak: Assumption 1 is a typical data
preprocessing, and it is also achieved after a single Gaus-
sianization layer. Assumption 2 is typically satisfied when
working with real data that are in ‘general position’.

For Gaussian input, we find the following result:

Theorem 1. Given a multivariate Gaussian distribution
p(x) = N (0,Σ) under Assumptions 1 and 2. To exactly
represent p(x) with random rotations Q, at least

L ≥ 1

2
(D + 1) (10)

Gaussianization layers are required almost surely.

This is a lower bound on the required number of layers for
both the end-to-end and iterative training approaches: The
number of Gaussianization blocks required grows (at
least) linearly with the number of dimensions. The proof
is a simple parameter-counting argument: Σ has D(D +
1)/2 degrees of freedom, but linear Gaussianization with
random rotations only has D parameters per layer. Dividing
D(D + 1)/2 by D yields the result. This is visualized in
Figure 3. In the proof in Appendix A.1 we give more details
on the role of rotations.

The above argument assumes that we want exactly represent
the target distribution p(x) = N (0,Σ). This is an unre-
alistic requirement for machine learning models: Imagine
training a neural network with ReLU activations to fit a
parabola f(x) = x2. Being piecewise linear, you can never
hope for the ReLU network to exactly represent the parabola.

Instead, one requires that some error metric between the
learned and the true function can be made arbitrarily small.
The existence of arbitrarily close models is called universal
approximation.

In this work, we consider the loss that is used in practice:
the Kullback-Leibler divergence in Equation (2), which is
equivalent to the maximum likelihood criterion. It is a strong
metric in the sense that it ensures convergence of both sam-
ples (“x ∼ q → x ∼ p”) and the corresponding densities
(“q → p”). For the Gaussian case, the KL divergence be-
tween some p(x) = N (0,Σ) and the latent N (0, I) reads:

L(0) = DKL(N (0,Σ)∥N (0, I)) (11a)

= 1
2 (tr Σ−D − log detΣ) (11b)

(A1)
= − 1

2 log detΣ. (11c)

This holds under the weak Assumption 1 that tr Σ = D.

Universal approximation results are often pure existence
theorems: They only state that a suitable network can be
built, but often do not tell anything about the required model
complexity. The existing universal approximation guaran-
tees for Gaussianization (Chen & Gopinath, 2000; Meng
et al., 2020) also do not provide an explicit guarantee for the
required model capacity. In addition, they do not consider
the KL divergence, but weak convergence, which does not
imply convergence of densities.

For the first time, we give a rigorous lower bound on the KL
divergence assuming a given number of layers for random
rotations Q ∈ O(D).

Theorem 2. Given a multivariate Gaussian distribution
p(x) = N (0,Σ) under Assumption 1. Then, in the case
L ≪ 1, the expected loss after L iterative Gaussianization
blocks with random rotations is approximately:

EQ1...L∈O(D)[L(L)] ≤
(
1− 2

D + 2

)L

L. (12)

Theorem 2 sharpens Theorem 1 to a statement on the KL
divergence. Rewriting Equation (12) to derive how many
layers L are required at least to reduce some initial loss L
to L′, we find the same scaling behavior with the dimension
D as in Theorem 1:

L ≥ log(L′/L)
log
(
1− 2

D+2

) ≈ log(L/L′)
D + 1

2
= Ω(D). (13)

In words: The number of layersL required to reduce the loss
by a fixed amount scales at least linearly with the dimension
D. For the proof, see Appendix A.3.

Figure 1 empirically confirms this theoretical bound on a
variety of normal distributions with different initial Σ. It
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confirms the scaling with Ω(D) and shows that the actually
required numbers to reduce the loss by a ratio is higher
than Equation (13). In order to be consistent with L ≪ 1,
we measure the number of required layers for each input
by extrapolating the convergence rate of the last two of
10D layers. If L ≫ 0, the performance deviates from the
exact prediction in Equation (13) in both directions, but the
scaling with dimension is preserved. Details are given in
Appendix B.2.

While Theorem 2 only holds for the iterative case, end-
to-end training may perform better. We address this in
Corollary 1 in the following section.

To the best of our knowledge, Theorems 1 and 2 are the first
explicit convergence results for Gaussianization.

4.2. Limitations of learned rotations

In the previous section, we showed the scaling behavior of
Gaussianization for random rotations. In this section, we
show that end-to-end training has the same scaling behavior
with dimension. For iterative training, we point at a fun-
damental challenge in learning high-dimensional rotations
from data.

End-to-end training with learned rotations may outperform
Theorem 1 in terms of the number of required layers. In fact,
rotations exist such that arbitrary Σ can be fit with a single
layer. However, state-of-the-art rotation learning typically
does not train on the full orthogonal group O(D), as current
methods become prohibitively expensive with increasing D.
Instead, one considers subsets typically spanned by k ·D
independent parameters, such as spanned by Householder
transforms I − vvT (k = 1) or block-diagonal orthogonal
matrices (with k = (b− 1)/2 for block size b) (Meng et al.,
2020). Even with these parameterized rotations, however,
the number of required layers scales with the dimension D.
We then find:
Corollary 1. Given a multivariate non-degenerate Gaus-
sian distribution p(x) = N (0,Σ) under Assumptions 1
and 2. To exactly represent p(x) with learned rotations Q
with k ·D parameters each, at least

L ≥ 1

2(k + 1)
D (14)

Gaussianization layers are required almost surely.

The scaling of L with D can only be avoided when k ∈
Ω(D), which does not hold for the parameterizations men-
tioned above.

For iterative training, the bulk of the literature focuses on
rotating the data such that the marginals deviate as much
as possible from the target normal distribution N (0, 1), see
Section 3.3. Alternative methods differ mainly by their
measure of marginal non-Gaussianity.

3 2 1 0 1 2 3
0.0
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0.3

0.4
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N=60000 D=3072
Analytic marginal
Random projection
Adversarial target
Spurious projection

Figure 4. Spurious projection of standard normal data. The
plot shows N = 60, 000 samples from a D = 3072-dimensional
standard normal distribution projected to a single dimension. The
blue projection is selected randomly, and the resulting histogram
is close to standard normal. The orange projection is optimized so
that the dataset has a spurious bimodal histogram. The histograms
coincide with the marginal distribution Gaussianization would
learn, producing a bimodal distribution from Gaussian data in the
second case.

Unfortunately, this approach has an inherent tendency to
overfit on finite training sets: In the non-asymptotic regime,
there is a high probability that some marginal projections
exhibit considerable spurious non-Gaussianity even when
the data are sampled from a perfect standard normal, x ∼
N (0, I). In other words, although training has converged,
the iterative training algorithm will identify a rotation Q
that appears to improve the loss but actually worsens it.
In sufficiently high dimensions D, this still happens for
large datasets with N ≫ D, a typical situation in computer
vision. Inspired by (Bickel et al., 2018), we illustrate the
phenomenon at D = 3072 = 32× 32× 3 and N = 60000,
the dimension and size of the CIFAR10 dataset.

In Figure 4, we show the histogram of a spurious non-
Gaussian projection

xproj = wTx, |w| = 1, x ∼ N (0, I) (15)

of N fixed samples from a D-dimensional standard normal.
We construct w such that the projection of the fixed data
is as close as possible to the bimodal distribution shown
in the plot. Although in the asymptotic limit N → ∞ no
such w exists, the optimization readily finds a solution in
the finite dataset. Details on the experiment can be found in
Appendix B.3.

A similar experiment is reported in Appendix D.1 of (Dai
& Seljak, 2021). They show that max K-SWD can identify
spurious non-Gaussian projections. We extend their experi-
ment by demonstrating the effect of such projections on the
learned distribution. In our example, Gaussianization would
fit a bimodal distribution to a standard normal.
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The theoretical analysis in chapter 8 of (Wainwright, 2019)
shows that phenomena like this are fundamental in finite
datasets. Specifically, they prove that no method can reli-
ably estimate the eigenvectors of the empirical covariance
in high dimensions if the ratio D/N is bounded away from
zero, unless additional assumptions (e.g. sparsity of the co-
variance) are made. Consequently, even the straightforward
idea of defining the optimal Q via PCA can fail and must
be used with caution.

In practice, we expect Gaussianization with learned rota-
tions to work well in the initial blocks, where the intermedi-
ate latent distributions are strongly non-Gaussian. Deeper in
the network, however, intermediate distributions are already
close to standard normal, and spurious projections will ap-
pear. The resulting overfit of the rotation Q will fool the
subsequent marginal transformation, making the data less
rather than more Gaussian. This can only be fully avoided
by random orthogonal matrices Q, which almost surely do
not result in spurious non-Gaussian projections (Bickel et al.,
2018), compare the random projection in Figure 4. Random
rotations are exactly the regime of our theoretical results.

4.3. Relation to coupling-based normalizing flows

We now compare the above scaling results to guarantees for
another normalizing flows architecture, namely all variants
of coupling-based normalizing flows (Dinh et al., 2015). See
Draxler et al. (2022) for a list of architectures the following
results apply to.

Coupling-based normalizing flows and Gaussianization (see
Section 3.1) both represent invertible functions as a com-
position of invertible blocks, and each block consists of a
rotation followed by a reshaping of the distribution. Each
coupling-based reshaping splits the data dimensions into a
D′-dimensional active and (D −D′)-dimensional passive
subspace, and reshapes the active subspace conditional on
the passive subspace. Thus, couplings explicitly reduce the
dependency between the active and passive dimensions, in
contrast to Gaussianisation blocks, which reshape each di-
mension independently. The downside of this improvement
is that only D′ dimensions are modified in each block, with
D′ = D/2 being the most common choice.

Using exactly the same argument as in Theorem 1, we pro-
vide a first glance on how many coupling blocks are required
to fit p(x) = N (0,Σ):
Corollary 2. Given a multivariate Gaussian distribution
p(x) = N (0,Σ). To exactly represent p(x), at least

Lcpl ≥ 2 ∈ Ω(1) (16)

coupling blocks with random rotations Q ∈ O(D) are re-
quired almost surely.

This result says that the number of coupling blocks required

to represent N (0,Σ) exactly is independent of dimension
in the best case. For the proof, see Appendix A.4.

Just like Corollary 2 gives a lower bound on the number
of blocks required, Theorem 2 of (Koehler et al., 2021)
provides an upper bound, which we condense for simplicity:

Theorem 3 (Koehler et al. (2021)). Given a multivariate
Gaussian distribution p(x) = N (0,Σ). To exactly represent
p(x), at most Lcpl ≤ 48 ∈ O(1) coupling blocks with block
permutations are required.

This ensures that at most 48 blocks or O(1) are required
to exactly fit a Gaussian p(x) = N (0,Σ). While this may
seem like a large number, the result crucially ensures that the
number of required blocks is independent of the dimension.
In the statement, block permutations refers to all rotations
switching all active and passive dimensions:

Q =

[
0 ID/2

ID/2 0

]
. (17)

Odd and even layers each modify one half of the dimensions
respectively. This is a popular choice in practice.

The above arguments considered exact representation of
p(x), and statements about the convergence rate are stronger
as argued in Section 4.1. We therefore condense (see Ap-
pendix A.5) the main theorem in (Draxler et al., 2022) to
have the same format as Theorem 2:

Theorem 4 (Draxler et al. (2022)). Given a multivariate
Gaussian distribution p(x) = N (0,Σ). The initial loss L
is given by Equation (11). Then, in the case L ≪ 1, 1 ≪ D,
the loss after Lcpl iterative coupling blocks with random
rotations is at most:

EQ1...L∈O(D)[L(Lcpl)] ≲

(
1

2

)Lcpl

L. (18)

In parallel to the previous calculations, we derive how many
coupling blocks are required to reduce the loss from L to L′:

Lcpl ≲
log(L/L′)

log(2)
= O(1). (19)

Together, Corollary 2 from below and Theorems 3 and 4
from above show that in contrast to Gaussianization, the
number of coupling blocks is independent of the problem
dimension:

Lcpl = Θ(1). (20)

This means that on Gaussian data, Gaussianization re-
quires more layers than coupling blocks because the
layers do not model dependencies between dimensions.

7



On the Convergence Rate of Gaussianization with Random Rotations

102

103 Full

102

103 d = 15 d = 30 d = 50

20 40 60 100 170
# of dimensions D

102

103 d = 15 d = 30 d = 50# 
of

 re
qu

ire
d 

la
ye

rs
 L

Figure 5. Required layers of Gaussianization on toy data.
(Top) If all dimensions depend on one another, the number of
required layers increases linearly with dimension. (Middle) If trail-
ing dimensions i > d are pairwise independent given the core d
dimensions, only about a constant number of layers is sufficient for
fixed d. (Bottom) If the trailing dimensions i > d are independent
Gaussian noise, the number of layers increases linearly with di-
mension. Shaded regions indicate 100% of the training runs. Gray
lines indicate Θ(D) resp. Θ(1).

5. Experimental scaling behavior
In Section 4, we gave rigorous predictions for the con-
vergence of Gaussianization on Gaussian input p(x) =
N (0,Σ). The core result is that the number of blocks in-
creases linearly with the dimension. Comparing this result
to similar results on coupling-based normalizing flows, we
identified that modeling dependencies between dimensions
is the major bottleneck of Gaussianization.

We now lift the restriction to Gaussian input and consider
p(x) ̸= N (0,Σ). We find that as the dimension increases,
the number of required layers L increases with dimension
D, but favorable scaling can be achieved depending on the
properties of the data. We give implementation details in
Appendix B.4. We base our implementation of fdim(x) on
the code provided by SINF (Dai & Seljak, 2021).

5.1. Toy scaling experiment

For determining the scaling behavior of Gaussianization we
consider a family of distributions of varying dimension D.
We propose to build such a toy distribution autoregressively:

p(x) = p(x1)

D∏
i=2

p(xi|Ai), (21)

where the set Ai ⊆ {x1, . . . , xi−1} collects the random
variables that xi depends upon. This allows adding new
dimensions by specifying their dependencies.

We consider the following three variants: (1) Let ev-
ery variable depend on all previous variables: A

(1)
i =

{x1, . . . , xi−1}). (2) We only make a subset of d vari-
ables depend on all previous, and let the remaining dimen-
sions depend on this fixed subset of dimensions: A(2)

i≤d =

{x1, . . . , xi−1} (core) and A(2)
i>d = {x1, . . . , xd} (remain-

der). (3) Like the second case, but the remaining dimensions
i > d are independent Gaussian noise: A(2)

i≤d = A
(3)
i≤d (core)

and A(3)
i>d = ∅ (noise).

In particular, we choose p(xi|Ai) as a continuous mixture
of Gaussians

p(x1) = N (m1, σ
2
1), (22a)

p(xi|Ai) = N (mi(Ai), σ
2
2) (22b)

where the dependencies are introduced through mi(Ai):

mi(Ai) = m0 + 5 tanh

(
1

10

∑
xj∈Ai

sijx
2
j

)
. (23)

The values m1,m0 ∈ R;σ1, σ2 ∈ R+, sij ∈ {−1, 1} are
parameters to the distribution.

Figure 5 shows how many layers L are needed to reduce
the loss by a fixed ratio γ = L′/L < 1 for each case as
a function of dimension D. We find that for cases (1) and
(3), the number of required Gaussianization layers increases
linearly with dimension, which is consistent with our the-
oretical result on Gaussian data in Equation (13). In case
(2) however, the number of required layers remains roughly
constant with dimension (but it does depend on the num-
ber of dependent dimensions).2 We show in Figure 11 in
Appendix B.5 that random projections are less Gaussian in
this case, as additional variables carry information about
the core dimensions. This makes it easier for Gaussianiza-
tion to fit the data, efficiently removing loss by fitting the
non-Gaussian marginals.

This toy experiment indicates that linear increase in required
layers holds for some distributions, and a favorable scaling
behavior may be obtained for certain input.

5.2. Real dataset experiment

We now consider the scaling behavior of Gaussianization on
a real dataset, the EMNIST digits (Cohen et al., 2017). To
measure the scaling with dimensions, we construct variants
of the data with different dimensions. We therefore rescale
the images to scales between 2× 2 and the original 28× 28,
see Figure 6.

2In a preliminary version of this paper, we conjectured that
alone the number of dependencies causes the scaling behavior
with dimension. After more detailed experiments, this hypothesis
turned out to be false.
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Figure 6. Our multi-scale EMNIST digits dataset.
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Figure 7. Gaussianization requires more layers for higher reso-
lution datasets. From 2× 2 to 10× 10, fitting a power law yields
a linear function. For larger images, the difficulty does not increase
further. We think that this is due to an increasing number pixels
being largely determined from the other dimensions. Data points
show the median and error bars cover 90% of the training runs.

Figure 7 shows how many layers are required as a function
of dimension, extrapolated from training 64 Gaussianization
layers. We find that up to a scale of D = 10 × 10, the
number of required layers roughly increases as Θ(D), like
in Equation (13), and then remains about constant.

Consistently, around a side length l = 10, the main charac-
teristics of each digit become clear. Afterwards, only local
details are filled in. We identify the corresponding scaling
of Gaussianization with case (2) in Section 5.1, where addi-
tional dimensions are highly correlated with others, so that
random marginal distributions become less Gaussian.

Note that for computing the absolute KL divergence as de-
fined in Equation (2), we need to evaluate the entropy of
the data H[p(x)]. This is an unknown value in general and
for rescaled EMNIST digits in particular. We therefore re-
place the ground truth dataset by generative models trained
on each respective scale. We use a Normalizing Flow for

our ground truth distribution, which achieves better density
estimates in general than Gaussianization. This removes
bias from our convergence rate estimates: If we were to
use the trained model itself as ground truth, we would find
spuriously fast convergence even if the model does not con-
verge – as we compute the convergence rate to a suboptimal
optimum. See Appendix B.6 for all experimental details.

6. Conclusion
Gaussianization is a simple generative model, that has
shown advantages in situations with little data (Meng et al.,
2020; Dai & Seljak, 2021). Differently from other ap-
proaches, it can be trained without loss and neural networks,
yet provides useful density estimates and samples in low
and moderate dimensions.

Scaling Gaussianization to high dimensions remains a major
challenge, and we confirm this rigorously. We show ana-
lytically for the Gaussian distribution p(x) = N (0,Σ) (see
Section 4) that the number of required layers typically scales
with the dimensionality of the problem if the rotations Q are
chosen at random. On non-Gaussian distributions, we show
that convergence can be favorable for some distributions.

Generally speaking, our work complements the theory on
networks that are constrained in order to be invertible:
Should we have few unconstrained yet expensive layers
(i.e. autoregressive, with all dependencies modeled in a
single, highly expressive layer (Knothe, 1957; Rosenblatt,
1952)) – or should we constrain each layer, but have more of
them (i.e. coupling or Gaussianization layers)? Our theory
indicates that Gaussianization, limited to learning marginals
in each step, scales slower than alternatives, in particular in
the regime of low loss.

An important point remains open, however: Improving
Gaussianization to high dimensions may be possible by
constructing better rotations Q. Our work points out funda-
mental limits: There exist spurious non-Gaussian directions
that may be spuriously identified (see Section 4.2), and we
can never expect that a single Gaussianization block can fit
real-world distributions (see Section 3.3).
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A. Proofs
A.1. Proof of Theorem 1

Proof. We need to exclude the special case that the accumulated rotation Q(l) = Ql · · ·Q1 (partially) aligns with the
eigenspace of Σ for some l = 1, . . . , L. Then, the Σ is (partially) diagonal in the input to this block l and fdim is able to map
Σ → I already earlier. However, this alignment has probability mass zero under random Q.

To perfectly map the input Gaussian N (0,Σ) to the latent distribution N (0, I), we need to learn a linear function A such
that ATΣA = I . As a lower bound on how many layers we need to represent a suitable A, our learned function needs to
have at least as many degrees of freedom as the covariance matrix Σ ∈ RD×D: As it is symmetric Σ has D(D + 1)/2
independent degrees of freedom. The D linear single-dimensional transforms in each block fdim,i have a total of D degrees
of freedom. Thus we need more than D(D + 1)/(2D) = (D + 1)/2 ≥ D/2 layers to represent Σ.

A.2. Proof of Corollary 1

Proof. The proof follows by replacing the number of parameters per layer in Appendix A.1 by (k + 1)D instead of D. We
find at least D(D + 1)/(2(k + 1)D) = (D + 1)/(2(k + 1)) ≥ D/(2(k + 1)) layers to represent Σ.

A.3. Proof of Theorem 2

Proof. We start with a covariance matrix Σ with tr Σ = D by Assumption 1. Given a fixed rotation Q, the output of the
rotation layer is:

p(Qx) = N (0, QΣQT). (24)

The marginals of this distribution read:
p((Qx)i) = N (0, (QΣQT)ii). (25)

Each marginal can be transported immediately to a univariate standard normal via:

fdim,θi(xi) =
xi√

(QΣQT)ii
. (26)

This makes the collected action of the element-wise layer:

fdim(x) = Diag(QΣQT)−1/2x =: S−1/2x. (27)

Here, S = Diag(QΣQT) collects the diagonal of the rotated covariance.

The output of the layer is again a Gaussian distribution:

p(x′) = N (0,Σ′), Σ′ = S−1/2QΣQTS−1/2. (28)

Inserting this into the loss in Equation (11), we find:

L′ = − 1
2 log detΣ

′ (29a)

= − 1
2 log det(S

−1/2QΣQTS−1/2) (29b)

= − 1
2 (log detS + log detΣ) (29c)

= L − 1
2 log detS. (29d)

As we consider random rotations Q ∈ O(D), we compute the expected loss over rotations:

EQ∈O(D)[L′] = L − 1
2EQ∈O(D)[log detS] (30a)

= L − 1
2

D∑
i=1

EQ∈O(D)[log(QΣQT)ii] (30b)

≤ L. (30c)
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Here, we have used Jensen’s inequality and that EQ∈O(D)[(QΣQT)ii] = trΣ/D = 1. (This is a vacuous bound: The
expected loss after the layer is at least as good as before the layer.)

We can estimate the error of Jensen’s inequality to get an estimate for a lower bound on EQ∈O(D)[L′]. Here, we make use of
the result in (Costarelli & Spigler, 2015) applied to log:

E[φ(x)]− φ(E[x]) ≤ 1

2
max
x∈I

φ′′(x)Var[x]. (31)

In our case, φ(x) = − log x, and x ∈ [λmin, λmax], the extremal eigenvalues of Σ (which are invariant under rotation).

In (Draxler et al., 2022), the authors show that:

Var[(QΣQT)ii] =
2

(D + 2)
Var[λ], (32)

for the variance of the eigenvalues of Σ, given by Vari[λi].

For us, this means:

L − L′ ≤ 1

2λ2min

2

(D + 2)
Var[λ]. (33)

We make use of following arithmetic mean-geometric mean (AM-GM) inequality by (Cartwright & Field, 1978):

Var[λ]

2λmax
≤ λ̄− g ≤ Var[λ]

2λmin
, (34)

where g is the geometric mean of the eigenvalues:

g :=

 D∏
i=1

λi

1/D

, (35)

and find:
L − L′ ≤ 1

2λ2min

2

(D + 2)
2λmax(1− g). (36)

As λmax > 1, we can multiply the right hand side by λmax:

L − L′ ≤ 1

2λ2min

2

(D + 2)
2λ2max(1− g). (37)

Then, rewrite using the conditioning number κ = λmax/λmin:

L − L′ ≤ 2

(D + 2)
κ2(1− g). (38)

Note that one can write the loss L directly via g and vice versa:

L = −1

2
log gD = −D

2
log g, (39a)

g = exp(−2L/D). (39b)

As we want a bound that merely depends on the loss, we upper bound κ using a function of the loss:

max
λ1,...,λD∑

i λi=D∏
i λ

1/D
i =g

κ =
1 +

√
1− gD

1−
√
1− gD

. (40)
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Then,

L − L′ ≤ 2

(D + 2)

1 +
√

1− gD

1−
√
1− gD

2

(1− g). (41)

By assumption, we have the limit L ≪ 0, which corresponds to g → 1. We find:

L′ ≥
(
1− 2

D + 2

)
L − |O(L)| (42)

A.4. Proof of Corollary 2

Proof. The proof follows by replacing the number of parameters per layer in Appendix A.1 by (D/2)2 +D/2 instead of D.
We find at least 2 > D(D + 1)/(2((D/2)2 +D/2)) = 2(D + 1)/(D + 2) > 1 layers to represent Σ.

A.5. Proof of Theorem 4

We use Theorem 4 in (Draxler et al., 2022). Like Section 4, it concerns centers data:

Assumption 3. The data p(x) is centered: Ex∼p(x)[x] = 0.

Theorem 5. Given D-dimensional data fulfilling Assumptions 1 and 3 with covariance Σ. Then, after L coupling blocks,
the expected loss is smaller than:

EQ1,...,QL∈O(D)[S(ΣL)] ≤ γ
(
S(Σ)

)LS(Σ), (43)

where the convergence rate depends on the non-Standardness before training:

γ(S) = 1 + 1
4S/D log

(
1− D2

(D − 1)(D + 2)

1−
√
1− g(S)D

1 +
√
1− g(S)D

(
1− g(S)

))
< 1. (44)

Here, the non-Standardness S is the loss L in the Gaussian case, see Equation (11). We write L in the remainder of this
section:

Proof. We start from Theorem 5. We first take the limit of γ(L) for L ≪ 1 and then D ≫ 1. We use the computer algebra
system sympy to take the limits:

γ(L) L→0−−−→ D(D + 2)− 4

2(D − 1)(D + 2)
+O(L) D→∞−−−−→ 1

2
+O(L) +O(D−1). (45)

To further justify the usage of

γ(L) L→0,D→∞−−−−−−−−→ 1

2
, (46)

note that

γ(L) L→0−−−→ D(D + 2)− 4

2(D − 1)(D + 2)
∈
[
1/2, 5/9

]
≤ 0.555 . . . (47)

B. Experimental details
B.1. Measuring number of required layers

We proceed as follows to predict the number of required layers to reduce the loss by a factor L′/L from training Ltrain layers
in all experiments:
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1. Determine the entropy H[p(x)] of the data distribution p(x). This is required for computing the KL divergence in
Equation (2), and restricts us to distributions p(x) which we can sample from (for training) and where we can evaluate
the entropy via:

H[p(x)] = −Ex∼p(x)[log p(x)] (48)

2. Train a fixed number of layers Ltrain iteratively.

3. In general, we observe the loss as a function of depth L to decrease in a geometric series:

LLtrain := L0γ
Ltrain . (49)

We determine γ from the initial loss L0 and the loss after Ltrain layers:

γ :=
[
LLtrain/L0

]1/Ltrain (50)

4. We then extrapolate Equation (49) to predict the number of layers required for an arbitrary loss ratio L′/L:

L =
log(L′/L)

log γ
(51)

We evaluate Equation (51) throughout the paper for a loss ratio of log(L′/L) = 1, that is L′ = e−1L = 36.8%L, but this is
arbitrary as we are only interested in the scaling with dimension which is independent of L′/L.

B.2. Gaussian data

As our dataset, we construct the same dataset of Gaussians as Draxler et al. (2022). They construct covariances given a
dimension D by choosing the eigenvalues of the covariance. We then normalize for fulfilling Assumption 1 and obtain:

Σ =
1∑
i λi

Diag(λ1, . . . , λD). (52)

We consider the following eigenvalue spectra:

1. Single eigenvalue varying: λ1 = α, λ>1 = 1 for α ∈ (λmin, 1/λmin)\{1}.

2. All eigenvalues varying but one: λ1 = 1, λ>1 = α for α ∈ (λmin, 1/λmin)\{1}.

3. All eigenvalues varying but one (shifted): Like the previous case, but we map λi 7→ λi −
∑D

i=1 λi/D and exclude
spectra where this produces any λi ≤ 0.

4. Half small, half big: λ≤D/2 = α, λ>D/2 = 1/α for α ∈ (λmin, 1)\{1}.

5. Randomly sample λi ∼ [0, 2] uniformly.

6. Randomly sample λi ∼ [λmin, 1/λmin] log-uniformly.

We choose D in 10 geometrically spaced values from 10 to 128. We choose λmin = 10−3. The case where all eigenvalues
are equal to 1, λi = 1, is excluded, as Gaussianization has converged at this point.

For each Σi in the resulting data set, we create Nrot differently rotated variants Σr
i = Q⊤

r ΣiQr, where we choose Nrot = 8,
whatever is larger. This corresponds to the initial unknown rotation of the data.

We then apply the analytic solution of a Gaussianization block on the covariance, given by Equation (28). Then, another
Nrot rotations are drawn, which rotate each resulting covariance. This procedure is repeated until the specified number of
layers is reached. We use Ltrain = 8D layers as we expect the number of required layers to increase with Ω(D).

To evaluate Theorem 2, we compare Equation (13) with the empirical result. To estimate the required number of layers for a
fixed loss ratio, we proceed as in Appendix B.1 so that we end up in the regime where L ≪ 1. For Figure 1, we fit γ from
the loss ratio of the last two layers: γ =

√
LLtrain/LLtrain−2 instead of Equation (50). The maximum loss in this case is 10−2,

so we are in the regime of L ≪ 1.

In Figure 8, we observe the same linear scaling behavior of required layers with dimension for L ≫ 0, i.e. at the beginning
of training. However, in this case, the bound in Equation (13) is violated in few scenarios: They require less layers than
predicted. However, after a small number of layers, also these cases fulfill Equation (13), see Figure 9.
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Figure 8. For larger loss L ≫ 0, the median number of required layers over the data set is larger than predicted, and some
cases scale faster. (Left) If we predict the number of required layers from the first Ltrain = D layers, the majority of cases show slower
convergence than predicted. Some cases show faster convergence, see Figure 9. (Medium) After the first Ltrain = 3D layers, most cases
show the linear scaling behavior with dimension. (Right) The bound is valid for at least 90% of the data after Ltrain = 10D layers. All
averaging is performed via the median and shaded regions cover 90% of the cases.
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Figure 9. Our analytic lower bound on the number of layers gives a good estimate even outside the valid regime (where L ̸≪ 1) for
several considered cases. (Left) The cases with faster initial convergence than Equation (13) (orange) originate from “All eigenvalues
varying but one” and “Single eigenvalue varying” with one eigenvalue bigger than the others (left). After a finite number of layers (L = 40
here), the number of required layers predicted at this depth is close to the number predicted by the theory in all cases. The plot considers
D = 128. Note that at this depth, the loss for the fastest configuration is still greater than 10, far from convergence. The suffixes “> 1”
and “< 1” separate α ≶ 1.

B.3. Finding spurious dimensions in standard normal data

We randomly sample N = 60, 000 normal samples of dimension D = 3072, which corresponds to the size of the CIFAR10
dataset. We optimize w ∈ RD, ∥w∥ = 1 to minimize the 1-dimensional sample-based 2-Wasserstein distance to a predefined
bimodal distribution padv =

(
N (−d/2, σ) +N (d/2, σ)

)
/2:

W 2
2 =

N∑
i=1

(
(w⊤x)πw(i) − yi

)2
. (53)

Here, yi are sorted samples from padv. The permutation πw : [N ] → [N ] sorts the projected values (w⊤x).

We choose the spread of the bimodal distribution to be d = 2 and the standard deviation of each mode as σ = 0.4.

We optimize w for 64 steps using SGD with a learning rate of 10 and momentum .8. After each update, we rescale ∥w∥ = 1.
The final Wasserstein distance we obtain reads 0.03, down from 0.1 for a random w.

For the visualization in Figure 4, we project the data once with a random w⊤
randx and once with w⊤x into 70 bins.
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B.4. Gaussianization implementation

Following Equation (3), we construct frot as a random rotation frot(x) = Qx where Q ∼ O(D) for data dimensionality D.
For fdim, we choose rational-quadratic splines, which allow for approximation of arbitrary functions by separating their
domain into b bins. Given bin edges (or knots) x(k), y(k), x(k+1), y(k+1) and derivatives δ(k), δ(k+1) at those edges for bin
k = 1, ..., b, they can be interpolated with a rational-quadratic polynomial as described in (Durkan et al., 2019). Beyond the
outermost bin edges, the spline is extrapolated with linear tails.
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Rational-Quadratic Spline
Forward
Inverse

Figure 10. Rational-Quadratic Spline. Each pair of knots (black) is interpolated with a rational-quadratic polynomial. The outside is
extrapolated with linear tails.

We use an implementation of RQ splines based on (Dai & Seljak, 2021), where ψ(x, α) = (1 − α)RQ(x) + αx with a
scalar regularization parameter α. We choose b = 128 bins, as well as α1 = 0.9 for the spline and α2 = 0.99 for the linear
extrapolation, such that

fdim,θi(xi) =

{
ψ(xi, α1) x

(1)
i ≤ xi ≤ x

(b+1)
i

ψ(xi, α2) otherwise
. (54)

The α1,2 significantly slow down training, but increase performance (Dai & Seljak, 2021). It should not alter the scaling
behavior of the number of required layers with dimension, up to a constant factor independent of dimension.

Splines are fit to the CDF of the data by evenly distributing bin knots on the quantiles of the data and applying the inverse
Gaussian CDF:

x
(k)
i = q

(
k

b+ 2

)
, (55a)

y
(k)
i = G−1

(
x
(k)
i

)
, (55b)

where q(p) =
√
2 erf−1(2p− 1) is the quantile function and G(x) = 1

2

[
1 + erf

(
x√
2

)]
is the standard normal CDF. The

inner derivatives δ(k) can then be estimated by finite differences, following (Durkan et al., 2019):

h
(k)
i = x

(k+1)
i − x

(k)
i , (56a)

s
(k)
i =

y
(k+1)
i − y

(k)
i

x
(k+1)
i − x

(k)
i

, (56b)

δ
(k+1)
i =

s
(k)
i h(k+1) + s(k+1)h(k)

h(k+1) + h(k)
, k = 1, ..., b− 1. (56c)

We choose identity tails, i.e. δ(1) = δ(b+1) = 1.
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Figure 11. Random projections of data from the different versions of toy data in D = 128. Columns show the different cases, and each
row depicts a different random projection w ∈ RD, ∥w∥ = 1. In case (2, center), most dimensions depend on the same dimensions,
making random projections deviate strongly from a standard normal. For case (1) and (3), random projections are very close to a Gaussian,
preventing a fast fit using Gaussianization.

B.5. Toy scaling experiment

Toy data distribution Our goal is to create a family of distribution p(x) which naturally extend over different dimensions
D by the continous mixture of Gaussians Equation (22) where the mean of each dimension is conditioned on the previous
via mi(xj ∈ Ai). In particular, we choose:

m1 =
1

2
, m0 = 0, σ2

1 = 0.8, σ2
2 = 0.2. (57)

The sij(D) are drawn randomly from {−1,+1} for each dimension D and for each seed. This is the main source of noise
between runs.

Training We employ the architecture described in Appendix B.4 for Ltrain = 64 layers. We use N = 60, 000 training
samples in each case and run a total of four runs per case (except for case 1, for which we average over eight runs). Before
training, the data is normalized to zero mean and unit standard deviation in the original rotation.

In principle, measuring convergence rates would be more accurate by using different batch of training data for fitting
each layer, as this avoids overfitting and yields slower convergence on test data. We find this not to be a problem for the
considered 64 layers and high α (see Appendix B.4).

Evaluation We compute the number of required layers for each run via the procedure in Appendix B.1. This number is
then averaged over all runs for each case and dimension.

B.6. Multi-scale EMNIST experiment

Data distribution As described in Section 5.2, we make use of a normalizing flow as our data density p(x). Each flow
architecture consists of a fixed normalization layer, followed by 20 affine coupling blocks. We use purely full-connected
networks for odd scales, and convolutional networks for even scales. We use wavelet downsampling before the first. If the
image side length scale is a power of 4, we add a second wavelet downsampling after the eigth affine coupling layer. Each
convolutional subnetwork uses two hidden layers with 16 channels respectively 32 channels after the second downsampling
each, and a kernel size of 3. The final 4 coupling blocks are fully connected. Each fully connected subnetwork has two
hidden layers with hidden width equal to the total number of dimensions D. The details for each architecture are given in
Table 1.

We train the normalizing flows for 30 epochs for D = 28× 28, and 20 for the other scales using negative log-likelihood, see
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Figure 12. Samples from our down-scaled EMNIST normalized models which we use as ground truth distributions p(x). Normalizing
Flows are sampled with reduced temperature 0.8.

Equation (2). We use Adam with a learning rate of 10−3 and a batch size of 256.

After training, we replace the latent distribution with a normal distribution N (0, σ̂2ID) with σ̂ = 0.8 to achieve a better
sample quality. Note that this does not influence the ability to compute density estimates p(x) from our model, but it does
reduce the entropy of the data.

Scale Network type # of downsamplings # of parameters
4 = 2× 2 conv 1 149k
9 = 3× 3 fc 0 7k
16 = 4× 4 conv 2 194k
25 = 5× 5 fc 0 38k
36 = 6× 6 conv 1 164k
49 = 7× 7 fc 0 134k
64 = 8× 8 conv 2 235k

100 = 10× 10 conv 1 254k
144 = 12× 12 conv 2 406k
196 = 14× 14 conv 1 544k
256 = 16× 16 conv 2 861k
324 = 18× 18 conv 1 1M
400 = 20× 20 conv 2 2M
484 = 22× 22 conv 1 3M
576 = 24× 24 conv 2 4M
676 = 26× 26 conv 1 5M
784 = 28× 28 conv 2 6M

Table 1. Normalizing Flow architecture as a function of image size. A purely fully-connected network is labeled by “fc”, “conv” networks
are partially convolutional.

Traininig Like in the toy experiment, we use the implementation from Appendix B.4. We again choose N = 60, 000
training samples without resampling. We average each case over 10 runs.

Evaluation We use the same procedure as in Appendix B.5.

B.7. Compute and libraries

Experiments were performed on three workstations, each with a single high-end consumer GPU and CPU each. We build
our code upon the following python libraries: PyTorch (Paszke et al., 2019), PyTorch Lightning (Falcon & The PyTorch
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Lightning team, 2019), Lightning Trainable (Kühmichel & Draxler, 2023), Tensorflow (Abadi et al., 2015) for FID score
evaluation, Numpy (Harris et al., 2020), Matplotlib (Hunter, 2007) for plotting and Pandas (Wes McKinney, 2010; The
pandas development team, 2020) for data evaluation.
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