
A Flexible Diffusion Model

Weitao Du * 1 He Zhang * 2 Tao Yang * 2 Yuanqi Du * 3

Abstract
Denoising diffusion (score-based) generative
models have become a popular choice for mod-
eling complex data. Recently, a deep connection
between forward-backward stochastic differen-
tial equations (SDEs) and diffusion-based mod-
els has been established, leading to the develop-
ment of new SDE variants such as sub-VP and
critically-damped Langevin. Despite the empiri-
cal success of some hand-crafted forward SDEs,
many potentially promising forward SDEs remain
unexplored. In this work, we propose a general
framework for parameterizing diffusion models,
particularly the spatial part of forward SDEs, by
leveraging the symplectic and Riemannian geom-
etry of the data manifold. We introduce a system-
atic formalism with theoretical guarantees and
connect it with previous diffusion models. Fi-
nally, we demonstrate the theoretical advantages
of our method from a variational optimization
perspective. We present numerical experiments
on synthetic datasets, MNIST and CIFAR10 to
validate the effectiveness of our framework.

1. Introduction
Denoising diffusion (score-based) models, which are orig-
inated from non-equilibrium statistical physics, have re-
cently shown impressive success on sample generations of a
wide range of modalities, including images (Ho et al., 2020;
Nichol & Dhariwal, 2021; Song et al., 2020c; Dhariwal &
Nichol, 2021; Rombach et al., 2022), 3D point clouds (Luo
& Hu, 2021; Du et al., 2021), audio (Kong et al., 2020; Liu
et al., 2021), and biomolecules generation (Xu et al., 2022;
Hoogeboom et al., 2022; Schneuing et al., 2022). In addi-
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tion to practical applications of various diffusion generative
models, it is also desirable to analyze them in an appropriate
and flexible framework, by which novel improvements can
be further developed.

Currently, one of the promising formal frameworks for uni-
fying different types of diffusion models is to utilize the
stochastic differential equations (SDEs), as proposed in
(Song et al., 2020c). Under this formalism, a diffusion
model consists of a forward (noising) process and a back-
ward (denoising) process. The forward process keeps adding
noise to the real data, and the backward (generative) process
can be viewed as reversing the forward process in terms of
probability. Furthermore, with the help of the Feynman-Kac
formula and Girsanov transform (Da Prato, 2014), the score-
matching training scheme has been proved to be equivalent
to certain log-likelihood (ELBO) training in the infinite-
dimensional path space (Huang et al., 2021).

From the variational optimization point of view, although
the ELBO optimization function of diffusion models explic-
itly contains both the forward and backward ingredients, the
forward (noising) process is usually hand-crafted and set
to be fixed throughout the training process (Huang et al.,
2021). If we treat the forward-backward processes as an
encoder-decoder pair, then there exists an obvious mismatch
between the current training framework of diffusion models
and other log-likelihood based models (e.g., Hierarchical
VAE (Vahdat & Kautz, 2020)) which also optimize the en-
coder. Moreover, since the reverse (generative) process is
uniquely determined by the forward process, the total flex-
ibility of the model actually lies in parameterizing the for-
ward process. Given the fact that different noising schedules
have proven to affect the empirical performances (e.g., the
different forward processes including VE, VP, sub-VP (Song
et al., 2020c) and damped Langevin diffusion (Dockhorn
et al., 2022) displayed distinct generation performances),
freezing the forward process is both theoretical and practical
incomplete. Therefore, the main research question of this
paper is: Can we introduce a theoretically grounded pa-
rameterization for the forward process, so that the diffusion
model can automatically optimize it from data?

To address this problem, it is crucial to incorporate flexi-
ble parameterized forward processes into the general SDE
framework in (Song et al., 2020c). Though the idea of train-
ing the forward process is intuitively reasonable, the imple-
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mentation is far from straightforward. The first challenge is
to find the appropriate sub-class within the grand function
space consisting of the whole stochastic processes. A hard
constraint is that the stationary distribution of the candidate
stochastic processes must be simple (usually the centered
Gaussian), which will be set as the generative SDE’s prior
distribution. The second challenge is how to make sure that
our parameterization is flexible enough to include all proper
SDEs. In fact, even parameterizing the noise schedule of
the forward process (the one-dimensional time component)
would improve the diffusion model’s performance, as it was
shown in (Kingma et al., 2021). However, how to efficiently
parameterize the space components of the forward process
remains to be explored, especially taking into account the
complex structure of the data distribution (Narayanan &
Mitter, 2010).

This paper concentrates on both theoretical and practical
aspects of solving the flexibility challenge of the diffusion
model in a unified way, emphasizing the spatial components
of the forward process. First of all, inspired by concepts
from Riemannian geometry and Hamilton Monte-Carlo
methods, we define a flexible class of diffusion processes
(FP-Diffusion) that rigorously satisfies the fixed Gaussian
stationary distribution condition with theoretical guarantees.
To highlight the advantages of flexible diffusion models, we
also discuss the theoretical motivations and properties of
parameterized forward processes from the variational opti-
mization perspective. Furthermore, by introducing the flexi-
ble diffusion model, all sorts of regularizers for smoothing
the diffusion paths (e.g., methods from continuous normal-
izing flows: (Finlay et al., 2020; Onken et al., 2021)) can
be implemented for designing better diffusion models. We
empirically test some of them in the experiment section.

Our major contributions are as follows:

• We introduce a theoretically complete framework for
parameterizing the forward process with the help of
symplectic structures and the anisotropic Riemannian
structure. Convergence properties as t → ∞ are
proved along the same route.

• To motivate the parameterization of the forward pro-
cess, we analyze the implications of parameterizing
the forward (noising) process from the variational op-
timization point of view and demonstrate how our
method unifies previous diffusion models. Since this
extension allows merging regularization terms into the
training loss, we also provide experimental results in
simulated scenarios and demonstrate how the diffusion
path behaves under regularization.

• Except considering the general diffusion parameteri-
zation framework, we also develop a corresponding
simplified version of our method with explicit formu-

las for efficient Monte-Carlo training. It enables us to
perform comparative studies on relatively large-scale
datasets, e.g., CIFAR10.

2. Preliminaries and Related Works
Given a data distribution p(x), we associate it with a Gaus-
sian diffusion process (forward) that increasingly adds noise
to the data, then the high-level idea of diffusion generative
models is to approximate the real data distribution by fitting
a multi-step denoising (backward) process. In a discrete
setting, the forward process is formulated as an N-steps
Markov chain from real data x to each noised xt:

p(xt|xt−1) = N (αtx, βtI), t ∈ {1, . . . , N}.

For DDPM model (Ho et al., 2020), αt is set to be
αt :=

√
1− βt. Taking the continuous limit of βt (when√

1− βt ≈ 1 − 1
2βt), we find that Xt satisfies the time-

changed Ornstein-Uhlenbeck stochastic differential equa-
tion (SDE):

dXt = −1

2
β(t)Xtdt+

√
β(t)dWt, (1)

which is exactly the so-called variance-preserving diffusion
process (VP) in (Song et al., 2020c). Therefore, DDPM
can be treated as a discretization of the Ornstein–Uhlenbeck
process. Following this line, (Song et al., 2020c) proposed
to characterize different types of diffusion models by formu-
lating the underlying SDE of each model:

dXt = f(Xt, t)dt+ g(t)dWt, 0 ≤ t ≤ T (2)

where {Wt}∞t=0 denotes the standard Brownian motion, and
the dimension is set to be the same as the data. Usually
we choose a different time parameterization (time-change)
for t. Let β(t) be a continuous function of time t such
that β(t) > β(s) > 0 for 0 < s < t, then β(t) is called
a specific time schedule (time-change) of t. It can be fur-
ther shown that when t → ∞, the stationary distribution
of Eq. 1 is the standard multivariate Gaussian: N (0, I)
(Hsu, 2002). On the other hand, SMLD diffusion models
(Song & Ermon, 2019) can be seen as a discretization of
the variance-exploring (VE) process ((9) of (Song et al.,
2020c)) {Xt}t=T

t=0 , which satisfies a different SDE:

dXt =
√

2σ(t)σ′(t)dWt. (3)

A remarkable property of all the above SDE solution classes
is the existence of a reverse process Yt with respect to each
forward SDE Xt. In the sense that the marginal distributions
at each time and its corresponding ‘reverse’ time match:

pt(Xt) ≡ qT−t(YT−t), 0 ≤ t ≤ T.
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Figure 1. Evolution trajectories of fixed and flexible forward SDEs

We name Yt as the backward (denoising) stochastic process
of the diffusion model. In other words, real data is generated
by sampling from the Gaussian distribution and tracking
the denoising process from time T to 0. Surprisingly, the
underlying equation of the reverse-time process Yt is derived
analytically in (Anderson, 1982; Song et al., 2020c):

dYt = [f(Yt, t)−g2(Yt, t)∇ log pt(Yt)]dt+g(t)dWt, (4)

where Wt is a Brownian motion running backward in time
from T to 0. Then, it’s obvious that the unknown score
function st(x) := ∇ log pt(x) depends on both the data
distribution p0 and the forward process Xt. To estimate the
score function and Yt, continuous diffusion models utilize
various types of (weighted) score-matching procedures, we
will briefly review some typical examples in section 3.2.

Now we summarize more related works:

Diffusion Probabilistic Models (DPMs) as a generative
model (Kingma & Welling, 2013; Goodfellow et al., 2014;
Yang et al., 2021; Ren et al., 2021) was first introduced in
(Sohl-Dickstein et al., 2015), as a probabilistic model in-
spired by non-equilibrium thermodynamics. The high-level
idea is to treat the data distribution as the Gibbs (Boltzmann)
equilibrium distribution (Friedli & Velenik, 2017), then the
generating process corresponds to transitioning from non-
equilibrium to equilibrium states (De Groot & Mazur, 2013).
DDPM (Ho et al., 2020) and (Nichol & Dhariwal, 2021;
Song et al., 2020a; Watson et al., 2022; Jolicoeur-Martineau
et al., 2021; Bao et al., 2022) further improve DPMs by
introducing Gaussian Markov chains and various inference
and sampling methods, through which the generative model
is equivalent to a denoising diffusion model. (Vahdat et al.,
2021) then introduces a latent space diffusion and the num-
ber of denoising steps is also increased to improve empirical
performances. On the other hand, as we will show in this ar-
ticle, there are infinite processes (thermodynamical systems)
that can connect non-equilibrium states to an equilibrium.

Score Matching. Score-based energy models (Hyvärinen,
2005; Vincent, 2011) are based on minimizing the differ-
ence between the derivatives of the data and the model’s
log-density functions, which avoids calculating the normal-
ization constant of an intractable distribution. Song &
Ermon (2019); Song et al. (2020b) then introduced sliced
score matching that enabled scalable generative training by
leveraging different levels of Gaussian noise and several em-
pirical tricks. Song et al. (2020c; 2021) further studied how
to perturb the data by a continuous stochastic process.Under
this framework, Kingma et al. (2021) proposed to reparame-
terize and optimize the time variable of the forward process
(the spatial components remain fixed) by the signal-to-noise
ratio (SNR). From this point of view, our model can be seen
as a novel spatial parameterization of the forward process,
which takes into account the spatial inhomogeneity of the
data distribution.

3. Methods
3.1. A General Framework for Parameterizing

Diffusion Models

From the preliminary section, we realize that the stationary
distribution of the forward process will also be the initial
distribution of the denoising (generative) process. Therefore,
it must be a simple distribution we know how to sample
from, mainly set to be standard Gaussian. In this article, we
parameterize the spatial components of the forward process
by considering the following SDE:

dXt = f(Xt)dt+
√
2R(Xt)dWt, (5)

under the hard constraint that the stationary distribution
of Xt is standard Gaussian (the scaled Gaussian case is
included in Appendix). Introducing the time change β(t),
then by Ito’s formula, Xβ(t) satisfies a variant of Eq. 5:

dXβ(t) = f(Xt)β
′(t)dt+

√
2β′(t)R(Xt)dWt. (6)
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Compared with black-box parameterizations (e.g. (Zhang &
Chen, 2021)), it’s obvious that the function class of f(x) and
R(x) should be properly restricted to satisfy the diffusion
model’s theoretical assumptions. To solve this issue, we
propose a flexible framework for parameterizing the forward
processes, and the completeness of our parameterization
will be proved in Appendix A.1. It turns out that the whole
construction can be decomposed into two parts: the Rieman-
nian metric and the symplectic form in Rn, inspired by ideas
from the Riemannian Manifold Hamiltonian Monte-Carlo
algorithm (Girolami & Calderhead, 2011; Betancourt, 2013;
2017; Seiler et al., 2014) and anisotropic diffusion technique
of image processing, graph deep learning (Weickert, 1998;
Perona & Malik, 1990; Alvarez et al., 1992).

Intuitively, an anisotropic Riemannian metric implies
that the space was curved, and the corresponding ‘in-
homogeneous’ Brownian motion will inject non-uniform
noise along different directions. On the other hand, the sym-
plectic form is crucial for defining the dynamics of a given
Hamiltonian. Both of them set the stage for performing
diffusion on the data manifold, from real data distribution to
the standard multivariate normal distribution, whose density
under the canonical volume form dx1 . . . dxn is

1√
(2π)n

exp(−1

2
∥x∥2)dx1 . . . dxn. (7)

Now we introduce these two geometric concepts in detail.
In a coordinate system, a Riemannian metric can be iden-
tified as a symmetric positive-definite matrix: R(x) :=
{Rij(x)}1≤i,j≤n ( the Euclidean metric corresponds to the
identity matrix). Given a smooth function H(x), recall that
the Riemannian Langevin process satisfies the following
SDE:

dXt = −∇̃H(Xt)dt+
√
2dBt, (8)

where ∇̃H(x) := R−1(x)∇H(x) is the gradient vector
field of H , and Bt denotes the Riemannian Brownian mo-
tion (Hsu, 2002). In local coordinates, Bt equals (see (13)
of (Girolami & Calderhead, 2011)):

dBi
t = |R(Xt)|−1/2

n∑
j=1

∂

∂xj
(R−1

ij (Xt)|R(Xt)|1/2)dt

+
√
R−1(Xt)dW

i
t , (9)

for i ∈ {1, 2, . . . , n}. One crucial property of the Rieman-
nian Langevin process (Wang, 2014) is that its stationary
distribution p(x) has the following form:

p(x) ∝ e−H(x)dV (x),

where dV (x) :=
√
|R(x)|dx1 . . . dxn is the Riemannian

volume form. Transforming back to the canonical volume
form and take H(x) = 1

4 ∥x∥
2·log(|R(x)|), we have proved

the following lemma:

Lemma 3.1. The stationary distribution of the SDE (Eq.
10) below is the standard Gaussian of Rn:

dXt =
1

2
[−

∑
j

R−1
ij (Xt) · (Xt)j +

∑
j

∂

∂xj
R−1

ij (Xt)]dt

+
√
R−1(Xt)dWt.

(10)

Remark 3.2. It’s worth mentioning that the infinitesimal
generator of (10) is the Riemannian Laplacian: ∆R. When
acting on a smooth function f ,

∆Rf :=
1√

|R(x)|
∂i(

√
|R(x)|(R−1)ij∂jf).

Indeed, it has the same form as the anisotropic diffusion
defined by (1.27) of (Weickert, 1998). The effectiveness of
anisotropic noise is explored in Section 4.1.

On the other hand, introducing a symplectic form ω al-
lows us to do Hamiltonian dynamics in an even-dimensional
space R2d. Since a symplectic form is a non-degenerate
closed 2-form, it automatically becomes zero in odd-
dimensional spaces. In this article, we will restrict our-
selves to a special type of symplectic form, which consists
of constant anti-symmetric matrices {ωij}1≤i,j≤2d. Then
the corresponding Hamiltonian dynamics of H(x) is:

dXt = ω∇H(Xt)dt. (11)

We mainly focus on two remarkable properties of Hamilto-
nian dynamics: (i) It preserves the canonical volume form
(the determinant of the corresponding Jacobi matrix always
equals one); (ii) The Hamiltonian function H(x) takes a
constant value along the integral curves (see the remark in
Appendix A). Using the change of variables formula, we
conclude that the probabilistic density of Xt preserves the
equilibrium Gibbs distribution:

p(x) ∝ e−H(x)dx1 . . . dxn,

where X0 is sampled from the Gibbs distribution.

Let H(x) = 1
2x

2, the potential energy of the Harmonic
oscillator. Then by merging the Riemannian part (Eq. 10)
and the symplectic part (Eq. 11) we obtain the following
theorem:

Theorem 3.3. Suppose ω is an anti-symmetric matrix, and
R−1(x) is a symmetric positive-definite matrix-valued func-
tion of x ∈ Rn. Then the (unique) stationary distribution of
(Eq. 12) below is the standard Gaussian (Eq. 7) of Rn:

dXt =
1

2
[−

∑
j

R−1
ij (Xt) · (Xt)j − 2

∑
j

ωij · (Xt)j

+
∑
j

∂

∂xj
R−1

ij (Xt)]dt+
√
R−1(Xt)dWt, (12)
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We name Eq. 12 as our FP-Diffusion model, and previous
diffusion models (e.g., Eq. 1) are included by setting ω ≡ 0,
R−1(x) ≡ I . In Appendix A.1, Theorem 3.3 is extended to
scaled Gaussian distributions by direct computation. For a
graphical presentation, Fig. 1 plots the VP stochastic trajec-
tories (the green curves) connected with our FP-Diffusion
forward trajectories (the white curves) under random ini-
tialization. We also provide an informal argument on how
the anisotropic FP-Diffusions mix with the low-dimensional
data distribution in Appendix A.1.

Furthermore, to unify the critical damped Langevin diffu-
sion model (Dockhorn et al., 2022), our FP-Diffusion is
straightforward to generalize to the case when the inverse
Riemannian matrix R−1(x) degenerates (contains zero
eigenvalues). Intuitively, the diffusion part

√
R−1(x)dWt

is the source of randomness (noise). Suppose R−1(x) de-
generates along the i-th direction (i.e., corresponding to the
zero eigenvalue), then no randomness is imposed on this
direction, and the i-th component Xi

t will be frozen at Xi
0.

In this case, Xt may not converge to this Gaussian stationary
distribution from a deterministic starting point. To remedy
this issue, we impose additional restrictions, which lead us
to the following corollary:

Corollary 3.4. Under two additional conditions: (1) the
symplectic form ω ∈ R2d×2d has the block form: ω =(

0 A
−A 0

)
with a positive-definite matrix A ∈ Rd×d;

(2) the inverse (semi-) Riemannian matrix R−1(x) has the

block form: R−1(x) =

(
0 0
0 B

)
with a constant positive-

definite symmetric matrix B ∈ Rd×d, we induce that the
forward diffusion Xs converges to the standard Gaussian
distribution:

ps(Xs)
s→∞−−−→ N (0, I).

We will demonstrate how the corollary derives the damped
diffusion model in Appendix A.

3.2. Parameterizing Diffusion Models from the
Optimization Perspective

In this section, we illustrate the benefits of parameterized
diffusion models from the variational optimization perspec-
tive. Recall that the ground-truth reverse-time SDE of the
forward process Xt is denoted by Yt, and we parameterize
Yt by Y θ

t :

dY θ
t = [f(Yt, t)−g2(Yt, t)∇sθ(Yt, t)]dt+g(t)dWt, (13)

where sθ is the score neural network parameterized by θ.
Then the (explicit) score-matching loss function for opti-

mization is

LESM :=

∫ T

0

EXs
[
1

2
∥sθ(Xs, s)−∇ log ps(Xs)∥2Λ(s)]ds,

(14)
where Λ(s) is a weighting positive definite matrix for the
loss. Since Yt and Xt share the same marginal distributions,
then under the condition that the parameterized generative
process Y θ

t matches Yt perfectly:

sθ(x, t) ≡ ∇ log pt(x) (15)

for all t ∈ [0, T ], we know the marginal distribution of Y θ
t

at t = 0 is exactly the data distribution.

The major obstacle of optimizing Eq. 14 directly is that
we don’t have access to the ground truth score function
∇ log ps(x, s). Fortunately, LESM can be transformed to
a loss based on the accessible conditional score function
∇ log pXs|X0

(Xs) plus a constant (Song et al., 2020b;c)
(for a fixed forward process Xs). More precisely, given
two time slices 0 < s < t < T ,

EXt ∥sθ(Xt, t)−∇ log pt(Xt)∥2

≡ EXs,Xt ∥sθ(Xt, t)−∇ log pt(Xt|Xs)∥2

+ EXt ∥∇ log pt(Xt)∥2 − EXs,Xt ∥∇ log pt(Xt|Xs)∥2︸ ︷︷ ︸
gap terms

.

(16)

Since the gap terms between the original and conditional
score function loss only depend on the forward noising pro-
cess, one theoretical advantage of FP-Diffusion is that the
gap terms are also parameterized. This formula is adapted
from (Song et al., 2020b; Huang et al., 2021) by modifying
the initial time, and full derivations are given in Appendix
A for completeness.

On the other hand, compared with log-likelihood generative
models like normalizing flows and VAE, the connection
between score matching and the log-likelihood of data dis-
tribution log p0(x) (also the initial distribution of (12)) is
also not straightforward due to the additional forward pro-
cess Xt. Hence, we turn to the variational view established
in (Huang et al., 2021), where the ELBO (evidence lower
bound) of data’s log-likelihood log p0(x) is directly related
with the score matching scheme. More precisely, we have

log p0(x) ≥ E∞(x),

and the ELBO E∞(x) of the infinite-dimensional path space
is defined by

E∞(x) := EXT
[log pT (XT )|X0 = x]

−
∫ T

0

EXs [
1

2
∥sθ∥2g2 +∇ · (g2sθ − f)|X0 = x]ds.

(17)
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The above implies that learning a diffusion (score) model
is equivalent to maximizing the ELBO in the variational
path space defined by the generative process Y θ

t . Thus,
treating f(x, t) and g(x, t) as learnable functions results in
enlarging the variational path space from pre-fixed f and
g to flexible variational function classes, such that a lower
value of ELBO is achieved in the extended space.

By Eq. 12, in FP-Diffusion model, we set

f(x, t) :=
β′(t)

2
[−

∑
j

R−1
ij (x)xj − 2

∑
j

ωijxj

+
∑
j

∂

∂xj
R−1

ij (x)], g(x, t) :=
√
β′(t)R−1(x).

(18)

Since our variational function class of the forward process
defined in Eq. 12 is theoretically guaranteed to approach
Gaussian when T is large, the first term of E∞(x) is close to
a small constant under Eq. 18. Therefore, we only need to
investigate the second term (equivalent to the implicit score
matching (Hyvärinen & Dayan, 2005)), which depends on
both the parameterized f , g and the score function. Finally,
learning f and g opens the opportunity of adding additional
regularization penalties to filter out irregular forward paths
in the extended variational path space. Similar techniques
have been applied in continuous normalizing flows (Finlay
et al., 2020). Preliminary exploration on applying regulariza-
tion to FP-Diffusion models is clarified in the experimental
section.

3.3. A Simplified Formula of FP-Diffusion

Although we can always numerically simulate the SDE to
a given time t, the empirical success of the Monte-Carlo
training of (14) in (Ho et al., 2020) (see also (7) of (Song
et al., 2020c)) indicates the importance of obtaining explicit
solutions for direct sampling. In this section, we derive the
solution formula for a simplified version of Xt defined in
Eq. 12 and implement it on the image generation task.

To obtain the closed-form expression of the transition proba-
bilistic density function for the forward process Xt, we
assume that R−1(x) of Eq. 12 is a constant symmetric
positive-definite matrix independent of the spatial variable x.
Then within the linear SDE region (Särkkä & Solin, 2019),
we have the following characterization of the marginal dis-
tributions (see Appendix A for a full derivation):

Theorem 3.5. Suppose the forward diffusion process Xt

starting at X0 satisfies the following linear stochastic dif-
ferential equation:

dXt =
1

2
β′(t)[−R−1Xt − 2ωXt]dt+

√
β′(t)R−1dWt,

(19)

for symmetric positive-definite R and anti-symmetric ω.
Then the marginal distribution of Xt at arbitrary time t > 0
follows the Gaussian distribution:

Xt ∼ N (e(−
1
2R

−1−ω)β(t)X0, I− e−β(t)R−1

).

In practice, we set ω in Eq. 11 to be an anti-symmetric
matrix and name it by the FP-Drift parameterization. On
the other hand, R−1 in Eq. 10 is set to be a symmetric
positive-definite matrix, and we name it by the FP-Noise pa-
rameterization. To effectively achieve both anti-symmetric
and symmetric matrices, we utilize orthonormal diagonaliza-
tion and take advantage of the fact that orthogonal matrices
can be generated by the matrix exponential on the orthogo-
nal group. Implementation details are provided in Appendix
A.4.

4. Experiment
We first use a synthetic 3D dataset to illustrate the signif-
icance of parameterizing the forward process adapting to
the data distribution, then validate the effectiveness of our
FP-Diffusion model on standard image generation tasks.

4.1. Flexible SDEs Learned from Synthetic 3D
Examples

According to the low-dimensional manifold hypothesis (Fef-
ferman et al., 2016), the real data distribution concentrates
on a low-dimensional sub-manifold. However, during the
generation phase, the dimension of the ambient space we
sample from is usually much higher. To fill in the gap,
FP-Diffusion plays a nontrivial role. More precisely, note
that only the diffusion part of Eq. 12 can blur the data
sub-manifold to fill in the high-dimensional ambient space,
which causes a distinction between the directions tangent
to the data and the remaining normal directions during the
(anisotropic) diffusion process. Since it is impossible to
directly detect the complex data manifold, we design a sim-
plified scenario to demonstrate how the parameterized diffu-
sion process enhances generation.

Assume the data lies in R3, and its distribution follows
a 2-dimensional Gaussian concentrated at a given hyper-
plane. Obviously, the simplest way to generate the 2-
dimensional Gaussian is to directly project random points
sampled from the 3-dimensional Gaussian to this plane.
To make it rigorous, we consider the optimal transport
problem from the 3-dimensional Gaussian distribution to
the 2-dimensional Gaussian. Define the cost function as
c(x, y) := ∥x− y∥2, then the Wasserstein distance between
N (0, I) and N (µ,Σ) (Mallasto & Feragen, 2017) equals
W2(N (0, I,N (µ,Σ)) = ∥µ∥2 +Tr(I+Σ− 2Σ1/2). It im-
plies that the corresponding optimal transport map ∇ϕ is
exactly the vertical projection.
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(a) VP

(b) Non-reg. FP

(c) Reg. FP

Figure 2. Vector fields projected into 2D-section of three SDEs

For our FP-Diffusion model, the probabilistic flow of the
generating process depends on the parameterized forward
process. Then, to optimize the forward paths, we add regu-
larization terms into the original score-matching loss. From
(13) of (Song et al., 2020c), the vector field of the probability
flow ODE is

vpc(x, t) :=f(x, t)− 1

2
∇ · [g2(x, t)]

− 1

2
g2(x, t)∇ log pt(x), x ∈ R3. (20)

To control variables, we perform the experiment under
three circumstances: (i) a fixed VP forward process (Eq.
1); (ii) our parameterized forward process with no regu-
larization; (iii) our parameterized forward process with
regularization terms. The regularization penalties are im-
posed on the vector field (Eq. 20), which are adapted
from Section 4 of (Finlay et al., 2020): Lreg(f, g) =

λ1

∫
∥vpc(s)∥2 ds + λ2Eϵ∼N(0,1)

∥∥ϵT vpc(s)∥∥2 ds. Notice
that this term only regularizes parameters from f and g in
the forward process.

After training, we check whether the direction of the learned
vpc is aligned with the ground-truth projection vector field.
For the projection map ∇ϕ from the 3-dimensional Gaussian

Table 1. NLLs on MNIST
Model NLL ↓

RealNVP (Dinh et al., 2016) 1.06
Glow (Kingma & Dhariwal, 2018) 1.05
FFJORD (Grathwohl et al., 2018) 0.99

ResFlow (Chen et al., 2019) 0.97
DiffFlow (Zhang & Chen, 2021) 0.93

FP-Drift (Mix) 1.01

Figure 3. MNIST and CIFAR10 samples

Table 2. Results on CIFAR10. * denotes the results reproduced
locally.

Model FID ↓ NLL↓
DDPM++ cont. (deep, VP) (Song et al., 2020c) 2.95* 3.13*
NCSN++ cont. (deep, VE) (Song et al., 2020c) 2.72* -

DDPM (Zhang & Chen, 2021) 3.17 ≤ 3.75
Improved-DDPM (Nichol & Dhariwal, 2021) 2.90 3.37

LSGM (Vahdat et al., 2021) 2.10 ≤ 3.43
LSGM-100M (Dockhorn et al., 2022) 4.60 ≤ 2.96
CLD-SGM (Dockhorn et al., 2022) 2.25 ≤ 3.31

DiffFlow (Zhang & Chen, 2021) 14.14 3.04

FP-Drift (Joint) 4.17 3.30
FP-Noise (Joint) 3.30 3.25
FP-Drift (Mix) 2.99 3.28
FP-Noise (Mix) 2.87 3.20

to 2-dimensional Gaussian supported at the plane:z = 2, the
corresponding vector field at a spatial point x = (x, y, z) ∈
R3 equals:

vproj(x, t) :=(0, 0,−1) if z > 2,

and vproj(x, t) :=(0, 0, 1) if z < 2. (21)

The 2D visualization results of our comparative experiments
are summarized in Fig. 2. We would like to note that the
“ground-truth” vector field (Eq. 21) is strictly vertical. There-
fore, we only plot the x− z projection of the trained three
vector fields at a given time for the three scenarios.

As shown in Fig. 2, our flexible diffusion method (b) ex-
hibits a visibly more vertical orientation compared to the
forward-fixed VP (ddpm) model (a). However, the flexible
model with explicit regularization (c) demonstrates even
greater alignment with vertical lines compared to (b). To
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provide a comprehensive comparison, we also include sam-
pled integration trajectories of the trained vector fields in
Appendix B.1 (refer to Fig. 2).

4.2. Image Generation

In this section, we demonstrate the generative capacity of
our FP-Diffusion models on two common image datasets:
MNIST (LeCun, 1998) and CIFAR10 (Krizhevsky et al.,
2009).

Training Strategy. The flexible FP-Diffusion framework
is designed to simultaneously learn a suitable forward dif-
fusion process dependent on the data distribution as well
as the corresponding reverse-time process. However, for
some complex scenarios like image generation, it is chal-
lenging to balance the optimization of the forward and the
backward processes. To compromise these two parts, we
propose a two-stage training strategy. Particularly, in the
first stage, we jointly optimize the parameters from both
the FP-Diffusion forward process and the backward score
neural network; in the second stage, we freeze all parame-
ters from the FP-Diffusion and only tune the score neural
network in the same way as prevailing score-based training
approaches (Ho et al., 2020; Song & Ermon, 2019; Song
et al., 2020c). Note that the two-stage strategy also makes
the flexible diffusion scalable, in the sense that after the first
stage, the parameters contained in the forward process are
fixed and won’t be counted in the gradient computational
graph. Moreover, during the sampling process, only the
score neural network is implemented.

Implementation Details. For the forward diffusion pro-
cess, we choose a linearly increasing time scheduler β(t)
(same as the VP-SDE setting in (Song et al., 2020c)), where
t ∈ [0, T ] is a continuous time variable. To estimate the
gradient vector field in the reverse-time process, we train
a time-dependent score network sθ(x(t), t) as described
in Eq. 16. We adopt the same U-net style architecture
used in (Ho et al., 2020) and (Song et al., 2020c) as our
backbone neural network. Both the FP-Drift model and the
FP-Noise model are implemented in two training paradigms:
(i) Joint Training: the parameterized FP-Diffusion model
and the score network are jointly optimized for 1.2M itera-
tions; (ii) Mix Training: following the proposed two-stage
training strategy, we separately train the model for 600k
iterations in both stages, and the batch size is set to be 96
on all datasets. Following (Song et al., 2020c), we apply the
Euler-Maruyama method in our reverse-time SDEs for sam-
pling images, where the number of discretization steps is
set to 1000. All the experiments are conducted on 4 Nvidia
Tesla V100 16G GPUs. We provide further implementation
details in Appendix B.2.

Results. We show the sampled images generated by our
FP-Noise (Mix training) model in Fig. 3. According to Eq.
20, the negative log-likelihood (NLL) is explicitly calculated
in bits per dimension for our models by the instantaneous
change of variables formula (Grathwohl et al., 2018). Then
we list the NLL metrics of our models in Tab. 1 and Tab.
2. On MNIST, our FP-Drift model achieves comparable
performance in terms of NLL, compared to five standard
flow-based models (including DiffFlow (Zhang & Chen,
2021)). On CIFAR10, both the FP-Drift (Mix training) and
the FP-Noise (Mix training) models achieve a competitive
performance compared to the state-of-the-art (SOTA) diffu-
sion models. These results illustrate the strong capacity of
FP-Diffusion in density estimation tasks.

To quantitatively evaluate the quality of the sampled im-
ages, we also report the Fenchel Inception Distance (FID)
(Heusel et al., 2017) on CIFAR10. As shown in Tab. 2, the
two variants of our FP-Diffusion model, FP-Drift (Mix) and
FP-Noise (Mix), outperform DDPM (Ho et al., 2020) and
Improved-DDPM (Nichol & Dhariwal, 2021) in FID and
have a comparable performance with DDPM++ cont. (deep,
VP) and NCSN++ cont. (deep, VE) (Song et al., 2020c).
We notice that only LSGM and CLD-SGM have obviously
better FID values than other models (including us). How-
ever, LSGM (Vahdat et al., 2021) adopts a more complicated
framework and a large model with ≈ 475M parameters to
achieve its high performance. With a comparable parameter
size (≈ 100M ), our models could achieve a significantly
better FID score than LSGM (“LSGM-100M”). CLD-SGM
builds its diffusion model upon a larger phase space with
a special training objective (given the data point x ∈ Rn,
its phase space corresponding point (x, v) belongs to R2n),
which leads to a more expressive optimization space but
brings extra computational cost as well. We leave testing
our FP-Diffusion model on phase space (defined in Corol-
lary 3.4) in future works. It should also be noted that we
use a smaller batch size (96) compared to other baseline
diffusion models (128) to train our models due to limited
computational resources, which may influence our empirical
performance. We also report the performance of our two
model variants in two training paradigms in Tab. 2. The
model variants with the joint training paradigm consistently
achieve a better performance, demonstrating the necessity
of the two-stage training strategy. A possible reason for this
phenomenon is that it may be difficult for score models to
match the reverse process of a dynamical forward process,
so we need to tune the score model with extra training steps
after fixing a suitable forward process.

5. Conclusion and Future Works
In this work, we propose the FP-Diffusion model, a novel
method that parameterizes the spatial components of the
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diffusion (score) model with theoretical guarantees. Our
approach combines insights from Riemannian geometry
and Hamiltonian (symplectic) Monte-Carlo methods to ob-
tain a complete forward diffusion parameterization that
plays a nontrivial role from the variational optimization per-
spective. Empirical results on specially-designed datasets
and standard benchmarks confirm the effectiveness of our
method. However, the challenge of efficiently optimizing
FP-Diffusion remains a critical issue, which presents oppor-
tunities for promising future research. For example, recent
work (Sunada et al., 2016) has shown that the score func-
tion ∇xp0(x) indicates the tangential direction of the data
manifold, and our flexible diffusion can take advantage of
a trained score function of the original data (which can be
obtained by the classical denoising score matching (Vin-
cent, 2011), prior to the training of the generative diffusion
model) as the initial parameterization of the Riemannian
metric. Additionally, introducing Riemannian structure into
non-Euclidean data has proven to be beneficial for a broad
range of problems (e.g., (Sunada et al., 2016) for graph prob-
lems), and our framework has the potential to incorporate
flexible diffusion models on non-Euclidean data (Shi et al.,
2021; Du et al., 2022; Liu et al., 2023).
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Appendix

A. Theory
A.1. Discussion of Section 3.1

A.1.1. REMARK ON THE THEORETICAL PROPERTIES OF HAMILTONIAN DYNAMICS

Suppose Xt follows the Hamiltonian dynamics (11), then

dH(Xt) = ∇H(Xt)ω∇H(Xt)dt ≡ 0,

by the anti-symmetry of ω. Therefore, the Hamiltonian dynamics without random perturbations is a deterministic motion that
can explore within a constant Hamiltonian (energy) surface. It means that, only by adding a diffusion term, the Hamiltonian
dynamical system is able to traverse different energy levels.

A.1.2. VERIFICATION OF THEOREM 3.3

We will verify the theorem under the more general case, when H(x) = m
2 x

2. The corresponding stationary distribution is
the scaled Gaussian N (0,mI), where m > 0 is the scale constant. In this case, Eq. 12 is modified to:

dXt =
m

2
[−

∑
j

R−1
ij (Xt) · (Xt)j − 2

∑
j

ωij · (Xt)j

+
∑
j

∂

∂xj
R−1

ij (Xt)]dt+
√
R−1(Xt)dWt. (22)

Note that only the drift term is scaled by m.

Proof. Since the covariance matrix of the diffusion part is positive-definite, the forward process Eq. 22 satisfies the
Feller property and the existence and uniqueness of the stationary distribution are guaranteed (see (Wang, 2014)). By the
Fokker-Plank-Kolmogorov equation, the stationary distribution ps(x) of Eq. 22 should satisfy

0 = −
∑
i

∂

∂xi
[fi(x, t)ps(x)] +

1

2

∂2

∂xi∂xj
[(ggT )ijps(x)], (23)

where we set f(x, t) := m
2 [−

∑
j R

−1
ij (x) · xj − 2

∑
j ωij · xj +

∑
j

∂
∂xj

R−1
ij (x)] and g(x, t) :=

√
R−1(x). To check

whether e−
m
2 x2

satisfies condition (23), notice that by the anti-symmetry of ωij , we automatically have

∑
i

∑
j

∂

∂xi
(ωijxje

−m
2 x2

) = −
∑
i

∑
j

ωijxixje
−m

2 x2

= 0.
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On the other hand,

∑
i

∑
j

∂2

∂xi∂xj
[R−1

ij (x)e−
m
2 x2

]

= −mTr(R−1
ij (x))e−

m
2 x2

+m2
∑
i

∑
j

R−1
ij (x)xixje

−m
2 x2

−
∑
i

∑
j

∂

∂xj
(R−1

ij (x))(
∂

∂xi
e−

m
2 x2

)

+
∑
i

∑
j

∂2

∂xi∂xj
(R−1

ij (x))e−
m
2 x2

−m
∑
i

∑
j

∂

∂xj
(R−1

ij (x))xie
−m

2 x2

=−mTr(R−1
ij (x))e−

m
2 x2

+m2
∑
i

∑
j

R−1
ij (x)xixje

−m
2 x2

+
∑
i

∂

∂xi
[
∑
j

∂

∂xj
R−1

ij (x)e−
m
2 x2

]−m
∑
i

∑
j

∂

∂xj
R−1

ij (x)xie
−m

2 x2

.

Therefore, the last thing to check is that∑
i

∂

∂xi
[
∑
j

R−1
ij (x)xje

−m
2 x2

] = Tr(R−1
ij (x))e−

m
2 x2

−
∑
i

∑
j

[mR−1
ij (x)xixj +

∂

∂xj
R−1

ij (x)xi]e
−m

2 x2

,

which is obviously true, since the diffusion matrix R−1
ij is symmetric. Combining the above, we have proved that Eq. 23

holds if ps(x) ∝ e−
m
2 x2

.

A.1.3. COMPLETENESS OF FP-DIFFUSION PARAMETERIZATION

From the last section’s derivation, we can deduce the following corollary:

Corollary A.1. Consider the following SDE:

dXt =A(Xt)dt−
1

2
R−1(Xt) ·Xtdt

+ (∇ ·R−1(Xt)) ·Xtdt+
√

R−1(Xt)dWt, (24)

and let the spatial function A(x) be a linear function. Suppose we know its stationary distribution is standard Gaussian,
then

A(x) = −
∑
j

ωij · xj ,

for some anti-symmetric matrix ω.

Proof. In fact, every linear operator A can be decomposed into a symmetric part plus an anti-symmetric part:

A =
A+AT

2︸ ︷︷ ︸
symmetric

+
A−AT

2︸ ︷︷ ︸
anti-symmetric

.

Let ω = A−AT

2 . Then we only need to prove that A+AT equals zero, if Xt converges to Gaussian.

From the proof of Theorem 3.3, we extract the fact that if ps(x) ∝ e−
1
2x

2

,

∑
i

∂

∂xi
[(A+AT )ij · xje

− 1
2x

2

] = 0,

13



A Flexible Diffusion Model

then ∑
i,j

[(A+AT )ij ·
∂

∂xi

∂

∂xj
(e−

1
2x

2

)] = 0,

for all x = (x1, . . . , xn). Note that
∂

∂xi

∂

∂xj
(e−

1
2x

2

) = (xixj − δij)e
− 1

2x
2

.

Since A+AT is symmetric (doesn’t hold for arbitrary linear operator), it implies that A+AT ≡ 0.

A.1.4. ANISOTROPIC DIFFUSION ON LOW DIMENSIONAL DATA MANIFOLD

In this section, we give an informal discussion on how an anisotropic diffusion starting at a low-dimensional data manifold
mixes with its own stationary distribution (supported in the high dimension ambient space).

Assume the marginal distribution of the diffusion process Xt concentrates on a low dimensional manifold M ↪→ Rn at a
given time. Moreover, suppose Xt already achieves the Gaussian stationary distribution on M (defined with respect to the
Laplacian operator of M ). Now we want to informally investigate the most efficient way for Xt to diffuse out of the low
dimensional sub-manifold to the ambient space. By localizing in the Riemannian normal coordinates and by arranging the
coordinates indexes, we can further assume that M is isometric to the hyperplane of Rn defined by

M = {x ∈ Rn|x = (x1, . . . , xp, 0, . . . , 0)}.

Then the coordinate components of each point x ∈ Rn can be decomposed into the tangential directions and the normal
directions with respect to M :

x ∈ (x1, . . . , xp︸ ︷︷ ︸
tangent to M

, xp+1, . . . , xn︸ ︷︷ ︸
normal to M

).

Under the above conditions, we are ready to compare the convergence rate (to the high-dimensional stationary Gaussian
distribution of Rn) of different forward diffusions defined in (10). For a fair comparison, we set the norm of the noise
matrix to be one:

∥∥R−1
∥∥
2
≡

√
n. Otherwise, the convergence can always be accelerated by increasing the noising scale

(
∥∥R−1

∥∥
2
→ ∞).

Under our normal coordinates, the forward diffusion can be decomposed into two parts:X(t) = Xtan(t) +Xnor(t). For
simplicity, suppose R−1 is a diagonal matrix, then the tangential part and the normal part of X(t) are completely decoupled.
In other words,

Xi
tan(t) =

1

2
[−R−1

ii · (Xt)
i]dt+

√
R−1

ii dW i
t , 1 ≤ i ≤ p

is a diffusion process on M . Therefore, (Xtan(t), X(t)) is indeed a Markov coupling. Suppose Xtan(t) at t = 0 already
converges to its stationary distribution (low dimensional Gaussian), then by Ito’s formula,

d(Xtan(t)−X(t))2

= dX2
nor(t)

= 2Xnor(t)(
1

2
[−R−1

nor ·Xnor(t)]dt+
√

R−1
nordWt) + Tr(R−1

nor)dt.

Taking the expectation of both sides, it implies that

dEX2
nor(t)

dt
= −ER−1

nor ·X2
nor(t) + Tr(R−1

nor).

Let rmin denote the minimal eigenvalue of the normal part of R−1, then

dEX2
nor(t)

dt
≤ −rminEX2

nor(t) + Tr(R−1
nor).

Applying Grönwall’s inequality and note that Xnor(0) = 0, we have

EX2
nor(t) ≤ e−rmin·t · Tr(R−1

nor)t.

14
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The above gives an upper bound on the convergence speed of the coupling (Xtan(t), X(t)) with respect to the W2 distance
(see (Wang, 2014)). Since the stationary distribution of X(t) is exactly the high dimensional Gaussian distribution (the
diffusion model’s prior distribution), we hope the convergence rate to be as fast as possible (given a fixed noising scale). For
the VP-Diffusion,

R−1
nor ≡ diag{1, . . . , 1}.

However, in the FP-Diffusion model, the diagonal elements of R−1
nor are allowed to be inhomogeneous and greater than one

(under the condition that Tr(R−1
nor) < n). This will lead to a smaller rmin, which will speed up the convergence rate by our

analysis.

A.1.5. VERIFICATION OF COROLLARY 3.4

The intuition of Corollary 3.4 can be stated as follows: To guarantee the geometric ergodicity property of FP-Diffusion on
the phase space, we need enough noise such that the diffusion process can transverse the whole space. Suppose R−1(x)
degenerates along the i-th direction (corresponding to a zero eigenvalue), then no randomness (noise) is imposed on this
direction.

To remedy the issue, we require the symplectic form ω to be non-zero along the i-th direction, which makes it possible to
mix the noise originated along other directions (where R−1(x) is strictly positive-definite) with the i-th direction. Now we
give the formal proof:

Proof. We only prove for the simplified case when A and B are both diagonal matrices with two sets of positive eigenvalues
{ai}di=1, {bi}di=1. The general situation can be handled by a trivial linear transformation. By proposition 8.1 of (Bellet,
2006), the proof boils down to prove that the Hörmander’s condition (Hörmander, 1967) holds for the forward process Xt.
When R−1(x) is a constant matrix, the infinitesimal generator L of (12) is:

L =
∑
i

∑
j

1

2
[−R−1

ij − 2ωij ]xj
∂

∂xj
+

1

2

∑
ij

R−1
ij

∂2

∂xi∂xj
.

For notation simplicity, denote x := (u, v) ∈ R2d, where u, v ∈ Rd. To put the second-order differential operator L in
Hörmander’s form, set

Yj(u, v) = −1

2

√
bj

∂

∂vj
, 1 ≤ j ≤ n,

and
Y0(u.v) =

∑
i

(−aivi
∂

∂ui
+ aiui

∂

∂vi
).

Then it suffices to show that the vector fields {[Y0, Yj ], Yj}1≤j≤d span the whole R2d. By direct calculation,

[Y0, Yj ] =
1

2
aj
√

bj
∂

∂uj
,

for ∀j. Therefore, we conclude that Hörmander’s condition holds for Xt. Then the ergodic proposition 8.1 of (Bellet, 2006)
implies that the forward diffusion Xs converges to the standard Gaussian distribution.

Remark A.2. A recent study (Dockhorn et al., 2022) proposed to improve the diffusion model by enlarging the spatial space
(where the generated samples lie in) to the ”phase” space: x → (x, v). Then the corresponding joint forward diffusion
(xt, vt) satisfies the Critically-Damped Langevin diffusion:(

dxt

dvt

)
=

(
M−1vt
−xt

)
dt+

(
0d

−ΓM−1vt

)
dt+

(
0√
2Γ

)
dWt. (25)

If the coupling mass M = 1, the drift part of Eq. 25 can be decomposed to a symmetric part R−1 and an non-trivial
anti-symmetric part ω of (19) by setting:

R−1 :=

(
0, 0
0, 2ΓI

)
, ω :=

(
0, −I
I, 0

)
.

It’s straightforward to check that they rigorously fit the conditions of Corollary 3.4. Therefore, we conclude from Corollary
3.4 that the Damped Langevin diffusion converges to the standard Gaussian distribution of the enlarged phase space
(x, v) ∈ R2d, which coincides with the results of Appendix B.2 in (Dockhorn et al., 2022).
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A.2. Discussion of Section 3.2

In this section, following the arguments from (Huang et al., 2021), we demonstrate how to estimate the score gradient vector
field ∇ log p(x) by the analytically tractable conditional score gradient vector field (conditioned on a previous time).

To prove (16), by adapting Eq. 31 of (Huang et al., 2021), it’s enough to show that

EXt [s
T
θ (Xt, t) · ∇ log pt(Xt)] = EXs,Xt [s

T
θ (Xt, t) · ∇ log pt(Xt|Xs)].

Transforming the expectation to probabilistic integration, we have

EXt [s
T
θ (Xt, t) · ∇ log pt(Xt)] (26)

=

∫
pt(x)s

T
θ (x, t) · ∇ log pt(x)dx (27)

=

∫
sTθ (x, t)

∫
∇pt(x|xs)ps(xs)dxdxs (28)

=

∫ ∫
ps(xs)pt(x|xs)∇pt(x|xs)dxdxs (29)

= EXs,Xt [s
T
θ (Xt, t) · ∇ log pt(Xt|Xs)], (30)

for 0 ≤ s < t. By quadratic expanding EXt
∥sθ(Xt, t)−∇ log pt(Xt)∥2 and plugging in (26), equality (16) follows

directly.

To implement our discretized FP-diffusion forward diffusion, we usually choose s = t− 1, the immediate time step before t.
Then from t − 1 to t, the conditional score gradient vector field of pt(xt|xt−1) is the Gaussian score function, which is
analytically tractable.

A.3. Discussion of Section 3.3

In this section, we prove Theorem 3.5 by applying Ito’s formula and martingale representation theorem.

Recall that the time-change of Eq. 12 satisfies

dXt = β′(t)(−1

2
R−1 − ω)Xtdt+

√
β′(t)R−1dWt, (31)

where X0 is a fixed point. Let Yt := e(
1
2R

−1+ω)β(t)Xt, then by Ito’s formula,

Yt =

∫ t

0

e(
1
2R

−1+ω)β(s)
√

β′(s)R−1dWs. (32)

From the martingale representation theorem, Yt is a Gaussian random variable for each t. Therefore, to fully determine the
distribution of Xt, we only need to calculate the expectation and variance formulas of Xt. By the definition of stochastic
integration, we have

E[X(t)] = e(−
1
2R

−1−ω)β(t)X0.

Utilizing the Ito’s isometry to (32), we get

V ar[Yt] =

∫ t

0

eβ(s)(R
−1+2ω)β′(s)R−1ds.

Suppose ω = 0, then
V ar[Xt] = I− e−β(t)R−1

,

where I denotes the identity matrix of Rd. Suppose R−1 = I, since the Lie bracket [I+ 2ω, I− 2ω] = 0, we further obtain

V ar[Xt] = I− e−β(t)I.

In conclusion, we have proved Theorem 3.5.
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(a) VP (b) Reg. FP

Figure 4. Integral trajectories of two SDEs

A.4. How to Parameterize Symmetric and Anti-symmetric Matrix

To implement FP-Drift and FP-Noise models practically, we need to find an efficient way to parameterize positive-definite
symmetric and anti-symmetric matrices.

Given a full-rank anti-symmetric matrix B, there always exists an orthogonal matrix P such that

B = Pdiag
{[

0 λ1

−λ1 0

]
, · · ·

[
0 λn

−λn 0

]}
PT ,

where {λ1, . . . , λn} are nonzero numbers. Then, the inverse of I+B (appeared in subsection A.4) is:

(B + I)−1 = Pdiag

{[
1

1+λ2
1

−λ1

1+λ2
1

λ1

1+λ2
1

1
1+λ2

1

]
, · · ·

[
1

1+λ2
n

−λn

1+λ2
n

λn

1+λ2
n

1
1+λ2

n

]}
PT .

For positive-definite symmetric matrices, there always exists an orthogonal matrix P such that

R = Pdiag{λ1, . . . , λn}PT ,

where {λ1, . . . , λn} are positive numbers.

To apply the above method, we only need to parameterize orthogonal matrices in an efficient and expressive way. By treating
orthogonal matrices as elements in SO(n) orthogonal group, we utilize the exponential map to parameterize orthogonal
matrices P :

P = expH.

Note that H is an element that belongs to the lie algebra so(n), which can be generated by upper triangular matrices.

B. Experiments
B.1. Learned FP SDEs from Synthetic 3D Examples

Fig. 4 plots four 3D integration trajectories of the probabilistic flows (with respect to the fixed VP and learned FP-Diffusion
models) starting at random initial positions. It’s obvious that the trajectories of our flexible model are more straight than the
fixed VP model, which demonstrates the power of selecting more regular generating paths of our FP-Diffusion model.

B.2. Image Generation

Implementation Details. Following (Ho et al., 2020) and (Song et al., 2020c), we rescale the range of the images into
[−1, 1] before inputting them into the model. In the FP-Diffusion model, β(t) is an linearly increasing function with respect
to the time t, i.e., β(t) = β̄min + t(β̄max − β̄min) for t ∈ [0, 1]. It’s worth mentioning that DDPM adopts a discretization
form of this time scheduler, where βi =

β̄min

N + i−1
N(N−1) (β̄max − β̄min). These two forms are actually equivalent when
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Figure 5. CIFAR-10 samples from FP-Drift

N → ∞. For all experiments, we set β̄max as 20 and β̄min as 0.1, which are also used in (Ho et al., 2020) and (Song et al.,
2020c). As discussed in A.4, we only need to parameterize the upper triangular matrices H and the diagonal elements
Λ = diag{λ1, · · · , λn} in the FP-Drift and FP-Noise models. Particularly, both H and Λ are initialized with a multivariate
normal distribution, and we adopt an exponential operation on Λ to keep it a positive vector. As described in Section 4.2, we
leverage a U-net style neural network to fit the score function of the reverse-time diffusion process. We keep the model
architecture and the parameters of the score networks consistent with previous SOTA diffusion models (e.g., (Song et al.,
2020c)) for a fair comparison. All models are trained with the Adam optimizer with a learning rate 2× 10−4 and a batch
size 96.

In the MNIST experiment, we first train the whole model for 50k iterations and train the score model for another 250k
iterations with our Mix training strategy. We report the NLL of the model based on the last checkpoint. In the CIFAR10
experiment, the training iterations of both stage 1 and stage 2 are 600k. We also report the FIDs and NLL of the model
based on the last checkpoint.

Results. We present additional random samples generated by our best FP-Drift model in Fig. 5. These samples demonstrate
the diversity and quality of the generated data.

Furthermore, we visualize the learned forward process of the FP-Noise model in Fig. 6. This visualization provides insights
into the underlying dynamics captured by the model during the noising process.
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Figure 6. The learned forward process of FP-Noise on CIFAR-10
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