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Abstract
Recently, remarkable progress has been made by
approximating Nash equilibrium (NE), correlated
equilibrium (CE), and coarse correlated equilib-
rium (CCE) through function approximation that
trains a neural network to predict equilibria from
game representations. Furthermore, equivariant
architectures are widely adopted in designing such
equilibrium approximators in normal-form games.
In this paper, we theoretically characterize the
benefits and limitations of equivariant equilibrium
approximators. For the benefits, we show that they
enjoy better generalizability than general ones and
can achieve better approximations when the pay-
off distribution is permutation-invariant. For the
limitations, we discuss their drawbacks in terms
of equilibrium selection and social welfare. To-
gether, our results help to understand the role of
equivariance in equilibrium approximators.

1. Introduction
The equivariant equilibrium property states that, given a
Nash Equilibrium (NE) solution of a game, the permuted
solution is also an NE for the game whose actions of rep-
resentation are permuted in the same way. The same prop-
erty also holds in correlated equilibrium (CE) and coarse
correlated equilibrium (CCE), as well as the approximate
solutions for all three solution concepts.

In this paper, we are interested in understanding the equivari-
ant equilibrium property in designing neural networks that
predict equilibria from game payoffs, following such recent
approaches in designing equivariant equilibrium approxima-
tors (Feng et al., 2021; Marris et al., 2022) in normal-form
games. Informally, such equivariant approximators keep the
same permutation of the output strategies (represented as
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vectors or tensors) when the input game representations (e.g.,
the game payoff tensors) are permuted. We will provide a
formal definition of equivariance equilibrium approximators
in Section 4. While equivariant approximators achieved
empirical success, little work has theoretically discussed
whether they are beneficial.

We theoretically characterize the benefits and limitations
of equivariant NE, CE, and CCE approximators. For the
benefits, we first show that equivariant approximators en-
joy better generalizability, where we evaluate the approxi-
mators using the maximum exploitability (Lockhart et al.,
2019; Goktas & Greenwald, 2022) over all players. To get
such a result, we derive the generalization bounds and the
sample complexities of the NE, CE, and CCE approxima-
tors: The generalization bounds offer confidence intervals
on the expected testing approximations based on the em-
pirical training approximations; The sample complexities
describe how many training samples the equilibrium approx-
imators need to achieve desirable generalizability. Both the
generalization bounds and sample complexities include the
covering numbers (Shalev-Shwartz & Ben-David, 2014),
which measure the representativeness of the approximators’
function classes. We then prove that the equivariant ap-
proximators have lower covering numbers than the general
models, therefore have lower generalization bounds and
sample complexities. Additionally, we also show that the
equivariant approximators can achieve better approximation
when the payoff distribution is permutation-invariant.

As for the limitations, we find the equivariant approximators
unable to find all the equilibria of some normal-form games.
Such a result is caused by the limited representativeness of
the equivariant approximators’ function class. Besides, we
find that the equivariant NE approximator may lose social
welfare. Specifically, in an example we constructed, while
the maximum NE social welfare is significant, the maximum
social welfare of NEs that the equivariant NE approximators
could find can be arbitrarily close to zero. Such a nega-
tive result inspires us to balance generalizability and social
welfare when we design the approximators’ architectures.

In summary, we make the following contributions:

• We theoretically characterize the benefits of equivari-
ant equilibrium approximators: Compared to general
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approximators, equivariant ones offer improved gen-
eralizability and, in some instances, achieve better ap-
proximation performance.

• We demonstrate a limitation of equivariant equilibrium
approximators through constructive examples: they
cannot identify all equilibria in some games.

• We illustrate that equivariant NE approximators may
find NE with arbitrarily small maximum social welfare
in extreme cases. In contrast, the actual maximum
social welfare achievable by NEs can be significantly
larger.

The rest of our paper is organized as follows: In Section 2
we discuss further related works. In Section 3 we introduce
the preliminary of game theory and equilibrium approxi-
mators. In Section 4 we formally define the equivariance
of equilibrium approximators. We present our theoretical
analysis of benefits in Section 5 and limitations in Section 6.
We conclude and point out the future work in Section 7.

2. Related Work
Solving (approximate) NE, CE, and CCE for a single game
has been extensively studied in the literature (Fudenberg
et al., 1998; Cesa-Bianchi & Lugosi, 2006; Tsaknakis &
Spirakis, 2008; Fu & Lin, 2020; Deligkas et al., 2022). How-
ever, in many practical scenarios and multi-agent learning al-
gorithms, there is a need to solve many similar games (Mar-
ris et al., 2021; Liu et al., 2022). For instance, in repeated
traffic routing games (Sessa et al., 2020), the payoffs of
games depend on the capacity of the underlying network,
which can vary with time and weather conditions. In re-
peated sponsored search auctions, advertisers value dif-
ferent keywords based on the current marketing environ-
ment (Nekipelov et al., 2015). In multi-agent reinforce-
ment learning (Deng et al., 2023) algorithms such as Nash
Q-learning (Hu & Wellman, 2003), Correlated-Q learn-
ing (Greenwald et al., 2003), V-learning (Jin et al., 2022)
and PSRO (Lanctot et al., 2017), an NE, CE or CCE of a
normal-form game need to be solved in every update step.

In these settings, it is preferred to accelerate the speed of
game solving by function approximation: Duan et al. (2023)
propose the construction of a neural network for approximat-
ing NE in normal-form games and analyze the PAC learn-
ability of such an NE approximator; Marris et al. (2022)
introduce a neural equilibrium approximator to approximate
CE and CCE in n-player normal-form games; Feng et al.
(2021) propose a neural NE approximator within the context
of PSRO (Lanctot et al., 2017); Wu & Lisser (2022) design
a CNN-based NE approximator specifically for zero-sum bi-
matrix games. Differentiable approximators have also been
developed to learn QREs (Ling et al., 2018), NE in chance-

constrained games (Wu & Lisser, 2023), and opponent’s
strategy (Hartford et al., 2016).

Equivariance is an ideal property of the equilibrium approx-
imator. After formally defining them, we will discuss the
literates of equivariant approximators in Section 4.2.

3. Preliminary
In this section, we introduce the preliminary and notations
of our paper. We also provide a brief introduction to equi-
librium approximators.

3.1. Game Theory

Normal-Form Game Let a normal-form game with joint
payoff u be Γu = (n,A, u), in which

• n ∈ N≥2 is the number of players. Each player is
represented by the index i ∈ [n].

• A = ×i∈[n]Ai is the product action space of all play-
ers, where Ai = {1, 2, . . . ,mi}. For player i ∈ [n],
let ai ∈ Ai be a specific action of i (An action is also
referred to as a pure strategy). A joint action a =
(a1, a2, . . . , an) ∈ A represents one play of the game
in which the player i takes action ai. The action space
A is a Cartesian product that contains all possible joint
actions. We have |A| =

∏
i∈[n] |Ai| =

∏
i∈[n] mi.

• u = (ui)i∈[n] is the joint payoff or utility of the game.
ui is an n-dimensional tensor (or matrix if n = 2)
describing player i’s payoff on each joint action. In
our paper, following previous literatures (Tsaknakis &
Spirakis, 2008; Deligkas et al., 2022), we normalize
all the elements of payoff into [0, 1].

A joint (mixed) strategy is a distribution over A. Let σ =
×i∈[n]σi be a product strategy and π ∈ ∆A be a joint
(possibly correlated) strategy. Denote πi as the marginal
strategy of player i in π. The expected utility of player i
under π is

ui(π) = Ea∼π[ui(a)] =
∑
a∈A

π(a)ui(a).

Besides, on behalf of player i, the other players’ joint strat-
egy is denoted as π−i, so as a−i and σ−i.

Nash Equilibrium (NE) We say a product strategy σ∗ =
(σ∗

1 , σ
∗
2 , . . . , σ

∗
n) is a NE if each player’s strategy is the best

response given the strategies of others, i.e.,

ui(σi, σ
∗
−i) ≤ ui(σ

∗
i , σ

∗
−i), ∀i,∀σi. (NE)

Computing NE for even general 2-player or 3-player games
is PPAD-hard (Chen et al., 2009; Daskalakis et al., 2009),
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which leads to research on approximate solutions. For arbi-
trary ϵ > 0, we say a product strategy σ̂ is an ϵ-approximate
Nash equilibrium (ϵ-NE) if no one can achieve more than ϵ
utility gain by deviating from her current strategy. Formally,

ui(σi, σ̂−i) ≤ ui(σ̂i, σ̂−i) + ϵ, ∀i,∀σi. (ϵ-NE)

The definition of ϵ-NE reflects the idea that players might
not be willing to deviate from their strategies when the
amount of utility they could gain by doing so is tiny (not
more than ϵ).

Coarse Correlated Equilibrium (CCE) We say a joint
(possibly correlated) strategy π∗ is a CCE if no player can
receive a higher payoff by acting independently, i.e.,

ui(σi, π
∗
−i) ≤ ui(π

∗), ∀i, ∀σi ∈ ∆Ai, (CCE)

and we say π̂ is an ϵ-approximate coarse correlated equilib-
rium (ϵ-CCE) for ϵ > 0 if

ui(σi, π̂−i) ≤ ui(π̂) + ϵ, ∀i,∀σi ∈ ∆Ai, (ϵ-CCE)

The difference between NE and CCE is that in an NE, play-
ers execute their strategy individually in a decentralized way,
while in a CCE, players’ strategies are possibly correlated.
A standard technique to correlate the strategy is sending
each player a signal from a centralized controller (Shoham
& Leyton-Brown, 2008).

Correlated Equilibrium (CE) CE is similar to CCE, ex-
cept that in a CE, each player can observe her recommended
action before she acts. Thus, player i deviates her strategy
through strategy modification ϕi : Ai → Ai. ϕi maps ac-
tions in Ai to possibly different actions in Ai. Based on
strategy modification, we say a joint (possibly correlated)
strategy π∗ is a CE if∑

a∈A
π∗(a)ui(ϕi(ai), a−i) ≤ ui(π

∗), ∀i,∀ϕi, (CE)

and a joint strategy π̂ is an ϵ-approximate correlated equi-
librium (ϵ-CE) for ϵ > 0 if∑
a∈A

π̂(a)ui(ϕi(ai), a−i) ≤ ui(π̂) + ϵ, ∀i,∀ϕi, (ϵ-CE)

Note that for a finite n-player normal-form game, at least
one NE, CE, and CCE must exist. This is because NE
always exists (Nash et al., 1950) and NE ⊆ CE ⊆ CCE.

Equilibrium Approximation To evaluate the quality of
a joint strategy to approximate an equilibrium, we define
approximation based on exploitability (Lockhart et al., 2019;
Goktas & Greenwald, 2022).

Definition 3.1 (Exploitability and Approximation). Given
a joint strategy π, the exploitability (or regret) Ei(π, u) of
player i is the maximum payoff gain of i by deviating from
her current strategy, i.e.,

Ei(π, u) := max
σ′
i

ui(σ
′
i, π−i)− ui(π)

= max
a′
i

ui(a
′
i, π−i)− ui(π)

and the exploitability under strategy modification ECE
i (π, u)

of player i is the maximum payoff gain of i by deviating
through strategy modification, i.e.,

ECE
i (π, u) := max

ϕi

∑
a∈A

π(a)ui(ϕi(ai), a−i)− ui(π).

The equilibrium approximation is defined as the maximum
exploitability over all players 1, i.e.,

E(π, u) :=

{
maxi∈[n] Ei(π, u) , for NE and CCE
maxi∈[n] ECE

i (π, u) , for CE

Based on approximation, we can restate the definition of
solution concepts. A product strategy σ is an NE of game
Γu if E(σ, u) = 0 and is an ϵ-NE if E(σ, u) ≤ ϵ. A joint
strategy π is a (C)CE of Γu if E(π, u) = 0 and is an ϵ-(C)CE
if E(π, u) ≤ ϵ.

3.2. Equilibrium Approximator

The equilibrium approximators, including NE, CE, and CCE
approximators, aim to predict solution concepts from game
representations. In our paper, we fix the number of players
n and action space A. We denote by U the set of all the
possible game payoffs. The NE approximator fNE : U →
×i∈[n]∆Ai maps a game payoff to a product strategy, where
fNE(u)i ∈ ∆Ai is player i’s predicted strategy. We define
FNE as the function class of the NE approximator. Similarly,
we define (C)CE approximator as f (C)CE : U → ∆A and
(C)CE approximator class as F (C)CE.

An equilibrium approximator can be learned through ma-
chine learning paradigms based on empirical data. For
instance, Feng et al. (2021) learn the NE approximator us-
ing the game payoffs generated in the learning process of
PSRO, and optimize the approximator by gradient descent
in exploitability. Marris et al. (2022) learn the CE and
CCE approximators using the games i.i.d. generated from a
manually designed distribution, and optimize the approxi-
mators using maximum welfare minimum relative entropy
loss. Such a loss balances the equilibrium approximation,

1A similar metric of equilibrium approximation is called
Nikaido-Isoda function (Nikaidô & Isoda, 1955) or NASH-
CONV (Lockhart et al., 2019), which is the sum of exploitability
over all players, i.e.,

∑
i∈[n] Ei(π, u).
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Algorithm 1 Example: learning NE/CCE approximator via
minibatch SGD

1: Input: Training set S
2: Parameters: Number of iterations T > 0, batch size

B > 0, learning rate η > 0, initial parameters w0 ∈ Rd

of the approximator model.
3: for t = 0 to T do
4: Receive minibatch St = {u(1), . . . , u(B)} ⊂ S
5: Compute the empirical average approximation of St:
6: LSt(f

wt)← 1
B

∑B
i=1 E(fwt(u(i)), u(i))

7: Update model parameters:
8: wt+1 ← wt − η∇wtLSt(f

wt)
9: end for

the social welfare, and the relative entropy of the joint strat-
egy. Additionally, another simple way to learn NE or CCE
equilibrium approximator is to apply minibatch stochastic
gradient descent (SGD) on approximation. Specifically, we
denote w ∈ Rd as the d-dimensional parameter of the ap-
proximator, such as the weights of the neural network. We
can optimize w by the standard minibatch SGD algorithm
on approximation (See Algorithm 1).

4. Equivariant Equilibrium Approximator
In this section, we introduce the equivariance of the equi-
librium approximators and the way how we apply orbit
averaging (Elesedy & Zaidi, 2021) to construct equivariant
approximators. Equivariant approximator has been devel-
oped in many literatures (Hartford et al., 2016; Feng et al.,
2021; Marris et al., 2022; Wu & Lisser, 2022), which we
will discuss later.

4.1. Definition of Equivariance

We first define the permutation of a game. Let ρi : Ai → Ai

be a permutation function of player i, which is a bijection
from Ai to Ai itself. Define Gi ∋ ρi as the class of permu-
tation function for player i, which forms an Abelian group.

Definition 4.1 (Permutation of a game). For a normal-form
game Γu = (n, u,A), we define the ρi-permutation of pay-
off tensor u as ρiu = (ρiuj)j∈[n], in which

(ρiuj)(ai, a−i) = uj(ρ
−1
i (ai), a−i), ∀a ∈ A.

We also define the ρi-permutation of joint strategy π as ρiπ,
where

(ρiπ)(ai, a−i) = π(ρ−1
i (ai), a−i), ∀a ∈ A,

and the ρi-permutation of product strategy σ as ρiσ =
(ρiσj)j∈[n], where

∀aj ∈ Aj , ρiσj(aj) =

{
σj(aj) , if j ̸= i

σi(ρ
−1
i ai) , if j = i

Equivariant NE Approximator Considering the relation-
ship of ρi-permuted game and ρi-permuted product strategy,
we have the following result for NE:

Lemma 4.2. In a normal-form game Γu = (n, u,A),
for arbitrary player i ∈ [n] and any (ϵ-)NE strategy
σ = (σi, σ−i), ρiσ = (ρiσi, σ−i) is also an (ϵ-)NE for
the ρi-permuted game Γρiu.

Lemma 4.2 tells the unimportance of action order with re-
spect to NE approximation. Based on it, we can summarize
two ideal properties for NE approximators, which are de-
fined as follows:

Definition 4.3 (Player-Permutation-Equivariance, PPE).
We say an NE approximator fNE satisfies player i
permutation-equivariant (i-PE) if for arbitrary permutation
function ρi ∈ Gi we have

fNE(ρiu)i = ρif
NE(u)i, (i-PE)

Moreover, we say fNE is player-permutation-equivariant
(PPE) if fNE satisfies i-PE for all player i ∈ [n].

Definition 4.4 (Opponent-Permutation-Invariance, OPI).
We say an NE approximator fNE is opponent i permutation-
invariant (i-PI) if for any other player j ∈ [n] − {i} and
arbitrary permutation function ρi ∈ Gi we have

fNE(ρiu)j = fNE(u)j ,∀j ̸= i (i-PI)

and we say fNE is opponent-permutation-invariant (OPI)
if fNE satisfies i-PI for all player i ∈ [n].

Equivariant (C)CE approximator Considering the rela-
tionship of ρi-permuted game and ρi-permuted joint strat-
egy, we have a similar result for CE and CCE:

Lemma 4.5. In a normal-form game Γu = (n, u,A), for an
arbitrary player i ∈ [n] and any (ε-)CE or (ϵ-)CCE strategy
π, ρiπ is also an (ε-)CE or (ϵ-)CCE for the ρi-permuted
game Γρiu.

Inspired by Lemma 4.5, we can also summarize an ideal
property for CE and CCE approximators defined as follows.

Definition 4.6 (Permutation-Equivariance,PE). We say
an (C)CE approximator f (C)CE is player i permutation-
equivariant (i-PE) if for permutation function ρi ∈ Gi we
have

f (C)CE(ρiu) = ρif
(C)CE(u),

and we say f (C)CE is permutation-equivariant (PE) if f (C)CE

satisfies i-PE for all player i ∈ [n].

4.2. Equivariant Approximators in Literature

For two-player games, Feng et al. (2021) propose an MLP-
based NE approximator that satisfies both PPE and OPI for
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zero-sum games. Additionally, they also design a Conv1d-
based NE approximator that satisfies PPE only. Hartford
et al. (2016) give a PPE approximator to predict players’
strategies. The traditional algorithms Tsaknakis & Spirakis
(2008) and Deligkas et al. (2022), which approximate NE
by optimization, are also PPE and OPI to payoffs and the
initial strategies. For n-player general games, Marris et al.
(2022) provide a permutation-equivariant approximator to
approximate CE and CCE. Equivariant architectures are also
adopted in optimal auction design (Rahme et al., 2021; Duan
et al., 2022; Ivanov et al., 2022), and Qin et al. (2022) theo-
retically characterize the benefits of permutation-equivariant
in auction mechanisms. We follow the rough idea of Qin
et al. (2022) when we analyze the benefits of equivariant
equilibrium approximators.

4.3. Orbit Averaging

Orbit averaging is a well-known method to enforce equiv-
ariance or invariance for a function (Schulz-Mirbach, 1994).
It averages the inputs of a function over the orbit of a group
(e.g., the permutation group in our paper).

Orbit Averaging for NE Approximator For an NE ap-
proximator fNE and any player i ∈ [n], we can construct a
i-PI or i-PE NE approximator by averaging with respect to
all the permutations of player i. Specifically, we construct
an i-PI NE approximator by operator Oi with

(Oif
NE)(u)j =

{
fNE(u)i , if j = i

1
|Ai|!

∑
ρi∈Gi

fNE(ρiu)j , otherwise

and we construct an i-PE NE approximator by operator Pi

with:

(Pif
NE)(u)j =

{
1

|Ai|!
∑

ρi∈Gi
ρ−1
i fNE(ρiu)i , if j = i

fNE(u)j , otherwise

Lemma 4.7. Oif
NE is i-PI and Pif

NE is i-PE. Specially,
if fNE is already i-PI or i-PE, then we haveOif

NE = fNE

or Pif
NE = fNE, respectively.

To construct a PPE or OPI NE approximator, we composite
the operators with respect to all players. LetO = O1 ◦O2 ◦
· · · ◦ On and P = P1 ◦ P2 ◦ · · · ◦ Pn, we get the following
corollary:

Lemma 4.8. OfNE is OPI and PfNE is PPE. If fNE is
already OPI or PPE, we have OfNE = fNE or PfNE =
fNE, respectively.

Furthermore, we can also compose P ◦O to construct a NE
approximator with both PPE and OPI.

Orbit Averaging for (C)CE Approximator For CE or
CCE approximator f , we define Qi-project for player i ∈

[n] to construct an i-PE approximator, which averages with
respect to all the permutations of player i.

(Qif
(C)CE)(u) =

1

|Ai|!
∑
ρi∈Gi

ρ−1
i f (C)CE(ρiu)

Similarly, we defineQ = Q1◦Q2◦· · ·◦Qn as the composite
operator.

Lemma 4.9. Qif
(C)CE is i-PE and Qf (C)CE is PE. Specif-

ically, If f (C)CE is already i-PE or PE, then we have
Qif

(C)CE = f (C)CE or Qf (C)CE = f (C)CE, respectively.

Combined with Lemma 4.7, Lemma 4.8 and Lemma 4.9,
we can have the following corollary directly.

Corollary 4.10. O2 = O,P2 = P,Q2 = Q.

The benefit of using orbit averaging is shown in the follow-
ing lemma:

Lemma 4.11. Denote X as an idempotent operator, i.e.
X 2 = X (e.g. O,P or Q). For function class F of NE, CE
or CCE approximator, let FX be any subset of F that is
closed under X , then XFX is the largest subset of FX that
is invariant under X .

According to Lemma 4.8, Lemma 4.9 and Lemma 4.11,
OFNE(orPFNE/QF (C)CE) is the largest subset ofFNE(or
FNE/F (C)CE) with the corresponding property (OPI, PPE,
or PE) if FNE(or FNE/F (C)CE) is closed operator under
O(or P/Q). The result tells that the orbit averaging opera-
tors, while enforcing the operated function to be equivari-
ance or invariance, keep as large a capacity of the function
class as possible. Therefore, we believe that orbit averaging
is an ideal approach to constructing equivariant or invariant
functions.

5. Theoretical Analysis of Benefits
In this section, we theoretically analyze the benefits of equiv-
ariant approximators with respect to generalizability and
approximation.

5.1. Benefits for Generalization

We first derive the generalization bound and sample com-
plexity for general approximator classes, and then we show
the benefits of equivariant approximators by applying orbit
averaging to the approximators.

The representativeness of an approximator class is measured
by the covering numbers (Shalev-Shwartz & Ben-David,
2014) under ℓ∞-distance, which are defined as follows:

Definition 5.1 (ℓ∞-distance). The ℓ∞-distance between
two equilibrium approximators f, g is:

ℓ∞(f, g) = max
u∈U
∥f(u)− g(u)∥,
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where we define the distance of two product strategies σ
and σ′ as

∥σ1 − σ2∥ = max
i∈[n]

∑
ai∈Ai

|σ1
i (ai)− σ2

i (ai)|,

and the distance of two joint strategy π and π′ as

∥π1 − π2∥ =
∑
a∈A
|π1(a)− π2(a)|.

Definition 5.2 (r-covering number). For r > 0, we say
function class Fr r-covers another function class F under
ℓ∞-distance if for all function f ∈ F , there exists fr ∈
Fr such that ∥f − fr∥∞ ≤ r. The r-covering number
N∞(F , r) of F is the cardinality of the smallest function
class Fr that r-covers F under ℓ∞-distance.

Based on covering numbers, we provide the generalization
bounds of NE, CE and CCE approximators. The bounds
describe the difference between the expected testing approx-
imation and empirical training approximation.

Theorem 5.3. [Generalization bound] For function class
F of NE, CE or CCE approximator, with probability at least
1 − δ over draw of the training set S (with size m) from
payoff distribution D, for all approximator f ∈ F we have

Eu∼D[E(f(u), u)]−
1

m

∑
u∈S

E(f(u), u)

≤ 2 · inf
r>0
{
√

2 lnN∞(F , r)
m

+ Lr}+ 4

√
2 ln(4/δ)

m
,

where L = 2n for NE approximator, and L = 2 for CE and
CCE approximators.

To get the theorem, we first show that all three equilibrium
approximations are Lipschitz continuous with respect to
strategies. Afterward, we derive the Rademacher complex-
ity (Bartlett & Mendelson, 2002) of the expected approxima-
tion based on the Lipschitz continuity and covering numbers.
See Appendix B.1 for the detailed proof.

We can see from Theorem 5.3 that, with a large enough
training set, the generalization gaps of equilibrium approx-
imators go to zero if the covering number N∞(F , r) is
bounded. As a result, we can estimate the expected testing
performance through the empirical training performance.

We can also derive the sample complexities of equilibrium
approximators to achieve the desirable generalizability.

Theorem 5.4. [Sample complexity] For ϵ, δ ∈ (0, 1), func-
tion class F of NE, CE or CCE approximator and distri-
bution D, with probability at least 1 − δ over draw of the
training set S with

m ≥ 9

2ϵ2

(
ln

2

δ
+ lnN∞(F , ϵ

3L
)

)

games sampled from D, ∀f ∈ F we have

Eu∼D[E(f(u), u)] ≤
1

m

∑
u∈S

E(f(u), u) + ϵ,

where L = 2n for NE approximators, and L = 2 for CE
and CCE approximators.

The proof is based on the Lipschitz continuity of approxi-
mation, uniform bound, and concentration inequality. See
Appendix B.2 for details. Theorem 5.4 is also called the
uniform convergence of function class F , which is a suffi-
cient condition for agnostic PAC learnable (Shalev-Shwartz
& Ben-David, 2014).

As for the benefits of equivariant approximators for gener-
alizability, the following result indicates that the projected
equilibrium approximators have smaller covering numbers.

Theorem 5.5. The O-projected, P-projected and Q-
projected approximator classes have smaller covering num-
bers, i.e., ∀r > 0 we have

N∞(OFNE, r) ≤ N∞(FNE, r),

N∞(PFNE, r) ≤ N∞(FNE, r),

N∞(QF (C)CE, r) ≤ N∞(F (C)CE, r).

The proof is done by showing all the operators are contrac-
tion mappings. See Appendix B.3 for details.

Both the generalization bounds in Theorem 5.3 and the sam-
ple complexities in Theorem 5.4 decrease with the decrease
of covering numbers N∞(F , r). Thus, we can see from
Theorem 5.5 that both PPE and OPI can improve the gen-
eralizability of NE approximators, and PE can improve the
generalizability of CE and CCE approximators.

5.2. Benefits for Approximation

We then show the benefits of equivariance for approximation
when the payoff distribution is invariant under permutation.
The permutation-invariant distribution holds when the ac-
tion is anonymous or indifferent or when we pre-train the
equilibrium approximators using a manually designed dis-
tribution (Marris et al., 2022).

(C)CE Approximator The following theorem tells the
benefit of permutation-equivariance in decreasing the ex-
ploitability of (C)CE approximators.

Theorem 5.6. When the payoff distribution D is invariant
under the permutation of payoffs, theQ-projected (C)CE ap-
proximator has a smaller expected equilibrium approxima-
tion. Formally, for all f (C)CE ∈ F (C)CE and permutation-
invariant distribution D, we have

Eu∼D[E(Qf (C)CE(u), u)] ≤ Eu∼D[E(f (C)CE(u), u)],
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The proof is done by using the convexity of approximation.
See Appendix B.4 for details. We can see from Theorem 5.6
that, when payoff distribution is invariant under permutation,
it is beneficial to use equivariant architecture as the CE or
CCE approximators.

NE Approximator As for NE approximators, we have
similar results.

Theorem 5.7. For bimatrix constant-sum games, when the
payoff distribution D is invariant under the permutation of
payoffs, then the X -projected (X ∈ {O,P}) NE approxi-
mator has a smaller expected exploitability. Formally, for
all fNE ∈ FNE and permutation-invariant distribution D
for bimatrix constant-sum games, we have

Eu∼D

[
n∑

i=1

Ei((XfNE)(u), u)

]

≤ Eu∼D

[
n∑

i=1

Ei(fNE(u), u)

]
.

Theorem 5.8. When the payoff distribution D is invariant
under the permutation of payoffs, and fNE satisfies OPI,
then the P-projected NE approximator has a smaller ex-
pected NE approximation. Formally, for all fNE ∈ FNE

that is OPI and permutation-invariant distribution D, we
have

Eu∼D[E((PfNE)(u), u)] ≤ Eu∼D[E(fNE(u), u)].

Theorem 5.9. For bimatrix games, when the payoff dis-
tribution D is invariant under the permutation of payoffs,
and fNE satisfies PPE, then the O-projected NE approxi-
mator has a smaller expected NE approximation. Formally,
for all fNE ∈ FNE that is PPE and permutation-invariant
distribution D of bimatrix games, we have

Eu∼D[E((OfNE)(u), u)] ≤ Eu∼D[E(fNE(u), u)].

Theorem 5.8 and Theorem 5.9 tell that PPE and OPI approx-
imators can achieve better approximation than ones with
only PPE or OPI. Meanwhile, we can see from Theorem 5.7
that for bimatrix constant-sum games (such as zero-sum
games), it can be preferred to introduce PPE or OPI to the
architectures.

6. Theoretical Analysis of Limitations
As we discussed in Section 5, equivariant approximators
enjoy better generalizability and better approximation some-
times. However, as we will show, they have some limitations
regarding equilibrium selection and social welfare. Such
limitations attribute to the limited representativeness caused
by equivariance.

6.1. Equilibrium Selection

We first show that there may be equilibria points that equiv-
ariant approximators will never find. We illustrate such
limitation in permutation-invariant games, which is defined
as follows:

Definition 6.1 (Permutation-ρ-Invariant Game). We say a
game Γu is permutation-ρ-invariant, where ρ = ◦i∈[n]ρi, if
the payoff u is permutation-invariant with respect to ρ. That
is, ρu = u.

Permutation-ρ-invariance indicates that one cannot distin-
guish joint action a from ρa using only the payoff u.
We’d like to provide an example to show more insight of
permutation-ρ-invariant games:

Example 6.2. For a 2-player game Γu = (2, u =
(u1, u2),A = ([m1], [m2])) , Let ρi = (mi,mi − 1, . . . , 1)
and ρ = ρ1 ◦ ρ2. If one of the following conditions holds,
then u is permutation-ρ-invariant:

1. u1 and u2 are symmetric and persymmetric (i.e., sym-
metric with respect to the northeast-to-southwest diag-
onal) squares.

2. Both u1 and u2 are centrosymmetric, i.e., ui(x, y) =
ui(m1 + 1− x,m2 + 1− y) for i ∈ {1, 2}, x ∈ [m1]
and y ∈ [m2].

For permutation ρ = (◦i∈[n]ρi) and player k ∈ [n], we
denote the set of non-fixed actions of player k under ρk as

V (ρk) := {ak|ak ∈ Ak, ρk(ak) ̸= ak}.

Based on V (ρk), we find some equilibria points of
permutation-ρ-invariant games that any equivariant approxi-
mators will never find.

Theorem 6.3. For a permutation-ρ-invariant game Γu. if
there is a pure NE a∗ = (a∗i )i∈[n] and at least one player
k ∈ [n] such that a∗k ∈ V (ρk), then a∗ will never be found
by any NE approximator with both PPE and OPI. Besides,
a∗ (as a pure CE or CCE) will also never be found by any
CE or CCE approximator with PE.

We illustrate Theorem 6.3 by the following example:

Example 6.4. Consider a bimatrix game with identity utility

u =

[
1,1 0, 0
0, 0 1,1

]
,

There are two pure NE (bolded in the above matrix) and one
mixed NE of σ1 = (0.5, 0.5) and σ2 = (0.5, 0.5). Let ρi be
the unique permute function (except for identity function) of
player i ∈ [2], and ρ = ρ1 ◦ ρ2. The game is permutation-
ρ-invariant.
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Case 1: Let f be a permutation-equivariant CE or CCE
approximator, and denote π = f(u). We have

π = f(u)
(a)
= f(ρu)

(b)
= ρf(u),

where (a) holds by permutation-ρ-invariance of u, and (b)
holds by PE of f . Thus, we have π1,1 = π2,2 ∈ [0, 1

2 ] and
π1,2 = π2,1 ∈ [0, 1

2 ]. As a result, the two pure (C)CEs
cannot be found.

Case 2: Let f be a NE approximator that holds PPE and
OPI. Denote f(u) = (σ1, σ2), where σ1 = (p1, 1−p1) and
σ2 = (p2, 1− p2). By PPE and OPI of f , we have

f(u)1 = (p1, 1− p1)
(a)
= f(ρ1ρ2u)1

(b)
= ρ1f(ρ2u)1

(c)
= ρ1f(u)1 = (1− p1, p1),

where (a) holds by permutaion-ρ-invariance of u, (b) holds
by PPE of f , and (c) holds by OPI of f . As a result, the
only NE that f could find is the mixed NE.

As we can see from the example and Theorem 6.3, the
equivariance, while introducing inductive bias to the ap-
proximator architecture, is also a strong constraint. Such a
constraint is why the equivariant approximators cannot find
all the equilibria points.

6.2. Social Welfare

The social welfare of a joint strategy π is defined as the sum
of all players’ utilities, i.e.,

SW(π, u) =
∑
i∈[n]

ui(π).

The equilibrium with higher social welfare is usually pre-
ferred (Marris et al., 2022).

To analyze the social welfare of equivariant approximators,
we define the worst social welfare ratio as follows:

Definition 6.5. For any N,M ≥ 2 and two NE (or
CE/CCE) approximator classes F1,F2 that target on games
with the number of players n ≤ N and |Ai| ≤ M , we
define the worst social welfare ratio of F1 over F2 as:

SWRN,M(F1,F2) := inf
D

maxf1∈F1
Eu∼DSW(f1(u), u)

maxf2∈F2 Eu∼DSW(f2(u), u)
.

SWRN,M(F1,F2) measures the relative representativeness
of F1 over F2 in terms of social welfare. Based on that,
we have the following result for equivariant CE and CCE
approximator classes:

Theorem 6.6. Given N,M ≥ 2, let F (C)CE
PE be the function

class (target on games with the number of players n ≤
N and |Ai| ≤ M ) of all the (C)CE approximators with

PE. Denote by F (C)CE
general the function class of all the (C)CE

approximators. Then we have

SWRN,M(F (C)CE
PE ,F (C)CE

general) = 1.

Theorem 6.6 tells that, while the permutation-equivariant
(C)CE approximator class may not be able to find all the
(C)CE in a game, it can keep the social welfare of the output
solutions.

However, when considering equivariant NE approximators,
we have the following negative result:
Theorem 6.7. Given N,M ≥ 2, letFNE

OPI,FNE
PPE andFNE

both

be the function classes (target on games with number of
players n ≤ N and |Ai| ≤M ) of all the NE approximators
with OPI, PPE and both. Denote the function class of all
the NE approximators as FNE

general. Then we have

SWRN,M(FNE
OPI,FNE

general) =
1

MN−1
, (1)

SWRN,M(FNE
PPE,FNE

general) ≤
1

M
, (2)

SWRN,M(FNE
both,FNE

general) =
1

MN−1
. (3)

Additionally, when M ≥ 3, denote by F̃NE
both the function

class of all the NE oracles (functions that always output
exact NE solutions of the input games) with both PPE and
OPI, and by F̃NE

general the function class of all the NE oracles.
Then we have

SWRN,M(F̃NE
both, F̃NE

general) = 0. (4)

The proof is done by construction (See Appendix C.3 for de-
tails). As an illustration of Equation (4), consider a bimatrix
game with the following payoff:

u =

 1, 1 0, 0 0, 1/2 + ε
0, 0 1, 1 0, 1/2 + ε

1/2 + ε, 0 1/2 + ε, 0 ε, ε

 ,

for ϵ ∈ (0, 1/2). The maximum NE (the upper-left corner of
u) social welfare is 2, which can be found by at least one NE
oracle in F̃NE

general. However, the only NE (the lower-right
corner of u) that the NE oracles in F̃NE

both could find only
has a social welfare of 2ϵ. As a result,

SWR2,3(F̃NE
both, F̃NE

general) ≤
2ϵ

2
= ϵ,

which goes to zero as ϵ → 0. Recall that we always have
SWRN,M ≥ 0, thus Equation (4) holds when N = 2 and
M = 3.

Theorem 6.7 tells that equivariant NE approximators may
lose some social welfare while enjoying better generaliz-
ability. Such a result inspires us to balance generalizability
and social welfare when designing the NE approximator
architecture.
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7. Conclusion and Future Work
In this paper, we theoretically analyze the benefits
and limitations of equivariant equilibrium approxima-
tors, including player-permutation-equivariant (PPE) and
opponent-permutation-invariant (OPI) NE approximator,
and permutation-equivariant (PE) CE and CCE approxi-
mators. For the benefits, we first show that these equivariant
approximators enjoy better generalizability. To get the result,
we derive the generalization bounds and sample complexi-
ties based on covering numbers, and then we prove that the
symmetric approximators have lower covering numbers. We
then show that the equivariant approximators can decrease
the exploitability when the payoff distribution is invariant
under permutation. For the limitations, we find the equiv-
ariant approximators may fail to find some equilibria points
due to their limited representativeness caused by equivari-
ance. Besides, while equivariant (C)CE approximators can
keep the social welfare, the equivariant NE approximators
reach a small worst social welfare ratio compared to the gen-
eral approximators. Such a result indicates that equivariance
may reduce social welfare; therefore, we’d better balance
the generalizability and social welfare when we design the
architectures of NE approximators.

As for future work, since in our paper we assume the training
and testing payoff distribution are the same, an interesting
topic is to study the benefits of equivariant approximators
under the payoff distribution shift. Moreover, since we
consider fixed and discrete action space, another interesting
future direction is to analyze the benefits of equivariant
approximators in varying or continuous action space.
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Tuyls, K., Pérolat, J., Silver, D., and Graepel, T. A uni-
fied game-theoretic approach to multiagent reinforcement
learning. Advances in neural information processing
systems, 30, 2017.

Ling, C., Fang, F., and Kolter, J. Z. What game are we
playing? End-to-end learning in normal and extensive
form games. In IJCAI, pp. 396–402, 2018.

Liu, S., Lanctot, M., Marris, L., and Heess, N. Simplex neu-
ral population learning: Any-mixture bayes-optimality in
symmetric zero-sum games. In International Conference
on Machine Learning, ICML, 2022.
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A. Omitted Proofs in Section 4
A.1. Useful Lemma

We first introduce a lemma, which will be frequently used in the following proofs.

Lemma A.1. ∀i, j ∈ [n], ρi ∈ Gi we have (ρiu)j(σi, σ−i) = uj(ρ
−1
i σi, σ−i) and (ρiu)j(π) = uj(ρ

−1
i π).

Proof. Define âi := ρ−1
i ai. For product strategy σ = (σi)i∈[n],

(ρiu)j(σi, σ−i) =
∑

ai∈Ai

∑
a−i∈A−i

(ρiu)j(ai, a−i) · σi(ai) · σ−i(a−i)

=
∑

ai∈Ai

∑
a−i∈A−i

uj(ρ
−1
i ai, a−i) · σi(ai) · σ−i(a−i)

=
∑

ai∈Ai

∑
a−i∈A−i

uj(ρ
−1
i ai, a−i) · (ρ−1

i σi)(ρ
−1
i ai) · σ−i(a−i)

=
∑

âi∈Ai

∑
a−i∈A−i

uj(âi, a−i) · (ρ−1
i σi)(âi) · σ−i(a−i)

=uj(ρ
−1
i σi, σ−i).

For joint strategy π,

(ρiu)j(π) =
∑

ai∈Ai

∑
a−i∈A−i

(ρiuj)(ai, a−i) · π(ai, a−i)

=
∑

ai∈Ai

∑
a−i∈A−i

uj(ρ
−1
i ai, a−i) · π(ai, a−i)

=
∑

ai∈Ai

∑
a−i∈A−i

uj(ρ
−1
i ai, a−i) · (ρ−1

i π)(ρ−1
i ai, a−i)

=
∑

âi∈Ai

∑
a−i∈A−i

uj(âi, a−i) · (ρ−1
i π)(âi, a−i)

=uj(ρ
−1
i π).

A.2. Proof of Lemma 4.2

Lemma 4.2. In a normal-form game Γu = (n, u,A), for arbitrary player i ∈ [n] and any (ϵ-)NE strategy σ = (σi, σ−i),
ρiσ = (ρiσi, σ−i) is also an (ϵ-)NE for the ρi-permuted game Γρiu.

Proof. For player i, we have

Ei(ρiσ, ρiu) = max
ai∈Ai

ρiui(ai, ρiσ−i)− ρiui(ρiσ) = max
ai∈Ai

ρiui(ai, σ−i)− ρiui(ρiσi, σ−i)

= max
ai∈Ai

ui(ρ
−1
i ai, σ−i)− ui(ρ

−1
i ρiσi, σ−i)

(a)
= max

ai∈Ai

ui(ai, σ−i)− ui(σi, σ−i) = Ei(σ, u),

where (a) holds since ρi is a bijection on Ai. For player j ̸= i, we have

Ej(ρiσ, ρiu) = max
aj∈A

ρiuj(aj , ρiσ−j)− ρiuj(ρiσ) = max
aj∈Aj

uj(aj , ρ
−1
i ρiσ−j)− uj(ρ

−1
i ρiσ)

= max
aj∈Aj

uj(aj , σ−j)− uj(σ) = Ej(σ, u).

From above, we have E(ρiσ, ρiu) = E(σ, u), thus if σ is a ε-NE of Γu, then ρiσ must be a ε-NE of Γρiu.
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A.3. Proof of Lemma 4.5

Lemma 4.5. In a normal-form game Γu = (n, u,A), for an arbitrary player i ∈ [n] and any (ε-)CE or (ϵ-)CCE strategy π,
ρiπ is also an (ε-)CE or (ϵ-)CCE for the ρi-permuted game Γρiu.

CCE For player i, we have

Ei(ρiπ, ρiu) = max
ai∈Ai

(ρiui)(ai, (ρiπ)−i)− (ρiui)(ρiπi)

= max
ai∈Ai

(ρiui)(ai, (ρiπ)−i)− ui(ρ
−1
i ρiπi)

= max
ai∈Ai

(ρiui)(ai, (ρiπ)−i)− ui(πi)

= max
ai∈Ai

∑
b∈A

(ρiui)(ai, b−i) · (ρiπ)(b)− ui(πi)

= max
ai∈Ai

∑
bi∈Ai

∑
b−i∈A−i

ui(ρ
−1
i ai, b−i) · π(ρ−1

i bi, b−i)− ui(πi)

= max
ai∈Ai

∑
bi∈Ai

∑
b−i∈A−i

ui(ai, b−i) · π(bi, b−i)− ui(πi) , ρi is a bijection on Ai.

=Ei(π, u).

For player j ̸= i, we have

Ej(ρiπ, ρiu) = max
aj∈Aj

(ρiuj)(aj , (ρiπ)−j)− (ρiuj)(ρiπj)

= max
aj∈Aj

(ρiuj)(aj , (ρiπ)−j)− uj(ρ
−1
i ρiπj)

= max
aj∈Aj

(ρiuj)(aj , (ρiπ)−j)− uj(πj)

= max
aj∈Aj

∑
b∈A

(ρiuj)(aj , b−j) · (ρiπ)(b)− uj(πj)

= max
aj∈Aj

∑
bi∈Ai

∑
b−i∈A−i

uj(aj , (b−j)−i, ρ
−1
i bi) · π(ρ−1

i bi, b−i)− uj(πj)

= max
aj∈Aj

∑
bi∈Ai

∑
b−i∈A−i

uj(aj , (b−j)−i, bi) · π(bi, b−i)− uj(πj) , ρi is a bijection on Ai.

=Ej(π, u).

Thus, we have E(ρiπ, ρiu) = E(π, u). Thus, if π is a ε-CCE of Γu, then ρiπ must be a ε-CCE of Γρiu.

CE For player j ̸= i, we have

ECE
j (ρiπ, ρiu) = max

ϕj :Aj→Aj

∑
a∈A

(ρiπ)(a) · (ρiuj)(ϕj(aj), a−j)− (ρiuj)(ρiπ)

= max
ϕj :Aj→Aj

∑
a∈A

π(ρ−1
i ai, a−i) · uj(ϕj(aj), a−i,j , ρ

−1
i ai)− uj(π)

= max
ϕj :Aj→Aj

∑
a∈A

π(ai, a−i) · uj(ϕj(aj), a−i,j , ai)− uj(π) , ρi is a bijection on Ai.

=ECE
j (π, u).

For player i, we define operator ρ̄i as (ρ̄iϕi)(ai) = ρ−1
i ϕi(ρiai). We can verify that ρ̄i is a bijection on {ϕi : Ai → Ai},

because ·̄ is a homomorphism in the sense that ρ1i ◦ρ2i = ρ2i ρ
1
i and ·̄ maps the identity mapping ofAi to the identity mapping

of {Ai → Ai}. Specifically,

ρ1i ◦ ρ2iϕi(ai) = (ρ1i )
−1(ρ2iϕi)(ρ

1
i ai) = (ρ1i )

−1(ρ2i )
−1ϕi(ρ

2
i ρ

1
i ai) = ρ2i ρ

1
iϕi(ai),

12
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and

eiϕi(ai) = e−1
i ϕi(eiai) = ϕi(ai).

Based on ρ̄i, we have

ECE
i (ρiπ, ρiu)

= max
ϕi:Ai→Ai

∑
a∈A

(ρiπ)(a) · (ρiui)(ϕi(ai), a−i)− ui(π)

= max
ϕi:Ai→Ai

∑
a∈A

π(ρ−1
i ai, a−i)ui(ρ

−1
i ϕi(ai), a−i)− ui(π)

= max
ϕi:Ai→Ai

∑
a∈A

π(ρ−1
i ai, a−i)ui(ρ

−1
i ϕi(ρi(ρ

−1
i ai)), a−i)− ui(π)

= max
ϕi:Ai→Ai

∑
a∈A

π(ai, a−i)ui(ρ
−1
i ϕi(ρiai), a−i)− ui(π) , ρi is a bijection on Ai.

= max
ϕi:Ai→Ai

∑
a∈A

π(ai, a−i)ui((ρ̄iϕi)(ai), a−i)− ui(π)

= max
ϕi:Ai→Ai

∑
a∈A

π(ai, a−i)ui(ϕi(ai), a−i)− ui(π) , ρ̄i is a bijection on {Ai → Ai}.

=ECE
i (π, u).

Thus, we have E(ρiπ, ρiu) = E(π, u), thus if π is a ε-CE of Γu, then ρiπ must be a ε-CE of Γρiu.

A.4. Proof of Lemma 4.7 to Lemma 4.9

Lemma 4.7. Oif
NE is i-PI and Pif

NE is i-PE. Specially, if fNE is already i-PI or i-PE, then we have Oif
NE = fNE or

Pif
NE = fNE, respectively.

Proof. ∀j ̸= i, ρ0 ∈ Gi, for operator Oi we have

(Oif
NE)(ρ0u)j =

1

|Ai|!
∑
ρi∈Gi

fNE(ρiρ0u)j
(a)
=

1

|Ai|!
∑
ρ̂i∈Gi

fNE(ρ̂iu)j = (Oif
NE)(u)j ,

where in (a) we define ρ̂i = ρiρ0, and (a) holds since ρ0 is a bijection on Gi. As a result, Oif
NE is i-PI.

For operator Pi we have

(Pif
NE)(ρ0u)i =

1

|Ai|!
∑
ρi∈Gi

ρ−1
i fNE(ρiρ0u)j = ρ0

1

|Ai|!
∑
ρi∈Gi

ρ−1
0 ρ−1

i fNE(ρiρ0u)j

=ρ0
1

|Ai|!
∑
ρ̂i∈Gi

ρ̂−1
i fNE(ρ̂iu)j = ρ0(Pif

NE)(u)i,

therefore Pif
NE is i-PE.

If fNE is already i-PI, ∀j ̸= i we have

Oif
NE(u)j =

1

|Ai|!
∑
ρi∈Gi

fNE(ρiu)j =
1

|Ai|!
∑
ρi∈Gi

fNE(u)j = fNE(u)j ,

and Oif
NE(u)i = fNE(u)i according to definition of Oi. Therefore, Oif

NE = fNE for i-PI fNE.

If fNE is already i-PE, we have

Pif
NE(u)i =

1

|Ai|!
∑
ρi∈Gi

ρ−1
i fNE(ρiu)i =

1

|Ai|!
∑
ρi∈Gi

ρ−1
i ρif

NE(u)i =
1

|Ai|!
∑
ρi∈Gi

fNE(u)i = fNE(u)i,

13
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and ∀j ̸= i,Pif
NE(u)j = fNE(u)j according to definition of Pi. Therefore, Pif

NE = fNE for i-PE fNE.

Lemma 4.8. OfNE is OPI and PfNE is PPE. If fNE is already OPI or PPE, we have OfNE = fNE or PfNE = fNE,
respectively.

Proof. A direct inference from Lemma 4.7

Lemma 4.9. Qif
(C)CE is i-PE and Qf (C)CE is PE. Specifically, If f (C)CE is already i-PE or PE, then we have Qif

(C)CE =
f (C)CE or Qf (C)CE = f (C)CE, respectively.

Proof. ∀ρ0 ∈ Gi, we have

(Qif
(C)CE)(ρ0u) =

1

|Ai|!
∑
ρi∈Gi

ρ−1
i f (C)CE(ρiρ0u) = ρ0

1

|Ai|!
∑
ρi∈Gi

ρ−1
0 ρ−1

i f (C)CE(ρiρ0u)

=ρ0
1

|Ai|!
∑
ρ̂i∈Gi

ρ̂−1
i f (C)CE(ρ̂iu) = ρ0(Qif

(C)CE)(u).

If f (C)CE is already i-PE, we have

Qif
(C)CE(u) =

1

|Ai|!
∑
ρi∈Gi

ρ−1
i f (C)CE(ρiu) =

1

|Ai|!
∑
ρi∈Gi

ρ−1
i ρif

(C)CE(u) =
1

|Ai|!
∑
ρi∈Gi

f (C)CE(u) = f (C)CE(u).

A.5. Proof of Lemma 4.11

Lemma 4.11. Denote X as an idempotent operator, i.e. X 2 = X (e.g. O,P orQ). For function class F of NE, CE or CCE
approximator, let FX be any subset of F that is closed under X , then XFX is the largest subset of FX that is invariant
under X .

Proof. We prove the three claims below.

1. XFX ⊆ FX .

2. X 2FX = XFX .

3. If XY = Y ⊆ FX , then Y ⊆ XFX .

The first claim holds because FX is closed under X , and the second claim holds because X is idempotent. For the third
claim, from Y ⊆ FX we know XY ⊆ XFX , then Y = XY ⊆ XFX .

We immediately know XFX is the largest subset of FX that is invariant under X .

B. Omitted Proofs in Section 5
B.1. Proof of Theorem 5.3

Theorem 5.3. [Generalization bound] For function class F of NE, CE or CCE approximator, with probability at least
1− δ over draw of the training set S (with size m) from payoff distribution D, for all approximator f ∈ F we have

Eu∼D[E(f(u), u)]−
1

m

∑
u∈S

E(f(u), u)

≤ 2 · inf
r>0
{
√

2 lnN∞(F , r)
m

+ Lr}+ 4

√
2 ln(4/δ)

m
,

14
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where L = 2n for NE approximator, and L = 2 for CE and CCE approximators.

Some of the proof techniques come from Dütting et al. (2019) and Duan et al. (2023). We first introduce some useful
lemmas. Denote ℓ : F × U → R as the loss function (such as ℓ(f, u) := E(f(u), u)). We measure the capacity of the
composite function class ℓ ◦ F using the empirical Rademacher complexity (Bartlett & Mendelson, 2002) on the training set
S, which is defined as:

RS(ℓ ◦ F) :=
1

m
Ex∼{+1,−1}m

[
sup
f∈F

m∑
i=1

xi · ℓ(f, u(i))
]
,

where x is distributed i.i.d. according to uniform distribution in {+1,−1}. We have

Lemma B.1 (Shalev-Shwartz & Ben-David (2014)). Let S be a training set of size m drawn i.i.d. from distribution D over
U . Then with probability at least 1− δ over draw of S from D, for all f ∈ F ,

Eu∼D[ℓ(f, u)]−
1

m

∑
u∈S

ℓ(l, u) ≤ 2RS(ℓ ◦ F) + 4

√
2 ln(4/δ)

m
.

Lemma B.2. If |ℓ(·)| ≤ c for constant c > 0 and ∀f, f ′ ∈ F , |ℓ(f, u)− ℓ(f ′, u)| ≤ L∥f − f ′∥∞, then we have

Eu∼D[ℓ(f, u)]−
1

m

∑
u∈S

ℓ(l, u) ≤ 2 inf
r>0

{
c

√
2 lnN∞(F , r)

m
+ Lr

}
+ 4

√
2 ln(4/δ)

m
.

Proof. For function class F , let Fr with |Fr| = N∞(F , r) be the function class that r-covers F for some r > 0. Similarly,
∀f ∈ F , denote fr ∈ Fr be the function that r-covers f . We have

RS(ℓ ◦ F) =
1

m
Ex

[
sup
f∈F

m∑
i=1

xi · ℓ(f, u(i))
]

=
1

m
Ex

[
sup
f∈F

m∑
i=1

xi ·
(
ℓ(fr, u

(i)) + ℓ(f, u(i))− ℓ(fr, u
(i))
)]

≤ 1

m
Ex

[
sup

fr∈Fr

m∑
i=1

xi · ℓ(fr, u(i))
]
+

1

m
Ex

[
sup
f∈F

m∑
i=1

|xi · Lr|
]

, |ℓ(f, u)− ℓ(fr, u)| ≤ L∥f − fr∥∞ = Lr.

≤ sup
fr∈Fr

√√√√ m∑
i=1

ℓ2(fr, u(i)) ·
√
2 lnN∞(F , r)

m
+

Lr

m
Ex∥x∥ , the first term holds by Massart’s lemma.

≤
√
c2m ·

√
2 lnN∞(F , r)

m
+

Lr

m
Ex∥x∥

≤c
√

2 lnN∞(F , r)
m

+ Lr,

(5)

Combining Lemma B.1 and Equation (5), we get

Eu∼D[ℓ(f, u)]−
1

m

∑
u∈S

ℓ(l, u) ≤ 2 inf
r>0

{
c

√
2 lnN∞(F , r)

m
+ Lr

}
+ 4

√
2 ln(4/δ)

m
.

B.1.1. NE APPROXIMATOR

Lemma B.3. For arbitrary product mixed strategy σ and σ′, we have

|E(σ, u)− E(σ′, u)| ≤ 2n∥σ − σ′∥.
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Proof. ∀σ, σ′, we define y−j := (σ1, . . . , σj−1, σ
′
j+1, . . . , σ

′
n). Then, ∀i ∈ [n] we have

|ui(σ)− ui(σ
′)| =|ui(σ1, σ2, . . . , σn)− ui(σ

′, σ′
2, . . . , σ

′
n)|

=
∣∣∣ n∑
j=1

(
ui(σ1, . . . , σj , σ

′
j+1, . . . , σ

′
n)− ui(σ1, . . . , σ

′
j , σ

′
j+1, . . . , σ

′
n)
)∣∣∣

=
∣∣∣ n∑
j=1

(
ui(σj , y−j)− ui(σ

′
j , y−j)

)∣∣∣
=
∣∣∣ n∑
j=1

∑
aj

(σj(aj)− σ′
j(aj))

∑
a−j

ui(aj , a−j)y−j(a−j)
∣∣∣

≤
n∑

j=1

∑
aj

∣∣∣σj(aj)− σ′
j(aj)

∣∣∣∑
a−j

ui(aj , a−j)y−j(a−j)

≤
n∑

j=1

∑
aj

∣∣∣σj(aj)− σ′
j(aj)

∣∣∣∑
a−j

y−j(a−j) , ui(·) ∈ [0, 1]

≤
n∑

j=1

∑
aj∈Aj

∣∣∣σj(aj)− σ′
j(aj)

∣∣∣ ≤ nmax
j∈[n]

∑
aj∈Aj

∣∣∣σj(aj)− σ′
j(aj)

∣∣∣
=n∥σ − σ′∥,

Therefore, ∀ai ∈ Ai,

ui(ai, σ−i)− ui(σ) =ui(ai, σ−i)− ui(ai, σ
′
−i) + ui(ai, σ

′
−i)− ui(σ

′) + ui(σ
′)− ui(σ)

≤n∥σ − σ′∥+ E(σ′, u) + n∥σ − σ′∥
=E(σ′, u) + 2n∥σ − σ′∥.

Based on that, we get

E(σ, u) = max
i∈N,ai∈Ai

[ui(ai, σ−i)− ui(σ)] ≤ E(σ′, u) + 2n∥σ − σ′∥.

Similarly, we also have
E(σ′, u) ≤ E(σ, u) + 2n∥σ − σ′∥.

Based on Lemma B.3, ∀f, f ′ ∈ FNE, we have

E(f(u), u)− E(f ′(u), u) ≤ 2∥f(u)− f ′(u)∥ ≤ 2∥f − f ′∥∞.

Considering that |E(·)| ≤ 1, according to Lemma B.2, we have:

Eu∼D[E(fNE(u), u)]− 1

m

∑
u∈S

E(fNE(u), u) ≤ 2 · inf
r>0

{√2 lnN∞(FNE, r)

m
+ 2nr

}
+ 4

√
2 ln(4/δ)

m
.

B.1.2. CCE APPROXIMATOR

Lemma B.4. For arbitrary joint mixed strategy π and π′, we have

|E(π, u)− E(π′, u)| ≤ 2∥π − π′∥,

Proof. ∀π, π′,∀i ∈ [n] we have

|ui(π)− ui(π
′)| =

∑
a∈A

(π(a)− π′(a))ui(a)
(a)

≤
∑
a∈A
|π(a)− π′(a)| = ∥π − π′∥, (6)
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where (a) holds since ui(·) ∈ [0, 1]. Therefore, ∀ai ∈ Ai,

ui(ai, π−i)− ui(π) =ui(ai, π−i)− ui(ai, π
′
−i) + ui(ai, π

′
−i)− ui(π

′) + ui(π
′)− ui(π)

≤∥π − π′∥+ E(π′, u) + ∥π − π′∥
=E(π′, u) + 2∥π − π′∥.

Based on that, we get
E(π, u) = max

i∈N,ai∈Ai

[ui(ai, π−i)− ui(π)] ≤ E(π′, u) + 2∥π − π′∥.

Similarly, we also have
E(π′, u) ≤ E(π, u) + 2∥π − π′∥.

Based on Lemma B.4, ∀f, f ′ ∈ FCCE, we have

E(f(u), u)− E(f ′(u), u) ≤ 2∥f(u)− f ′(u)∥ ≤ 2∥f − f ′∥∞.

Considering that |E(·)| ≤ 1, according to Lemma B.2, we have:

Eu∼D[E(fCCE(u), u)]− 1

m

∑
u∈S

E(fCCE(u), u) ≤ 2 · inf
r>0

{√2 lnN∞(FCCE, r)

m
+ 2r

}
+ 4

√
2 ln(4/δ)

m
.

B.1.3. CE APPROXIMATOR

Lemma B.5. For arbitrary joint mixed strategy π and π′, we have

|ECE(π, u)− ECE(π′, u)| ≤ 2∥π − π′∥.

Proof. ∀ai ∈ Ai,∀ϕi, we have∑
a∈A

π(a)ui(ϕ(ai), a−i)− ui(π) =
∑
a∈A

π(a)ui(ϕ(ai), a−i)−
∑
a∈A

π′(a)ui(ϕ(ai), a−i)

+
∑
a∈A

π′(a)ui(ϕ(ai), a−i)− ui(π
′) + ui(π

′)− ui(π)

≤∥π − π′∥+ ECE(π′, u) + ∥π − π′∥
=ECE(π′, u) + 2∥π − π′∥.

Based on that, we get

ECE(π, u) = max
i∈N

max
ϕi

∑
a∈A

π(a)ui(ϕ(ai), a−i)− ui(π) ≤ ECE(π′, u) + 2∥π − π′∥.

Similarly, we also have
ECE(π′, u) ≤ ECE(π, u) + 2∥π − π′∥.

Based on Lemma B.4, ∀f, f ′ ∈ FCE, we have

ECE(f(u), u)− ECE(f ′(u), u) ≤ 2∥f(u)− f ′(u)∥ ≤ 2∥f − f ′∥∞.

Considering that |E(·)| ≤ 1, according to Lemma B.2, we have:

Eu∼D[ECE(fCE(u), u)]− 1

m

∑
u∈S

ECE(fCE(u), u) ≤ 2 · inf
r>0

{√2 lnN∞(FCE, r)

m
+ 2r

}
+ 4

√
2 ln(4/δ)

m
.
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B.2. Proof of Theorem 5.4

Theorem 5.4. [Sample complexity] For ϵ, δ ∈ (0, 1), function class F of NE, CE or CCE approximator and distribution D,
with probability at least 1− δ over draw of the training set S with

m ≥ 9

2ϵ2

(
ln

2

δ
+ lnN∞(F , ϵ

3L
)

)
games sampled from D, ∀f ∈ F we have

Eu∼D[E(f(u), u)] ≤
1

m

∑
u∈S

E(f(u), u) + ϵ,

where L = 2n for NE approximators, and L = 2 for CE and CCE approximators.

Proof. For function class F of NE, CE or CCE approximators, according to Lemma B.3, Lemma B.4 and Lemma B.5,
∀f, g ∈ F we have

E(CE)(f(u), u)− E(CE)(g(u), u) ≤ L∥f(u)− g(u)∥ ≤ L∥f − g∥∞, (7)

where L = 2n for NE approximators, and L = 2 for CE and CCE approximators.

For simplicity, we denote LS(f) =
1
m

∑
u∈S E(CE)(f(u), u) and LD(f) = Eu∼D[E(CE)(f(u), u)]. let Fr with |Fr| =

N∞(F , r) be the function class that r-covers F for some r > 0. ∀ϵ ∈ (0, 1), by setting r = ϵ
3L we have

PS∼Dm

[
∃f ∈ F ,

∣∣LS(f)− LD(f)
∣∣ > ϵ

]
≤PS∼Dm

[
∃f ∈ F ,

∣∣LS(f)− LS(fr)
∣∣+ ∣∣LS(fr)− LD(fr)

∣∣+ ∣∣LD(fr)− LD(f)
∣∣ > ϵ

]
(a)

≤PS∼Dm

[
∃f ∈ F , Lr +

∣∣LS(fr)− LD(fr)
∣∣+ Lr > ϵ

]
≤PS∼Dm

[
∃fr ∈ Fr,

∣∣LS(fr)− LD(fr)
∣∣ > ϵ− 2Lr

]
(b)

≤N∞(F , r)PS∼Dm

[∣∣LS(f)− LD(f)
∣∣ > ϵ− 2Lr

]
(c)

≤2N∞(F , r) exp(−2m(ϵ− 2Lr)2),

=2N∞(F , ϵ

3L
) exp(−2

9
mϵ2),

where (a) holds by Equation (7), (b) holds by union bound, and (c) holds by Hoeffding inequality. As a result, when
m ≥ 9

2ϵ2

(
ln 2

δ + lnN∞(F , ϵ
3L )
)
, we have PS∼Dm

[
∃f ∈ F ,

∣∣∣LS(f)− LD(f)
∣∣∣ > ϵ

]
< δ.

B.3. Proof of Theorem 5.5

Theorem 5.5. The O-projected, P-projected and Q-projected approximator classes have smaller covering numbers, i.e.,
∀r > 0 we have

N∞(OFNE, r) ≤ N∞(FNE, r),

N∞(PFNE, r) ≤ N∞(FNE, r),

N∞(QF (C)CE, r) ≤ N∞(F (C)CE, r).

We first provide an auxiliary lemma.
Lemma B.6. For function class F and orbit averaging operator X , if ∀f, g ∈ F , ℓ∞(Xf,X g) ≤ ℓ∞(f, g), then
N∞(XF , r) ≤ N∞(F , r) for any r > 0.

Proof. ∀r > 0, Denote Fr as the smallest r-covering set that covers F with size N∞(F , r). ∀f ∈ F , let fr ∈ Fr be the
function that r-covers f . We have ℓ∞(Xfr,Xf) ≤ ℓ∞(fr, f) ≤ r. Therefore, XFr is a r-covering set of XF , and we
have N∞(XF , r) ≤ |XFr| ≤ |Fr| = N∞.
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Proof of Theorem 5.5. For player i ∈ [n] and ∀fNE, gNE ∈ FNE, assuming U is closed under any ρi ∈ Gi. For Oi,

l∞(Oif
NE,Oig

NE) =max
u∈U
∥Oif

NE(u)−Oig
NE(u)∥

=max
j∈[n]

max
u∈U
∥(Oif

NE)(u)j − (Oig
NE)(u)j∥

=max
{
max
u∈U
∥fNE(u)i − gNE(u)i∥, max

j ̸=i
max
u∈U
∥ 1

|Ai|!
∑
ρi∈Gi

(fNE(ρiu)j − gNE(ρiu)j)∥
}

≤max
{
max
u∈U
∥fNE(u)i − gNE(u)i∥, max

j ̸=i

1

|Ai|!
∑
ρi∈Gi

max
u∈U
∥fNE(ρiu)j − gNE(ρiu)j∥

}
=max

{
max
u∈U
∥fNE(u)i − gNE(u)i∥, max

j ̸=i

1

|Ai|!
∑
ρi∈Gi

max
u∈U
∥fNE(u)j − gNE(u)j∥

}
=max

{
max
u∈U
∥fNE(u)i − gNE(u)i∥, max

j ̸=i
max
u
∥fNE(u)j − gNE(u)j∥

}
=l∞(fNE, gNE).

Since O = O1 ◦ · · · ◦ On, we have

ℓ∞(OfNE,OgNE) ≤ ℓ∞(fNE, gNE). (8)

For Pi,

l∞(Pif
NE,Pig

NE) =max
u∈U

max
j∈[n]

∥(Pif
NE)(u)j − (Pig

NE)(u)j∥

=max
{
max
j ̸=i

max
u
∥fNE(u)j − gNE(u)j∥, max

u
∥ 1

|Ai|!
∑
ρi∈Gi

ρ−1
i (fNE(ρiu)i − gNE(ρiu)i)∥

}
=max

{
max
j ̸=i

max
u
∥fNE(u)j − gNE(u)j∥, max

u
∥ 1

|Ai|!
∑
ρi∈Gi

(fNE(ρiu)i − gNE(ρiu)i)∥
}

≤max
{
max
j ̸=i

max
u
∥fNE(u)j − gNE(u)j∥,

1

|Ai|!
∑
ρi∈Gi

max
u
∥fNE(ρiu)i − gNE(ρiu)i∥

}
=max

{
max
j ̸=i

max
u
∥fNE(u)j − gNE(u)j∥,

1

|Ai|!
∑
ρi∈Gi

max
u
∥fNE(u)i − gNE(u)i∥

}
=max

{
max
j ̸=i

max
u
∥fNE(u)j − gNE(u)j∥, max

u
∥fNE(u)i − gNE(u)i∥

}
=l∞(fNE, gNE).

Since P = P1 ◦ · · · ◦ Pn, we have

ℓ∞(PfNE,PgNE) ≤ ℓ∞(fNE, gNE). (9)
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For CE or CCE approximator f (C)CE ∈ F (C)CE and Qi, we have

l∞(Qif
(C)CE,Qig

(C)CE) =max
u∈U
∥(Qif

(C)CE)(u)− (Qig
(C)CE)(u)∥

=max
u
∥ 1

|Ai|!
∑
ρi∈Gi

ρ−1
i (f (C)CE(ρiu)− g(C)CE(ρiu))∥

≤max
u

1

|Ai|!
∑
ρi∈Gi

∥ρ−1
i (f (C)CE(ρiu)− g(C)CE(ρiu))∥

≤ 1

|Ai|!
∑
ρi∈Gi

max
u
∥ρ−1

i (f (C)CE(ρiu)− g(C)CE(ρiu))∥

=
1

|Ai|!
∑
ρi∈Gi

max
u
∥f (C)CE(ρiu)− g(C)CE(ρiu)∥

=
1

|Ai|!
∑
ρi∈Gi

max
u
∥f (C)CE(u)− g(C)CE(u)∥

=l∞(f (C)CE, g(C)CE).

Since Q = Q1 ◦ · · · ◦ Qn, we have

ℓ∞(Qf (C)CE,Qg(C)CE) ≤ ℓ∞(f (C)CE, g(C)CE). (10)

Combing Lemma B.6, Equation (8), Equation (9) and Equation (10), we finish the proof.

B.4. Proof of Theorem 5.6

Theorem 5.6. When the payoff distribution D is invariant under the permutation of payoffs, the Q-projected (C)CE
approximator has a smaller expected equilibrium approximation. Formally, for all f (C)CE ∈ F (C)CE and permutation-
invariant distribution D, we have

Eu∼D[E(Qf (C)CE(u), u)] ≤ Eu∼D[E(f (C)CE(u), u)],

We first prove a lemma about the property of Ei(π, u) and ECE
i (π, u).

Lemma B.7. Ei(π, u) and ECE
i (π, u) are convex on π, i.e.

pE (CE)
i (π1, u) + (1− p)E (CE)

i (π2, u) ≥ E (CE)
i (pπ1 + (1− p)π2, u), ∀p ∈ [0, 1].

Proof. We recall the definition Ei(π, u) = maxai∈Ai
ui(ai, π−i) − ui(π) for CCE approximator and ECE

i (π, u) =
maxϕi∈Ai→Ai

∑
a π(a)ui(ϕi(ai), a−i) − ui(π) for CE approximator. ui(ai, π−i) is linear on π. Given ϕ,∑

a π(a)ui(ϕi(ai), a−i) is also linear on π. Moreover, the maximum operator on a set of linear functions will induce a
convex function.
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Proof of Theorem 5.6. For f ∈ F (C)CE and ∀i, j ∈ [n],

Eu∼D[E (CE)
i (Qjf(u), u)] =Eu∼D[E (CE)

i (
1

|Aj |!
∑

ρj∈Gj

ρ−1
j f(ρju), u)] , by definition.

≤ 1

|Aj |!
∑

ρj∈Gj

Eu∼D[E (CE)
i (ρ−1

j f(ρju), u)] , by convexity.

=
1

|Aj |!
∑

ρj∈Gj

Ev∼D[E (CE)
i (ρ−1

j f(v), ρ−1
j v)] , let v = ρju.

=
1

|Aj |!
∑

ρj∈Gj

Ev∼D[E (CE)
i (f(v), v)] , invariance of E (CE)

i (π, u) under ρ−1
j ∈ Gj .

=Eu∼D[E (CE)
i (f(u), u)].

Since Q = ◦iQi and E = maxi Ei, we have

Eu∼D[E(Qf(u), u)] ≤ Eu∼D[E(f(u), u)].

B.5. Proof of Theorem 5.7

Theorem 5.7. For bimatrix constant-sum games, when the payoff distribution D is invariant under the permutation of
payoffs, then the X -projected (X ∈ {O,P}) NE approximator has a smaller expected exploitability. Formally, for all
fNE ∈ FNE and permutation-invariant distribution D for bimatrix constant-sum games, we have

Eu∼D

[
n∑

i=1

Ei((XfNE)(u), u)

]

≤ Eu∼D

[
n∑

i=1

Ei(fNE(u), u)

]
.

Proof. We only prove for the P-projected case; the proof for O-projected case is similar and therefore omitted.

Recall

Ei(σ, u) = max
ai∈Ai

ui(ai, σ−i)− ui(σ).

Denote u1(σ) + u2(σ) ≡ c, then

n∑
i=1

Ei(σ, u) = max
a1∈A1,a2∈A2

u1(a1, σ2) + u2(a2, σ1)− c.

Then we have

Eu∼D[

n∑
i=1

Ei((PfNE)(u), u)] =Eu∼D[max
a1,a2

u1(a1, (PfNE)(u)2) + u2(a2, (PfNE)(u)1)− c]

=Eu∼D[max
a1

u1(a1, (PfNE)(u)2)] + Eu∼D[max
a2

u2(a2, (PfNE)(u)1)]− c.

21



Are Equivariant Equilibrium Approximators Beneficial?

For the first term,

Eu∼D[max
a1

u1(a1, (PfNE)(u)2)] =Eu∼D[max
a1

u1(a1,
1

|A2|!
∑

ρ2∈G2

ρ−1
2 fNE(ρ2u)2)]

≤ 1

|A2|!
∑

ρ2∈G2

Eu∼D[max
a1

u1(a1, ρ
−1
2 fNE(ρ2u)2)]

=
1

|A2|!
∑

ρ2∈G2

Ev∼D[max
a1

(ρ−1
2 v)1(a1, ρ

−1
2 fNE(v)2)]

=
1

|A2|!
∑

ρ2∈G2

Ev∼D[max
a1

v1(a1, f
NE(v)2)]

=Eu∼D[max
a1

u1(a1, f
NE(u)2)].

Similarly, for the second term,

Eu∼D[max
a2

u2(a2, (PfNE)(u)1)] ≤ Eu∼D[max
a2

u2(a2, f
NE(u)1)].

Above all,

Eu∼D[

n∑
i=1

Ei((PfNE)(u), u)] =Eu∼D[max
a1

u1(a1, (PfNE)(u)2)] + Eu∼D[max
a2

u2(a2, (PfNE)(u)1)]− c

≤Eu∼D[max
a1

u1(a1, f
NE(u)2)] + Eu∼D[max

a2

u2(a2, f
NE(u)1)]− c

=Eu∼D[

n∑
i=1

Ei(fNE(u), u)].

B.6. Proof of Theorem 5.8

Theorem 5.8. When the payoff distribution D is invariant under the permutation of payoffs, and fNE satisfies OPI, then the
P-projected NE approximator has a smaller expected NE approximation. Formally, for all fNE ∈ FNE that is OPI and
permutation-invariant distribution D, we have

Eu∼D[E((PfNE)(u), u)] ≤ Eu∼D[E(fNE(u), u)].

We first introduce a useful lemma. It is about the property of Ei(σ, u)
Lemma B.8. Ei(σ, u) is

1. Linear on σi, i.e.

pEi((σ1
i , σ−i), u) + (1− p)Ei((σ2

i , σ−i), u) = Ei((pσ1
i + (1− p)σ2

i , σ−i), u), ∀p ∈ [0, 1].

2. Convex on σj , i.e.

pEi((σ1
j , σ−j), u) + (1− p)Ei((σ2

j , σ−j), u) ≥ Ei((pσ1
j + (1− p)σ2

j , σ−j), u), ∀p ∈ [0, 1], j ̸= i.

Proof. We recall the definition Ei(σ, u) = maxai∈Ai
ui(ai, σ−i)− ui(σ). Notice that ui(σ) is linear on σk for all k ∈ [n],

thus both ui(ai, σ−i) and ui(σ) are linear on σk for any k ∈ [n]. Moreover, the maximum operator on a set of linear
functions will induce a convex function.

Proof of Theorem 5.8. We prove the theorem in two steps.
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Step 1 First, we show that

Eu∼D[Ei((Pif
NE)(u), u)] = Eu∼D[Ei(fNE(u), u)], ∀fNE ∈ FNE.

By definition,

Eu∼D[Ei(Pif
NE(u), u)]

=Eu∼D[Ei((
1

|Ai|!
∑
ρi∈Gi

ρ−1
i f(ρiu)i, f(u)−i), u)]

=
1

|Ai|!
∑
ρi∈Gi

Eu∼D[Ei((ρ−1
i f(ρiu)i, f(u)−i), u)] , by linearity of Ei(σ, u) on σi.

=
1

|Ai|!
∑
ρi∈Gi

Ev∼D[Ei((ρ−1
i f(v)i, f(ρ

−1
i v)−i), ρ

−1
i v)] , let v = ρiu and use the invariance of D.

=
1

|Ai|!
∑
ρi∈Gi

Ev∼D[Ei((ρ−1
i f(v)i, f(v)−i), ρ

−1
i v)] ,OPI of f .

=
1

|Ai|!
∑
ρi∈Gi

Eu∼D[Ei((f(u)i, f(u)−i), u)] , invariance of Ei(σ, u). under ρ−1
i ∈ Gi.

=Eu∼D[Ei(fNE(u), u)].

Step 2 Then we show that

Eu∼D[Ej((Pif
NE)(u), u)] ≤ Eu∼D[Ej(fNE(u), u)], ∀fNE ∈ FNE, j ̸= i.

Eu∼D[Ej((Pif
NE)(u), u)]

=Eu∼D[Ej((
1

|Ai|!
∑
ρi∈Gi

ρ−1
i f(ρiu)i, f(u)−i), u)]

≤ 1

|Ai|!
∑
ρi∈Gi

Eu∼D[Ej((ρ−1
i f(ρiu)i, f(u)−i), u)] , by convexity of Ej(σ, u) on σi.

=
1

|Ai|!
∑
ρi∈Gi

Ev∼D[Ej((ρ−1
i f(v)i, f(ρ

−1
i v)−i), ρ

−1
i v)] , let v = ρiu and use the invariance of D.

=
1

|Ai|!
∑
ρi∈Gi

Ev∼D[Ej((ρ−1
i f(v)i, f(v)−i), ρ

−1
i v)] ,OPI of f .

=
1

|Ai|!
∑
ρi∈Gi

Eu∼D[Ej((f(u)i, f(u)−i), u)] , invariance of Ej(σ, u) under ρ−1
i ∈ Gi.

=Eu∼D[Ej(fNE(u), u)].

Since P = ◦iPi and E = maxi Ei, we have

Eu∼D[E((PfNE)(u), u)] ≤ Eu∼D[E(fNE(u), u)].

B.7. Proof of Theorem 5.9

Theorem 5.9. For bimatrix games, when the payoff distribution D is invariant under the permutation of payoffs, and
fNE satisfies PPE, then the O-projected NE approximator has a smaller expected NE approximation. Formally, for all
fNE ∈ FNE that is PPE and permutation-invariant distribution D of bimatrix games, we have

Eu∼D[E((OfNE)(u), u)] ≤ Eu∼D[E(fNE(u), u)].
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Proof. We prove the theorem in two steps, similar to the proof of Theorem 5.8.

Step 1 First we show that for player i ∈ {1, 2}, let {j} = {1, 2}\{i},

Eu∼D[Ei((Oif
NE)(u), u)] ≤ Eu∼D[Ei(fNE(u), u)].

This is because

Eu∼D[Ei((Oif
NE)(u), u)] =Eu∼D[Ei((fNE(u)i,

1

|Ai|!
∑
ρi∈Gi

fNE(ρiu)j), u)]

≤ 1

|Ai|!
∑
ρi∈Gi

Eu∼D[Ei((fNE(u)i, f
NE(ρiu)j), u)] , by convexity of Ei on σj .

=
1

|Ai|!
∑
ρi∈Gi

Ev∼D[Ei((fNE(ρ−1
i v)i, f

NE(v)j), ρ
−1
i v)] , let v = ρiu.

=
1

|Ai|!
∑
ρi∈Gi

Ev∼D[Ei((ρ−1
i fNE(v)i, f

NE(v)j), ρ
−1
i v)] , by PPE of fNE.

=
1

|Ai|!
∑
ρi∈Gi

Ev∼D[Ei((fNE(v)i, f
NE(v)j), v)] , invariance of Ei(σ, u) under ρ−1

i ∈ G.

=Eu∼D[Ei((fNE)(u), u)].

Step 2 Then we show that if j ̸= i and {i, j} = {1, 2}

Eu∼D[Ej((Oif
NE)(u), u)] = Eu∼D[Ej(fNE(u), u)].

This is because

Eu∼D[Ej((Oif
NE)(u), u)] =Eu∼D[Ej((fNE(u)i,

1

|Ai|!
∑
ρi∈Gi

fNE(ρiu)j), u)]

=
1

|Ai|!
∑
ρi∈Gi

Eu∼D[Ej((fNE(u)i, f
NE(ρiu)j), u)] , by linearity of Ej on σj .

=
1

|Ai|!
∑
ρi∈Gi

Ev∼D[Ej((fNE(ρ−1
i v)i, f

NE(v)j), ρ
−1
i v)] , let v = ρiu.

=
1

|Ai|!
∑
ρi∈Gi

Ev∼D[Ej((ρ−1
i fNE(v)i, f

NE(v)j), ρ
−1
i v)] , by PPE of fNE.

=
1

|Ai|!
∑
ρi∈Gi

Ev∼D[Ej((fNE(v)i, f
NE(v)j), v)] , invariance of Ej(σ, u) under ρ−1

i ∈ Gi.

=Eu∼D[Ej(fNE(u), u)].

Since O = ◦iOi and E = maxi Ei, we have

Eu∼D[E(OfNE(u), u)] ≤ Eu∼D[E(fNE(u), u)].

C. Omitted Proofs in Section 6
C.1. Proof of Theorem 6.3

Theorem 6.3. For a permutation-ρ-invariant game Γu. if there is a pure NE a∗ = (a∗i )i∈[n] and at least one player k ∈ [n]
such that a∗k ∈ V (ρk), then a∗ will never be found by any NE approximator with both PPE and OPI. Besides, a∗ (as a pure
CE or CCE) will also never be found by any CE or CCE approximator with PE.
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Proof. Let f be a PPE and OPI NE approximator. Denote f(u) = (σi)i∈[n]. For player k that a∗k ∈ V (ρk), we get

σk = f(u)k
(a)
= f(ρu)k

(b)
= f(ρku)k

(c)
= ρkf(u)k = ρkσk, (11)

where (a) holds since u is permutable w.r.t. ρ, (b) holds by OPI of f , and (c) holds by PPE of f . If a∗ can be found by f ,

we will have 1 = σk(a
∗
k)

(d)
= ρkσk(a

∗
k) = σk(ρ

−1
k (a∗k)), where (d) holds by Equation (11). However, such result leads to a

contradiction, because a∗k ̸= ρ−1
k (ak) but σk(a

∗
k) = σ(ρ−1

k (a∗k)) = 1.

Let f be a PE (C)CE approximator. Denote f(u) = π, we have

π = f(u)
(a)
= f(ρu)

(b)
= ρf(u) = ρπ, (12)

where (a) holds since u is permutable w.r.t. ρ, (b) holds by PE of f . If a∗ can be found by f , we will have 1 = π(a∗)
(c)
=

ρπ(a∗) = π(ρ−1a∗) = π(ρ−1
1 a∗1, · · · , ρ−1

n a∗n), where (c) holds by Equation (12). However, from a∗k ∈ V (ρk) we know
ρ−1
k (a∗k) ̸= a∗k, then ρ−1a∗ ̸= a∗, but π(a∗) = π(ρ−1a∗) = 1.

C.2. Proof of Theorem 6.6

Theorem 6.6. Given N,M ≥ 2, let F (C)CE
PE be the function class (target on games with the number of players n ≤ N and

|Ai| ≤M ) of all the (C)CE approximators with PE. Denote by F (C)CE
general the function class of all the (C)CE approximators.

Then we have
SWRN,M(F (C)CE

PE ,F (C)CE
general) = 1.

Proof. Assume f ∈ F (C)CE
general is an (C)CE approximator that always finds the strategy that maximizes the social welfare.

Afterward, we construct another f0 that satisfies PE and always finds the strategy that maximizes social welfare. f0 is
constructed by orbit averaging:

f0(u) = Qf(u),

thus f0 is PE.

Denote D as an arbitrary payoff distribution of u such that D is invariant under permutation and the cardinality of its support
is finite. We have

Eu∼DSW(Qif(u), u) =Eu∼DSW(
1

|Ai|!
∑
ρi∈Gi

ρ−1
i f(ρiu), u)

=Eu∼D

n∑
i=1

ui(
1

|Ai|!
∑
ρi∈Gi

ρ−1
i f(ρiu))

=
1

|Ai|!
∑
ρi∈Gi

Eu∼D

n∑
i=1

ui(ρ
−1
i f(ρiu))

=
1

|Ai|!
∑
ρi∈Gi

Ev∼D

n∑
i=1

(ρ−1
i v)i(ρ

−1
i f(v)) , let v = ρiu.

=
1

|Ai|!
∑
ρi∈Gi

Ev∼D

n∑
i=1

vi(f(v))

=Eu∼D

n∑
i=1

ui(f(u))

=Eu∼DSW(f(u), u).

Due to that Q = Q1 ◦ · · · ◦ Qn, we have

Eu∼DSW(f0(u), u) = Eu∼DSW(f(u), u).
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Due to the arbitrariness of D, we know that f0 maximizes the social welfare w.r.t. any u.

From above, we immediately know

SWRN,M(F (C)CE
PE ,F (C)CE

general) = 1.

C.3. Proof of Theorem 6.7

Theorem 6.7. Given N,M ≥ 2, let FNE
OPI,FNE

PPE and FNE
both be the function classes (target on games with number of players

n ≤ N and |Ai| ≤ M ) of all the NE approximators with OPI, PPE and both. Denote the function class of all the NE
approximators as FNE

general. Then we have

SWRN,M(FNE
OPI,FNE

general) =
1

MN−1
, (1)

SWRN,M(FNE
PPE,FNE

general) ≤
1

M
, (2)

SWRN,M(FNE
both,FNE

general) =
1

MN−1
. (3)

Additionally, when M ≥ 3, denote by F̃NE
both the function class of all the NE oracles (functions that always output exact NE

solutions of the input games) with both PPE and OPI, and by F̃NE
general the function class of all the NE oracles. Then we have

SWRN,M(F̃NE
both, F̃NE

general) = 0. (4)

C.3.1. PROOF OF EQUATION (1) AND EQUATION (3)

We first prove the theorem with respect to FNE
OPI and FNE

both

Step 1 On the one part, we prove

SWRN,M(FNE
OPI,FNE

general)

SWRN,M(FNE
both,FNE

general)

}
≤ 1

MN−1
.

We prove this by construction.

Consider a game with N player and Ai = [M ] for i ∈ [N ]. ∀a ∈ A, i ∈ [N ], define the payoff ū as follows:

ūi(a) =

{
1 , if a1 = a2 = · · · = aN .

0 , otherwise.

Define U = {u′|u′ = ◦iρiū, ρi ∈ Gi} andD as a uniform distribution on U . Easy to certify thatD is a permutation-invariant
distribution.

Let f̃ ∈ F̃NE
general be the NE oracle that f̃(ū)i = 1 and for any u′ = ◦iρiū ∈ U , f̃(u′)i = ρi(1). Intuitively, the oracle will

choose the action that will provide all players with revenue 1, leading to a social welfare of N . Since each player has got her
maximum possible utility, we have

max
f∈FNE

general

Eu∼DSW(f(u), u) = max
f̃∈F̃NE

general

Eu∼DSW(f̃(u), u) = N. (13)

For any j1, j2 ∈ [M ] and j1 < j2, let ρ(j1,j2)i = (1, . . . , j2, . . . , j1, . . . ,M) for all player i ∈ [N ] be the swap permutation
that swaps actions j1 and j2 and keeps other actions still. Then ◦i ̸=jρ

(j1,j2)
i ū = ρ

(j1,j2)
j ū for player j. For f ∈ FNE

OPI, we

have f(ū)j = f(◦i ̸=jρ
(j1,j2)
i ū)j = f(ρ

(j1,j2)
j ū)j for arbitrary swap permutation ρ

(j1,j2)
j . Since any permutation can be
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achieved by composition of swap permutations, we have ∀ρj ∈ Gj , f(ū)j = f(ρj ū)j . Based on that, and by OPI of f ,
∀ρ = ◦i∈[N ]ρi we have f(ū)j = f(ρū)j , i.e. f is a constant function on U . Without loss of generality, we denote f(u) ≡ σ
for all u ∈ U . Then

Eu∼DSW(f(u), u) =
1

|U |
∑
u′∈U

SW(σ, u′) =
1

(M !)N−1
SW(σ,

∑
u′∈U

u′).

Additionally, we have (
∑

u′∈U u′)(a) = ((M − 1)!)N−1 for any a ∈ A. Based on that, we have

max
f∈FNE

OPI

Eu∼DSW(f(u), u) =
1

(M !)N−1
·N((M − 1)!)N−1 =

N

MN−1
. (14)

Combining Equation (13) and Equation (14), we have

SWRN,M(FNE
OPI,FNE

general) ≤
1

MN−1
.

Due to FNE
both ⊆ FNE

OPI, we immediately know

SWRN,M(FNE
both,FNE

general) ≤
1

MN−1
.

Step 2 On the other part, we prove

SWRN,M(FNE
OPI,FNE

general)

SWRN,M(FNE
both,FNE

general)

}
≥ 1/MN−1.

Define the maximum possible utility (MPU) for player i with respect to utility ui and action ai as

MPU(ui, ai) := max
a−i∈A−i

ui(ai, a−i). (15)

Define the set of maximum possible utility best response for player i w.r.t. ui as

Bi(ui) := {ai ∈ Ai : MPU(ui, ai) = max
a′
i∈Ai

MPU(ui, a
′
i)}.

We first conduct some simplification to the target.

SWRN,M(FNE
both,FNE

general) = inf
D

maxf∈FNE
both

Eu∼DSW(f(u), u)

maxf∈FNE
general

Eu∼DSW(f(u), u)
≥ inf

D

maxf∈FNE
both

Eu∼DSW(f(u), u)

Eu∼D maxσ SW(σ, u)
.

Then we constrain u to be a cooperation game. For a normal form game Γu, we define ũ = (ũi)i∈[n] in which ũi =
1
n

∑n
i=1 ui. Then we have SW(σ, u) = SW(σ, ũ), which means that constraining u to be a cooperation game will induce

the same social welfare. Then

inf
D

maxf∈FNE
both

Eu∼DSW(f(u), u)

Eu∼D maxσ SW(σ, u)
= inf

D

maxf∈FNE
both

Eu∼DSW(f(u), ũ)

Eu∼D maxσ SW(σ, ũ)
.

Denote f0 be the approximator that always outputs uniform strategy on Bi(ũi) for player i. It’s obvious that f0 is both OPI
and PPE because the operations from u to f0(u) are all permutation-equivariant. Then,

inf
D

maxf∈FNE
both

Eu∼DSW(f(u), ũ)

Eu∼D maxσ SW(σ, ũ)
≥ inf

D

Eu∼DSW(f0(u), ũ)

Eu∼D maxσ SW(σ, ũ)
.

27



Are Equivariant Equilibrium Approximators Beneficial?

Ignore the infimum and the expectation operator, consider SW(f0(u),ũ)
maxσ SW(σ,ũ) for arbitrary ũ, denote b be the maximum element

appeared in ũ, then the denominator equals Nb. But for the numerator, for player i, no matter what action ai ∈ Bi(ũi) she
chooses, she always has probability at least

∏
j ̸=i

1
|Bj | ≥

1
MN−1 to achieve revenue b, therefore inducing SW(f0(u), ũ) ≥

Nb
MN−1 .

Then, SW(f0(u),ũ)
maxσ SW(σ,ũ) ≥

1
MN−1 , so as infD

Eu∼DSW(f0(u),ũ)
Eu∼D maxσ SW(σ,ũ) , SWRN,M(FNE

both) and SWRN,M(FNE
OPI).

Above all,

SWRN,M(FNE
OPI,FNE

general)

SWRN,M(FNE
both,FNE

general)

}
=

1

MN−1
.

C.3.2. PROOF OF EQUATION (2)

We next prove the theorem with respect to FNE
PPEthat

SWRN,M(FNE
PPE,FNE

general) ≤
1

M
.

Consider a bimatrix game and Ai = [M ] for i ∈ [2]. ∀a ∈ A, i ∈ [2], define the payoff ū as follows:

ūi(a) =

{
1 , if a1 = a2.

0 , otherwise.

Define U := {u′|u′ = ρ1ρ2ū, ρi ∈ Gi} and D as a uniform distribution on U . Easy to certify that U = {u′|u′ = ρ1ū, ρ1 ∈
G1} = {u′|u′ = ρ2ū, ρ2 ∈ G2} and D is a permutation-invariant distribution.

Let f̃ ∈ F̃NE
general be the NE oracle that f̃(ū)i = 1 and for any u′ = ◦iρiū ∈ U , f̃(u′)i = ρi(1). Intuitively, the oracle will

choose the action that will provide all players with revenue of 1, leading to a social welfare of 2.

For a permutation ϱ on [M ], let Pϱ ∈ {0, 1}M×M be the corresponding permutation matrix. Denote P as the set
of all permutation matrice. As a result, ∀u ∈ U,∀ρ1 ∈ G1, ρ1u = (Pρ1

u1, Pρ1
u2) =: Pρ1

u and ∀ρ2 ∈ G2, ρ2u =
(u1P

T
ρ2
, u2P

T
ρ2
) =: uPT

ρ2
. Specially, we have PϱūP

T
ϱ = ū. For f ∈ FNE

PPE, Denote f(ū) = σ = (σ1, σ2). For
permutation ϱ in [M ] and payoff u′ = Pϱū = ū(PT

ϱ )−1, by PPE of f , we have f(u′)1 = f(Pϱū)1 = Pϱσ1 = ϱσ1, and
f(u′)2 = f(ū(PT

ϱ )−1)2 = (Pϱ)
−1σ2 = ϱ−1σ2. Then we have

SW(f(u′), u′) =

n∑
i=1

(Pϱū)i(ϱσ1, ϱ
−1σ2) =

n∑
i=1

ūi(σ1, ϱ
−1σ2) =

n∑
i=1

(ūPT
ϱ )i(σ1, σ2) = SW(f(ū), ūPT

ϱ ).

Therefore

Eu∼DSW(f(u), u) =
1

|U |
∑
u′∈U

SW(f(u′), u′)

=
1

|U |
∑
Pϱ∈P

SW(f(ū), ūPT
ϱ )

=
1

|U |
∑

u=ū(PT
ϱ )∈U

SW(f(ū), u)

=
1

|U |
SW(σ,

∑
u′∈U

u′).

Since |U | = 1
M ! and

∑
u′∈U u′ is a tensor with all elements equal to (M − 1)!. Thus Eu∼DSW(f(u), u) = 2

M and

SWRN,M(FNE
PPE,FNE

general) ≤
1

M
.
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C.3.3. PROOF OF EQUATION (4)

Consider a 3× 3 game as follows, where ϵ ∈ (0, 1/2):

u =

 1,1 0, 0 0, 1/2 + ε
0, 0 1,1 0, 1/2 + ε

1/2 + ε, 0 1/2 + ε, 0 ε, ε

 .

It is obvious that maxσ∗⊆NE(Γu) SW(σ∗, u) = 2, and the corresponding strategy has been bolded. However, for NE oracles
with both PPE and OPI, it can only output a unique NE with a pure strategy that induces utility (ε, ε).

Let ρ1 = ρ2 = (2, 1, 3), we have ρ1ρ2u = u. From the analysis above we know if fNE ∈ F̃NE
both and fNE(u) = (σ1, σ2),

then σ1(1) = σ1(2), σ2(1) = σ2(2). We integrate the first two actions of player 1 and player 2 into a new action that will
choose randomly between the first two actions, then we form the utility matrix below:

u =

[
1/2, 1/2 0, 1/2 + ε
1/2 + ε, 0 ε, ε

]
.

There is a unique NE in this Prisoner’s Dilemma, which has been bolded. The game u is the same with the game u under the
assumption that σ1(1) = σ1(2) and σ2(1) = σ2(2) in u. Then maxf∈F̃NE

both
SW(f(u), u) = 2ε. Since ε can be arbitrarily

small, we have SWR2,3(F̃NE
both, F̃NE

general) = 0. As a result, we have SWRN,M (F̃NE
both, F̃NE

general) = 0 for all N ≥ 2 and
M ≥ 3.

D. Experiments of NE Approximation Performance
In this section, we present experimental results that assess the approximation performance of orbit-averaged NE approxi-
mators. Our primary objective is to verify the validity of Theorem 5.7, 5.8, and 5.9. Additionally, we examine the social
welfare performance observed in each experiment.

D.1. Experimental Setup

We employ a 5-layer fully connected neural network as the NE approximator, with 512 nodes in each hidden layer. ReLU
serves as the activation function for each hidden layer, and batch normalization is applied before activation. During training,
the Nash approximation loss function is utilized, and the model is optimized using the Adam optimizer. A batch size of 1024
is employed, with 65536 data points used for training and 1000 data points for testing purposes. Data is generated on-site for
each training epoch. The initial learning rate is set to 5× 10−4, with a decay ratio of γ = 0.3 at the 60th and 80th epochs.

Following the training phase, we proceed to test four different versions of the model: Raw, PPE, OPI, and BOTH. The Raw
model represents the original network, while the PPE model applies operator P to the Raw model. Similarly, the OPI model
applies operator O to the Raw model, and the BOTH model applies both operator P and O to the Raw model.

Due to the exponentially increasing computational complexity associated with orbit averaging, we limit the game size to be
sufficiently small. In our experiments, we select a bimatrix game of size 4× 4.

D.2. Experimental Results

Different distribution. In this experiment, we assess the performance of the NE approximator on games with different
payoff distributions, namely Uniform, Gaussian, and Exponential distributions. In the Uniform distribution, each element in
u is independently and identically sampled from a uniform distribution over the interval [0, 1]. For the Gaussian Games,
each element in u is independently and identically sampled from a Gaussian distribution with mean 0 and standard deviation
1. In the Exponential Games, each element in u is independently and identically distributed according to an exponential
distribution with rate parameter 1. The experimental results are presented in Table 1. We observe that the NE approximations
of the PPE and OPI models are consistently higher than those of the BOTH model, while the BOTH model yields higher NE
approximations compared to the RAW model. Furthermore, the social welfare decreases after orbit averaging in comparison
to the RAW model, aligning with our theoretical findings. Overall, the experimental results align with Theorem 5.8 and
Theorem 5.9.
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Uniform Gaussian Exponential
Approximation Social Welfare Approximation Social Welfare Approximation Social Welfare

Raw 0.0142±0.0005 1.5211±0.0048 0.0470±0.0010 1.7695±0.0295 0.0422±0.0022 3.8628±0.0410

PPE 0.0224±0.0012 1.4905±0.0086 0.0725±0.0017 1.6859±0.0281 0.0658±0.0021 3.7801±0.0448
OPI 0.0227±0.0012 1.4905±0.0089 0.0714±0.0026 1.6876±0.0298 0.0645±0.0020 3.7792±0.0448
Both 0.0196±0.0005 1.4908±0.0087 0.0630±0.0011 1.6868±0.0309 0.0581±0.0017 3.7773±0.0466

Table 1. Approximation and social welfare of games from different payoff distributions. Each experiment is repeated five times, and the
average results along with the standard deviation are presented.

General Cooperation Zero-Sum Permutation-ρ-Invariant
Approximation Social Welfare Approximation Social Welfare Approximation Social Welfare Approximation Social Welfare

Raw 0.0142±0.0005 1.5211±0.0048 0.0035±0.0002 1.8226±0.0033 0.0138±0.0006 0.0000 4.6404E-5±1.3778E-5 0.9996±0.0044

PPE 0.0224±0.0012 1.4905±0.0086 0.1660±0.0081 1.4238±0.0100 0.0120±0.0007 0.0000 3.5154E-6±1.2956E-6 0.9996±0.0044
OPI 0.0227±0.0012 1.4905±0.0089 0.1657±0.0064 1.4247±0.0085 0.0119±0.0004 0.0000 4.4566E-5±1.2887E-5 0.9996±0.0044
Both 0.0196±0.0005 1.4908±0.0087 0.1056±0.0007 1.4224±0.0064 0.0116±0.0005 0.0000 2.9783E-7±1.2921E-7 0.9996±0.0044

Table 2. Approximation and social welfare of different game classes. Each experiment is repeated five times, and the average results along
with the standard deviation are presented.

Different Game Type. In this experiment, we evaluate the performance of the NE approximator on different game classes,
including General, Cooperation, Zero-Sum, and Permutation-ρ-Invariant games. In General Games, each element in u
is independently and identically distributed from a uniform distribution over the interval [0, 1]. In Cooperation Games,
we first generate u1, and then set u2 = u1. In Zero-Sum Games, we first generate u1, and then set u2 = −u1. In
Permutation-ρ-Invariant Games, both u1 and u2 are set to be permutation-ρ-invariant, where ρ = ρ1ρ2 and ρi ∼ U(R), with
R being the set of circulations of [n] and n = 4. The choice of these game classes ensures that each game distribution is
permutation-invariant, which aligns with the assumptions of our theorems. The BOTH model consistently achieves smaller
approximations compared to the PPE and OPI models. In Zero-Sum games, both the PPE and OPI models yield smaller
approximations than the RAW model, which aligns with the findings of Theorem 5.7. In Permutation-ρ-Invariant Games, all
models converge to the ordinary solution σ1 = σ2 = ( 1n , . . . ,

1
n ), resulting in almost zero error, regardless of the inputs.

These experimental results provide empirical support for the theoretical findings presented in our theorems.

Different Training Mode. In this part, we train the four versions of the model, and in testing, we also transform the
trained model into the four versions. By doing so, we get 4× 4 = 16 different experimental results. Due to the exponential
computation costs, we set the game to be 3× 3. Moreover, we set the hidden size to be 128 and the data size per epoch to be
20000 to deduce costs. The results are presented in Table 2, where the diagonal elements, representing the same training and
testing approach, are highlighted in bold. We observed that in RAW training mode, both the PPE and OPI models showed
larger approximations compared to the RAW model. However, when trained in their respective modes, both the PPE and
OPI models outperformed the RAW model in terms of approximation. These findings highlight the impact of training mode
on the model’s performance and demonstrate that both the PPE and OPI models, in their respective training modes, achieved
better approximation results compared to the RAW model in RAW training mode.

E. Experiments of Social Welfare
In Theorem 6.7, we discussed the limitation of NE approximators in terms of social welfare. To prove this theorem, we
constructed a bimatrix game with the following payoff matrix: 1, 1 0, 0 0, 1/2 + ε

0, 0 1, 1 0, 1/2 + ε
1/2 + ε, 0 1/2 + ε, 0 ε, ε

 ,

where ε ∈ (0, 1/2). We showed that although the NE with the largest social welfare in this game can achieve a welfare
of 2, our proof demonstrated that the maximum social welfare of the exact NEs that any equivariant (PPE and OPI) NE
approximators can find is only 2ε.
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Test
Train Raw PPE OPI BOTH

E SW E SW E SW E SW

Raw 0.0122 1.4395 0.0515 1.4311 0.0462 1.4334 0.0543 1.4397
PPE 0.0148 1.4291 0.0091 1.4324 0.0421 1.4318 0.0323 1.4353
OPI 0.0145 1.4288 0.0427 1.4314 0.0091 1.4304 0.0278 1.4339
BOTH 0.0125 1.4283 0.0078 1.4324 0.0078 1.4323 0.0053 1.4355

Table 3. Approximation and social welfare under different training and testing mode.

Model Social Welfare Approximation

General 1.9930 9.9655× 10−4

Equivariant 0.1854 9.7611× 10−4

Table 4. Social welfare and corresponding approximation on the constructed games in the proof of Theorem 6.7.

On top of that, we conduct experiments on the game to empirically verify the findings of Theorem 6.7.

E.1. Experimental Setup

We set our general model as a 5-layer fully connected neural network with 256 nodes in each hidden layer. ReLU is used
as the activation function for each hidden layer, and batch normalization is added before the activation. The equivariant
model we use is the (PPE and OPI) orbit-averaged general model. Both models are trained using a constrained optimization
framework, where the learning problem is formulated as follows:

max
θ

Eu∼D[SW (fθ(u), u)],

s.t Eu∼D[E(fθ(u), u)] = 0
.

In this formulation, we introduce an objective to maximize social welfare while maintaining the constraint of minimizing
approximation. This encourages both models to identify NE solutions with high social welfare.

Similar to previous works (Dütting et al., 2019; Duan et al., 2022), we employ the Augmented Lagrangian Multiplier Method
to optimize our model. The loss function with respect to the training set S is defined as follows:

Lρ(θ;λ) = −
1

m

∑
u∈S

SW (fθ(u), u) +
λ

m

∑
u∈S

E(fθ(u), u) +
ρ

2

(
1

m

∑
u∈S

E(fθ(u), u)

)2

,

where λ > 0 is the Lagrange multiplier, m is the data size, and ρ > 0 is a hyperparameter controlling the penalty weight for
constraint violation. During optimization, we alternate between updating the model parameters using gradient descent and
updating the Lagrange multipliers using the following equation:

λnew = λold + ρ · 1
m

∑
u∈S

E(fθ(u), u).

The initial value of the Lagrange multiplier λ is set to 1, and the initial value of ρ is set to 1 and increased by 5 after each
epoch.

We utilize the Adam optimizer with a batch size of 512 to train our model. The initial learning rate is set to 5× 10−4. Each
epoch involves training on 4096 data points and testing on 1000 data points. Data is generated on-site for each training
epoch. Specifically, the training and testing data are sampled from a fixed distribution, where the ε parameter of the game is
sampled from a uniform distribution with a minimum of 0.005 and a maximum of 0.01 (i.e., U(0.005, 0.01)).

E.2. Experimental Results

The results of our experiments are presented in Table 4. Both approaches demonstrate good approximations, with an
approximation loss of less than 1e-3. However, there is a notable difference in the achieved social welfare between the
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general model and the equivariant model. While the general model achieves nearly the highest social welfare, the equivariant
model can only achieve significantly lower social welfare. It is important to highlight that both models were encouraged to
find NE solutions with higher social welfare. The reason why the equivariant model achieves higher social welfare than 2ϵ is
that it finds an approximate NE rather than an exact NE. This result suggests that the equivariant model may sometimes
prioritize other factors over social welfare.

In summary, our findings demonstrate that even in this small-scale setting, equivariant approximators can exhibit limitations
in terms of social welfare, particularly in extreme cases.
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