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Abstract
Data augmentation is a crucial component in
unsupervised contrastive learning (CL). It de-
termines how positive samples are defined and,
ultimately, the quality of the learnt representa-
tion. In this work, we open the door to new per-
spectives for CL by integrating prior knowledge,
given either by generative models–viewed as prior
representations– or weak attributes in the positive
and negative sampling. To this end, we use kernel
theory to propose a novel loss, called decoupled
uniformity, that i) allows the integration of prior
knowledge and ii) removes the negative-positive
coupling in the original InfoNCE loss. We draw a
connection between contrastive learning and con-
ditional mean embedding theory to derive tight
bounds on the downstream classification loss. In
an unsupervised setting, we empirically demon-
strate that CL benefits from generative models
to improve its representation both on natural and
medical images. In a weakly supervised scenario,
our framework outperforms other unconditional
and conditional CL approaches. Source code is
available at this https URL.

1. Introduction
Contrastive Learning (CL) (Becker & Hinton, 1992; Brom-
ley et al., 1993; Oord et al., 2019; Bachman et al., 2019;
Chen et al., 2020a) is a paradigm designed for self-
supervised representation learning which has been ap-
plied to unsupervised (Chen et al., 2020a;c), weakly su-
pervised (Tsai et al., 2022; Dufumier et al., 2021) and super-
vised problems (Khosla et al., 2020). It gained popularity
during the last years by achieving impressive results in the
unsupervised setting on standard vision datasets (e.g. Im-
ageNet) where it almost matched the performance of its
supervised counterpart (Chen et al., 2020a; He et al., 2020).
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The objective in CL is to increase the similarity in the rep-
resentation space between positive samples (semantically
close), while decreasing the similarity between negative
samples (semantically distinct). Despite its simple formula-
tion, it requires the definition of a similarity function (that
can be seen as an energy term (LeCun & Huang, 2005)),and
of a rule to decide whether a sample should be considered
positive or negative. Similarity functions, such as the Eu-
clidean scalar product (e.g. InfoNCE (Oord et al., 2019)),
take as input the latent representations of an encoder f ∈ F ,
such as a CNN (Chen et al., 2020b) or a Transformer (Caron
et al., 2021) for vision datasets.

In supervised settings (Khosla et al., 2020), positives are
simply images belonging to the same class while negatives
are images belonging to different classes. In unsupervised
problems (Chen et al., 2020a), since labels are unknown,
positives are usually defined as transformed versions (views)
of the same original image (a.k.a. the anchor) and negatives
are the transformed versions of all other images. As a re-
sult, the augmentation distribution A used to sample both
positives and negatives is crucial (Chen et al., 2020a) and
it conditions the quality of the learnt representation. The
most-used augmentations for visual representations involve
aggressive crop and color distortion. Cropping induces rep-
resentations with high occlusion invariance (Purushwalkam
& Gupta, 2020) whereas color distortion may avoid the
encoder f to take a shortcut (Chen et al., 2020a) while align-
ing positive samples and therefore to fall into the simplicity
bias (Shah et al., 2020).

Nevertheless, learning a representation that mainly relies
on augmentations comes at a cost: both crop and color dis-
tortion induce strong biases in the final representation (Pu-
rushwalkam & Gupta, 2020). Specifically, dominant objects
inside images can prevent the model from learning features
of smaller objects (Chen et al., 2021) (which is not appar-
ent in object-centric datasets such as ImageNet) and few,
irrelevant and easy-to-learn features, that are shared among
views, are sufficient to collapse the representation (Chen
et al., 2021) (a.k.a feature suppression). Finding the right
augmentations in other visual domains, such as medical
imaging, remains an open challenge (Dufumier et al., 2021)
since we need to find transformations that preserve semantic
anatomical structures (e.g. discriminative between patho-
logical and healthy) while removing unwanted noise. If
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Figure 1: Illustration of the proposed method. Each point is an original image x̄. Two points are connected if they can be
transformed into the same augmented image using a distribution of augmentations A. Colors represent semantic (unknown)
classes and light disks represent the support of augmentations,A(·|x̄), for each sample x̄. From an incomplete augmentation
graph (1) where intra-class samples are not connected (e.g. A is insufficient or not adapted), we reconnect them using a
kernel defined on prior information (either learnt with generative model, viewed as feature extractor, or given as auxiliary
attributes). The extended augmentation graph (3) is the union between the (incomplete) augmentation graph (1) and the
kernel graph (2). In (2), the gray disks indicate the set of points x̄′ that are close to the anchor (blue star) in the kernel space.

the augmentations are too weak or inadequate to remove
irrelevant signal w.r.t. a discrimination task, then how can
we define positive and negative samples?

In our work, we propose to integrate prior information,
learnt from generative models (viewed as features extrac-
tor or prior representation) or given as auxiliary weak at-
tributes (e.g., phenotypes of participants for medical im-
ages), into contrastive learning, to make it less dependent
on data augmentation. Using the theoretical understand-
ing of CL through the augmentation graph, we make the
connection with kernel theory and introduce a novel loss
with theoretical guarantees on downstream performance.
This loss additionally benefits from the decoupling effect
between positive and negative samples that affects InfoNCE-
based frameworks (Yeh et al., 2022). Prior information
is integrated into the proposed decoupled contrastive loss
using a kernel. In the unsupervised setting, we leverage
pre-trained generative models, such as GAN (Goodfellow
et al., 2014) and VAE (Kingma & Welling, 2013), to learn a
prior representation of the data. We provide a solution to
the feature suppression issue in CL (Chen et al., 2021) and
also demonstrate SOTA results with weaker augmentations
on visual benchmarks (both on natural and medical images).
In the weakly supervised setting, we use instead auxiliary
image attributes as prior knowledge (e.g. birds color or size)
and we show better performance than previous conditional
formulations based on these attributes (Tsai et al., 2022).
In summary, we make the following contributions:

1. We propose a new decoupled contrastive loss which al-
lows the integration of prior information, given as auxiliary
attributes or learnt from generative models, into the positive
and negative sampling.

2. We derive general guarantees, relying on weaker as-
sumptions than existing theories, on the downstream classi-
fication task especially in the finite-samples case.

3. We empirically show that our framework performs
competitively with small batch size and benefits from the
latest advances of generative models to learn a better repre-
sentation than existing CL methods.

4. We show that we achieve SOTA results in the unsuper-
vised and weakly supervised setting.

2. Related Works
In a weakly supervised setting, recent studies (Dufumier
et al., 2021; Tsai et al., 2022) about CL have shown that
positive samples can be defined conditionally to an auxiliary
attribute in order to improve the final representation, in par-
ticular for medical imaging (Dufumier et al., 2021). From
an information bottleneck perspective, these approaches es-
sentially compress the representation to be predictive of the
auxiliary attributes. This might harm the performance of
the model when the attributes are too noisy to accurately
approximate the true labels of a given downstream task.

In an unsupervised setting, recent approaches (Dwibedi
et al., 2021; Zheng et al., 2021a;b; Li et al., 2021) used the
encoder f , learnt during optimization, to extend the positive
sampling procedure to other views of different instances
(i.e. distinct from the anchor) that are close to the anchor in
the latent space. In order to avoid representation collapse,
multiple instances of the same sample (Azizi et al., 2021), a
support set (Dwibedi et al., 2021), a momentum encoder (Li
et al., 2021) or another small network (Zheng et al., 2021a)
can be used to select the positive samples. In clustering
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approaches (Li et al., 2021; Caron et al., 2020), distinct
instances with close semantics are attracted in the latent
space using prototypes. These prototypes can be estimated
through K-means (Li et al., 2021) or Sinkhorn-Knopp al-
gorithm (Caron et al., 2020). All these methods rely on
the past representation of a network to improve the current
one. They require strong augmentations and they essentially
assume that the closest points in the representation space
belong to the same latent class in order to better select the
positives. This inductive bias is still poorly understood from
a theoretical point of view (Saunshi et al., 2022) and may
depend on the visual domain.

Our work also relates to generative models for learning
representations. VAEs (Kingma & Welling, 2013) learn
the data distribution by mapping each input to a Gaussian
distribution that we can easily sample from to reconstruct
the original image. GANs (Goodfellow et al., 2014), in-
stead, sample directly from a Gaussian distribution to gen-
erate images that are classified by a discriminator in a min-
max game. The discriminator representation can then be
used (Radford et al., 2016) as feature extractor. Other mod-
els (ALI (Dumoulin et al., 2017), BiGAN (Donahue et al.,
2017) and BigBiGAN (Donahue & Simonyan, 2019)) learn
simultaneously a generator and an encoder that can be used
directly for representation learning. All these models do not
require particular augmentations to model the data distribu-
tion but they perform generally poorer than recent discrim-
inative approaches (Zhai et al., 2019; Chen et al., 2020b)
for representation learning. A first connection between gen-
erative models and contrastive learning has emerged very
recently (Jahanian et al., 2022). In (Jahanian et al., 2022),
authors study the feasibility of learning effective visual rep-
resentations using only generated samples, and not real ones,
with a contrastive loss. Their empirical analysis is comple-
mentary to our work. Here, we leverage the representation
capacity of the generative models, rather than their genera-
tive power, to learn prior representation of the data.

3. CL with Decoupled Uniformity
Problem setup. The general problem in contrastive learn-
ing is to learn a data representation using an encoder
f ∈ F : X → Sd−1 that is pre-trained with a set of n
original samples (x̄i)i∈[1..n] ∈ X̄ , sampled from the data
distribution p(x̄)1 These samples are transformed to gen-
erate positive samples (i.e., semantically similar to x̄) in
X , space of augmented images, using a distribution of aug-
mentations A(·|x̄). Concretely, for each x̄i, we can sample
views of x̄i using x ∼ A(·|x̄i) (e.g., by applying color jitter-
ing, flip or crop with a given probability). For consistency,
we assume A(x̄) = p(x̄) so that the distributions A(·|x̄)

1With an abuse of notation, we define it as p(x̄) instead than
pX̄ to simplify the presentation, as it is common in the literature

and p(x̄) induce a marginal distribution p(x) over X . Given
an anchor x̄i, all views x ∼ A(·|x̄j) from different sam-
ples x̄j ̸=i are considered as negatives. Once pre-trained, the
encoder f is fixed and its representation f(X̄ ) is evaluated
through linear evaluation on a classification task using a
labeled datasetD = {(x̄i, yi)} ∈ X̄ ×Y where Y = [1..K],
with K the number of classes.
Linear evaluation. To evaluate the representation of f on a
classification task, we train a linear classifier g(x̄) = Wf(x̄)
(f fixed) that minimizes the multi-class classification loss.
Negative-positive coupling (NPC) in CL. The popular In-
foNCE loss (Poole et al., 2019; Oord et al., 2019), often used
in CL, (asymptotically) imposes 1) alignment between posi-
tives and 2) uniformity between the views (x i.i.d.∼ A(·|x̄)) of
all instances x̄ (Wang & Isola, 2020)– two properties that
correlate well with downstream performance. However, by
imposing uniformity between all views, we essentially try
to both attract (alignment) and repel (uniformity) positive
samples and therefore we cannot achieve a perfect align-
ment and uniformity, as noted in (Wang & Isola, 2020). One
solution is to remove the positive pairs in the denominator
of InfoNCE, as proposed by (Yeh et al., 2022) with DC,
which notably allows to drastically reduce the batch size
in InfoNCE-based frameworks. Here, we propose another
(unexplored) solution by imposing uniformity only between
centroids, defined as the average between several views of
the same image x̄i, i.e., µx̄i = Ex∼A(·|x̄i)f(x).

Integration of prior. Unsupervised CL only relies on data
augmentation to learn representations, even if we may have
access to prior knowledge z(x̄i) about the original image x̄i

that can improve the final representation. Here, z(x̄i) desig-
nates either a weak attribute or a prior representation given
by a generative model. To this end, we propose to use a ker-
nel K̄(z(x̄i), z(x̄j)) between these priors in order to better
estimate the centroids (µx̄i

)i∈[1..n] of the original samples
(x̄i)i∈[1..n]. Intuitively, we want embeddings (f(x̄i), f(x̄j))
to be close if the priors (z(x̄i), z(x̄j)) are close in the kernel
space. We rely on conditional mean embedding theory to
use a new kernel-based estimator of these centroids (see
Section 3.3.2).
Our solution. We propose to solve both NPC issue in In-
foNCE loss and the integration of prior in CL by optimizing
a loss relying only on centroids (µx̄i)i∈[1..n], that we called
Decoupled Uniformity:

Lde
unif (f) = logEp(x̄)p(x̄′)e

−||µx̄−µx̄′ ||2 (1)

Here, we do not repel views from the same image anymore
(solving negative-positive coupling issue) and we can inte-
grate prior knowledge with kernel-based estimator of the
centroids (solving prior integration). This loss essentially
repels distinct centroids µx̄ through an average pairwise
Gaussian potential. It implicitly optimizes alignment be-
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tween positives through the maximization2 of ||µx̄||, so we
do not need to explicitly add an alignment term.

We first derive theoretical guarantees in the finite-samples
case for this loss before introducing our main theorems.

Supervised risk. While previous analysis (Wang et al., 2022;
Saunshi et al., 2019) generally used the mean cross-entropy
loss (as it has closer analytic form with InfoNCE), we use
a supervised loss closer to decoupled uniformity with the
same guarantees as the mean cross-entropy loss (see Ap-
pendix C.1). Notably, the geometry of the representation
space at optimum is the same as cross-entropy and Sup-
Con (Khosla et al., 2020) and we can theoretically achieve
perfect linear classification.
Definition 3.1. (Downstream supervised loss) For a given
downstream task D = X̄ × Y , we define the classification
loss as: Lsup(f) = logEy,y′∼p(y)p(y′)e

−||µy−µy′ ||2 , where
µy = Ep(x̄|y)µx̄ are averaged representation of samples
belonging to the same class y.

This loss depends on centroids µx̄ rather than f(x̄). Empiri-
cally, it has been shown (Foster et al., 2021) that performing
features averaging gives better performance on the down-
stream task.

3.1. Lde
unif (f) solves the NPC problem

Definition 3.2. (Finite-samples estimator) For n samples
(x̄i)i∈[1..n]

i.i.d.∼ p(x̄), the (biased) empirical estimator of

Lde
unif (f) is: L̂de

unif (f) = log 1
n(n−1)

∑
i̸=j e

−||µx̄i
−µx̄j

||2 .

It converges in law to Lde
unif (f) with rate O

(
n−1/2

)
. Proof

in Appendix E.1

To show that L̂de
unif imposes alignment between positives

and it solves the NPC problem in InfoNCE, we perform a
gradient analysis, following (Yeh et al., 2022). We compute
the gradients w.r.t. the view z

(v)
k = f(x

(v)
k ) (k ∈ [1..n] and

v ∈ {1, 2} for 2 views, proof in Appendix E.2):

∇
z
(v)
k

L̂de
unif = −2wkµx̄k︸ ︷︷ ︸

align hard positives

+2
∑
j ̸=k

wk,jµx̄j︸ ︷︷ ︸
repel hard negatives

(2)

Where ∀k, j ∈ [1..n], wk,j = e−||µk−µj ||
2∑

p,q ̸=p e−||µp−µq||2 and

wk =
∑

j ̸=k wk,j , such that
∑n

k=1 wk = 1. The scalar
wk quantifies whether the positive sample x̄k is “hard” (i.e.
close to other samples in the batch) , while wk,j quantifies
whether the negative sample x̄j is “hard” (i.e. close to the
positive sample x̄k). Alignment is enforced through the first
term of the gradient (−µx̄k

, aligning all views in the same
direction) and uniformity through the second term (µx̄j )j ̸=k.

2By Jensen’s inequality ||µx̄|| ≤ EA(x|x̄)||f(x)|| = 1 with
equality iff f is constant on suppA(·|x̄).

Consequently, there is neither negative-negative coupling (as
in AlignUnif (Wang & Isola, 2020)) nor negative-positive
coupling (as in InfoNCE (Poole et al., 2019; Oord et al.,
2019)) because the scaling factors do not depend on the
instance-discrimination task difficulty, but rather on the rela-
tive positions between centroids. Importantly, the gradients
never vanish since

∑n
k=1 wk = 1. Thus, our loss indeed

solves the NPC problem using an elegant and simple form.

3.2. Intra-class connectivity hypothesis

Most recent theories about CL (Wang et al., 2022; HaoChen
et al., 2021) make the hypothesis that samples from the
same semantic class have overlapping augmented views, to
provide guarantees on the downstream task when optimiz-
ing InfoNCE (Chen et al., 2020a) or Spectral Contrastive
loss (HaoChen et al., 2021). This assumption, known as
intra-class connectivity hypothesis, is very strong and only
relies on the augmentation distributionA. In particular, aug-
mentations should not be “too weak”, so that all intra-class
samples are connected among them, and at the same time not
“too strong”, to prevent connections between inter-class sam-
ples and thus preserve the semantic information. Here, we
prove that we can relax this hypothesis if we can provide a
kernel (viewed as a similarity function between original sam-
ples x̄) that is “good enough” to relate intra-class samples
not connected by the augmentations (see Fig. 1). In practice,
we show that generative models (viewed as feature extrac-
tor) or auxiliary information can define such kernel. We
first recall the definition of the augmentation graph (Wang
et al., 2022), and intra-class connectivity hypothesis before
presenting our main theorems. For simplicity, we assume
that the set of images X̄ is finite (similarly to (Wang et al.,
2022; HaoChen et al., 2021)). Our bounds and theoretical
guarantees will never depend on the cardinality |X̄ |.
Definition 3.3. (Augmentation graph (HaoChen et al., 2021;
Wang et al., 2022)) Given a set of original images X̄ , we de-
fine the augmentation graph GA(V,E) for an augmentation
distribution A through 1) a set of vertices V = X̄ and 2) a
set of edges E such that (x̄, x̄′) = e ∈ E if the two original
images x̄, x̄′ can be transformed into the same augmented
image through A, i.e suppA(·|x̄) ∩ suppA(·|x̄′) ̸= ∅.

Previous analysis in CL makes the hypothesis that there
exists an optimal (accessible) augmentation module A∗ that
fulfills:
Previous Assumption 1. (Intra-class connectivity (Wang
et al., 2022)) For a given downstream classification task
D = X̄ × Y ∀y ∈ Y , the augmentation subgraph, Gy ⊂
GA∗ containing images only from class y, is connected.

Under this hypothesis, Decoupled Uniformity loss can
tightly bound the downstream supervised risk without addi-
tional terms depending on batch size (i.e., number of neg-
ative samples) and for a bigger class of encoders than pre-
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vious works (not restricted to L-smooth functions (Wang
et al., 2022)), as shown in Theorem 1.

Definition 3.4. (Weak-aligned encoder) An encoder f ∈ F
is ϵ′-weak (ϵ′ ≥ 0) aligned on A if ||f(x) − f(x′)|| ≤
ϵ′ ∀x̄ ∈ X̄ ,∀x, x′ i.i.d.∼ A(·|x̄)

Theorem 1. (Guarantees with A∗) Given an optimal aug-
mentation module A∗, for any ϵ-weak aligned encoder
f ∈ F we have: Lde

unif (f) ≤ Lsup(f) ≤ 8Dϵ+ Lde
unif (f)

where D is the maximum diameter of all intra-class graphs
Gy (y ∈ Y). Proof in Appendix E.6.

In practice, the diameter D can be controlled by a small
constant (e.g., 4 in (Wang et al., 2022)) but it remains
specific to the dataset at hand. In the next section, we study
the case when A∗ is not accessible or very hard to find.

3.3. Reconnect the disconnected: extending the
augmentation graph with kernel

Having access to optimal augmentations is a strong assump-
tion and, for many real-world applications (Saunshi et al.,
2022), it may not be accessible. If we only have weak aug-
mentations (e.g., suppA(·|x̄) ⊊ suppA∗(·|x̄) for any x̄),
then some intra-class points might not be connected and we
would need to reconnect them to ensure good downstream
accuracy (see Theorem 7 in Appendix C.2). Augmentations
are intuitive and they have been hand-crafted for decades
by using human perception (e.g., a rotated chair remains a
chair and a gray-scale dog is still a dog). However, we may
know other prior information about objects that are difficult
to transfer through invariance to augmentations (e.g., chairs
should have 4 legs). This prior information can be either
given as image attributes (e.g., age or sex of a person, color
of a bird, etc.) or, in an unsupervised setting, directly learnt
through a generative model (e.g., GAN or VAE). Now, we
ask: how can we integrate this information inside a con-
trastive framework to reconnect intra-class images that are
actually disconnected in GA? We rely on conditional mean
embedding theory and use a kernel defined on the prior
representation/information. This allows us to estimate a
better configuration of the centroids in the representation
space, with respect to the downstream task, and, ultimately,
provide theoretical guarantees on the classification risk.

3.3.1. ϵ-KERNEL GRAPH

Definition 3.5. (RKHS on X̄ ) We define the RKHS
(HX̄ ,KX̄ ) on X̄ associated with a kernel KX̄ .

Example. If we work with large natural images, assuming
that we know a prior z(x̄) about our images (e.g., given by
a generative model), we can compute KX̄ using z through
KX̄ (x̄, x̄′) = K̃(z(x̄), z(x̄′)) where K̃ is a standard kernel
(e.g., Gaussian or Cosine).

To link kernel theory with the previous augmentation graph,
we need to define a kernel graph that connects images with
high similarity in the kernel space.

Definition 3.6. (ϵ-Kernel graph) Let ϵ > 0. We define
the ϵ-kernel graph Gϵ

KX̄
(V,EK) for the kernel KX̄ on

X̄ through 1) a set of vertices V = X̄ and 2) a set of
edges EKX̄ such that e ∈ EKX̄ between x̄, x̄′ ∈ X̄ iff
max(KX̄ (x̄, x̄),KX̄ (x̄′, x̄′))−KX̄ (x̄, x̄′) ≤ ϵ.

The condition max(KX̄ (x̄, x̄),KX̄ (x̄′, x̄′))−KX̄ (x̄, x̄′) ≤
ϵ implies that dKX̄ (x̄, x̄

′) ≤ 2ϵ where dKX̄ (x̄, x̄
′) =

KX̄ (x̄, x̄)+KX̄ (x̄′, x̄′)−2KX̄ (x̄, x̄′) is the kernel distance.
For kernels with constant norm (e.g., the standard Gaussian,
Cosine or Laplacian kernel), it is in fact an equivalence.
It means that we connect two original points in the kernel
graph if they have small distance in the kernel space. We
give now our main assumption to derive a better estimator
of the centroid µx̄ in the insufficient augmentation regime.

Assumption 1. (Extended intra-class connectivity) For a
given task D = X̄ × Y , the extended graph G̃ = GA ∪
Gϵ

KX̄
= (V,E ∪EKX̄ ) (union between augmentation graph

and ϵ-kernel graph) is class-connected for all y ∈ Y .

This assumption is notably weaker than Previous Assump-
tion 1 w.r.t augmentation distribution A. Here, we do not
need to find the optimal distribution of augmentations A∗,
as long as we have a kernel KX̄ such that disconnected
points in the augmentation graph are connected in the ϵ-
kernel graph. If K is not well adapted to the data-set (i.e it
gives very low values for intra-class points), then ϵ needs
to be large to re-connect these points and, as shown in Ap-
pendix A.1, the classification error will be high. In practice,
this means that we need to tune the hyper-parameter of the
kernel (e.g., σ for a RBF kernel) so that all intra-class points
are reconnected with a small ϵ. This extra computation al-
lows our framework to improve the final representation even
for inadequate augmentations, as shown in Table 6.

3.3.2. CONDITIONAL MEAN EMBEDDING

Decoupled Uniformity loss includes no kernel in its raw
form. It only depends on centroids µx̄ = EA(x|x̄)f(x).
Here, we show that another consistent estimator of these
centroids can be defined, using the previous kernel KX̄ . To
show it, we fix an encoder f ∈ F and require the following
technical assumption in order to apply conditional mean
embedding theory (Song et al., 2013; Klebanov et al., 2020).

Assumption 2. (Expressivity of KX̄ ) The (unique) RKHS
(Hf ,Kf ) defined on X with kernel Kf = ⟨f(·), f(·)⟩Rd

fulfills ∀g ∈ Hf ,EA(x|·)g(x) ∈ HX̄

Theorem 2. (Centroid estimation) Let (xi, x̄i)i∈[1..n]
iid∼
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A(x, x̄). Assuming 2, a consistent estimator of µx̄ is:

∀x̄ ∈ X̄ , µ̂x̄ =

n∑
i=1

αi(x̄)f(xi) (3)

where αi(x̄) =
∑n

j=1[(Kn + nλIn)
−1]ijKX̄ (x̄j , x̄) and

Kn = [KX̄ (x̄i, x̄j)]i,j∈[1..n]. It converges to µx̄ with the
ℓ2 norm at a rate O(n−1/4) for λ = O(n−1/2). Proof in
Appendix E.7.

Intuition. This theorem states that we can use representa-
tions of images close to an anchor x̄, according to our prior
information, to accurately estimate µx̄. Consequently, if
the prior is “good enough” to connect intra-class images
disconnected in the augmentation graph (i.e. fulfills As-
sumption 1), then this estimator allows us to tightly control
the classification risk. From this theorem, we naturally de-
rive the empirical Kernel Decoupled Uniformity loss using
the previous estimator.
Definition 3.7. (Empirical Kernel Decoupled Uniformity
Loss) Let (xi, x̄i)i∈[1..n]

iid∼ A(x, x̄). Let µ̂x̄j
=∑n

i=1 αi,jf(xi) with αi,j = ((Kn + λnIn)
−1Kn)ij ,

λ = O(n−1/2) a regularization constant and Kn =
[KX̄ (x̄i, x̄j)]i,j∈[1..n]. We define the empirical Kernel De-
coupled Uniformity loss as:

L̂de
unif (f)

def
= log

1

n(n− 1)

∑
i ̸=j

exp(−||µ̂x̄i
− µ̂x̄j

||2) (4)

Extension to multi-views. If we have V views
(x

(v)
i )v∈[1..V ] for each x̄i, we can easily extend the pre-

vious estimator with µ̂x̄j
= 1

V

∑V
v=1 µ̂

(v)
x̄j

where µ̂
(v)
x̄j

=∑n
i=1 αi,jf(x

(v)
i ). In practice, for a fair comparison with

current SOTA contrastive methods, we set V = 2 in our
experiments (see Appendix A.6 for a thorough discussion).

The computational cost added is roughly O(n3) (to com-
pute the inverse matrix of size n× n) but it remains negligi-
ble compared to the back-propagation time using classical
stochastic gradient descent. Importantly, the gradients asso-
ciated to αi,j are not computed.

3.3.3. A TIGHT BOUND ON THE CLASSIFICATION LOSS
WITH WEAKER ASSUMPTIONS

We show here that L̂de
unif (f) can tightly bound the super-

vised classification risk for well-aligned encoders f ∈ F .
Theorem 3. We assume 1 and 2 hold for a repro-
ducible kernel KX̄ and augmentation distribution A. Let
(xi, x̄i)i∈[1..n]

iid∼ A(x, x̄). For any ϵ′-weak aligned encoder
f ∈ F :

L̂de
unif (f)−O

(
n−1/4

)
≤ Lsup(f) ≤ L̂de

unif (f)+ (5)

4D(2ϵ′ + βn(KX̄ )ϵ) +O
(
n−1/4

)

where βn(KX̄ ) = (λmin(Kn)√
n

+
√
nλ)−1 = O(1) for

λ = O(n−1/2), Kn = (KX̄ (x̄i, x̄j))i,j∈[1..n]and D is the
maximal diameter of all sub-graphs G̃y ⊂ G̃ where y ∈ Y .
We noted λmin(Kn) > 0 the minimal eigenvalue of Kn.
Proof in Appendix E.8.

Interpretation. Theorem 3 gives tight bounds on the classi-
fication loss Lsup(f) with weaker assumptions than current
work (Saunshi et al., 2019; Wang et al., 2022; HaoChen
et al., 2021). We don’t require perfect alignment for f ∈ F
or L-smoothness and we don’t have class collision term
(even if the extended augmentation graph may contain edges
between inter-class samples), contrarily to (Saunshi et al.,
2019). Also, the estimation error does not depend on the
number of views (which is low in practice))–as it was always
the case in previous formulations (Wang et al., 2022; Saun-
shi et al., 2019; HaoChen et al., 2021) – but rather on the
batch size n and the eigenvalues of the kernel matrix (con-
trolling the variance of the centroid estimator (Grünewälder
et al., 2012)) . Contrarily to CCLK (Tsai et al., 2022), we
don’t condition our representation to weak attributes but
rather we provide better estimation of the conditional mean
embedding conditionally to the original image. Eventually,
our loss remains in an unconditional contrastive framework
driven by the augmentations A and the prior KX̄ on input
images. Theorem 1 becomes a special case ϵ = 0 and
A = A∗ (i.e the augmentation graph is class-connected, a
stronger assumption than 1). In Appendix A.1, we provide
empirical evidence that better kernel quality (measured by
k-NN accuracy in kernel graph) improves downstream ac-
curacy, as theoretically expected by the theorem. It also
provides a new way to select a priori a good kernel.

4. Experiments
We study two regimes with our framework. We first start
by evaluating our new loss, Decoupled Uniformity, without
prior knowledge in an unsupervised scenario on standard vi-
sion benchmarks. Then, we study Kernel Decoupled Unifor-
mity on both natural and medical datasets when prior knowl-
edge is accessible (see Appendix A.4 for kernel choice). In
the unsupervised scenario, we show that we can leverage
generative models representation to outperform current self-
supervised models. In the weakly supervised setting, we
demonstrate the superiority of our unconditional formula-
tion when weak attributes are available. Implementation
details are presented in Appendix D. Importantly, most gen-
erative models are already pre-trained and are used as is in
our framework (no additional computation).

Decoupled Uniformity without prior. We empirically
demonstrate the benefits of removing the coupling between
positives and negatives in the original uniformity term in
InfoNCE loss (Wang & Isola, 2020) in Table 1 and 2. We
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compare our approach with baseline InfoNCE (Oord et al.,
2019) and DC (Yeh et al., 2022). We use the same setting
as DC with batch size n = 256, initial learning rate 0.3 and
temperature 0.07 for InfoNCE/DC losses.

Dataset Network LInfoNCE LDC Lde
unif

CIFAR-10 ResNet18 82.18±0.30 84.87±0.27 85.05±0.37

CIFAR-100 ResNet18 55.11±0.20 58.27±0.34 58.41±0.05

ImageNet100 ResNet50 68.76 73.98 77.18

Table 1: Comparison of Decoupled Uniformity with InfoN-
CE/DC loss using SimCLR implementation under batch
size n = 256. All models are trained for 400 epochs.

Generative models improve CL representation. We show
that recent advances in generative modeling improve rep-
resentations of contrastive models in Table 2 with our ap-
proach. Due to our limited computational resources, we
study ImageNet100 (Tian et al., 2020) (100-class subset of
ImageNet used in the literature (Tian et al., 2020; Chuang
et al., 2020; Wang & Isola, 2020)) and we leverage BigBi-
GAN representation (Donahue & Simonyan, 2019) as prior.
In particular, we use BigBiGAN pre-trained on ImageNet3

to define a kernel KGAN (x̄, x̄′) = K(z(x̄), z(x̄′)) (with
K an RBF kernel and z(·) BigBiGAN’s encoder). We set
λ = 0.01√

n
for centroids estimation (see Appendix A.3). We

demonstrate SOTA representation with this prior compared
to all other contrastive and non-contrastive approaches.

Weakly supervised learning on natural images. In Ta-
ble 3, we suppose that we have access to image attributes
that correlate with the true semantic labels (e.g birds col-
or/size for birds classification). We use three datasets:
CUB-200-2011 (Welinder et al., 2010), ImageNet100 (Tian
et al., 2020) and UTZappos (Yu & Grauman, 2014), fol-
lowing (Tsai et al., 2022). CUB-200-2011 contains 11788
images of 200 bird species with 312 binary attributes avail-

3Official model available here

Model ImageNet100

SimCLR (Chen et al., 2020a) 68.76
BYOL (Grill et al., 2020) 72.26
CMC∗ (Tian et al., 2020) 73.58

DCL∗ (Chuang et al., 2020) 74.6
AlignUnif (Wang & Isola, 2020) 76.3

DC (Yeh et al., 2022) 73.98
SwAV (w/o multi-crop) (Caron et al., 2020) 73.5
BigBiGAN (Donahue & Simonyan, 2019) 72.0

Decoupled Unif 77.18
KGAN Decoupled Unif 78.02

Supervised 82.1±0.59

Table 2: Linear evaluation accuracy (%) on ImageNet100
using ResNet50 trained for 400 epochs with batch size n =
256 for all methods. ∗Results from paper.

Model CUB ImageNet100 UT-Zappos

SimCLR 17.48 65.30 84.08
BYOL 16.82 72.20 85.48

CosKernel CCLK (Tsai et al., 2022) 15.61 74.34 83.23
RBFKernel CCLK (Tsai et al., 2022) 30.49 77.24 84.65

CosKernel Decoupled Unif (ours) 27.77 79.02 85.56
RBFKernel Decoupled Unif (ours) 32.87 76.34 84.78

Table 3: If weak attributes are accessible (e.g birds color
or size for CUB200), they can be leveraged as prior in
our framework to improve the representation. CCLK is
re-implemented using ResNet18 backbone.

able (encoding size, color, etc.). UTZappos contains 50025
images of shoes from several brands sub-categorized into
21 groups that we use as downstream classification labels.
It comes with seven attributes. Finally, for ImageNet100 we
follow (Tsai et al., 2022) and use the pre-trained CLIP (Rad-
ford et al., 2021) model (trained on pairs (text, image)) to ex-
tract 512-d features from images, considered as prior infor-
mation. We use ResNet18 backbone for small-scale datasets
(CUB and UTZappos) and ResNet50 for ImageNet100 (see
Appendix D for more details). We compare our method
with SOTA Siamese models (SimCLR and BYOL) and with
CCLK, a conditional contrastive model that defines positive
samples only according to the conditioning attributes. The
proposed method outperforms all other models on the three
datasets.

Model Atelectasis Cardiomegaly Consolidation Edema Pleural
Effusion

SimCLR 82.42 77.62 90.52 89.08 86.83
BYOL 83.04 81.54 90.98 90.18 85.99

MoCo-CXR∗ 75.8 73.7 77.1 86.7 85.0

GLoRIA 86.70 86.39 90.41 90.58 91.82

CCLK 86.31 83.67 92.45 91.59 91.23
KGl Dec. Unif (ours) 86.92 85.88 93.03 92.39 91.93

Supervised∗ 81.6 79.7 90.5 86.8 89.9

Table 4: AUC scores(%) under linear evaluation for discrim-
inating 5 pathologies on CheXpert. ResNet18 backbone is
trained for 400 epochs (batch size n = 1024) without labels
on official CheXpert training set and results are reported on
validation set.∗ Results from (Sowrirajan et al., 2021).

Medical imaging In order to evaluate our framework on
another domain, we consider two challenging medical
datasets. We study 1) bipolar disorder detection (BD), a
challenging binary classification task, on brain MRI dataset
BIOBD (Hozer et al., 2021) and 2) chest radiography inter-
pretation, a 5-class classification task on CheXpert (Irvin
et al., 2019). BIOBD contains 356 healthy controls (HC)
and 306 patients with BD. We use BHB (Dufumier et al.,
2021) as a large pre-training dataset containing 10k 3D
images of healthy subjects. For brain MRI, we use VAE
representation to define KV AE(x̄, x̄

′) = K(µ(x̄), µ(x̄′))
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where µ(·) is the mean Gaussian distribution of x̄ in the
VAE latent space and K is a standard RBF kernel. For
CheXpert, we use Gloria (Huang et al., 2021) representa-
tion4, a multi-modal approach trained with (medical report,
image) pairs to extract 2048-d features as weak annotations,
on top of which we define our RBF kernel KGl. In Ta-
ble 4 and 5, we show that our approach improve contrastive
model in both unsupervised (BD) and weakly supervised
(CheXpert) setting for medical imaging.

Model BD vs HC

SimCLR (Chen et al., 2020a) 60.46±1.23

BYOL (Grill et al., 2020) 58.81±0.91

MoCo v2 (He et al., 2020) 59.27±1.50

Model Genesis (Zhou et al., 2021) 59.94±0.81

VAE (Kingma & Welling, 2013) 52.86±1.24

KV AE Decoupled Unif (ours) 62.19±1.58

Supervised 67.42±0.31

Table 5: Linear evaluation AUC scores(%) using a 5-fold
leave-site-out CV with DenseNet121 backbone.

Model CIFAR-10 CIFAR-100

All w/o Color
w/o Color
and Crop All w/o Color

w/o Color
and Crop

SimCLR 83.06 65.00 24.47 55.11 37.63 6.62
BYOL 84.71 81.45 50.17 53.15 49.59 27.9

Barlow Twins 81.61 53.97 47.52 52.27 28.52 24.17
VAE∗ 41.37 41.37 41.37 14.34 14.34 14.34

DCGAN∗ 66.71 66.71 66.71 26.17 26.17 26.17
KGAN Dec. Unif 85.85 82.0 69.19 58.42 54.17 35.98

Table 6: When augmentation overlap hypothesis is not ful-
filled, generative models provide a good kernel to connect
intra-class points not connected by augmentations. ∗For
VAE and DCGAN, no augmentations were used during
training. All models are trained for 400 epochs under batch
size n = 256 except BYOL and SimCLR trained under
bigger batch size n = 1024.

Can we remove data augmentation from CL? As we saw
in the visual domain, generative models can improve the rep-
resentation of current CL framework. Theoretically, we saw
that we can relax assumptions about the augmentation strat-
egy we use in CL. It leads us to ask: is data augmentation
still necessary in CL ?

We use standard benchmarking datasets (CIFAR-10, CIFAR-
100) and we study the case where augmentations are too
weak to connect all intra-class points. We compare to
the baseline where all augmentations are used. We use
a trained DCGAN (Radford et al., 2016) to define as before
KGAN (x̄, x̄′)

def
= K(z(x̄), z(x̄′)) where z(·) denotes the

4We use official pre-trained model available here

discriminator output of the penultimate layer5.

In Table 6, we observe that our contrastive framework with
DCGAN representation as prior is able to approach the
performance of self-supervised models by applying only
crop augmentations and flip. Additionally, when removing
almost all augmentations (crop and color distortion), we
approach the performance of the prior representations of the
generative models. This is expected by our theory since we
have an augmentation graph that is almost disjoint for all
points and thus we only rely on the prior to reconnect them.
This experiment shows that our method is less sensitive than
all other SOTA self-supervised methods to the choice of the
“optimal” augmentations.
Evading feature suppression with VAE. Previous investi-
gations (Chen et al., 2021) have shown that a few easy-to-
learn irrelevant features not removed by augmentations can
prevent CL model from learning all semantic features inside
images. We propose here a first solution to this issue by
studying RandBits-CIFAR10 (Chen et al., 2021), a CIFAR-
10 based dataset where k noisy bits are added and shared
between views of the same image (see Appendix D.3). We
train a ResNet18 on this dataset with SimCLR augmen-
tations (Chen et al., 2020a) and increasing k. For Ker-
nel Decoupled Uniformity, we use a β-VAE representation
(ResNet18 backbone, β = 1, also trained on RandBits)
to define KV AE as before. In Table 7 we first show, as

Model 0 bits 5 bits 10 bits 20 bits

SimCLR (Chen et al., 2020a) 79.4 68.74 13.67 10.07
BYOL (Grill et al., 2020) 80.14 19.98 10.33 10.00

IFM-SimCLR (Robinson et al., 2021) 82.24 43.25 10.00 10.20
β-VAE (β = 1) 41.37 43.32 42.94 43.1
β-VAE (β = 2) 42.28 43.89 43.11 42.19
β-VAE (β = 4) 42.5 42.5 42.5 39.87

KV AE Decoupled Unif (ours) 82.74±0.18 68.75±0.24 68.42±0.51 68.58±0.17

Table 7: Linear evaluation accuracy (%) on RandBits-
CIFAR10 with ResNet18 trained for 200 epochs. For VAE,
we use a ResNet18 backbone. Once trained, we use its rep-
resentation to define the kernel KV AE .

noted previously (Chen et al., 2021), that β-VAE is the
only method insensitive to the number of added bits, but its
representation quality remains low compared to other self-
supervised approaches. All CL approaches fail for k ≥ 10
bits. This can be explained by noticing that, as the number
of bits k increases, the number of edges between intra-class
images in the augmentation graph GA decreases. For k
bits, on average N/2k images share the same random bits
(N = 50000 is the dataset size). So only these images can
be connected in GA. For k = 20 bits, < 1 image share the
same bits which means that they are almost all disconnected,
and it explains why standard contrastive approaches fail.
Same trend is observed for non-contrastive approaches (e.g.

5We prefered DCGAN over BigBiGAN in this experiment
because we study smaller-scale datasets.
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BYOL) with a degradation in performance even faster than
SimCLR. Interestingly, encouraging a disentangled repre-
sentation by imposing higher β > 1 in β-VAE does not help.
Only our KV AE Decoupled Uniformity loss obtains good
scores, regardless of the number of bits.

5. Conclusion
In this work, we show that we can integrate prior informa-
tion into CL to improve the final representation. In par-
ticular, we draw connections between kernel theory and
CL to build our theoretical framework. We demonstrate
tight bounds on downstream classification performance with
weaker assumptions than previous works. Empirically, we
show that generative models provide a good prior when aug-
mentations are too weak or insufficient to remove easy-to-
learn noisy features. We also show applications in medical
imaging in both unsupervised and weakly supervised setting
where our method outperforms all other models. Thanks
to our theoretical framework, we hope that CL will benefit
from the future progress in generative modelling and it will
widen its field of application to challenging tasks, such as
computer aided-diagnosis.
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A. More empirical evidence
In this section, we provide additional empirical evidence to confirm several claims and arguments developed in the paper.

A.1. Measuring kernel quality and empirical verification of our theory

Figure 2: Empirical verification of our theory. The op-
timal ϵ∗ to add 100 edges between intra-class images
in ϵ-Kernel graph is inversely correlated with the down-
stream accuracy, as suggested by Theorem 3. We use
k = 20 bits and an RBF kernel.

Figure 3: How can we select a priori a good kernel?
Downstream accuracy on RandBits CIFAR-10 is highly
correlated (Pearson’s r = 0.90) with kernel quality
measured as fraction of 10 nearest neighbors of the
same CIFAR-10 class (from test set) in the kernel graph.

We provide empirical evidence confirming our theory (Theorem 3 in particular) along with a new way to quantify kernel
quality with respect to a downstream task for a kernel K. We perform experiments on RandBits dataset (based on CIFAR-10)
with k = 20 random bits (almost all points are disconnected in the augmentation graph) and SimCLR augmentations. For a
given kernel Kσ defined by Kσ(x̄, x̄

′) = RBFσ(µ(x̄), µ(x̄
′))–where µ(·) is the mean Gaussian distribution of x̄ in VAE

latent space trained on RandBits– we train Kernel Decoupled Uniformity with Kσ on RandBits. In Fig. 2, we vary σ and we
report downstream accuracy (measured by linear evaluation) along with the optimal ϵ∗ to add 100 intra-class edges in the
ϵ-Kernel graph obtained with Kσ. The lower ϵ∗, the better the downstream accuracy, which is expected since the upper
bound of supervised risk becomes tighter in Theorem 3. It gives a first empirical confirmation that ϵ tightly bounds the
supervised risk on downstream task.

A new way to quantify kernel quality. Based on the concept of kernel graph, we measure the quality of a given
kernel K using the nearest-neighbors of each image (a vertex in kernel graph). More precisely, K induces a distance dK
(dK(a, b) = K(a, a)+K(b, b)−2K(a, b)) that can be used to define nearest-neighbors in its kernel graph. We compute the
fraction of these nearest neighbors that belong to the same class. In Fig. 3, we plot the downstream accuracy vs kernel quality
using 10-nearest neighbors for various kernel K. They are obtained by using latent space of a VAE trained for an increasing
number of epochs (2, 50, 100, 150 and 1000) and by setting K(x̄, x̄′) = RBFσ(µ(x̄), µ(x̄

′)) as before (with σ = 50 fixed).
It shows that this new measure of kernel quality is highly correlated with final downstream accuracy. Therefore, it can be
used as a tool to compare a priori (without training) different kernels. One limitation of this metric is that it requires access
to labels on the downstream task. Future work would consist in finding unsupervised properties of the kernel graph that
correlates well with downstream accuracy (e.g. sparsity, clustering coefficient, etc.).

A.2. Influence of temperature and batch size for Decoupled Uniformity

InfoNCE is known to be sensitive to batch size and temperature to provide SOTA results. In our theoretical framework, we
assumed that f(x) ∈ Sd−1 but we can easily extend it to f(x) ∈

√
tSd−1 where t > 0 is a hyper-parameter. It corresponds

to write Lde
unif (f) = Ep(x̄)p(x̄′)e

−t||µx̄−µx̄′ ||2 . We show here that Decoupled Uniformity does not require very large batch
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size (as it is the case for InfoNCE-based frameworks such as SimCLR) and produce good representations for t ∈ [1, 5]. In
our default setting, we use t = 2 and batch size n = 256.

Datasets t = 0.1 t = 0.5 t = 1 t = 2 t = 5 t = 10

CIFAR10 73.91 83.01 84.72 85.82 83.05 74.82
CIFAR100 39.16 51.33 55.91 58.89 56.70 48.29

Table 8: Linear evaluation accuracy (%) after training for 400 epochs with batch size n = 256 and varying temperature in
Decoupled Uniformity loss with SimCLR augmentations. t = 2 gives overall the best results, similarly to the uniformity
loss in (Wang & Isola, 2020)

Datasets Loss n = 128 n = 512 n = 1024 n = 2048

CIFAR10 InfoNCE 78.89 79.40 80.02 80.06
Decoupled Unif 82.67 82.12 82.74 82.33

CIFAR100 InfoNCE 49.53 53.46 54.45 55.32
Decoupled Unif 54.61 54.12 55.56 55.20

Table 9: Linear evaluation accuracy (%) after training for 200 epochs with a batch size n, ResNet18 backbone and latent
dimension d = 128. Decoupled Uniformity is less sensitive to batch size than InfoNCE thanks to its decoupling between
positives and negatives, similarly to (Yeh et al., 2022).

A.3. Importance of regularization λ in centroid estimation

Kernel Decoupled Uniformity introduces an additional hyper-parameter λ for centroids estimation, which should be such that
λ = O

(
1√
n

)
where n is the batch size to full-fill the hypothesis of Theorem 3. We have cross-validated this hyper-parameter

λ on RandBits CIFAR-10 with k = 10 bits and we show in Table 10 that λ = 0.01√
n

yields the best results. We have fixed this
value for all our experiments in this study.

√
256× λ σ = 30 σ = 50

0.001 10.25 60.75
0.01 67.21 68.42
0.1 59.09 58.13
1 50.49 60.75

Table 10: Importance of λ in centroids estimation with Kernel Decoupled Uniformity. We report linear evaluation accuracy
after training on RandBits-CIFAR10 (10 bits) with ResNet18 for 200 epochs using RBFKernel(σ) and batch size n = 256.

A.4. Kernel choice

ImageNet100 with BigBiGAN. We cross-validate both RBF and Cosine kernel on top of BigBiGAN’s encoder for Kernel
Decoupled Uniformity. According to Table 11, we set σ = 100 with RBF for the experiments on ImageNet100.

Kernel σ = 1 σ = 10 σ = 100 σ = 150 Cosine

ResNet50 73.36 72.6 74.7 74.38 73.88

Table 11: Linear evaluation accuracy(%) after training Kernel Decouped Uniformity on ImageNet-100 for 200 epochs with
BigBiGAN’s representation as prior. We study RBF Kernel with bandwidth σ or Cosine Kernel on top of BigBiGAN’s
encoder.
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RandBits experiment. In our experiments on RandBits, we used RBF Kernel in Decoupled Uniformity but other kernels
can be considered. Here, we have compared our approach with a cosine kernel on Randbits with k = 10 and k = 20 bits.
There is no hyper-parameter to tune with cosine. From Table 12, we see that cosine gives comparable results for k = 10 bits
with RBF but it is not appropriate for k = 20 bits.

Kernel 10 bits 20 bits

RBFKernel(σ = 1) 66.25±0.17 9.91±0.13

RBFKernel(σ = 30) 67.21±0.29 66.46±0.19

RBFKernel(σ = 50) 68.42±0.51 68.58±0.17

CosineKernel 66.56±0.45 9.68±0.18

Table 12: Linear evaluation accuracy after training on RandBits-CIFAR10 with ResNet18 for 200 epochs. RBF and Cosine
kernels are evaluated.

Weakly supervised learning. In this case, we compared our approach with CCLK (Tsai et al., 2022), also based on kernel.
For this comparison, we use two kernels (RBF and Cosine) on all 3 benchmarking dataset (CUB200, ImageNet100 and
UTZappos). We fixed σ = 20, σ = 10, σ = 100 respectively for CUB200, ImageNet100 and UTZappos using RBF Kernel,
cross-validated in {1, 10, 20, 50, 100} using linear evaluation on downstream task.

Medical imaging. For the experiments on CheXpert, we used an RBF Kernel on top of GloRIA’s representation and we
fixed σ = 10. For the pre-training on BHB using VAE representation as prior, we set σ = 100.

A.5. Larger pre-trained generative model induces better prior

We argue that using larger datasets (e.g., ImageNet 1K) for pre-training larger generative models will improve the prior on
smaller-scale datasets and improve even more the final representations with our method. We have tested this hypothesis on
CIFAR-10 and BigBiGAN as prior, compared to DCGAN pre-trained on CIFAR-10 and the other approaches without prior.

Model CIFAR-10

SimCLR (Chen et al., 2020a) 81.75
BYOL (Grill et al., 2020) 81.97

Decoupled Unif 85.82
KDCGAN Decoupled Unif 85.85
KBigBiGAN Decoupled Unif 86.86

Table 13: We evaluate Kernel Decoupled Uniformity with BigBiGAN pre-trained on ImageNet as prior knowledge. We
compare this approach with a shallow DCGAN pre-trained on CIFAR-10 as prior. We train ResNet18 on CIFAR10 for
400 epochs and we report linear evaluation accuracy. Pre-trained generative models on larger datasets improve the final
representation.

A.6. Multi-view Contrastive Learning with Decoupled Uniformity

When the intra-class connectivity hypothesis is full-filled, we showed that Decoupled Uniformity loss can tightly bound the
classification risk for well-aligned encoders (see Theorem 1). Under that hypothesis, we consider the standard empirical
estimator of µx̄ ≈

∑V
v=1 f(x

(v)) for V views. Using all SimCLR augmentations, we empirically verify that increasing V
allows for: 1) a better estimate of µx̄ which implies a faster convergence and 2) better results on standard benchmarking
vision datasets (CIFAR10, CIFAR100, STL10). We always use batch size n = 256 for all approaches with ResNet18
backbone for CIFAR10, CIFAR100 and STL10. For STL-10, we use both labelled and unlabelled training data to train our
encoder. We report the results in Table 14.
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Model CIFAR-10 CIFAR-100 STL10
e = 200 e = 400 e = 200 e = 400 e = 200 e = 400

SimCLR(Chen et al., 2020a) 79.4 81.75 48.89 53.02 76.99 79.02
BYOL(Grill et al., 2020) 80.14 81.97 51.57 53.65 77.62 79.61
Decoupled Unif (2 views) 82.43 85.82 54.01 58.89 78.12 79.89
Decoupled Unif (4 views) 84.99 85.34 57.23 59.07 78.25 80.47
Decoupled Unif (8 views) 86.50 85.80 59.63 59.74 79.82 80.30

Table 14: A better approximation of centroids µx̄ (i.e. increasing number of views) when augmentation overlap hypothesis
is (nearly) full-filled implies faster convergence. All models are pre-trained with batch size n = 256. We use ResNet18
backbone for CIFAR10, CIFAR100, STL10. We report linear evaluation accuracy (%) for a given number of epochs e.

Figure 4: Alignment metric Lalign computed on the validation set during optimization of Decoupled Uniformity loss with
various batch sizes n and a fixed latent space dimension d = 128. We use 100 positive samples per image to compute
Lalign.

A.7. Decoupled Uniformity optimizes alignment

We empirically show here that Decoupled Uniformity optimizes alignment, even in the regime when the batch size n > d+1,
where d is the representation space dimension. We use CIFAR-10 and CIFAR-100 datasets and we optimize Decoupled
Uniformity (without kernel) with all SimCLR augmentations with d = 128 and we vary the batch size n. We report the
alignment metric defined in (Wang & Isola, 2020) as Lalign = EA(x|x̄)A(x′|x̄)p(x̄)||f(x)− f(x′)||2.In Fig. A.7, we notice
that Lalign is minimized as we optimize Lde

unif and we reach Lalign ≈ 0.50 after 200 epochs, which is approximately the
same result as in (Wang & Isola, 2020) by directly optimizing alignment and their uniformity term. In our case, alignment is
implict and we do not need to add it to our loss (avoiding the tuning of an additional hyper-parameter).

B. Geometrical considerations about Decoupled Uniformity
B.1. Asymptotical optimality

Theorem 4. (Optimality of Decoupled Uniformity) Given n points (x̄i)i∈[1..n] such that n ≤ d+ 1, any optimal encoder
f∗ minimizing L̂de

unif achieves a representation s.t.:

1. (Perfect uniformity) All centroids (µx̄i
)i∈[1..n] make a regular simplex on the hyper-sphere Sd−1

2. (Perfect alignment) f∗ is perfectly aligned, i.e ∀x, x′ ∼ A(·|x̄i), f
∗(x) = f∗(x′) for all i ∈ [1..n].

Proof in Appendix E.3.
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Contrary to (Wang & Isola, 2020), we are able to derive a geometrical characterization of the optimal representation for a
finite batch size n <∞ (i.e., number of negatives), corresponding to a real-life scenario. Importantly, our uniformity term is
distinct from the definition in (Wang & Isola, 2020) which is only defined for n→∞.

The assumption n ≤ d+ 1 is crucial to have the existence of a regular simplex on the hypersphere Sd−1. In practice, this
condition is not always full-filled (e.g SimCLR (Chen et al., 2020a) with d = 128 and n = 4096). Characterizing the
optimal solution of Lde

unif for any n > d+ 1 is still an open problem (Borodachov et al., 2019) but theoretical guarantees
can be obtained in the limit case n→∞.

Theorem 5. (Asymptotical Optimality) When the number of samples is infinite n → ∞, then for any perfectly aligned
encoder f ∈ F that minimizes Lde

unif , the centroids µx̄ for x̄ ∼ p(x̄) are uniformly distributed on the hypersphere Sd−1.
Proof in Appendix E.3.

Empirically, we observe that minimizers f of L̂de
unif remain well-aligned when n > d+ 1 on real-world vision datasets (see

Appendix A.7). Decoupled uniformity thus optimizes two properties that are nicely correlated with downstream classification
performance (Wang & Isola, 2020)–that is alignment and uniformity between centroids. However, as noted in (Wang et al.,
2022; Saunshi et al., 2022), optimizing these two properties is necessary but not sufficient to guarantee a good classification
accuracy. In fact, the accuracy can be arbitrarily bad even for perfectly aligned and uniform encoders (Saunshi et al., 2022).

B.2. A metric learning point-of-view

In this section, we provide a geometrical understanding of Decoupled Uniformity loss from a metric learning point of view.
In particular, we consider the Log-Sum-Exp (LSE) operator often used in CL as an approximation of the maximum.

We consider the finite-samples case with n original samples (x̄i)i∈[1..n]
iid∼ p(x̄) and V views (x(v)

i )v∈[1..V ]
iid∼ A(·|x̄i) for

each sample x̄i. We make an abuse of notations and set µi =
1
V

∑V
v=1 f(x

(v)
i ). Then we have:

L̂de
unif = log

1

n(n− 1)

∑
i ̸=j

exp
(
−||µi − µj ||2

)
= log

1

n(n− 1)

∑
i ̸=j

exp
(
−s+i − s+j + 2s−ij

) (6)

where s+i = ||µi||2 = 1
V 2

∑
v,v′ s(x

(v)
i , x

(v′)
i ), s−ij = 1

V 2

∑
v,v′ s(x

(v)
i , x

(v′)
j ) and s(·, ·) = ⟨f(·), f(·)⟩2 is viewed as a

similarity measure.

From a metric learning point-of-view, we shall see that minimizing Eq. 6 is (almost) equivalent to looking for an encoder
f such that the sum of similarities of all views from the same anchor (s+i and s+j ) are higher than the sum of similarities
between views from different instances (s−ij):

s+i + s+j > 2s−ij + ϵ ∀i ̸= j (7)

where ϵ is a margin that we suppose ”very big” (see hereafter). Indeed, this inequality is equivalent to −ϵ > 2s−ij − s+i − s+j
for all i ̸= j, which can be written as :

argmin
f

max(−ϵ, {2s−ij − s+i − s+j }i,j∈[1..n],j ̸=i)

This can be transformed into an optimization problem using the LSE (log-sum-exp) approximation of the max operator:

argmin
f

log

exp(−ϵ) +
∑
i ̸=j

exp (−s+i − s+j + 2s−ij)


Thus, if we use an infinite margin (limϵ→∞) we retrieve exactly our optimization problem with Decoupled Uniformity in
Eq.6 (up to an additional constant depending on n).
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C. Additional general guarantees on downstream classification
C.1. Optimal configuration of the supervised loss

In order to derive guarantees on a downstream classification task D when optimizing our unsupervised decoupled uniformity
loss, we define a supervised loss that measures the risk on a downstream supervised task. We prove in the next section that
the minimizers of this loss have the same geometry as the ones minimizing cross-entropy and SupCon (Khosla et al., 2020):
a regular simplex on the hyper-sphere (Graf et al., 2021). More formally, we have:

Lemma 6. Let a downstream task D with C classes. We assume that C ≤ d + 1 (i.e., a big enough representation
space), that all classes are balanced and the realizability of an encoder f∗ = argminf∈F Lsup(f) with Lsup(f) =

logEy,y′∼p(y)p(y′)e
−||µy−µy′ ||2 , and µy = Ep(x̄|y)µx̄. Then the optimal centroids (µ∗

y)y∈Y associated to f∗ make a regular
simplex on the hypersphere Sd−1 and they are perfectly linearly separable, i.e min(wy)y∈Y∈Rd E(x̄,y)∼D1(wy · µ∗

y < 0) = 0.
Proof in Appendix C.1

This property notably implies that we can realize 100% accuracy at optima with linear evaluation (taking the linear classifier
g(x̄) = W ∗f∗(x̄) with W ∗ = (µ∗

y)y∈Y ∈ RC×d).

C.2. General guarantees of Decoupled Uniformity

In its most general formulation, we tightly bound the previous supervised loss by Decoupled Uniformity loss Lde
unif

depending on a variance term of the centroids µx̄ conditionally to the labels:

Theorem 7. (Guarantees for a given downstream task) For any f ∈ F and augmentation A we have:

Lde
unif (f) ≤ Lsup(f) ≤ 2

d∑
j=1

Var(µj
x̄|y) + Lde

unif (f) ≤ 4Ep(x̄|y)p(x̄′|y)||µx̄ − µx̄′ ||+ Lde
unif (f) (8)

where Var(µj
x̄|y) = Ep(x̄|y)(µ

j
x̄ − Ep(x̄′|y)µ

j
x̄′)2, y = argmaxy′∈Y Var(µj

x̄|y′) and µj
x̄ is the j-th component of µx̄ =

EA(x|x̄)f(x). Proof in the next section.

Intuitively, it means that we will achieve good accuracy if all centroids (µx̄)x̄∈X̄ for samples x̄ ∈ X̄ in the same class are not
too far. This theorem is very general since we do not require the intra-class connectivity assumption on A; so any A ⊂ A∗

can be used.

D. Experimental details
The code is accessible at this https URL. We provide a detailed pseudo-code of our algorithm as well as all experimental
details to reproduce the experiments ran in the manuscript.

D.1. Pseudo-code

Algorithm 1 Pseudo-code for computing L̂de
unif

Require: Batch of images (x̄1, ..., x̄n) ∈ X̄ , augmentation distribution A, temperature t, regularization λ for centroid
estimation, kernel K

1: Kn ← (K(x̄i, x̄j))i,j∈[1..n] {Compute the kernel matrix}
2: α← (Kn + nλIn)

−1Kn {Compute weights for centroid estimation}
3: x

(1)
i , ..., x

(V )
i

iid∼ A(·|x̄i) {Sample V views per image}
4: F ← ( 1

V

∑V
v=1 f(x

(v)
i ))i∈[1..n] {Compute the averaged images representation}

5: µ̂← αF {Centroid estimation}
6: L̂de

unif ← log 1
n(n−1)

∑
i ̸=j exp(−t||µ̂i − µ̂j ||2) {Kernel Decoupled Uniformity loss }

output L̂de
unif

17

https://github.com/Duplums/contrastive-decoupled-uniformity


Integrating Prior Knowledge in Contrastive Learning with Kernel

D.2. Implementation in PyTorch

We provide a PyTorch implementation of previous pseudo-code in Algorithm 2. It is generalizable to any number of views
and any kernel.

Algorithm 2 PyTorch implementation of L̂de
unif with kernel

1 # loader: generator of images
2 # n: batch size
3 # n_views: number of views
4 # d: latent space dimension
5 # f: encoder (with projection head)
6 # x: Tensor of shape [n, *]
7 # aug: augmentation module generating views
8 # K: kernel defined on image space
9 # lamb: hyper-parameter to estimate centroids

10 for x in loader:
11 alphas = (K(x, x) + n*lamb*torch.eye(n)).inverse() @ K(x, x)
12 x = aug(x, n_views) # shape=[n*n_views, *]
13 z = f(x).view([n, n_views, d]) # shape=[n, n_views, d]
14 mu = alphas.detach() @ z.mean(dim=1) # shape=[n, d]
15 loss = L(mu)
16 loss.backward()
17

18 def L(mu, t=2):
19 return torch.pdist(mu, p=2).pow(2).mul(-t).exp().mean().log()
20

D.3. Datasets

CIFAR (Krizhevsky et al., 2009) We use the original training/test split with 50000 and 10000 images respectively of size
32× 32.

STL-10 (Coates et al., 2011) In unsupervised pre-training, we use all labelled+unlabelled images (105000 images) for
training and the remaining 8000 for test with size 96× 96. During linear evaluation, we only use the 5000 training labelled
images for learning the weights.

CUB200-2011 (Wah et al., 2011) This dataset is composed of 200 fine-grained bird species with 5994 training images
and 5794 test images rescaled to 224× 224.

UTZappos (Yu & Grauman, 2014) This dataset is composed of images of shoes from zappos.com. In order to be
comparable with the literature on weakly supervised learning, we follow (Tsai et al., 2022) and split it into 35017 training
images and 15008 test images resized at 32× 32.

ImageNet100 (Deng et al., 2009; Tian et al., 2020) It is a subset of ImageNet containing 100 random classes and
introduced in (Tian et al., 2020). It contains 126689 training images and 5000 testing images rescaled to 224 × 224. It
notably allows a reasonable computational time since we runt all our experiments on a single server node with 4 V100 GPU.

BHB (Dufumier et al., 2021) This dataset is composed of 10420 3D brain MRI images of size 121× 145× 121 with
1.5mm3 spatial resolution. Only healthy subjects are included.

BIOBD (Hozer et al., 2021) It is also a brain MRI dataset including 662 3D anatomical images and used for downstream
classification. Each 3D volume has size 121 × 145 × 121. It contains 306 patients with bipolar disorder vs 356 healthy
controls and we aim at discriminating patients vs controls. It is particularly suited to investigate biomarkers discovery inside
the brain (Hibar et al., 2018).
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CheXpert (Irvin et al., 2019) This dataset is composed of 224 316 chest radiogaphs of 65240 patients. Each radiograph
comes with 14 medical obervations. We use the official training set for our experiments, following (Huang et al., 2021; Irvin
et al., 2019) and we test the models on the hold-out official validation split containing radiographs from 200 patients. For
linear evaluation on this dataset, we train 5 linear probes to discriminate 5 pathologies (as binary classification) using only
the radiographs with ”certain” labels.

RandBits-CIFAR10 (Chen et al., 2021). We build a RandBits dataset based on CIFAR-10. For each image, we add a
random integer i sampled in [0, 2k − 1] where k ∈ {0, 5, 10, 20} is a controllable number of bits. To make i easy to learn,
we take its binary representation (e.g., (10101)2 for i = 21) and repeat each binary value spatially to define k channels
that are added to the original RGB channels in each CIFAR-10 image. Importantly, these channels will not be altered by
augmentations, so they will be shared across views.

D.4. Contrastive models

Architecture. For all small-scale vision datasets (CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
2009), STL-10 (Coates et al., 2011), CUB200-2011 (Wah et al., 2011) and UT-Zappos (Yu & Grauman, 2014)) and CheXpert,
we used official ResNet18 (He et al., 2016) backbone where we replaced the first 7× 7 convolutional kernel by a smaller
3× 3 kernel and we removed the first max-pooling layer for CIFAR-10, CIFAR-100 and UTZappos. For ImageNet100, we
used ResNet50 (He et al., 2016) for stronger baselines as it is common in the literature. For medical images on brain MRI
datasets (BHB (Dufumier et al., 2021) and BIOBD(Hozer et al., 2021), we used DenseNet121 (Huang et al., 2017) as our
default backbone encoder, following previous literature on these datasets (Dufumier et al., 2021). We use the official

Following (Chen et al., 2020a), for our framework we use the representation space after the last average pooling layer with
2048 dimensions to perform linear evaluation and we use a 2-layers MLP projection head with batch normalization between
each layer for a final latent space with d = n dimensions (n being the batch size, default n = 256).

Batch size. We always use a default batch size 256 for all experiments on vision datasets and 64 for brain MRI datasets
(considering the computational cost with 3D images and since it had little impact on the performance (Dufumier et al.,
2021)).

Optimization. We use SGD optimizer on small-scale vision datasets (CIFAR-10, CIFAR-100, STL-10, CUB200-2011,
UT-Zappos) with a base learning rate 0.3× batch size/256 and a cosine scheduler. For ImageNet100, we use a LARS (You
et al., 2017) optimizer with learning rate 0.02×

√
batch size and cosine scheduler. In Kernel Decoupled Uniformity loss,

we set λ = 0.01√
batch size

and t = 2. For SimCLR, we set the temperature to τ = 0.07 for all datasets following (Yeh et al.,
2022). Unless mentioned otherwise, we use 2 views for Decoupled Uniformity (both with and without kernel) and the
computational cost remains comparable with standard contrastive models.

Training epochs. By default, we train the models for 400 epochs, unless mentioned otherwise for all vision data-sets
excepted CUB200-2011 and UTZappos where we train them for 1000 epochs, following (Tsai et al., 2022). For medical
brain MRI dataset, we perform pre-training for 50 epochs, as in (Dufumier et al., 2021). As for CheXpert, we train all
models for 400 epochs.

Augmentations. We follow (Chen et al., 2020a) to define our full set of data augmentations for vision datasets including:
RandomResizedCrop (uniform scale between 0.08 to 1), RandomHorizontalFlip and color distorsion (including color
jittering and gray-scale). For medical brain MRI dataset, we use cutout covering 25% of the image in each direction
(1/43 of the entire volume), following (Dufumier et al., 2021). For CheXpert, we follow (Azizi et al., 2021) and we
use RandomResizedCrop (uniform scale between 0.08 to 1), RandomHorizontalFlip, RandomRotation (up to 45 degrees)
however we do not apply color jittering as we work with gray-scale images.

D.4.1. GENERATIVE MODELS AND GLORIA

Architecture. For VAE, we use ResNet18 backbone with a completely symmetric decoder using nearest-neighbor
interpolation for up-sampling. For DCGAN, we follow the architecture described in (Radford et al., 2016). We keep
the original dimension for CIFAR-10 and CIFAR-100 datasets and we resize the images to 64 × 64 for STL-10. For
BigBiGAN (Donahue & Simonyan, 2019), we use the ResNet50 pre-trained encoder available at https://tfhub.dev/
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deepmind/bigbigan-resnet50/1 with BN+CReLU features.

Training. For VAE, we use PyTorch-lightning pre-trained model for STL-10 6 and we optimize VAE for CIFAR-10 and
CIFAR-100 for 400 epochs using an initial learning rate 10−4 and SGD optimizer with a cosine scheduler. For RandBits
experiments, the VAE is trained with the same setup as for CIFAR-10/100 on RandBits-CIFAR10. For DCGAN, we optimize
it using Adam optimizer (following (Radford et al., 2016)) and base learning rate 2 × 10−4. Importantly, all generative
models are trained without data augmentation, providing a fair comparison with other methods.

GloRIA(Huang et al., 2021) GloRIA can encode both image and text through 2 different encoders. It is pre-trained on
the official training set of CheXpert, as in our experiments. We use only GloRIA image’s encoder (a ResNet18 in practice7)
to obtain weak labels on CheXpert and we leverage this weak labels with Kernel Decoupled Uniformity loss. In practice, we
use an RBF kernel as in our previous experiments.

D.4.2. LINEAR EVALUATION

For all experiments (ImageNet100 excepted), we perform linear evaluation by encoding the original training set (without
augmentation) and by training a logistic regression on these features. We cross-validate an ℓ2 penalty term between
{0, 1e− 2, 1e− 3, 1e− 4, 1e− 5} for training this linear probe for 300 epochs with an initial learning rate 0.1 decayed by
0.1 at each plateau.

ImageNet100. On this dataset, we follow current practice (Yeh et al., 2022) and we train a linear classifier on top of the
frozen encoder by applying the same augmentations as in pre-training. We train the classifier with SGD (momentum 0.9 and
weight decay 0), batch size 512, initial learning rate 0.1 for 150 epochs (decayed by 0.1 at each plateau).

E. Proofs
E.1. Estimation error with the empirical Decoupled Uniformity loss

Property 1. L̂de
unif (f) fulfills |L̂de

unif (f)− Lde
unif (f)| ≤ O

(
1√
n

)
with a convergence in law.

PROOF. For any x ∈ X , since f(x) ∈ Sd−1, then ||µx̄|| = ||EA(x|x̄)f(x)|| ≤ EA(x|x̄)||f(x)|| = 1. As a result,

e−||µx̄−µx̄′ ||2 ∈ I
def
= [e−4, 1] for any x̄, x̄′ ∈ X̄ . Since log is k-Lipschitz on I then:

|L̂de
unif (f)− Lde

unif (f)| ≤ k

∣∣∣∣∣∣ 1

n(n− 1)

∑
i ̸=j

e−||µx̄i
−µx̄j

||2 − Ep(x̄)p(x̄′)e
−||µx̄−µx̄′ ||2

∣∣∣∣∣∣
For a fixed x̄ ∈ X̄ , let gn(x̄) = 1

n

∑n
i=1 e

−||µx̄−µx̄i
||2 and g(x̄) = Ep(x̄′)e

−||µx̄−µx̄′ ||2 . Since (Zi)i∈[1..n] =(
e−||µx̄−µX̄i

||2 − g(x̄)
)
i∈[1..n]

are iid with bounded support in [−2, 2] and zero mean then by Berry–Esseen theorem

we have |gn(x̄)− g(x̄)| ≤ O( 1√
n
). Similarly, (Z ′

i)i∈[1..n] =
(
gn(X̄i)− Ep(x̄)gn(x̄)

)
are iid, bounded in [−2, 2] and with

zero mean. So | 1n
∑n

i=1 gn(x̄i)− Ep(x̄)gn(x̄)| ≤ O( 1√
n
) by Berry–Esseen theorem. Then we have:

|L̂de
unif (f)− Lde

unif (f)| ≤ k| n

(n− 1)n

n∑
i=1

gn(x̄i)− Ep(x̄)g(x̄)|

≤ 2k| 1
n

n∑
i=1

gn(x̄i)− Ep(x̄)gn(x̄) + Ep(x̄)gn(x̄)− Ep(x̄)g(x̄)|

≤ O(
1√
n
) +O(

1√
n
) ≤ O(

1√
n
)

6https://github.com/PyTorchLightning/pytorch-lightning
7The official model is available here:https://github.com/marshuang80/gloria
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E.2. Gradient analysis of Decoupled Uniformity

Proof. We start from the definition of our loss to derive the gradients: L̂de
unif = log 1

n(n−1)

∑
j,i ̸=j exp(−||µi − µj ||2) for

a batch of n samples (x̄i)i∈[1..n] and we abuse the notation µi = µx̄i
. Then we have:

∇µk
Lde
unif =

1
n(n−1)

∑
j,i ̸=j ∇µk

exp(−||µi − µj ||2)
1

n(n−1)

∑
j,i ̸=j exp(−||µi − µj ||2)

=
2
∑

j ̸=k e
−||µk−µj ||2(−2(µk − µj))∑
j,i ̸=j e

−||µi−µj ||2

= −4
∑
j ̸=k

wk,j(µk − µj)

= −4wkµk + 4
∑
j ̸=k

wk,jµj

We conclude that ∇
z
(v)
k

Lde
unif = −2wkµk + 2

∑
j ̸=k wk,jµj by noticing that ∂µk

∂z
(v)
k

= 1
2 for two views since µk =

1
2 (z

(1)
k + z

(2)
k ). The extension to multiple views V is straightforward and do not change our main analysis.

E.3. Optimality of Decoupled Uniformity

Theorem 1. (Optimality of Decoupled Uniformity) Given n points (x̄i)i∈[1..n] such that n ≤ d+ 1, the optimal decoupled
uniformity loss is reached when:

1. (Perfect uniformity) All centroids (µi)i∈[1..n] = (µx̄i
)i∈[1..n] make a regular simplex on the hyper-sphere Sd−1

2. (Perfect alignment) f is perfectly aligned, i.e ∀x, x′ iid∼ A(·|x̄i), f(x) = f(x′)

PROOF. We will use Jensen’s inequality and basic algebra to show these 2 properties. By triangular inequality, we have
||µi|| = ||Ex∼A(.|x̄i)f(x)|| ≤ E||f(x)|| = 1 since we assume f(x) ∈ Sd. So all (µi) are bounded by 1.

Let µ = (µi)i∈[1..n]. We have:

Γ(µ) :=

n∑
i,j=1

||µi − µj ||2 =
∑
i,j

||µi||2 + ||µj ||2 − 2µi · µj

≤
∑
i,j

(2− 2µi · µj)

= 2n2 − 2||
∑
i

µi||2 ≤ 2n2

with equality if and only if
∑n

i=1 µi = 0 and ∀i ∈ [1..n], ||µi|| = 1. By strict convexity of u→ e−u, we have:∑
i ̸=j

exp(−||µi − µj ||2) ≥ n(n− 1) exp

(
− Γ(µ)

n(n− 1)

)

≥ n(n− 1) exp

(
− 2n

n− 1

)
with equality if and only if all pairwise distance ||µi − µj || are equal (equality case in Jensen’s inequality for strict convex
function),

∑n
i=1 µi = 0 and ||µi|| = 1. So all centroids must form a regular n− 1-simplex inscribed on the hypersphere

Sd−1 centered at 0.

Finally, since ||µi|| = 1 then we have equality in the Jensen’s inequality ||µi|| = ||EA(x|x̄i)f(x)|| ≤ EA(x|x̄i)||f(x)|| = 1.
Since || · || is strictly convex on the hyper-sphere, then f must be constant on suppA(·|x̄i), for all x̄i so f must be perfectly
aligned.
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Theorem 5. (Asymptotical Optimality) When the number of samples is infinite n → ∞, then for any perfectly aligned
encoder f ∈ F that minimizes Ld

unif , the centroids µx̄ for x̄ ∼ p(x̄) are uniformly distributed on the hypersphere Sd−1.

PROOF. Let f ∈ F perfectly aligned. Then all centroids µx̄ = f(x̄) lie on the hypersphere Sd−1 and we are optimizing:

argmin
f

Lde
unif (f) = argmin

f
E
x̄,x̄′iid∼ p(x̄)

e−||f(x̄)−f(x̄′)||2

So a direct application of Proposition 1. in (Wang & Isola, 2020) shows that the uniform distribution on Sd−1 is the unique
solution to this problem and that all centroids are uniformly distributed on the hyper-sphere.

E.4. Optimality of the supervised loss

Lemma 6. Let a downstream task D with C classes. We assume that C ≤ d + 1 (i.e., a big enough representation
space), that all classes are balanced and the realizability of an encoder f∗ = argminf∈F Lsup(f) with Lsup(f) =

logEy,y′∼p(y)p(y′)e
−||µy−µy′ ||2 , and µy = Ep(x̄|y)µx̄. Then the optimal centroids (µ∗

y)y∈Y associated to f∗ make a regular
simplex on the hypersphere Sd−1 and they are perfectly linearly separable, i.e min(wy)y∈Y∈Rd E(x̄,y)∼D1(wy · µ∗

y < 0) = 0.

PROOF. This proof is very similar to the one in Theorem 4. We first notice that all ”labelled” centroids µy = Ep(x̄|y)µx̄

are bounded by 1 (||µy|| ≤ Ep(x̄|y)EA(x|x̄)||f(x)|| = 1 by Jensen’s inequality applied twice). Then, since all classes are
balanced, we can re-write the supervised loss as:

Lsup(f) = log
1

C2

C∑
y,y′=1

e−||µy−µy′ ||2

We have:

ΓY(µ) :=

C∑
y,y′=1

||µy − µy′ ||2 =
∑
y,y′

||µy||2 + ||µy′ ||2 − 2µy · µy′

≤
∑
y,y′

(2− 2µy · µy′)

= 2C2 − 2||
∑
y

µy||2 ≤ 2C2

with equality if and only if
∑C

y=1 µy = 0 and ∀y ∈ [1..C], ||µy|| = 1. By strict convexity of u→ e−u, we have:∑
y ̸=y′

exp(−||µy − µy′ ||2) ≥ C(C − 1) exp

(
− ΓY(µ)

C(C − 1)

)

≥ C(C − 1) exp

(
− 2C

C − 1

)
with equality if and only if all pairwise distance ||µy − µy′ || are equal (equality case in Jensen’s inequality for strict
convex function),

∑C
y=1 µy = 0 and ||µy|| = 1. So all centroids must form a regular C − 1-simplex inscribed on

the hypersphere Sd−1 centered at 0. Furthermore, since ||µy|| = 1 then we have equality in the Jensen’s inequality
||µy|| = ||Ep(x̄|y)A(x|x̄)f(x)|| ≤ Ep(x̄|y)A(x|x̄)||f(x)|| = 1 so f must by perfectly aligned for all samples belonging to the
same class: ∀x̄, x̄′ ∼ p(·|y), f(x̄) = f(x̄′).

E.5. Generalization bounds for the Decoupled Uniformity loss

Theorem 7. (Guarantees for a given downstream task) For any f ∈ F and augmentation distribution A, we have:

Lde
unif (f) ≤ L

sup
unif (f) ≤ 2

d∑
j=1

Var(µj
x̄|y) + Lde

unif (f) ≤ 4Ep(x̄|y)p(x̄′|y)||µx̄ − µx̄′ ||+ Lde
unif (f) (9)

where Var(µj
x̄|y) = Ep(x̄|y)(µ

j
x̄ − Ep(x̄′|y)µ

j
x̄′)2 and µj

x̄ is the j-th component of µx̄ = EA(x|x̄)f(x).
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PROOF.

Lower bound. To derive the lower bound, we apply Jensen’s inequality to convex function u→ e−u:

expLde
unif (f) = Ep(x̄)p(x̄′)e

−||µx̄−µx̄′ ||2

= Ep(x̄|y)p(x̄′|y)p(y)p(y′)e
−||µx̄−µx̄′ ||2

≤ Ep(y)p(y′) exp
(
−Ep(x̄|y)p(x̄′|y′)||µx̄ − µx̄′ ||2

)
Then, by Jensen’s inequality applied to ||.||2:

Ep(x̄|y)p(x̄′|y′)||µx̄ − µx̄′ ||2 (1)
= Ep(x̄|y)||µx̄||2 + Ep(x̄′|y′)||µx̄′ ||2 − 2µy · µy′

≥ ||Ep(x̄|y)µx̄||2 + ||Ep(x̄′|y′)µx̄′ ||2 − 2µy · µy′

(1)
= ||µy − µy′ ||2

(1) follows by definition of µy . So we can conclude:

expLde
unif (f) ≤ Ep(y)p(y′) exp(−||µy − µy′ ||2) = expLsup

unif

Upper bound. For this bound, we will use the following equality (by definition of variance):

||Ep(x̄|y)µx̄||2 = ||Ep(x̄|y)µx̄||2 − Ep(x̄|y)||µx̄||2 + Ep(x̄|y)||µx̄||2

= −
d∑

j=1

Var(µj
x̄|y) + Ep(x̄|y)||µx̄||2

So we start by expending:

||µy − µy′ ||2 = ||Ep(x̄′|y′)µx̄′ ||2 + ||Ep(x̄|y)µx̄||2 − 2Ep(x̄|y)p(x̄′|y′)µx̄ · µx̄′

= Ep(x̄|y)||µx̄||2 + Ep(x̄′|y′)||µx̄′ ||2 −

 d∑
j=1

Var(µj
x̄|y) + Var(µj

x̄′ |y)

− 2Ep(x̄|y)p(x̄′|y′)µx̄ · µx̄′

= Ep(x̄|y)p(x̄′|y′)||µx̄ − µx̄′ ||2 − 2

 d∑
j=1

Var(µj
x̄|y)


So by applying again Jensen’s inequality:

expLsup
unif = Ep(y)p(y′) exp(−||µy − µy′ ||2) ≤ Ep(y)p(y′) exp

−Ep(x̄|y)p(x̄′|y′)||µx̄ − µx̄′ ||2 + 2

 d∑
j=1

Var(µj
x̄|y)


≤ exp 2

 d∑
j=1

Var(µj
x̄|ym)

Ep(y)p(y′) exp
(
−Ep(x̄|y)p(x̄′|y′)||µx̄ − µx̄′ ||2

)

= exp 2

 d∑
j=1

Var(µj
x̄|ym)

 expLde
unif

We set ym = argmaxi,y∈[1..d]×Y Var(µj
x̄|y) We conclude here by taking the log on the previous inequality.
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Variance upper bound. Starting from the definition of conditional variance:

d∑
j=1

Var(µj
x̄|ym) = Ep(x̄|ym)||µx̄||2 − ||Ep(x̄|ym)µx̄||2

= Ep(x̄|ym)

(
(||µx̄|| − ||Ep(x̄|ym)µx̄||)(||µx̄||+ ||Ep(x̄|ym)µx̄||)

)
(1)

≤ Ep(x̄|ym)||µx̄ − Ep(x̄′|ym)µx̄′ ||(||µx̄||+ ||Ep(x̄|ym)µx̄||)
(2)

≤ 2Ep(x̄|ym)||µx̄ − Ep(x̄′|ym)µx̄′ ||
(3)

≤ 2Ep(x̄|ym)p(x̄′|ym)||µx̄ − µx̄′ ||

(1) Follows from standard inequality ||a − b|| ≥ |||a|| − ||b||| (from Cauchy-Schwarz). (2) follows from boundness of
||µx̄|| ≤ 1 and Jensen’s inequality. (3) is again Jensen’s inequality.

E.6. Generalization bound under intra-class connectivity assumption

Theorem 2. Assuming 1, then for any ϵ-weak aligned encoder f ∈ F :

Lde
unif (f) ≤ L

sup
unif (f) ≤ 8Dϵ+ Ld

unif (f) (10)

Where D is the maximum diameter of all intra-class graphs Gy (y ∈ Y).

PROOF. Let y ∈ Y and x̄, x̄′ ∼ p(x̄|y)p(x̄′|y). By Assumption 1, it exists a path of length p ≤ D connecting (x̄, x̄′) in
Gy. So it exists (x̄i)i∈[1..p+1] ∈ X̄ and (xi)i∈[1..p]∈X s.t ∀i ∈ [1..p], xi ∼ A(xi|x̄i) ∩ A(xi|x̄i+1), x̄1 = x̄ and x̄p+1 = x̄′.
Then:

||µx̄ − µx̄′ || = ||µx̄1
− µx̄p

||

= ||
p∑

i=1

µx̄i+1 − µx̄i ||

≤
p∑

i=1

||µx̄i+1
− µx̄i

||

=

p∑
i=1

||µx̄i+1 − f(xi) + f(xi)− µx̄i ||

≤
p∑

i=1

||µx̄i+1
− f(xi)||+ ||f(xi)− µx̄i

||

(1)

≤
p∑

i=1

Ep(x|x̄i+1)||f(x)− f(xi)||+ Ep(x|x̄i)||f(xi)− f(x)||

(2)

≤
p∑

i=1

(ϵ+ ϵ) = 2ϵp ≤ 2ϵD

(1) follows from Jensen’s inequality and by definition of µx̄. (2) follows because f is ϵ-weak aligned and xi ∼ A(xi|x̄i) ∩
A(xi|x̄i+1).

So we have ||µx̄ − µx̄′ || ≤ 2ϵD and we can conclude by Theorem 7 (right inequality).

E.7. Conditional Mean Embedding Estimation

Theorem 3. (Conditional Mean Embedding estimation) Let f ∈ F fixed. We assume that ∀g ∈ HX ,Ep(x|·)g(x) ∈ HX̄ .
Let {(x1, x̄1), ..., (xn, x̄n)} iid samples fromA(x|x̄)p(x̄). Let Φn = [ϕ(x̄1), ..., ϕ(x̄n)] and Ψf = [f(x1), ..., f(xn)]

T . An
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estimator of the conditional mean embedding is:

∀x̄ ∈ X̄ , µ̂x̄ =

n∑
i=1

αi(x̄)f(xi) (11)

where αi(x̄) =
∑n

j=1[(Φ
T
nΦn + λnIn)

−1]ij⟨ϕ(x̄j), ϕ(x̄)⟩HX̄
. It converges to µx̄ with the ℓ2 norm at a rate O(n−1/4) for

λ = O( 1√
n
).

PROOF. Let mx̄ = EA(x|x̄)⟨f(x), f(·)⟩ ∈ HX be the conditional mean embedding operator. According to Theorem 6 in
(Song et al., 2013) and the assumption ∀g ∈ HX ,Ep(x|·)g(x) ∈ HX̄ , this estimator can be approximated by:

m̂x̄ =

n∑
i=1

αi(x̄)⟨f(xi), f(·)⟩

with αi defined previously in the theorem. This estimator converges with RKHS norm to mx̄ at rate O( 1√
nλ

+ λ). So we
need to link mx̄, m̂x̄ with µx̄, µ̂x̄. We have:

⟨mx̄, m̂x̄⟩HX =

〈
Ep(x|x̄)⟨f(x), f(·)⟩Rd ,

n∑
i=1

αi(x̄)⟨f(xi), f(·)⟩Rd

〉
HX

=

n∑
i=1

αi(x̄)
〈
⟨Ep(x|x̄)f(x), f(·)⟩Rd , ⟨f(xi), f(·)⟩Rd

〉
HX

(1)
=

n∑
i=1

αi(x̄)⟨Ep(x|x̄)f(x), f(xi)⟩Rd

= ⟨µx̄, µ̂x̄⟩Rd

(1) holds by the reproducing property of kernel KX inHX . We can similarly obtain:

||mx̄||2HX
=

〈
Ep(x|x̄)⟨f(x), f(·)⟩Rd ,Ep(x|x̄)⟨f(x), f(·)⟩Rd

〉
HX

(1)
= ⟨Ep(x|x̄)f(x),Ep(x|x̄)f(x)⟩Rd

= ||Ep(x|x̄)f(x)||2 = ||µx̄||2

Again, (1) by reproducing property of KX . And finally:

||m̂x̄||2HX
=

〈
n∑

i=1

αi(x̄)⟨f(xi), f(·)⟩Rd ,

n∑
i=1

αi(x̄)⟨f(xi), f(·)⟩Rd

〉
HX

=
∑
i,j

αi(x̄)αj(x̄)⟨f(xi), f(xj)⟩Rd

= ||µ̂x̄||2Rd

By pooling these 3 equalities, we have:

||mx̄ − m̂x̄||2HX
= ||mx̄||2 + ||m̂x̄||2 − 2⟨mx̄, m̂x̄⟩
= ||µx̄||2 + ||µ̂x̄||2 − 2⟨µx̄, µ̂x̄⟩
= ||µx̄ − µ̂x̄||2Rd

We can conclude since ||mx̄ − m̂x̄|| ≤ O(λ+ (nλ)−1/2).

25



Integrating Prior Knowledge in Contrastive Learning with Kernel

E.8. Generalization bound under extended intra-class connectivity hypothesis

Theorem. Assuming 2 and 1 holds for a reproducible kernel KX̄ and augmentation distribution A. Let f ∈ F ϵ′-aligned.
Let (x̄i)i∈[1..n] be n samples iid drawn from p(x̄). We have:

Lde
unif (f) ≤ L

sup
unif (f) ≤ L

de
unif (f) + 4D(2ϵ′ + βn(KX̄ )ϵ) +O(n−1/4) (12)

where βn(KX̄ ) = (λmin(Kn)√
n

+
√
nλ)−1 = O(1) for λ = O( 1√

n
), Kn = (KX̄ (x̄i, x̄j))i,j∈[1..n]and D is the maximal

diameter for all G̃y , y ∈ Y . We noted λmin(Kn) is the minimal eigenvalue of Kn.

PROOF. Let y ∈ Y and x̄, x̄′ ∼ p(x̄|y)p(x̄′|y). By Assumption 1, it exists a path of length p ≤ D connect-
ing x̄, x̄′ in G̃. So it exists (ūi)i∈[1..p+1] ∈ X̄ and (ui)i∈I ∈ X s.t ∀i ∈ I, ui ∼ A(ui|ūi) ∩ A(ui|ūi+1) and
∀j ∈ J,max(K(ūj , ūj),K(ūj+1, ūj+1)) − K(ūj , ūj+1) ≤ ϵ with (I, J) a partition of [1..p]. Furthermore, ū1 = x̄
and ūp+1 = x̄′. As a result, we have:

||µx̄ − µx̄′ || = ||µū1
− µūp

||

= ||
p∑

i=1

µūi+1 − µūi ||

≤
p∑

i=1

||µūi+1
− µūi

||

=
∑
i∈I

||µūi+1
− µūi

||+
∑
j∈J

||µūj+1
− µūj

||

Edges in E. As in proof of Theorem 1, we use the ϵ′-alignment of f to derive a bound:∑
i∈I

||µūi+1
− µūi

|| =
∑
i∈I

||µūi+1
− f(ui) + f(ui)− µūi

||

≤
∑
i∈I

||µūi+1 − f(ui)||+ ||f(ui)− µūi ||

(1)

≤
∑
i∈I

Ep(u|ūi+1)||f(u)− f(ui)||+ Ep(u|ūi)||f(ui)− f(u)||

(2)

≤
∑
i∈I

(ϵ′ + ϵ′) = 2ϵ′|I|

(1) holds by Jensen’s inequality and (2) because f is ϵ′-aligned.

Edges in EK For this bound, we will use Theorem 2 to approximate µū and then derive a bound from the property of Gϵ
K .

Let (xk)k∈[1.n] ∼ p(xk|x̄k) n samples iid. By Theorem 2, we know that, for all j ∈ J , µ̂ūj
converges to µūj

with ℓ2 norm
at rate O(n−1/4) where µ̂ūj

=
∑n

k,l=1 αk,lKX̄ (x̄l, ūj)f(xk) and αk,l = [(Kn + nλIn)
−1]k,l. As a result, for any j ∈ J ,

we have:

||µūj+1
− µūj

|| = ||µūj+1
− µ̂ūj+1

+ µ̂ūj+1
− µ̂ūj

+ µ̂ūj
− µūj

||

≤ ||µūj+1 − µ̂ūj+1 ||+ ||µ̂ūj+1 − µ̂ūj ||+ ||µ̂ūj − µūj ||
(1)

≤ O

(
1

n1/4

)
+ ||µ̂ūj+1 − µ̂ūj ||

Where (1) holds by Theorem 2. Then we will need the following lemma to conclude:

Lemma. For any a, b, c ∈ X̄ ,max(K(a, a),K(b, b))−K(a, b) ≥ |K(a, c)−K(b, c)| for any reproducible kernel K.

PROOF. Let a, b, c ∈ X̄ . We consider the distance d(x, y) = K(x, x) +K(y, y)− 2K(x, y) (it is a distance since K is a
reproducible kernel so it can be expressed as K(·, ·) = ⟨ϕ(·), ϕ(·)⟩). We will distinguish two cases.
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Case 1. We assume K(a, c) ≥ K(b, c). We have the following triangular inequality:

d(a, b) + d(a, c) ≥ d(b, c)

=⇒ K(a, b) +K(b, b)− 2K(a, b) +K(a, a) +K(c, c)− 2K(a, c) ≥ K(b, b) +K(c, c)− 2K(b, c)

=⇒ K(a, a)−K(a, b) ≥ K(a, c)−K(b, c) ≥ 0

So max(K(a, a),K(b, b))−K(a, b) ≥ |K(a, c)−K(b, c)|.

Case 2. We assume K(b, c) ≥ K(a, c). We apply symmetrically the triangular inequality:

d(a, b) + d(b, c) ≥ d(a, c)

=⇒ K(b, b)−K(a, b) ≥ K(b, c)−K(a, c) ≥ 0

So max(K(a, a),K(b, b))−K(a, b) ≥ |K(a, c)−K(b, c)|, concluding the proof.

Then, by definition of µ̂ūj :

||µ̂ūj+1
− µ̂ūj

|| = ||
n∑

k,l=1

αk,lK(x̄l, ūj+1)f(xk)−
n∑

k,l=1

αk,lK(x̄l, ūj)f(xk)||

= ||AC||

Where A = (
∑n

k=1 αkjf(xk)
i)i,j ∈ Rd×n (f(·)i is the i-th component of f(·)) and C = (K(x̄l, ūj+1) −K(x̄l, ūj))l ∈

Rn×1. So, using the property of spectral ℓ2 norm we have:

||µ̂ūj+1 − µ̂ūj || = ||AC|| ≤ ||A||2||C||2

Using the previous lemma and because (ūj , ūj+1) ∈ EK , we have: ||C||22 =
∑n

i=1(K(x̄i, ūj+1) − K(x̄i, ūj))
2 ≤∑n

i=1(max(K(ūj+1, ūj+1),K(ūj , ūj))−K(ūj , ūj+1))
2 ≤ nϵ2 . To conclude, we will prove that ||A||2 ≤ ||α||2 where

α = (αij)i,j∈[1..n]2 . For any v ∈ Rn, we have:

||Av||2 = ||
n∑

k,j=1

αk,jvjf(xk)||2
(1)

≤

 n∑
k,j=1

αk,jvj

2

= ||αv||2
(2)

≤ ||α||22||v||2

Where (1) holds with Cauchy-Schwarz inequality and because f(·) ∈ Sd−1 and (2) holds by definition of spectral ℓ2 norm.
So we have ∀v ∈ Rd, ||Av|| ≤ ||α||2||v||, showing that ||A||2 ≤ ||α||2.

So we can conclude that:∑
j∈J

||µūj+1
− µūj

|| ≤
∑
j∈J

(√
n||(Kn + λnIn)

−1||2ϵ+O(n−1/4)
)
= |J |||(Kn + nλIn)

−1||2
√
nϵ+O(n−1/4)

We set βn(Kn) =
√
n||(Kn + λnIn)

−1||2. In order to see that βn(Kn) = (λmin(Kn)√
n

+
√
nλ)−1 with λmin(Kn) > 0

the minimum eigenvalue of Kn, we apply the spectral theorem on the symmetric definite-positive kernel matrix Kn. Let
0 < λ1 ≤ λ2 ≤ ... ≤ λn the eigenvalues of Kn. According to the spectral theorem, it exists U an unitary matrix such that
Kn = UDUT with D = diag(λ1, ..., λn). So, by definition of spectral norm:

||(Kn + nλIn)
−1||22 = λmax

(
U(D + nλIn)

−1UTU(D + λnIn)
−1UT

)
= λmax(UD̃UT )

= (λ1 + nλ)−2

where D̃ = diag( 1
(λ1+nλ)2 , ...,

1
(λn+nλ)2 ). So we can conclude that βn(Kn) = ( λ1√

n
+
√
nλ)−1 = O(1) for λ = O( 1√

n
).
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Finally, by pooling inequalities for edges over E and EK , we have:

||µx̄ − µx̄′ || ≤ 2ϵ′|I|+ |J |βn(Kn)ϵ+O(n−1/4) ≤ D(2ϵ′ + βn(Kn)ϵ) +O(n−1/4)

We can conclude by plugging this inequality in Theorem 7.

Theorem 4. We assume 1 and 2 hold for a reproducible kernel KX̄ and augmentation distribution A. Let (xi, x̄i)i∈[1..n] ∼
A(xi, x̄i) iid samples. Let µ̂x̄j

=
∑n

i=1 αi,jf(xi) with αi,j = ((Kn + λIn)
−1Kn)ij and Kn = [KX̄ (x̄i, x̄j)]i,j∈[1..n].

Then the empirical decoupled uniformity loss L̂de
unif

def
= log 1

n(n−1)

∑n
i,j=1 exp(−||µ̂x̄i − µ̂x̄j ||2) verifies, for any ϵ′-weak

aligned encoder f ∈ F :

L̂de
unif −O

(
1

n1/4

)
≤ Lsup

unif (f) ≤ L̂
de
unif + 4D(2ϵ′ + βn(KX̄ )ϵ) +O

(
1

n1/4

)
(13)

PROOF. We just need to prove that, for any f ∈ F , |Lde
unif (f)− L̂de

unif (f)| ≤ O(n−1/4) and we can conclude through the
previous theorem. We have:

|Lde
unif (f)− L̂de

unif (f)| =

∣∣∣∣∣∣log 1

n(n− 1)

n∑
i,j=1

exp(−||µ̂x̄i
− µ̂x̄j

||2)− Ep(x̄)p(x̄′)e
−||µx̄−µx̄′ ||2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣log 1

n(n− 1)

n∑
i,j=1

exp(−||µ̂x̄i
− µ̂x̄j

||2)− log
1

n(n− 1)
e−||µx̄i

−µx̄j
||2

∣∣∣∣∣∣
+

∣∣∣∣log 1

n(n− 1)
e−||µx̄i

−µx̄j
||2 − Ep(x̄)p(x̄′)e

−||µx̄−µx̄′ ||2
∣∣∣∣

The second term in last inequality is bounded by O( 1√
n
) according to property 1. As for the first term, we use the fact that

log is k-Lipschitz continuous on [e−4, 1] and exp is k′-Lipschitz continuous on [−4, 0] so:∣∣∣∣∣∣log 1

n(n− 1)

n∑
i,j=1

e−||µ̂x̄i
−µ̂x̄j

||2 − log
1

n(n− 1)
e−||µx̄i

−µx̄j
||2

∣∣∣∣∣∣ ≤ k

n(n− 1)

∣∣∣∣∣∣
n∑

i,j=1

e−||µ̂x̄i
−µ̂x̄j

||2 − e−||µx̄i
−µx̄j

||2

∣∣∣∣∣∣
≤ kk′

n(n− 1)

∣∣∣∣∣∣
n∑

i,j=1

||µ̂x̄i − µ̂x̄j ||2 − ||µx̄i − µx̄j ||2
∣∣∣∣∣∣

Finally, we conclude using the boundness of µ̂x̄ and µx̄ by a constant C:

||µ̂x̄i
− µ̂x̄j

||2 − ||µx̄i
− µx̄j

||2 = (||µ̂x̄i
− µ̂x̄j

||+ ||µx̄i
− µx̄j

||)(||µ̂x̄i
− µ̂x̄j

|| − ||µx̄i
− µx̄j

||)
≤ 4C(||µ̂x̄i

− µ̂x̄j
|| − ||µx̄i

− µx̄j
||)

≤ 4C||µ̂x̄i
− µ̂x̄j

− (µx̄i
− µx̄j

)||
≤ 4C(||µ̂x̄i

− µx̄i
||+ ||µ̂x̄j

− µx̄j
||)

= O

(
1

n−1/4

)
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