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Abstract

Providing generalization guarantees for modern
neural networks has been a crucial task in sta-
tistical learning. Recently, several studies have
attempted to analyze the generalization error in
such settings by using tools from fractal geom-
etry. While these works have successfully in-
troduced new mathematical tools to apprehend
generalization, they heavily rely on a Lipschitz
continuity assumption, which in general does not
hold for neural networks and might make the
bounds vacuous. In this work, we address this
issue and prove fractal geometry-based general-
ization bounds without requiring any Lipschitz
assumption. To achieve this goal, we build up on
a classical covering argument in learning theory
and introduce a data-dependent fractal dimension.
Despite introducing a significant amount of techni-
cal complications, this new notion lets us control
the generalization error (over either fixed or ran-
dom hypothesis spaces) along with certain mutual
information (MI) terms. To provide a clearer in-
terpretation to the newly introduced MI terms, as
a next step, we introduce a notion of ‘geometric
stability’ and link our bounds to the prior art. Fi-
nally, we make a rigorous connection between the
proposed data-dependent dimension and topologi-
cal data analysis tools, which then enables us to
compute the dimension in a numerically efficient
way. We support our theory with experiments
conducted on various settings.
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1. Introduction
Understanding the generalization properties of modern neu-
ral networks has been one of the major challenges in sta-
tistical learning theory over the last decade. In a classical
supervised learning setting, this task boils down to under-
standing the so-called generalization error, which arises
from the population risk minimization problem, given as
follows:

min
w∈Rd

{
R(w) := E

z∼µz

[ℓ(w, z)] := E
(x,y)∼µz

[L(hw(x), y)]
}
,

where x ∈ X denotes the features, y ∈ Y denotes the
labels, Z = X × Y denotes the data space endowed with
an unknown probability measure µz , referred to as the data
distribution, hw : X −→ Y denotes a parametric predictor
with w ∈ Rd being its parameter vector, L : Y × Y −→
R denotes the loss function, and ℓ is the composition of
the loss and the predictor, i.e. ℓ(w, z) = ℓ(w, (x, y)) =
L(hw(x), y), which will also be referred to as ‘loss’, with a
slight abuse of notation. As µz is unknown, in practice one
resorts to the minimization of the empirical risk, given as
follows:

R̂S(w) :=
1

n

n∑
i=1

ℓ(w, zi), (1)

where S := (zi)1≤i≤n ∼ µ⊗n
z is a set of independent and

identically distributed (i.i.d.) data points. Then, our goal is
to bound the worst-case generalization error that is defined
as the gap between the population and empirical risk over a
(potentially random) hypothesis set W ⊂ Rd:

G(S) := sup
w∈W

(
R(w)− R̂S(w)

)
. (2)

In the context of neural networks, one peculiar observa-
tion has been that, even when a network contains millions
of parameters (i.e., d ≫ 1), it might still generalize well
(Zhang et al., 2017), despite accepted wisdom suggesting
that typically G ≈

√
d/n (Anthony & Barlett, 1999).

To provide a theoretical understanding for this behavior,
several directions have been explored, such as compression-
based approaches (Arora et al., 2018; Suzuki et al., 2020;
Barsbey et al., 2021) and the approaches focusing on the
double-descent phenomenon (Belkin et al., 2019; Nakki-
ran et al., 2019). Recently, there has been an increasing
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interest in examining the role of ‘algorithm dynamics’ on
this phenomenon. In particular, it has been illustrated that,
in the case where a stochastic optimization algorithm is
used for minimizing (1), the optimization trajectories can
exhibit a fractal structure (Şimşekli et al., 2021; Camuto
et al., 2021; Birdal et al., 2021; Hodgkinson et al., 2022).
Under the assumption that ℓ is uniformly bounded by some
B and uniformly L-Lipschitz with respect to w, their results
informally implies the following: with probability 1− ζ , we
have that

G ≲ LB

√
d̄(W) + I∞(W, S) + log(1/ζ)

n
, (3)

where W is a data-dependent hypothesis set, which is pro-
vided by the learning algorithm, d̄(W) is a notion of fractal
dimension of W , and I∞(W, S) denotes the total mutual
information between the data S and the hypothesis set W .
These notions will be formally defined in Section 21. In
the case where the intrinsic dimension d̄(W) is significantly
smaller than the ambient dimension d (which has been em-
pirically illustrated in (Şimşekli et al., 2021; Birdal et al.,
2021)), the bound in (3) provides an explanation on why
overparameterized networks might not overfit in practice.

While these bounds have brought a new perspective on un-
derstanding generalization, they also possess an important
drawback, that is they all rely on a uniform Lipschitz con-
tinuity assumption on ℓ (with respect to the parameters),
which is too strict to hold for deep learning models. While
it is clear that we cannot expect Lipschitz continuity of a
neural network when the parameter space is unbounded,
Herrera et al. (2020) showed that, even for the bounded do-
mains, the Lipschitz constants of fully connected networks
are typically polynomial in the width, exponential in depth
which may be excessively large in practical settings; hence
might make the bounds vacuous.

The Lipschitz assumption is required in (Şimşekli et al.,
2021; Birdal et al., 2021; Camuto et al., 2021) as it enables
the use of a fractal dimension defined through the Euclidean
distance on the hypothesis set W (which is independent
of the data). Hence, another downside of the Lipschitz as-
sumption is that the Euclidean distance-based dimension
unfortunately ignores certain important components of the
learning problem, such as the how the loss ℓ behaves over W .
As shown in (Jiang et al., 2019) in the case sharpness mea-
sures (Keskar et al., 2017), which measure the sensitivity of
the empirical risk around local minima and correlate well
with generalization, the data-dependence may improve the
ability of a complexity measure to explain generalization.

1In (Şimşekli et al., 2021; Camuto et al., 2021) the bound is
logarithmic inL. (Şimşekli et al., 2021) only requires sub-gaussian
losses while (Camuto et al., 2021) requires sub-exponential losses.
Their common points is to require a Lipschitz assumption.

1.1. Contributions

In this study, our main goal is to address the aforementioned
issues by proving fractal geometric generalization bounds
without requiring any Lipschitz assumptions. Inspired by a
classical approach for bounding the Rademacher complexity
(defined formally in Appendix A.2), we achieve this goal
by making use of a data-dependent pseudo-metric on the
hypothesis set W . Our contributions are as follows:

• We prove bounds (Theorems 3.4 and 3.5) on the worst-
case generalization error of the following form:

G ≲ B

√
d̄S(W) + I + log(1/ζ)

n
, (4)

where d̄S denotes a notion of data-dependent fractal di-
mension and I is a (total) mutual information term (see
Section 2.2). As opposed to prior work, this bound does
not require any Lipschitz assumption and therefore applies
to more general settings. However, this improvement
comes with the expense of having a more complicated
mutual information term compared to the one in (3).

• To provide more understanding about the newly intro-
duced mutual information term I and highlight its links to
prior work, we introduce a notion of ‘geometric stability’
and without requiring Lipschitz continuity, we prove an
almost identical bound to the one in Equation (3) (with a
potentially slightly worse rate in n).

• In order to be able to compute the data-dependent fractal
dimension, we build on (Birdal et al., 2021) and prove that
our dimension can also be computed by using numerically
efficient topological data analysis tools (Carlsson, 2014;
Pérez-Fernández et al., 2021).

Finally, we illustrate our bounds on experiments using var-
ious neural networks. In addition to not requiring Lip-
schitz continuity, we show that our data-dependent di-
mension provides improved correlations with the actual
generalization error. All the proofs are provided in the
Appendix. Python code for numerical experiments is
available at https://github.com/benjiDupuis/
data_dependent_dimensions.

2. Technical Background
2.1. Learning framework

We formalize the learning algorithm as follows. The data
(probability) space is denoted by (Z,F , µz)

2. A learning
algorithm A is a map generating a random closed set WS,U

(see (Molchanov, 2017, Definition 1.1.1)) from the data
S and an external random variable U accounting for the
randomness of the learning algorithm. The external random-

2For technical measure-theoretic reasons (see Section A.6), it
is best to assume Z ⊆ RN for some N .
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nessU takes values in some probability space (ΩU ,FU , µu),
which means that U is FU -measurable and has distribu-
tion µu. Moreover, we assume that U is independent of S.
Therefore if we write CL(Rd) for the class of closed sets of
Rd endowed with the Effrös σ-algebra, as in (Molchanov,
2017), the algorithm will be thought as a measurable map:

A :

∞⋃
n=0

Zn × ΩU → CL(Rd) ∋ WS,U . (5)

This formulation encompasses several settings, such as the
following two examples.
Example 2.1. Given a continuous time process of the form
dWt = −∇f(Wt)dt+Σ(Wt)dXt where Xt is typically a
Brownian motion or a Lévy process, as considered in vari-
ous studies (Mandt et al., 2016; Chaudhari & Soatto, 2018;
Hu et al., 2018; Jastrzebski et al., 2018; Şimşekli et al.,
2021), we can view WS,U as the set of points of the trajec-
tory {Wt, t ∈ [0, T ]}, where U accounts for randomness
coming from quantities defining the model like Xt.
Example 2.2. Consider a neural network hw(·) and denote
the output of the stochastic gradient descent (SGD) iterates
byA(x0, S, U), where U accounts for random batch indices
and x0 is the initialization. This induces a learning algo-
rithm WS,U =

⋃
x0∈X0

{A(x0, S, U)}, which is closed if
X0 is compact under a continuity assumption on A.

2.2. Information theoretic quantities

Recently, one popular approach to prove generalization
bounds has been based on information theory. In this con-
text, Xu & Raginsky (2017); Russo & Zou (2019) proved
particularly interesting generalization bounds in terms of
the mutual information between input and output of the
model. Other authors refined this argument in various set-
tings (Pensia et al., 2018; Negrea et al., 2019; Steinke &
Zakynthinou, 2020; Harutyunyan et al., 2021) while Asadi
et al. (2019) combined mutual information and chaining to
tighten the bounds. In our work we will use the total mutual
information to specify the dependence between the data and
the fractal properties of the hypothesis set.

The classic mutual information between two random ele-
ments X and Y is defined in terms of the Kullback-Leibler
(KL) divergence I(X,Y ) := KL(PX,Y ||PX ⊗ PY ). It is
well known that mutual information can be used as a de-
coupling tool (Xu & Raginsky, 2017); yet, in our setup, we
will need to consider the total mutual information, which is
defined as follows, PX denoting the law of the variable X:

I∞(X,Y ) := log

(
sup
B

PX,Y (B)

PX ⊗ PY (B)

)
. (6)

Hodgkinson et al. (2022) used total mutual information
to decouple the data and the optimization trajectory, they
defined it as a limit of α-mutual information, which is equiv-
alent, see (van Erven & Harremoës, 2014, Theorem 6).

2.3. The upper box-counting dimension

Fractal geometry (Falconer, 2014) and dimension theory
have been successful tools in the study of dynamical systems
and stochastic processes (Pesin, 1997; Xiao, 2004). In our
setting, we will be interested in the upper box-counting
dimension, defined as follows. Given a (pseudo-)metric
space (X, ρ) and δ > 0, we first define the closed δ-ball
centered in x ∈ X by Bρ

δ (x) = {y ∈ X, ρ(x, y) ≤ δ} and
a minimal covering Nρ

δ (X) as a minimal set of points of X
such that X ⊂

⋃
y∈Nρ

δ (X)B
ρ
δ (y). We can then define the

upper box-counting dimension as follows:

dim
ρ

B(X) := lim sup
δ→0

log |Nρ
δ (X)|

log(1/δ)
, (7)

where |A| denotes the cardinality of a set A.

Under the Lipschitz loss assumption, Şimşekli et al. (2021);
Birdal et al. (2021); Camuto et al. (2021); Hodgkinson
et al. (2022) related different kinds of fractal dimen-
sions, computed with the Euclidean distance ρ(w,w′) =
Eucl(w,w′) := ∥w − w′∥2, to the generalization error.
Our approach in this study will be based on using a data-
dependent pseudo-metric ρ, which will enable us to remove
the Lipschitz assumption.

3. Main Results
In this section we present our main theoretical results; our
aim is to relate the worst-case generalization error of (5)
with the upper box-counting dimension computed based on
the following random pseudo-metric:

ρS(w,w
′) :=

1

n

n∑
i=1

|ℓ(w, zi)− ℓ(w′, zi)|. (8)

We insist on the fact that it is only a pseudo-metric because
in practice we can have ρS(w,w′) = 0 while w ̸= w′, for
example due to the internal symmetries of a neural network.

3.1. Main assumptions

A key component of our work is that we do not use any
Lipschitz assumption on ℓ as for example in (Şimşekli et al.,
2021; Hodgkinson et al., 2022). The only regularity assump-
tion we impose is the following:
Assumption 3.1. The loss ℓ : Rd ×Z −→ R is continuous
in both variables and uniformly bounded by some B > 0.

We note that the box-counting dimension with respect to the
pseudo-metric (8) involves minimal coverings, which we de-
note NρS

δ (A) for some set A. The boundedness assumption
is essential to ensure that minimal coverings are finite and
dim

ρS

B is also finite. Therefore our boundedness assump-
tion cannot be replaced with a subgaussian assumption, as
opposed to (Şimşekli et al., 2021).
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We also assume that we can construct minimal cover-
ings which are random closed (finite) sets in the sense of
(Molchanov, 2017, Definition 1.1.1); this is made precise
with the following assumption:
Assumption 3.2. LetC ⊂ Rd be any closed set, δ > 0, S ∈
Zn and S′ ∈ Zm. We can construct minimal δ-coverings
N

ρS′
δ (C ∩WS,U ) which are random finite sets with respect

to the product σ-algebra F⊗n ⊗F⊗n ⊗FU (measurability
with respect to S, S′, U ). We denote by Nδ(C ∩WS,U ) the
family of all those random minimal coverings.
Remark 3.3. Assumption 3.2 essentially enables us to avoid
technical measurability complications. The main message
is that we assume that we are able to construct “measurable
coverings”. This assumption can be cast as a selection
property; indeed for each realization of (S, S′, U) there may
be a wide range of possible minimal coverings: what we
assume is that we can select one of them for each (S, S′, U)
so that the obtained random set is measurable.

Assumption 3.2 is actually much stronger than what is
needed to make our results valid. Indeed, we are able to
show that, under the assumption that the mapping A of
(5) is measurable with respect to the Effrös σ-algebra, we
can construct coverings (S,U) 7−→ NρS

δ (WS,U ) which are
measurable and, if not minimal, yield the same upper box-
counting dimension as minimal coverings, when computing
the limit (7). To avoid too much technical considerations,
this discussion is presented in Appendix A.6, as an addi-
tional technical contribution.

As the upper box-counting dimension (7) may be written
as a countable limit, the measurability assumption 3.2 also
implies that dim

ρS

B (WS,U ) is a random variable. Continuity
of the loss in Assumption 3.1 is there for technical purposes,
e.g., to make quantities of the form supw∈WS,U

(
R(w) −

R̂S(w)
)

well-defined random variables (see (Molchanov,
2017, Theorem 1.3.28) and Section A.6 in the Appendix).

3.2. Warm-up: fixed hypothesis spaces

In this subsection we fix a deterministic closed set W ⊂ Rd

and consider its upper box-counting dimension with respect
to the data-dependent pseudo-metric (8), which we denote
by d(S) := dim

ρS

B (W). Our goal is to bound the worst-case
generalization error as defined in (2). The next theorem is an
extension of the classical covering bounds of Rademacher
complexity (Barlett & Mendelson, 2002; Rebeschini, 2020).
Theorem 3.4. For all ϵ, γ, η > 0 and n ∈ N+ there exists
δn,γ,ϵ > 0 such that with probability at least 1 − 2η − γ
under µ⊗n

z , for all δ < δn,γ,ϵ we have:

G(S) ≤ 2B

√
4(d(S) + ϵ) log(1/δ) + 9 log(1/η)

n
+ 2δ.

Theorem 3.4 is therefore similar to (Şimşekli et al., 2021,

Theorem 1), which used a fractal dimension based on the
Euclidean distance onRd, ∥w−w′∥2 and a fixed hypothesis
space. The improvement here is in the absence of Lipschitz
assumption. Moreover, as detailed in Appendix B.6, in case
of a Lipschitz ℓ, we recover, from our proofs, bounds in
term of the upper box-counting dimension based on the
Euclidean distance on the hypothesis set, which is the one
used in prior works (Şimşekli et al., 2021). Therefore, our
methods based on a data-dependent fractal dimension are
more general than previous studies.

However, Theorem 3.4 might not be sufficiently satisfying.
The proof involves techniques that do not hold in the case
of random hypothesis spaces, an issue which we address in
the next subsection.

3.3. Random hypothesis spaces

Theorem 3.4 is interesting because it gives a bound similar
to (Şimşekli et al., 2021) in the case of a fixed hypothesis set
but with a new notion of data dependent intrinsic dimension.
Now we come to the case where the hypothesis set WS,U

generated by the learning algorithm (5) is a random set.

For notational purposes let us denote the upper box-counting
dimension of WS,U induced by pseudo-metric (8) by
d(S,U) := dim

ρS

B (WS,U ), and denote the worst-case gen-
eralization error by

G(S,U) := sup
w∈WS,U

(R(w)− R̂S(w)). (9)

Here again, note that d(S,U) can be written as a countable
limit of random variables and therefore defines a random
variable thanks to Assumption 3.2.

The main difficulty here is that classical arguments based
on the Rademacher complexity cannot be applied in this
case as WS,U depends on the data sample S. Hence, to be
able to develop a covering argument, we first cover the set
WS,U by using the pseudo-metric ρS (cf. Section 2.3) and
rely on the following decomposition: for any δ > 0 and
w′ ∈ NρS

δ (WS,U ) we have that

R(w)− R̂S(w) ≤ R (w′)− R̂S (w′)

+ |R̂S(w)− R̂S (w′) |
+ |R(w)−R (w′)| .

In the above inequality, the first term can be controlled by
standard techniques as w′ lives in a finite set NρS

δ (WS,U )
and the second term is trivially less than δ by the definition
of coverings. However, the last term cannot be bounded
in an obvious way. To overcome this issue we introduce
‘approximate level-sets’ of the population risk, defined as
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follows3 for some K ∈ N+:

Rj
S := WS,U ∩R−1

([
jB

K
,
(j + 1)B

K

])
, (10)

where j = 0, . . . ,K−1 and R−1 denotes the inverse image
of R. Let Nδ,j collect the centers of a minimal δ-cover of
Rj

S relatively to ρS4. The next theorem provides a general-
ization bound for random hypothesis sets.

Theorem 3.5. Let us set K = ⌊
√
n⌋ and define In,δ :=

max0≤j≤⌊
√
n⌋ I∞(S,Nδ,j). Then, for all ϵ, γ, η > 0, there

exists δn,γ,ϵ > 0 such that with probability at least 1−η−γ
under µ⊗n

z ⊗ µu, for all δ < δn,γ,ϵ we have:

G(S,U) ≤ B√
n− 1

+

{
2B2

n

(
(d(S,U) + ϵ) log(2/δ)

+ log(
√
n/η) + In,δ

)} 1
2

+ δ.

This theorem gives us a bound in the general case similar
to (Şimşekli et al., 2021, Theorem 2), yet without requiring
Lipschitz continuity.

Moreover, also similar to (Şimşekli et al., 2021; Hodgkinson
et al., 2022), Theorem 3.5 introduces a mutual information
term In,δ, which intuitively measures the local mutual de-
pendence between the data and the coverings. This can be
seen as how the data influences the ‘local fractal behavior’
of the the hypothesis set. On the other hand, despite the
similarity to prior work, In,δ might be more complex be-
cause the dependence of Nδ,j on S comes both from the
pseudo-metric ρS and the hypothesis set WS,U . In the next
subsection, we show that we can modify our theory in a
way that it involves the simpler mutual information term
proposed in (Hodgkinson et al., 2022).

3.4. Geometric stability and mutual information

The intricate dependence between Nδ,j and S makes it hard
to express the term In,δ in Theorem 3.5 or bound it with
standard methods (e.g. data-processing inequality). In this
subsection, we introduce a notion of ‘geometric stability’ to
obtain a more interpretable bound.

Algorithmic stability is a key notion in learning theory and
has been shown to imply good generalization properties
(Bousquet, 2002; Bousquet et al., 2020; Chandramoorthy
et al., 2022). Recently, Foster et al. (2020) extended this no-
tion to the stability of hypothesis sets, and proposed a notion
of stability as a bound on the Hausdorff distance between
the hypothesis sets generated by neighboring datasets. In
our setting this would mean that there exists some β̄ > 0

3As U is independent of S, we drop the dependence on it to
ease the notation.

4Assumption 3.2 extends to the randomness of those sets Nδ,j .

such that for all S, S′ ∈ Zn differing only by one element,
for all u ∈ U , we have:

∀w ∈ WS,U , ∃w′ ∈ WS′,U , ∀z ∈ Z,
|ℓ(w, z)− ℓ(w′, z)| ≤ β̄.

(11)

Foster et al. (2020) argue that in many situations β̄ =
O(1/n).

Inspired by (Foster et al., 2020), we introduce a stability
notion, coined geometric stability, on the minimal cover-
ings that will allow us to reduce the statistical dependence
between the dataset S ∼ µ⊗n

z and those coverings.

To state our stability notion, we need to refine our definition
of coverings. Let A ⊂ Rd be some closed set, potentially
random. For any δ > 0 we define Nδ(A,S) to be the
random minimal coverings of A by closed δ-balls under
pseudo-metric ρS (8) with centers in A. Note that the de-
pendence in S in Nδ(A,S) only refers to the pseudo-metric
used. In addition to Assumption 3.2 which states that we
can make such a selection of Nδ(A,S), making it a well-
defined random set, we add the fact that this selection can
be made regular enough in the following sense.

Definition 3.6. We say that a set A is geometrically stable
if there exist some β > 0 and α > 0 such that for δ small
enough we can find a random covering S 7→ Nδ(A,S) such
that for all S ∈ Zn and S′ ∈ Zn−1 such that S′ = S \ {zi}
for some i, then Nδ(A,S) and Nδ(A,S

′) are within β/nα

data-dependent Hausdorff distance, by which we mean:

∀w ∈ Nδ(S,A), ∃w′ ∈ Nδ(S
′, A),

sup
z∈Z

|ℓ(w, z)− ℓ(w′, z)| ≤ β

nα
.

(12)

Based on this definition, we assume the following condition.

Assumption 3.7. Let K ∈ N+. There exists α ∈ (0, 3/2)
and β > 0 (potentially depending on K) such that all sets
of the form WS,U ∩R−1

([
jB
K , (j+1)B

K

])
are geometrically

stable with parameters (α, β).

Assumption 3.7 essentially imposes a local regularity con-
dition on the fractal behavior of WS,U with respect to the
pseudo-metric ρS . Intuitively it means that we can select a
regular enough covering among all coverings. Note that the
geometric stability is a condition on how the coverings vary
with respect to the pseudo-metric, which is fundamentally
different than (Foster et al., 2020).

The next theorem provides a generalization bound under the
geometric stability condition.

Theorem 3.8. Let d(S,U) and G(S,U) be as in Theo-
rem 3.5 and further define I := I∞(S,WS,U ). Suppose
that Assumption 3.7 holds. Then there exists a constant
nα, δγ,ϵ,n > 0 such that for all n ≥ nα, with probability

5
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1− γ − η, and for all δ ≤ δγ,ϵ,n, the following inequality
holds:

G(S,U) ≤3B + 2β

nα/3
+

{
B2

2n
2α
3

((
ϵ+ d(S,U)

)
log(4/δ)

+ log(1/η) + log(n) + I

)} 1
2

+ δ.

Moreover, we have that nα = max{2 3
2α , 21+

3
3−2α }.

While Assumption 3.7 might be restrictive, our goal here
is to highlight how such geometric regularity can help us
deal with the statistical dependence between the data and
the hypothesis set.

Note that the mutual information term appearing in Theo-
rem 3.8 is much more interpretable compared to the cor-
responding terms in Theorem 3.5, and has the exact same
form as the term presented in (Hodgkinson et al., 2022).

We also note that this way of controlling the dependence
between the data and the hypothesis set comes at the ex-
pense of potentially losing in the convergence rate of our
bound. More precisely, for a stability index of α, we get
a convergence rate of n−α/3. By examining the value of
constant nα in Theorem 3.8, we observe that getting closer
to an optimal rate (α ≈ 3

2 ) implies a larger nα, rendering
our bound asymptotic.

3.5. One step toward lower bounds

As an additional theoretical result, we present an attempt
to prove a lower bound involving the introduced data-
dependent fractal dimension. For this purpose, let us con-
sider again the case of a fixed (non-random) closed hy-
pothesis set W ⊂ Rd. As in Section 3.2, we make As-
sumption 3.1. We also introduce the data-dependent lower
box-counting dimension as:

d(S) = dimρS

B (W) := lim inf
δ→0

log |NρS

δ (W)|
log(1/δ)

. (13)

As proving lower bounds is not the main goal of this paper,
we restrict ourselves to this specific setting. The next theo-
rem is based on very classical arguments involving Gaussian
complexity and Sudakov’s theorem (Vershynin, 2020, Theo-
rem 7.4.1). This lower bound requires a slightly different
definition of the worst-case generalization error:

G(S) := sup
w∈W

∣∣R(w)− R̂S(w)
∣∣. (14)

Theorem 3.9. We further assume that d(S) > 0 almost
surely. Then, for all ϵ, γ, η > 0, there is an absolute con-
stant c > 0 and some δn,γ,ζ > 0 such that, with probability
at least 1− ζ − γ, for all δ ≤ δn,γ,ζ we have:

G(S) ≥ c

4

√
δ2 log(1/δ)d(S)

2n log(n)
−B

√
log(2) + 9 log(1/ζ)

n

Theorem 3.9 gives a lower bound that is probably less tight
compared to the upper bounds we presented in this work.
One could even note that the right hand side of the bound
may be negative in some contexts. However, we believe that
the techniques used to derive this bound are classical and
may be useful for future research.

4. Computational Aspects
In this section, we will illustrate how the proposed data-
dependent dimension can be numerically computed, by mak-
ing a rigorous connection to topological data analysis (TDA)
tools (Boissonat et al., 2018).

4.1. Persistent homology

Persistent homology (PH) is a well known notion in TDA
typically used for point cloud analysis (Edelsbrunner &
Harer, 2010; Carlsson, 2014). Previous works have linked
neural networks and algebraic topology (Rieck et al., 2019;
Pérez-Fernández et al., 2021), especially in (Corneanu et al.,
2020) who established experimental evidence of a link be-
tween homology and generalization. Important progress
was made in (Birdal et al., 2021), who used PH tools to
estimate the upper-box counting dimension induced by the
Euclidean distance on WS,U . Here we extend their approach
to the case of data-dependent pseudo-metrics, which lays
the ground for our experimental analysis.

The formal definition of PH is rather technical and is not
essential to our problematic; hence, we only provide a high-
level description here, and provide a more detailed descrip-
tion in Section A.4 (for a formal introduction, see (Boissonat
et al., 2018; Memoli & Singhal, 2019). In essence, given
a point cloud W ⊂ Rd, ‘PH of degree 0’, denoted by PH0

keeps track of the connected components in W , as we ex-
amine W at a gradually decreasing resolution.

Given a bounded (pseudo-)metric space (X, ρ), by using
PH0, one can introduce another notion of fractal dimension,
called the persistent homology dimension, which we denote
by dimρ

PH0(X) (see Section A.4 and (Schweinhart, 2019,
Definition 4)).

Our particular interest in dimρ
PH0(X) in the case where ρ

is a proper metric comes from an important result (Kozma
et al., 2005; Schweinhart, 2020) stating that for any bounded
metric space (X, ρ) we have the following identity.

dim
ρ

B(X) = dimρ
PH0(X). (15)

Several studies used this property to numerically evaluate
the upper box-counting dimension (Adams et al., 2020;
Birdal et al., 2021). In particular Birdal et al. (2021) com-
bined it with the results from (Şimşekli et al., 2021) and
showed that dimEucl

PH0(X) associated with the Euclidean met-
ric on the parameter space, can be linked to the generaliza-
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tion error under the Lipschitz loss condition.

4.2. PH dimension in pseudo-metric spaces

In order to extend the aforementioned analysis to our data-
dependent dimension, we must first prove that the equality
(15) extends to pseudo-metric spaces, which is established
in the following theorem:

Theorem 4.1. Let (X, ρ) be a bounded pseudo-metric
space, we have: dim

ρ

B(X) = dimρ
PH0(X).

This theorem shows that, similar to dimEucl
PH0(X), our pro-

posed dimension dimρS

PH0(X) can also be computed by using
numerically efficient TDA tools. Moreover, Theorem 3.4
now (informally) implies that with probability 1− ζ:

G(S) ≲

√
dimρS

PH0(W ) log(1/δ) + log(1/ζ)

n
+ δ. (16)

Theorems 3.5 and 3.8 can be adapted similarly.

5. Experiments
Experimental setup. In our experiments, we closely fol-
low the setting used in (Birdal et al., 2021). In particular,
we consider learning a neural network by using SGD, and
choose the hypothesis set WS,U as the optimization trajec-
tory near the local minimum found by SGD5. Then, we
numerically estimate dimρS

PH0(WS,U ) by using the PH soft-
ware provided in (Pérez et al., 2021). The main difference
between our approach and (Birdal et al., 2021) is that we
replace the Euclidean metric with the pseudo-metric ρS to
compute the PH dimension.

Here is a brief description of the method: given a neural
network, its loss ℓ(w, z), and a dataset S = (z1, . . . , zn),
we compute the iterations of SGD for K⋆ iterations,
(wk)

K⋆

k=0, such that wK⋆ reaches near a local minimum.
We then run SGD for 5000 more iterations and set
WS,U to {wK⋆+1, . . . , wK⋆+5000}. We then approximate
dimρS

PH0(WS,U) by using the algorithm proposed in (Birdal
et al., 2021) by replacing the Euclidean distance with ρS .

We experimentally evaluate dimρS

PH0(WS,U ) in different
settings: (i) regression experiment with Fully Connected
Networks of 5 (FCN-5) and 7 (FCN-7) layers trained on
the California Housing Dataset (CHD) (Kelley Pace &
Barry, 1997), (ii) training FCN-5 and FCN-7 networks on
the MNIST dataset (Lecun et al., 1998) and (iii) training
AlexNet (Krizhevsky et al., 2017) on the CIFAR-10 dataset

5Note that as the trajectories collected by SGD will only contain
finitely many points, its dimension will be trivially 0. However,
as in (Birdal et al., 2021), we treat this finite set an approximation
to the full trajectory. This is justified since even for infinite X ,
dimρS

PH0(X) is computed based on finite subsets of X .

Figure 1. dimρS
PH0 (denoted dimS

PH0 in the figure) versus accuracy
gap for FCN-5 (top), FCN-7 (middle) on MNIST and AlexNet
(bottom) on CIFAR-10 Different colors indicate different learning
rates and different markers indicate different batch sizes.

(Krizhevsky et al., 2014). More experiments are shown in
the appendix Section D. All the experiments use standard
ReLU activation and vanilla SGD with constant step-size.
We made both learning rate and batch size vary across a 6×6
grid. For experiments on CHD and MNIST we also used 10
different random seeds. All hyperparameter configurations
are available in Section C.

Note that in the case of a classification experiment, one
could not compute dimρS

PH0 using a zero-one loss in (8).
Indeed, it would be equivalent to computing PH on the
finite set {0, 1}n ⊂ Rn, which trivially gives an upper
box-counting dimension of 0. To overcome this issue, we
compute dimρS

PH0 using the surrogate loss (cross entropy in
our case) and illustrate that it is still a good predictor of
the gap between the training and testing accuracies. For the
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Figure 2. dimρS
PH0 (denoted dimS

PH0 in the figure) versus general-
ization gap for FCN-5 (top) and FCN-7 (bottom) trained on CHD.
Different colors indicate different learning rates and different mark-
ers indicate different batch sizes.

sake of completeness, we provide how dimρS

PH0 behaves with
respect to the the actual loss gap in Section D.

Results. In order to compare our data-dependent intrinsic
dimension with the one introduced in (Birdal et al., 2021),
which is the PH dimension induced by the Euclidean dis-
tance on the trajectory and denoted dimEucl

PH0 , we compute var-
ious correlation statistics, namely the Spearman’s rank cor-
relation coefficient ρ (Kendall & Stuart, 1973) and Kendall’s
coefficient τ (Kendall, 1938). We also use the mean Gran-
ulated Kendall’s Coefficient Ψ introduced in (Jiang et al.,
2019), which aims at isolating the influence of each hyper-
parameter and according to the authors could better capture
the causal relationships between the generalization and the
proposed complexity metric (the intrinsic dimension in our
case). For more details on the exact computation of these
coefficients, please refer to Section C.1. Therefore (ρ,Ψ, τ)
are our main indicators of performance. The values of each
granulated Kendall’s coefficient are reported in Section D6.

Figures 1 and 2 depict the data-dependent dimension versus
the generalization gap, as computed in different settings.
We observe that, in all cases, we have a strong correlation
between dimρS

PH0(WS,U ) and the generalization gap, for a

6All those coefficients are between −1 and 1, where the value
of 1 indicating a perfect positive correlation.

Table 1. Correlation coefficients on CHD

MODEL DIM. ρ Ψ τ

FCN-5 dimEUCL
PH0 0.77±0.08 0.54±0.11 0.59±0.07

FCN-5 dimρS
PH0 0.87±0.05 0.68±0.10 0.71±0.09

FCN-7 dimEUCL
PH0 0.40±0.09 0.16±0.08 0.28±0.07

FCN-7 dimρS
PH0 0.77±0.08 0.62±0.06 0.77±0.08

Table 2. Correlation coefficients on MNIST

MODEL DIM. ρ Ψ τ

FCN-5 dimEUCL
PH0 0.62±0.10 0.78 ±0.08 0.47±0.07

FCN-5 dimρS
PH0 0.73±0.07 0.81±0.07 0.56±0.06

FCN-7 dimEUCL
PH0 0.80±0.04 0.88±0.04 0.62±0.04

FCN-7 dimρS
PH0 0.89±0.02 0.90±0.04 0.73±0.03

Table 3. Correlation coefficients with AlexNet on CIFAR-10

MODEL DIM. ρ Ψ τ

ALEXNET dimEUCL
PH0 0.86 0.81 0.68

ALEXNET dimρS
PH0 0.93 0.84 0.78

wide range of hyperparameters. We also observe that the
highest learning rates and lowest batch sizes seem to give
less correlation, which is similar to what was observed in
(Birdal et al., 2021) as well. This might be caused by the
increased noise as we suspect that the point clouds in those
settings show more complex fractal structures and hence
require more points for a precise computation of the PH
dimension.

Next, we report the correlation coefficients for the same
experiments in Tables 1, 2 and 3. The results show that on
average our proposed dimension always yields improved
metrics compared to the dimension introduced in (Birdal
et al., 2021). The improvement is particularly better in the
regression experiment we performed (as the classification
task yields larger variations in the metrics, see Table 2). This
may indicate that the proposed dimension may be particu-
larly pertinent in specific settings. Moreover, increasing the
size of the model, in all experiments, seems to have a posi-
tive impact on the correlation. We suspect that this might be
due to the increasing local-Lipschitz constant of the network.
We provide more experimental results in Section D.

Robustness analysis. The computation of ρS(w,w′) re-
quires the exact evaluation of the loss function on every
data point {z1, . . . , zn} for every w,w′ ∈ WS,U . This
introduces a computational bottleneck in case where n
is excessively large. To address this issue, in this sec-
tion we will explore an approximate way of computing
dimρS

PH0 . Similar to the computation of a stochastic gra-
dient, instead of computing the distance on every data
point, we will first draw a random subset of data points
T ⊂ S, with |T | ≪ n and use the following approximation
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Figure 3. Robustness experiment using a FCNN trained on MNIST
(Left) and CHD (Right). x-axis represents the proportion of the
data T used to compute the metric, y-axis is the relative error with
respect to the full dataset based dimension.

ρS(w,w
′) ≈ ρT (w,w

′) := 1
|T |

∑
z∈T |ℓ(w, z)− ℓ(w′, z)|.

We now conduct experiments to analyze the robustness of
the computation of dimρS

PH0 with respect to varying size of
random subsets T . More precisely, we randomly select a
subset T ⊂ S whose size varies between 2% and 99% of
the size dataset S and compute the PH dimension using the
approximate pseudo-metric. Note that the whole dataset S
is of course still used to produce the SGD iterates. Figure
3 presents results on the MNIST and CHD datasets in term
of the relative error, i.e., |dimρT

PH0 −dimρS

PH0 |/ dimρS

PH0 . The
results show that the proposed dimension is significantly
robust to the approximation of the pseudo-metric: even with
40% of the data, we achieve almost identical results as using
the full dataset.

6. Conclusion
In this paper, we proved generalization bounds that do not
require the Lipschitz continuity of the loss, which can be
crucial in modern neural network settings. We linked the
generalization error to a data-dependent fractal dimension of
the random hypothesis set. We first extended some classical
covering arguments to state a bound in the case of a fixed
hypothesis set and then proved a result in a general learning
setting. While some intricate mutual information terms
between the geometry and the data appeared in this bound,
we presented a possible workaround by the introduction
of a stability property for the coverings of the hypothesis
set. Finally, we made a connection to persistent homology,
which allowed us to numerically approximate the intrinsic
dimension and thus support our theory with experiments.

Certain points remain to be studied concerning our results.
First the existence of differentiable persistent homology li-
braries (Hofer et al., 2018; 2019) open the door to the use of
our intrinsic dimension as a regularization term as in (Birdal

et al., 2021). Refining our proof techniques, for example
using the chaining method (Ledoux & Talagrand, 1991;
Clerico et al., 2022), could help us improve our theoretical
results or weaken the assumptions.
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Hodgkinson, L., Şimşekli, U., Khanna, R., and Mahoney,
M. W. Generalization Bounds using Lower Tail Ex-
ponents in Stochastic Optimizers. Proceedings of the
39th International Conference on Machine Learning, July
2022.

Hofer, C., Kwitt, R., Niethammer, M., and Uhl, A. Deep
Learning with Topological Signatures. Advances in Neu-
ral Information Processing Systems 30 (NIPS 2017),
February 2018.

Hofer, C., Kwitt, R., Dixit, M., and Niethammer, M.
Connectivity-Optimized Representation Learning via Per-
sistent Homology. Proceedings of the 36th International
Conference on Machine Learning, June 2019.

Hu, W., Li, C. J., Li, L., and Liu, J.-G. On the diffu-
sion approximation of nonconvex stochastic gradient de-
scent. Annals of Mathematical Sciences and Applications,
March 2018.

Jastrzebski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer, A.,
Bengio, Y., and Storkey, A. Three Factors Influencing
Minima in SGD, September 2018.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and
Bengio, S. Fantastic Generalization Measures and Where
to Find Them. ICLR 2020, December 2019.

Kechris, A. S. Classical Descriptive Set Theory. Graduate
Texts in Mathematics. Springer, 1995.

Kelley Pace, R. and Barry, R. Sparse spatial autoregressions.
Statistics & Probability Letters, 33(3):291–297, May
1997. ISSN 0167-7152. doi: 10.1016/S0167-7152(96)
00140-X.

Kendall, M. G. A new reasure of rank correlation.
Biometrika, 1938.

Kendall, M. G. and Stuart, A. The Advanced Theory of
Statistics. Griffin, 1973. ISBN 978-0-85264-069-2.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M.,
and Tang, P. T. P. On Large-Batch Training for Deep
Learning: Generalization Gap and Sharp Minima. ICLR
2017, February 2017.

10



Generalization Bounds using Data-Dependent Fractal Dimensions

Kozma, G., Lotker, Z., and Stupp, G. The minimal span-
ning tree and the upper box dimension. Proceedings of
the American Mathematical Society, 134(4):1183–1187,
September 2005. ISSN 0002-9939, 1088-6826. doi:
10.1090/S0002-9939-05-08061-5.

Krizhevsky, A., Nair, V., and Hinton, G. E. The cifar-10
dataset, 2014.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet
classification with deep convolutional neural networks.
Communications of the ACM, 60(6):84–90, May 2017.
ISSN 0001-0782, 1557-7317. doi: 10.1145/3065386.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, November 1998.
ISSN 1558-2256. doi: 10.1109/5.726791.

Ledoux, M. and Talagrand, M. Probability in Banach
Spaces - Isoperimetry and Processes. Classics in Mathe-
matics. Springer, 1991.

Mandt, S., Hoffman, M. D., and Blei, D. M. A Variational
Analysis of Stochastic Gradient Algorithms. Proceed-
ings of The 33rd International Conference on Machine
Learning, February 2016.

Memoli, F. and Singhal, K. A Primer on Persistent Homol-
ogy of Finite Metric Spaces. Bulletin of Mathematical
Biology, 81(7):2074–2116, July 2019. ISSN 0092-8240,
1522-9602. doi: 10.1007/s11538-019-00614-z.

Molchanov, I. Theory of Random Sets. Number 87 in
Probability Theory and Stochastic Modeling. Springer,
second edition edition, 2017.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B.,
and Sutskever, I. Deep Double Descent: Where Bigger
Models and More Data Hurt. ICLR 2020, December
2019.

Negrea, J., Haghifam, M., Dziugaite, G. K., Khisti, A., and
Roy, D. M. Information-Theoretic Generalization Bounds
for SGLD via Data-Dependent Estimates. Advances
in Neural Information Processing Systems 32 (NeurIPS
2019), November 2019.

Pensia, A., Jog, V., and Loh, P.-L. Generalization Error
Bounds for Noisy, Iterative Algorithms. 2018 IEEE In-
ternational Symposium on Information Theory (ISIT),
January 2018.
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The outline of the appendix is as follows:

• Section A: Additional technical background related to information theory, Rademacher complexity, Egoroff’s Theorem
and persistent homology.

• Section B: Postponed proofs of the theoretical results.

• Section C: Additional experimental details.

• Section D: Additional experimental results, including full statistic of experiments presented in the main part of the
paper, as well as additional experiments on different datasets.

A. Additional technical background
A.1. Information theoretic quantities

We recall there some basics concepts of information theory that we use throughout the paper. The absolute continuity of a
probability measure with respect to another one will be denoted with symbol ≪.

Definition A.1. Let us consider a probability space (Ω,F) and two probability distributions π and ρ, with π ≪ ρ. We
define the Kullback-Leibler divergence of those distributions as:

KL(π||ρ) =
∫

log

(
dπ
dρ

)
dπ.

For α > 1, we define their α-Renyi divergence as:

Dα(π||ρ) =
1

α− 1
log

∫ (
dπ
dρ

)α

dρ.

We set those two quantities to +∞ if the absolute continuity condition is not verified.

Note that by convention we often consider that D1 = KL and that Renyi divergences may also be defined for orders α < 1
(van Erven & Harremoës, 2014), but we won’t need it here.

It is easy to prove that Dα is increasing in α and it is therefore natural to define:

D∞(π||ρ) = lim
α→∞

Dα(π||ρ).

The following property will be useful to perform decoupling of two random variables, a proof can be found in (van Erven &
Harremoës, 2014).

Theorem A.2. With the same notations as above, we have:

D∞(π||ρ) = log

(
sup
B∈F

π(B)

ρ(B)

)
.

We can then define the following notions of mutual information:

Definition A.3. Let X,Y be two random variables on Ω, we define for α ∈ [1,∞]:

Iα(X,Y ) := Dα(PX,Y ||PX ⊗ PY ),

with in particular:
I(X,Y ) := I1(X,Y ) = KL(PX,Y ||PX ⊗ PY ).

I∞ will be called the total mutual information. Note that thanks to Theorem A.2, we recover the definition of total mutual
information that we wrote in Equation (6).

Those quantities satisfy the data processing inequality, given in the following proposition.
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Proposition A.4 (Data-processing inequality). If X −→ Y −→ Z is a Markov chain and α ∈ [1,+∞], then:

Iα(X,Z) ≤ Iα(X,Y ).

We are interested in those quantities because of their decoupling properties, summarized up in the following lemmas.:

Lemma A.5 (Lemma 1 in (Xu & Raginsky, 2017)). Let X,Y be two random variables and f(., .) a measurable function.
We consider X̄ and Ȳ two copies of X and Y which are independent. Then if f(X̄, Ȳ )−E[f(X̄, Ȳ )] is σ2-subgaussian,
we have:

|E[f(X,Y )]− E[f(X̄, Ȳ )]| ≤
√
2σ2I(X,Y ).

We end this subsection by stating the decoupling in probability result that we will use several times in the proofs: Combining
the definition of total mutual information with Theorem A.2, we immediately obtain:

Lemma A.6 (Lemma 1 in (Hodgkinson et al., 2022)). For every measurable set B we have:

PX,Y (B) ≤ eI∞(X,Y )PX ⊗ PY (B).

A.2. Rademacher complexity

We call Rademacher random variables a tuple (σ1 . . . , σn) of mutually independent Bernoulli distributions with values in
the set {−1, 1}.

Definition A.7. Let us consider a fixed set A ⊂ Rn and σ := (σ1 . . . , σn) some Rademacher random variables, the
Rademacher complexity of A is defined as:

Rad(A) :=
1

n
Eσ

[
sup
x∈A

n∑
i=1

σixi

]
.

Let us consider a fixed hypothesis space W and some dataset S = (z1, . . . , zn) ∼ µ⊗n
z , we will use the following notation:

ℓ(W, S) = {(ℓ(w, zi)1≤i≤n ∈ Rn, w ∈ W}. (17)

Remark A.8. One could legitimately inquire about the measurability of Rad(ℓ(W, S)) with respect to F⊗n (recall that the
data space is denoted (Z,F , µz)). Thanks to the closedness of W ⊆ Rd we can introduce a dense countable subset C of W
and write that, thanks to the continuity of ℓ,

R(σ, S) :=
1

n
sup
w∈W

n∑
i=1

σiℓ(w, zi) =
1

n
sup
w∈C

n∑
i=1

σiℓ(w, zi),

which is measurable as a countable supremum of random variables. As ℓ is bounded, so is R(σ, S); it is therefore integrable
with respect to (σ, S). Thus Rad(ℓ(W, S)) is integrable (and measurable) thanks to the first part of Fubini’s theorem.

Rademacher complexity is linked to the worst case generalization error via the following proposition (see for example
(Rebeschini, 2020)):

Proposition A.9. Assume that the loss is uniformly bounded by B. Then, for all η > 0, we have with probability 1− 2η
that:

sup
w∈W

(
R(w)− R̂S(w)

)
≤ 2Rad(ℓ(W, S)) + 3

√
2B2

n
log(1/η).

We state the proof of this result for the sake of completeness. It is based on two classical arguments: symmetrization and
Mc-Diarmid inequality.

Proof. Let us write:
G(S) := sup

w∈W

(
R(w)− R̂S(w)

)
.
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We introduce S̃ = {z̃1, . . . , z̃n} ∼ µ⊗n
z an independent copy of S and some Rademacher random variables (σ1, . . . , σn),

using properties of conditional expectation and Fubini’s theorem we have:

E[G(S)] = E
[
sup
w∈W

(
1

n

n∑
i=1

R(w)− ℓ(w, zi)

)]

= E

[
sup
w∈W

1

n

n∑
i=1

E[ℓ(w, z̃i)− ℓ(w, zi)|S̃]
]

≤ E
[
E

[
sup
w∈W

1

n

n∑
i=1

(ℓ(w, z̃i)− ℓ(w, zi))

∣∣∣∣S̃]]

= E

[
sup
w∈W

1

n

n∑
i=1

(ℓ(w, z̃i)− ℓ(w, zi))

]

= E

[
sup
w∈W

1

n

n∑
i=1

σi(ℓ(w, zi)− ℓ(w, z̃i))

]

≤ 2E

[
sup
w∈W

1

n

n∑
i=1

σiℓ(w, zi)

]
= 2E[Rad(ℓ(W, S))].

(18)

On the other hand if we denote Si = (z1, . . . , zi−1, z̃i, zi+1, . . . zn) we have that:

|G(S)− G(Si)| ≤ 2B

n
,

And therefore by Mc-Diarmid inequality for any ϵ > 0:

P

(
G(S)− E[G(S)] ≥ ϵ

)
≤ exp

{
− nϵ2

2B2

}
.

By taking any η ∈ (0, 1) we can make a clever choice for ϵ and deduce that with probability at least 1− η we have:

G(S) ≤ E[G(S)] +
√

2B2

n
log(1/η). (19)

Moreover we can also write:

|Rad(ℓ(W, S))− Rad(ℓ(W, Si))| ≤ Eσ

[
sup
w∈W

1

n

∣∣σi(ℓ(w, zi)− ℓ(w, z̃i))
∣∣] ≤ 2B

n
,

so that by Mc-Diarmid and the exact same reasoning than above we have that with probability at least 1− η:

E[Rad(ℓ(W, S))] ≤ Rad(ℓ(W, S)) +

√
2B2

n
log(1/η). (20)

Therefore combining equations 18, 19 and 20 gives us that with probability at least 1− 2η:

G(S) ≤ 2Rad(ℓ(W, S)) + 3

√
2B2

n
log(1/η).

Another important result for us is the well-known Massart’s lemma, presented here in a slightly simplified version which is
enough for our work:
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Lemma A.10 (Massart’s lemma). Let T ⊆ Rn be a finite set, then:

Rad(T ) ≤ max
t∈T

(∥t∥2)
√

2 log(|T |)
n

,

Where |T | denotes the cardinal of T as usual.
Example A.11. Consider the setting where we have a fixed finite hypothesis set W . In that case we have that
maxw∈W(∥(ℓ(w, zi))i∥2) ≤ B

√
n, thanks to the boundedness assumption. Thus Massart’s lemma A.10 gives us

Rad(ℓ(W, S)) ≤ B

√
2 log(|W|)

n
. (21)

A.3. Egoroff’s Theorem

Egoroff’s Theorem is an essential result in our theory which states that pointwise convergence in a probability space can be
made uniform on measurable sets of arbitrary high probability. It was already used in (Şimşekli et al., 2021; Camuto et al.,
2021) to make the convergence of the limit defining some fractal dimension uniform up certain probability.
Theorem A.12 (Egoroff’s Theorem (Bogachev, 2007)). Let (Ω,F , µ) be a measurable space with µ a positive finite measure.
Let fn, f : Ω −→ (X, d) be functions with values in a separable metric space X and such that µ-almost everywhere
fn(x) → f(x).

Then for all γ > 0 there exists Ωγ ∈ F such that µ(Ω\Ωγ) ≤ γ and on Ωγ the convergence of (fn) to f is uniform.

A.4. Persistent Homology

Persistent homology (PH) is a well known notion in TDA typically used for point cloud analysis (Edelsbrunner & Harer,
2010; Carlsson, 2014). Previous works have linked neural networks and algebraic topology (Rieck et al., 2019; Pérez-
Fernández et al., 2021), especially in (Corneanu et al., 2020) who established experimental evidence of a link between
homology and generalization. Important progress was made in (Birdal et al., 2021), who used PH tools to estimate the
upper-box counting dimension induced by the Euclidean distance on WS,U . In this subsection, we introduce a few necessary
PH tools to understand this approach.

Throughout this subsection we consider a finite set of point W ⊂ Rm. We will denote by K the unique two elements field
Z/2Z.
Definition A.13 (Abstract simplicial complex and filtrations). Given a finite set V , an abstract simplicial complex (which
we will often refer simply as complex) K is a subset of P(V ), the subsets of V , such that:

• ∀v ∈ V, {v} ∈ K

• ∀s ∈ K,P(s) ⊆ K

The elements of K are called the simplices. For any non-empty simplex s, we call the number |s| − 1 its dimension,
denoted dim(s). Given a simplicial complex K, a filtration of K is a sequence of sub-complexes increasing for the
inclusion ∅ ⊂ K0 ⊂ · · · ⊂ KN = K such that every complex is obtained by adding one simplex to to the previous one:
Ki+1 = Ki ∪ {σi+1}. Thus a filtration of a complex induces an ordering on the simplices, which will be denoted (si)i by
convention.

The filtration will be denoted by
∅ −→ K0 −→ · · · −→ KN = K,

and the corresponding simplices, in the order in which they are added to the filtration, will typically be denoted by
(s0, . . . , sN ).
Example A.14. The most important filtration that we shall encounter is the Vietoris-Rips filtration (VR filtration) Rips(W ).
For any δ > 0 we first construct the Vietoris-Rips simplicial complex Rips(W, δ) by the following condition:

∀k{w1, . . . , wk} ∈ Rips(W, δ) ⇐⇒ ∀i, j, d(pi, pj) ≤ δ. (22)

Then Rips(W ) is formed by adding the complexes in the increasing order of δ from 0 to +∞. Complexes with the same
value of δ are ordered based on their dimension and ordered arbitrarily if they have the same dimension.
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Intuitively, Persistent homology of degree i keeps track of lifetimes of ‘holes of dimension i’, it is built over the concept
of chains, which are a sort of linearized version of sets of simplices. More precisely, the space of k-chains Ck(K) over
complex K is defined as the set of formal linear combinations of the k-dimensional simplices of k:

Ck(K) := span
(∑

i

ϵisi, ∀i, dim(si) = k
)
. (23)

We will denote a simplex by its points s = [w0, . . . , wk] and use the notation s\i := [w0, . . . , wi−1, wi+1, . . . , wk]. The
boundary operator ∂ : Ck(K) −→ Ck−1(K) is the linear map induced by the relations on the simplices:

∂(s) =

k∑
i=0

s\i. (24)

It is easy to verify that ∂2 = 0 and therefore we have an exact sequence, where N = |W |,

{0} ∂−→ CN (K)
∂−→ CN−1(K)

∂−→ . . .
∂−→ C0(K)

∂−→ {0},

from which it is natural to define:
Definition A.15 (Cycles and homology groups). With the same notations, we define:

• The k cycles of K: Zk(K) := ker(∂ : Ck(K) −→ Ck−1(K)).

• The k-th boundary of K: Bk(K) := ℑ(∂ : Ck+1(K) −→ Ck(K)).

• k-th homology group (it is actually a quotient vector space): Hk(K) := Zk/Bk.

The k-th Betti number of K is defined as the dimension of the homology group: βk(K) = dim(Hk(K)).

Those Betti numbers, βk, correspond, in our analogy, to the number of holes of dimension k, i.e. the numbers of cycles
whose ‘interior’ is not in the complex, and therefore corresponds to a hole.
Remark A.16. In particular, β0 corresponds to the number of connected components in the complex.

Now that we defined the notion of homology, we go on with the definition of persistent homology (PH). The intuition is the
following: when we build the Vietoris-Rips filtration of the point cloud W , by increasing parameter δ in Example A.14,
we collect the ‘birth’ and ‘death’ of each hole, the multiset7 of those pairs (birth, death) will be the definition of persistent
homology.
Remark A.17. In all the following, the parameter δ used in the definition of the Vietoris-Rips filtration will be seen as a time
parameter.

While the concept of persistent homology can be extended to arbitrary orders (see (Boissonat et al., 2018)), here, for the
sake of simplicity, we only define Persistent homology of degree 0, which is much simpler and is the only one we need in
our work.

Persistent homology of degree 0:

The persistent homology of degree 0, denoted PH0 is the multiset of the distances δ used to build the Vietoris-Rips filtration
of W for which a connected component is lost.

More formally, let us introduce a Vietoris-Rips filtration of P denoted by:

∅ → Kδ0,1 → · · · → Kδ0,α0 → Kδ1,1 → · · · → Kδc,αC = K,

where 0 ≤ δ1 < · · · < δC are the ‘time/distance’ indices of the filtration and for the same value of δ the simplices are
ordered by their dimension and arbitrarily if they also have the same dimension. Obviously δ0 = 0. With those notations,
PH0 is the multiset of all the δi corresponding to a complex Kδi,j which has one less connected component than the
preceding complex in the above filtration.

To stick with the usual notations, we actually define PH0 as the multiset of the (0, δi), where the 0 correspond to the ‘birth’
of a connected component, while the δi, as described above, corresponds to the ‘death’ of this connected component.

7By multiset, we mean that it can contain several time the same element, in our case the same persistence pair.
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Definition A.18 (Persistent homology dimension). For any α ≥ 0 we define:

Eα(W ) :=
∑

(b,d)∈PH0(Rips(W ))

(d− b)α. (25)

The persistent homology dimension of degree 0 (PH dimension) of any set bounded metric space W is then defined as:

dimPH0(W) := inf{α > 0, ∃C > 0, ∀W ⊂ W finite, Eα(W ) < C}.

Where the definition of VR filtration in finite subsets of metric spaces is naturally defined.

The importance of this dimension for our work relies on the following result (see (Schweinhart, 2019), (Kozma et al., 2005)):

Proposition A.19. For any bounded metric space X , we have dimB(X) = dimPH0(X).

Proposition A.19 opens the door to the numerical estimation of the upper-box dimension. Indeed, PH can be evaluated
via several libraries (Bauer, 2021; Pérez et al., 2021), moreover, Birdal et al. (2021) noted that, while Definition A.18
is impossible to evaluate in practice, it can be approximated from PH0(Rips(W )) computed on a finite number of finite
subsets of the point cloud W .

A.5. Numerical estimation of the PH dimension

In this section we briefly discuss how we numerically estimate the persistent homology dimension, which is essentially the
algorithm presented in (Birdal et al., 2021) where we changed the distance, which implies that we must evaluate on all data
points for the last iterates. See also (Adams et al., 2020; Schweinhart, 2020) for similar ideas.

All persistent homology computation presented here have been made with the package presented in (Pérez et al., 2021),
which allows us to use more points in our persistent homology computation, e.g. Birdal et al. (2021) was only using between
1000 points prior to convergence for AlexNet and 200 for the other experiments. In our work we use up to 8000 points,
which may allow us to better capture the fractal behavior.

The algorithm is based on the following result, proved by proposition 2 of (Birdal et al., 2021) and proposition 21 of
(Schweinhart, 2020): If X is a bounded metric space with ∆ = dimd

PH0(X), then for all ϵ > 0 and α ∈ (0,∆+ ϵ) there
exists Dα,ϵ > 0 such that for all finite subset Xn = {x1, . . . , xn} of X we have:

logEα(Xn) ≤ logDα,ϵ +

(
1− α

∆+ ϵ

)
log(n). (26)

Then we can perform an affine regression of logEα(Xn) with respect to log n and get a slope a. Moreover it is argued in
(Birdal et al., 2021) that the slope has good chance to be approximately the one appearing in Equation (26), which gives us
∆ ≃ α

1−a .
Remark A.20. The aforementioned algorithm works in pseudo metric spaces. Indeed as we tried to explain formally in the
proof of proposition B.9, PH0 in a pseudo-metric space only add some zeros to the quantities Eα computed in its metric
identifications. Therefore the above algorithm is approximating dimρS

PH0(X/ ∼) which is proven in lemma B.9 to be equal
to dimρS

PH0(X). See those notations in the next subsection.

A.6. Measurable coverings and additional technical lemmas

In this section we briefly discuss a few technical measure theoretic points that are worth mentioning. Essentially, we argue
that our measurability assumptions ensure that the manipulations we make in our proofs on complicated random variables
are valid and meaningful. We then show that it is possible to construct the measurable coverings that we need in our proofs.

A.6.1. SOME NICE CONSEQUENCES OF OUR MEASURABILITY ASSUMPTIONS

The worst-case generalization error takes the general form:

G(S,U) := sup
WS,U

(
R(w)− R̂S(w)

)
. (27)
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Here we require WS,U ⊂ Rd to be a random closed set. In this subsection, we will make this precise by describing basic
notions of random set theory and prove a few technical results which will lay the ground of a rigorous theoretical basis
for our main results. The interested reader can consult (Kechris, 1995; Molchanov, 2017). Other works mentioned similar
formulation of the problem (Hodgkinson et al., 2022), though with not much technical details.

Let us fix a probability space (Ω, T ,P) and denote E = Rd.
Remark A.21. As highlighted by (Molchanov, 2017), we can develop the following theory in the more general case where
E is a locally compact Hausdorff second countable space, but we avoid those technical considerations.

The definition of a random closed set is the following:

Definition A.22 (Random closed set). Consider a map W : Ω −→ CL(E), W is said to be a random closed set if for every
compact set K ⊂ E we have:

{ω,W (ω) ∩K ̸= ∅} ∈ T .

A natural question is to know whether we can cast it as a random variable defined in the usual way, the answer is yes and is
formalized by the following definition.

Definition A.23 (Effrös σ-algebra and Fell topology). The Effrös σ-algebra is the one generated by the sets {W ∈
CL(E),W ∩K ̸= ∅} for K going over all compact sets in Rd.

The Fell topology on CL(E) is the one generated by open sets {W ∈ CL(E),W ∩K ̸= ∅} for K going over all compact
sets and {W ∈ CL(E),W ∩ O ≠ ∅} for O going over all open sets of Rd.

One can show that the Effrös σ-algebra on CL(E) corresponds to the Borel σ-algebra induced by the Fell topology
(Molchanov, 2017, Chapter 1.1). The Effrös σ-algebra will be denoted by E(E).

It can be shown that Definition A.22 is equivalent to asking the measurability of W with respect to E(E).

The assumption that we made on our learning algorithm is the following:

Assumption A.24. We assume that WS,U is a random closed set in the sense of the above definition. It means that the
mapping defining the learning algorithm:

A :

+∞⋃
n=0

Zn × ΩU −→ CL(Rd),

is measurable with respect to the Effrös σ-algebra.

Thanks to this definition, we can already state one particularly useful result:

Proposition A.25 (Theorem 1.3.28 in (Molchanov, 2017)). Consider (Gw)w∈E a R-valued, almost surely continuous,
stochastic process on E = Rd and W a random closed set in E. Then the mapping

Ω ∋ ω 7−→ sup
w∈W (ω)

Gw(ω)

is a random variable.

Example A.26. If we define R(w)− R̂S(w) and W = WS,U , then thanks to the continuity of the loss (Assumption 3.1) we
have that the worst case generalization error defined by Equation (27) is a well-defined random variable.

While Example A.26 gives us useful information, it is actually not enough for some arguments of our proofs to hold. In
particular, to deal with the statistical dependence between the data and the random hypothesis set, we want to be able to
perform the following operation: Given a random closed set W and S ∈ Zn we want to apply the decoupling results and
write:

PW,S

(
sup
w∈W

R(w)− R̂S(w) ≥ ϵ

)
≤ eI∞(W,S)PW ⊗ PS

(
sup
w∈W

R(w)− R̂S(w) ≥ ϵ

)
. (28)

In order for the decoupling lemmas to hold, we actually need the measurability of the mapping

CL(Rd)×Zn ∋ (W,S) 7−→ sup
w∈W

|R(w)− R̂S(w)|,
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with respect to E(Rd)⊗F⊗n.

We show two results in this direction, the first one assuming that the data space Z is countable8.

Lemma A.27. As before, let (CL(Rd),E(Rd)) denotes the closed sets of Rd endowed with the Effrös σ-algebra, (Ω, T )
be a countable measurable space (with T = P(Ω)) and ζ(x, ω) be an almost surely continuous stochastic process on Rd.
Then the function

f : CL(Rd)× Ω ∋ (W,ω) 7−→ sup
x∈W

ζ(x, ω) ∈ R

is measurable with respect to E(Rd)⊗ T .

Proof. It is enough to show that f−1(]t,+∞[) ∈ E(Rd) ⊗ T for any t ∈ Q as those sets ]t,+∞[ generate the Borel
σ-algebra in R. Let us fix some t ∈ Q. Let us denote ζω := ζ(·, ω), we have:

f−1(]t,+∞[) =
⋃
ω∈Ω

(
{F ∈ CL(Rd), F ∩ ζ−1

ω (]t,+∞[) ̸= ∅} × {ω}
)
.

By (Molchanov, 2017, Proposition 1.1.2), we have that the sets of the form {F ∈ CL(Rd), F ∩ O ̸= ∅} generate E(Rd),
with O running through open sets of Rd. Therefore the continuity of ζ and the countability of Z give us:

f−1(]t,+∞[) ∈ E(Rd)⊗ T .

If we want to get rid of the countability assumption on Ω, we have to introduce some metric structure on it. This approach
justifies the assumptions made on Z (that it is a sub-metric space of some RN ).

Lemma A.28. Assume that Ω is a Polish space with a dense countable subset D and that ζ is continuous in both variables.
Then the function:

f : CL(Rd)× Ω ∋ (W,ω) 7−→ sup
x∈W

ζ(x, ω) ∈ R,

is measurable with respect to E(Rd)⊗ BΩ, where BΩ is the Borel σ-algebra on Ω.

Proof. As before, let t ∈ Q, for X,ω ∈ CL(Rd)× Ω we have that

(X,ω) ∈ f−1(]t,+∞[) ⇐⇒ ∃x ∈ X, ∃ϵ ∈ Q>0, ∃d̄ ∈ D, ∀d ∈ B(d̄, ϵ) ∩D, ζ(d, x) > t,

and therefore

f−1(]t,+∞[) =
⋃
r̄∈D

⋃
ϵ∈Q>0

{( ⋂
d∈B(d̄,ϵ)

{F ∈ CL(Rd), F ∩ ζ−1
ω (]t,+∞[) ̸= ∅}

)
×B(d̄, ϵ)

}
.

The results follows from the same arguments as in the proof of the previous lemma.

A.6.2. CONSTRUCTION OF MEASURABLE COVERINGS

To end this technical discussion about random closed set we try to answer the following questions: are the covering numbers
with respect to pseudo-metric ρS measurable? Moreover, can we construct coverings that are well-defined random close sets
themselves?

Recall that we defined a δ-covering of some set X as a minimal set of points Nδ of X such that:

X ⊆
⋃

w∈Nδ

B̄ρ
δ (w)

8This countability assumption on the dataset is found in some other works, especially in (Şimşekli et al., 2021) who used it to leverage
the local stability of Hausdorff dimension
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The fact that we ask the coverings to be in X is for technical reasons and does not change the values of the dimensions.

We first need a technical lemma to ensure that it is equivalent to cover dense countable subsets:

Lemma A.29 (Closure property of coverings). Let W be a closed set and C be a countable dense subset of W . Under
Assumption 3.1 we have that any covering of C is a covering of W for pseudo-metric ρS . Moreover we have, for all δ > 0:

|NρS

2δ (C)| ≤ |NρS

δ (W )| ≤ |NρS

δ (C)|. (29)

Proof. Let us consider some δ > 0, a minimal δ-cover {c1, . . . , cK} of C and w ∈W . By density, there exists a sequence
(ξn)n in C such that ξn → w. As {c1, . . . , cK} is a finite cover of C, we can assume without loss of generality that, for all n,
ξn ∈ B̄ρS

δ (ci) for some i. Therefore, by continuity we have ρS(w, ci) = limn→∞ ρS(w, ξn) ≤ δ. Thus:

|NρS

δ (W )| ≤ |NρS

δ (C)|.

Now, by the triangle inequality we have:
|NρS

2δ (C)| ≤ |NρS

δ (W )|

Let us first prove that we can construct measurable coverings in the case of fixed hypothesis sets. Indeed, this is essential to
ensure the fact that the upper box-counting dimension dim

ρS

B induced by ρS is a well-defined random variable, which is
required for the high probability bounds in our results to make sense. This kind of measurability condition is often assumed
by authors dealing with potentially random covering numbers (Şimşekli et al., 2021; Camuto et al., 2021). In our case, we
can prove this measurability under some condition.

Recall that we required that Z has a metric space structure, typically inherited by an inclusion in an Euclidean space RN

and that its σ-algebra F is the corresponding Borel σ-algebra. With that in mind we prove the following theorem:

Theorem A.30 (Measurability of covering numbers in the case of fixed hypothesis set). Let W be a closed set, C be a dense
countable subset9 of W and δ > 0. Under Assumption 3.1, we have that the mapping between probability spaces

(Zn, F⊗n) ∋ S 7−→ |NρS

δ (C)| ∈ (N+, P(N+)),

is a random variable, where P(A) denotes the subsets of a set A.

Proof. For any set X let us denote by F≤k(X) the set of finite subsets of X with at most k elements.

We start by noting that thanks to the continuous loss assumption, we have that S 7→ ρS(w,w
′) is continuous for any

w,w′ ∈ Rd. Moreover, let us denote C := {wk, k ∈ N}.

Thus, to show the measurability condition, it suffices to show that for any M ∈ N+ we have: {S ∈ Zn, |NρS

δ (C)| ≤M} ∈
F⊗n. we can write

|NρS

δ (C)| ≤M ⇐⇒ ∃F ∈ F≤M (C), ∀k ∈ N, C ⊂
⋃
c∈F

B̄ρS

δ (c).

Therefore

{S ∈ Zn, |NρS

δ (C)| ≤M} =
⋃

F∈F≤M (C)

⋂
k∈N

⋃
c∈F

{S, ρS(c, wk) ≤ δ}. (30)

By continuity, it is clear that {S, ρS(c, wk) ≤ δ} ∈ F⊗n, hence we have the result by countable unions and intersections.

9It always exists for any closed set inRd.
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Remark A.31. Given any positive sequence δk, decreasing and converging to 0, thanks to Lemma A.29 the upper box-
counting dimension can be written as

dim
ρS

B (W) = lim sup
k→+∞

log |NρS

δk
(C)|

log(1/δk)
, (31)

which, by Theorem A.30, implies that dim
ρS

B (W) is a random variable as countable upper limit of random variables.

We now come to the case of random hypothesis sets, we begin by introducing Castaing’s representations, which are a
fundamental tool to deal with random closed sets (Molchanov, 2017, Theorem 1.3.3 and Definition 1.3.6).

Proposition A.32 (Castaing’s representations). Let W be a random closed set in Rd, then there exists a countable family
(ξn)n≥1 of Rd-valued random variables whose closure is almost surely equal to W , namely:

{ξn, n ≥ 1} =W, almost surely.

Equipped with this result, we can easily extend Theorem A.30 to the measurability of the covering numbers associated to a
Castaing’s representation of the hypothesis set:

Theorem A.33 (Measurability of covering numbers in the case of random hypothesis set). Let W ⊂ Rd be a random closed
set over a probability space (Ω, T ) and δ > 0. Let us introduce a Castaing’s representation (ξn)n≥1 of W .

Then, under Assumption 3.1, we have that the mapping between probability spaces

(Zn, F⊗n)⊗ (Ω, T ) ∋ (S, ω) 7−→ |NρS

δ ({ξn(ω), n ≥ 1})| ∈ (N+, P(N+)),

is a random variable, where P(A) denotes the subsets of a set A. In particular, the upper-box counting dimension dim
ρS

B is
a random variable.

Proof. The proof follows exactly that of Theorem A.30 except that now have a Castaing’s representation (ξn)n≥1 of W .

By the same proof than Equation (30), we have:

{(S, ω), |NρS

δ ({ξn(ω), n ≥ 1})| ≤M} =
⋃

I∈F≤M (N+)

⋂
k∈N

⋃
i∈I

{(S, ω), ρS(ξi(ω), ξk(ω)) ≤ δ}.

By continuity and composition of random variables, it is clear that

{(S, ω), ρS(ξi(ω), ξk(ω)) ≤ δ} ∈ F⊗n ⊗ T ,

hence we have the result by countable unions and intersections.

Therefore dim
ρS

B (W (ω)) is a random variable is a random variable as a direct consequence of Lemma A.29.

Thanks to Theorem A.33, we are actually able to prove the much stronger result that we can build measurable coverings.

Theorem A.34 (Measurable coverings). Let W ⊂ Rd be a random closed set over a probability space (Ω, T ,P) and δ > 0.
Let F(N+) denote the set of finite subsets ofN+. Then, under Assumption 3.1, we can build a map:

Nδ : Zn × Ω −→ F(Rd) ⊂ CL(Rd),

which is measurable (with respect to the Effrös σ-algebra on the right hand-side) and such that for almost all (S, ω) ∈ Zn×Ω,
Nδ(S, ω) is a finite set which is (almost surely) a covering of W (ω) with respect to pseudo-metric ρS and such that we have
almost surely over µ⊗n

z ⊗ P:

dim
ρS

B (W (ω)) = lim sup
δ→0

|Nδ(S, ω)|
log(1/δ)

.
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Proof. Let us introduce a Castaing’s representation (ξk)k≥1 of W and denote by FN (N+) the set of finite subsets ofN+

with exactly N elements. Again, as in Theorem A.30, the proof is based on the idea that, thanks to the continuity of the loss
ℓ defining the pseudo-metric ρS , a cover of {ξk, k ∈ N+} covers W . Let us denote C(ω) = {ξk(ω), k ∈ N+}.

As FN (N+) is countable, for each N ∈ N+, we introduce (FN
i )i≥1 an ordering of FN (N+).

Now for each (S, ω) ∈ Zn × Ω, we define:

∀i ∈ N+, Fi(S, ω) := F
|NρS

δ (C(ω))|
i .

Let us now introduce the minimal index of a set of indices that can cover W :

i0(S, ω) := argmin
{
i ∈ N+, ∀k ≥ 1, ∃j ∈ Fi(S, ω), ρ(ξj(ω), ξi(ω)) ≤ δ

}
.

Note that i0 is finite because {(ℓ(w, zi)1≤i≤n), winW} is compactly contained, thanks to the boundedness assumption on
ℓ, i.e. the covering numbers are finite.

We can therefore build the following ‘covering indices’ function:

Iδ : Zn × Ω −→ F(N+),

defined by Iδ(S, ω) = Fi0(S,ω)(S, ω).

Now we want to introduce an ‘evaluation functional’, i.e. a mapping:

Ξ : Ω× F(N+) −→ F(Rd) ⊂ CL(Rd),

defined by Ξ(ω, I) = {ξi(ω), i ∈ I}. It is easy to see that Ξ is measurable, indeed for any compact set K ⊂ Rd we have:

{(ω, I), Ξ(ω, I) ∩K ̸= ∅} =
⋃

F∈F(N+)

⋃
i∈F

{ξi ∈ K} × {I},

implying the measurability by countable unions and Definition A.23.

The key point of the proof is that we construct the coverings as Nδ(S, ω) = Ξ(ω, Iδ(S, ω)), so that the measurability of Nδ

reduces to that of Iδ . This is achieved by noting that for any non-empty I ∈ F(N+), such that I = FN
i1

for some N, i1 ≥ 1,
we have, by leveraging the countable ordering of FN (N+):

I−1
δ ({I}) ={|NρS

δ (C(ω))| = N} ∩
( +∞⋂

k=1

⋃
m∈I

{(S, ω), ρS(ξk(ω), ξm(ω)) ≤ δ}
)

∩
( ⋂

i<i1

+∞⋃
k=1

⋂
m∈FN

i

{(S, ω), ρS(ξk(ω), ξm(ω)) > δ}
)
.

By Theorem A.33, we have the measurability of (S, ω) 7→ |NρS

δ (W (ω))|, hence the measurability result follows by
continuity of ℓ (and therefore ρ·(·, ·)) and countable unions and intersections.

Now, using Lemma A.29, Nδ(S, ω) also defines a covering of W and we have:

dim
ρS

B (W (ω)) = lim sup
δ→0

|Nδ(S, ω)|
log(1/δ)

. (32)

Let us make the following important remark , which summarizes most of this subsection.
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Remark A.35. Theorem A.34 shows that we can construct measurable coverings of the random closed hypothesis set under
pseudo-metric ρS . While those coverings may not be strictly speaking minimal, they yields the same upper-box counting
dimensions, which is enough for all proofs in this work to hold. Note that this technical complication of not being minimal
comes from the fact that we asked the minimal coverings of a set F to be included in F , however this also removes further
technical complications. If we do not impose this condition, our proof would imply that we can construct measurable
minimal coverings.

From now on, we will always implicitly assume that the coverings we consider are measurable and induce correct
upper box-counting dimension, the present subsection being a theoretical basis for this assumption.This is formalized
by Assumption 3.2 in the main part of the paper.

B. Postponed proofs
B.1. Proof of Theorem 3.4

This proof essentially uses classical arguments related to Rademacher complexity.

Proof. Step 0: First of all, as W is closed, we can consider a dense countable subset C10. Thanks to the boundedness
assumption, we can find finite coverings Nr for each value of r > 0. The notation Nr refers in this proof to the set of the
centers of a covering of C by closed r-balls under the pseudo-metric ρS . Invoking results from Lemma A.29, those set Nr

are also δ-coverings of W and induce the upper box-counting dimension of W under ρS , so that considering them does not
change the dimension.

Step 1: Let us set:
G(S) := sup

w∈W

(
R(w)− R̂S(w)

)
.

Invoking proposition A.9 we have:

G(S) ≤ 2Rad(ℓ(W, S)) + 3

√
2B2

n
log(1/η). (33)

Step 2:

Therefore we have everywhere for S ∈ Zn:

dim
ρS

B (W) := lim sup
r→0

log(|Nr|)
log(1/r)

. (34)

Thanks to Theorem A.30 we have that log(|Nr|) is a random variable. Let us consider an arbitrary positive sequence rk
decreasing and converging to 0. We have:

dim
ρS

B (W) := lim sup
k→∞

log(|Nrk |)
log(1/rk)

. (35)

Let γ > 0, by Egoroff’s Theorem A.12 there exist a set Ωγ such that µ⊗n
z (Ωγ) ≥ 1− γ, on which the above convergence is

uniform. Therefore, if we fix ϵ > 0, we have that there exists K ∈ N such that

∀S ∈ Ωγ , ∀k ≥ K, sup
0<δ<rk

log(|Nδ|)
log(1/δ)

≤ ϵ+ dim
ρS

B (W).

Now, setting δn,γ,ϵ := rK , we have that on Ωγ :

∀δ ≤ δn,γ,ϵ, log(|Nδ|) ≤ (ϵ+ dim
ρS

B (W)) log(1/δ). (36)

10the fact that we cover a dense countable subset and not directly W here is just made to invoke the measurability result of Theorem
A.30, it does not change anything to the proof.

24



Generalization Bounds using Data-Dependent Fractal Dimensions

Now let us fix S ∈ Ωγ and the associated cover Nr, for (σi) Rademacher random variables independent of S and Nr, taking
two points w,w′ such that ρS(w,w′) ≤ r we can use the triangle inequality and write:

1

n

n∑
i=1

σiℓ(w, zi) ≤ r +
1

n

n∑
i=1

σiℓ(w
′, zi).

Therefore we have:

Rad(ℓ(W, S)) ≤ r + Eσ

[
max
w∈Nr

1

n
σT ℓ(w, S)

]
.

As the Rademacher random variables are independent of the other random variables we have by Massart’s lemma (lemma
A.10):

Rad(ℓ(W, S)) ≤ r +B

√
2 log(|Nr|)

n
.

Therefore if we take δ ≤ δγ we get that with probability at least 1− γ:

Rad(ℓ(W, S)) ≤ δ + Eσ

[
max
w∈Nr

1

n
σT ℓ(w, S)

]
≤ δ +B

√
2 log(1/δ)

n
(ϵ+ dim

ρS

B (W)). (37)

Putting together equations 33 and 37 we get that with probability at least 1− 2η − γ, for δ ≤ δn,γ,ϵ:

G(S) ≤ 2δ + 2B

√
4(ϵ+ d(S)) log(1/δ) + 9 log(1/η)

n
. (38)

Remark B.1. An important remark can be made at this point. One can see that δ is still appearing in Equation (38), this is
due to the possible lack of uniformity in the limit defined in Equation (34). That way the quantity log(1/δn,γ,ϵ) may be
seen as a sort of speed of convergence of the upper box-counting dimension. Theorem 3.4, as well as our other main results
(Theorems 3.5 and 3.8) may be made uniform in n by further assumption of uniformity in n on the convergence of the limit
defining the upper box-counting dimension, i.e. Equation (34), meaning that in that case δn,γ,ϵ will not depend on n. This
would allow us to proceed as in the proof of Lemma S1 in (Şimşekli et al., 2021) and set δ = δn := 1/

√
n, at the cost of

making the bound asymptotic in n.

B.2. Proof of Theorem 3.5

Before going to the proof, let us make a few remarks on the introduced approximated level sets of the empirical risk.

to be able to develop a covering argument, we first cover the set WS,U by using the pseudo-metric ρS and rely on the
following decomposition: for any δ > 0 and w′ ∈ NρS

δ (WS,U ) we have that

R(w)− R̂S(w) ≤ R (w′)− R̂S (w′) + |R̂S(w)− R̂S (w′) |+ |R(w)−R (w′)| .

In the above inequality, the first term can be controlled by standard techniques, namely concentration inequalities and
decoupling theorems presented in Section A.1 as w′ lives in a finite set NρS

δ (WS,U ) and the second term is trivially less
than δ by the definition of coverings. However, the last term cannot be bounded in an obvious way. To overcome this issue
we introduce ‘approximate level-sets’ of the population risk, defined as follows11 for some K ∈ N+:

Rj
S := WS,U ∩R−1

([
jB

K
,
(j + 1)B

K

])
, (39)

where j = 0, . . . ,K − 1 and R−1 denotes the inverse image of R. The interval
[
jB
K , (j+1)B

K

]
will be denoted Ij . Note that

thanks to the

Let Nδ,j collect the centers of a minimal δ-cover of Rj
S relatively to ρS , the measurability condition on the coverings extend

to the randomness of those sets Nδ,j .

11As U is independent of S, we drop the dependence on it to ease the notation.
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Remark B.2. Without loss of generality we can always assume that those sets Rj
S are non-empty. Indeed we can always add

one deterministic point of R−1(Ij) in each of the coverings Nδ,j one deterministic (always the same) element of R−1(Ij).
It won’t make the mutual information term appearing in our result bigger (by the data-processing inequality) and it won’t
change the upper box-counting dimension because of its finite stability. Moreover if some of the sets R−1(Ij) are empty
then we just need to restrict ourselves to a deterministic subset of [0, B]. If we don’t want to do this, another way, maybe
cleaner, of handling the potential empty sets would be to use the convention max(∅) = 0 everywhere in the proof, then we
should also adapt the definition of ϵ(N, I) below to replace log(KN) by max(0, log(KN)), where log(0) is set to −∞.
All those manipulations would essentially lead to the same results.

Measurability of the coverings: We proved in Section A.6 that we can construct measurable coverings (as random sets),
which are actually coverings of a dense countable subset (or a Castaing’s representation) of WS,U . Therefore, without
loss of generality and thanks to the continuity of the loss ℓ, we can assume in all the remaining of this work that all the
considered coverings are random sets, because either they can be constructed by Theorem A.34 or we can restrict ourselves
to Castaing’s representations of WS,U .

As can already be noted in Remark B.2, our approximate level set technique introduces quite a lot of technical difficulties
and intricate terms. We believe that this proof technique is interesting but may not be a definitive answer to the problem at
hand, improving it is a direction for future research.

Proof. We assume without loss of generality that that the loss takes values in [0, B].

Let us fix some integer K ∈ N+ and define Ij = [ jBK , (j+1)B
K ], such that:

[0, B] =

K−1⋃
j=0

Ij .

Then, given WS we define the set Rj
S := WS ∩R−1(Ij).

We then introduce the random closed (finite) sets 12 Nδ,j corresponding to the centers of a minimal covering13 of Rj
S , such

that Nδ,j ⊂ Rj
S , for the pseudo-metric:

ρS(w,w
′) :=

1

n

n∑
i=1

|ℓ(w, zi)− ℓ(w′, zi)|.

The first step is to write that almost surely:

sup
w∈WS

(
R(w)− R̂S(w)

)
= max

0≤j≤K−1
sup

w∈Rj
S

(
R(w)− R̂S(w)

)
.

Then, given w,w′ ∈ Rj
S such that ρS(w,w′) ≤ δ we have by the triangle inequality:(
R(w)− R̂S(w)

)
≤

(
R(w′)− R̂S(w

′)
)
+ ρS(w,w

′) + |R(w)−R(w′)|

≤
(
R(w′)− R̂S(w

′)
)
+ δ +

B

K
.

(40)

So that we get:

sup
w∈WS

(
R(w)− R̂S(w)

)
≤ δ +

B

K
+ max

0≤j≤K−1
max

w∈Nδ,j

(
R(w)− R̂S(w)

)
. (41)

12Note that, as mentioned earlier, in this paper we always assume that minimal coverings are random sets.
13Without loss of generality we can always assume that those sets are non-empty. Indeed we can always add one deterministic point of

R−1(Ij) in each of the coverings Nδ,j one deterministic (always the same) element of R−1(Ij). It won’t change the mutual information
term in the final results (by the data-processing inequality) and it won’t change the upper box-counting dimension because of its finite
stability. Moreover if some of the sets R−1(Ij) are empty then we just need to restrict ourselves to a deterministic subset of [0, B]. If
we don’t want to do this, another way, maybe cleaner, of handling the potential empty sets would be to use the convention max(∅) = 0
everywhere in the proof, then we should also adapt the definition of ϵ(N, I) below to replace log(KN) by max(0, log(KN)), where
log(0) is set to −∞.
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Now we fix some η > 0 and just introduce the random variable ϵ as a function of two variables N and I:

ϵ(N, I) :=

√
2B2

n

(
log(1/η) + log

(
KN

)
+ I

)
.

We have by the decoupling lemma A.6 along with Fubini’s Theorem, Hoeffding inequality and a union bound:

P

(
max

0≤j≤K−1
max

w∈Nδ,j

(
R(w)−R̂S(w)

)
≥ ϵ(max

j
|Nδ,j |, max

j
I∞(S,Nδ,j))

)
≤

K−1∑
j=0

P

(
max

w∈Nδ,j

(
R(w)− R̂S(w)

)
≥ ϵ(|Nδ,j |, I∞(S,Nδ,j))

)

≤
K−1∑
j=0

eI∞(S,Nδ,j)PNδ,j
⊗ PS

(
max

w∈Nδ,j

(
R(w)− R̂S(w)

)
≥ ϵ(|Nδ,j |, I∞(S,N j

δ ))

)

≤
K−1∑
j=0

eI∞(S,Nδ,j)ENδ,j

[
PS

(
max

w∈Nδ,j

(
R(w)− R̂S(w)

)
≥ ϵ(|Nδ,j |, I∞(S,N j

δ ))

)]

≤
K−1∑
j=0

eI∞(S,Nδ,j)ENδ,j

[ ∑
w∈Nδ,j

PS

((
R(w)− R̂S(w)

)
≥ ϵ(|Nδ,j |, I∞(S,N j

δ ))

)]

≤
K−1∑
j=0

eI∞(S,Nδ,j)ENδ,j

[
|Nδ,j | exp

{
−
nϵ(|Nδ,j |, I∞(S,N j

δ ))
2

2B2

}]

≤
K−1∑
j=0

eI∞(S,Nδ,j)ENδ,j

[
η

K
e−I∞(S,Nδ,j)

]
= η.

(42)

Now let us consider a random minimal δ-cover of the whole (random) hypothesis set WS . Given j ∈ {0, . . . ,K − 1}, we
have in particular almost surely that:

WS ∩Rj ⊆
⋃

w∈Nδ

BρS

δ (w).

Where BρS

δ (w) denotes the closed δ-ball for metric ρS centered in w. Therefore there exists a non-empty subset Ñδ ⊆ Nδ

such that for all w ∈ Ñδ we have BρS

δ (w) ∩Rj ̸= ∅.

Therefore we can collect in some set Ñδ,j one element in each BρS

δ (w) ∩Rj for w ∈ Ñδ and the triangular inequality gives
us:

Rj
S ⊆

⋃
w∈Ñδ,j

BρS

2δ (w).

This proves that almost surely ∀j, |Nδ,j | ≤ |Nδ/2|, and thus:

max
0≤j≤K−1

|Nδ,j | ≤ |Nδ/2|. (43)

We know that we have almost surely that:

lim sup
δ→0

log(|Nδ/2|)
log(2/δ)

= dim
ρS

B (WS).

Therefore let us fix γ, ϵ > 0. Using Egoroff’s Theorem we can say that there exists δn,γ,ϵ > 0 such that, with probability at
least 1− γ, for all δ ≤ δn,γ,ϵ we have:

log
(
|Nδ/2|

)
≤ (ϵ+ dim

ρS

B (WS)) log(2/δ).
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Therefore combining equations 40, 42, 43, we get that with probability at least 1− γ − η, for all δ ≤ δn,γ,ϵ:

sup
w∈WS

(
R(w)− R̂S(w)

)
≤ δ +

B

K
+

√
2B2

n

(
log(K/η) + log

(
max

j
|Nδ,j |

)
+max

j
I∞(S,Nδ,j)

)

≤ δ +
B

K
+

√
2B2

n

(
log(K/η) + log |Nδ/2|+max

j
I∞(S,Nδ,j)

)

≤ δ +
B

K
+

√
2B2

n

(
log(K/η) + log(2/δ)(ϵ+ dim

ρS

B (WS)) + max
j
I∞(S,Nδ,j)

)
.

The choice of K has not been done yet, considering the above equation the best choice is clearly: K = Kn := ⌊
√
n⌋. Let

us introduce the notation:
In,δ := max

j
I∞(S,Nδ,j).

This way we get that with probability at least 1− γ − η, for all δ ≤ δn,γ,ϵ:

sup
w∈WS

(
R(w)− R̂S(w)

)
≤ δ +

B√
n− 1

+
√
2B

√
log(

√
n/η) + log(2/δ)(ϵ+ dim

ρS

B (WS)) + In,δ
n

. (44)

Note that it is possible to set this value of K, which depends on n, at the end of the proof, because the previous limits do not
depend on K.

B.3. Proof of Theorem 3.8

Here we present the proof of Theorem 3.8. The proof proceeds in two steps and is based on what we will call a grouping
technique. The main idea is to divide the dataset S ∈ Zn into H groups J1, . . . , JH of size J with J,H ∈ N+ and JH = n.
In the end of the proof a particular choice is made.

A minor technical difficulty appears when it is not actually possible two write JH = n for a pertinent choice of (J,H).
Therefore we first present a result when the latter is possible and then derive two corollaries to deal with this technical issue,
mostly based on the boundedness assumption. Theorem 3.8 will be the second corollary.
Remark B.3. For the sake of the proof we need to assume α ≤ 3

2 , which is just asking for a potentially weaker assumption,
which is not a problem. Note that the value α ≤ 3

2 will lead in Theorem 3.8 to a convergence rate in n−1/2 which is optimal
anyway.

Let us start with the main result of this section:
Proposition B.4. We make assumptions 3.1, 3.2 and 3.7 with the same notations than in Theorem 3.8. We also take arbitrary
J,H ∈ N+ such that JH = n

Then for all n ≥ 2
3

3−2α , with probability 1− γ − η, for all δ smaller than some δγ,ϵ,n > 0 we have:

sup
w∈WS,U

|R(w)− R̂S(w)| ≤ δ +
B√
n− 1

+
2Jβ

nα
+H

√
JB2

2n2

((
ϵ+ d(S,U)

)
log(4/δ) + log(H

√
n/η) + I

)
.

Proof. Let us first refine our notations for the coverings to make the proof clearer. Throughout this section, for any S, S′

we will denote Nδ(S, S
′, U) the centers of a covering of WS,U by closed δ-balls under pseudo-metric dS′ . As in the proof

of Theorem 3.5, we introduce some approximate level sets Rj
S for j ∈ {0, . . . ,K − 1}. We then denote by Nδ,j(S, S

′, U)

the centers of a covering of Rj
S by closed δ-balls under pseudo-metric dS′ . (note that the Rj

S still depends on U but the
dependence has been dropped to ease the notations).

The remark we made in the proof of theorem 3.5 about the assumptions that Rj
S are non-empty without loss of generality

still holds in the setting described hereafter.

28



Generalization Bounds using Data-Dependent Fractal Dimensions

The proof starts by introducing the ”level-sets” of the population risk as in proof of Theorem 3.5. We define Rj
S exactly in

the same way.

The proof starts with the same statement:

sup
w∈Ws,U

|R(w)− R̂S(w)| ≤ max
0≤j≤K−1

sup
w∈Rj

S

|R(w)− R̂S(w)|.

For all j, we (minimally) cover Rj
S with δ-covers for pseudo-metric dS , such that the centers are in Rj

S . We collect those
centers in Nδ,j(S, S, U).

This leads us to:

sup
w∈Ws,U

|R(w)− R̂S(w)| ≤ δ +
B

K
+ max

0≤j≤K−1
max

w∈Nδ,j(S,S,U)
|R(w)− R̂S(w)|︸ ︷︷ ︸
:=Ej

. (45)

Thanks to our stability assumption 3.7, we can say that for δ small enough there exists a random minimal covering such that
for all j ∈ {0, . . . ,K − 1} and all k ∈ {1, . . . ,H} the covering Nδ,j(S, S

\Jk , U) satisfies:

∀w ∈ Nδ,j(S, S, U), ∃w′ ∈ Nδ,j(S, S
\Jk , U), sup

z∈Z
|ℓ(w, z)− ℓ(w′, z)| ≤ βJ

nα
,

where the J factor on the right hand side comes from the fact that our stability assumption can be seen as a Lipschitz
assumption in term of the Hausdorff distance of the coverings with respect to the Hamming distance on the datasets.

Recall that we assume that all Nδ,j have coverings-metrics stability with common parameters β, α.

As in the previous proposition, we split the index set {1, . . . , n} into H groups of size J , with HJ = n, which allows us to
write (with a similar proof):

Ej = max
w∈Nδ,j(S,S,U)

|R(w)− R̂S(w)|

≤ max
w∈Nδ,j(S,S,U)

H∑
k=1

1

n

∣∣∣∣ ∑
i∈Jk

(
ℓ(w, zi)−R(w)

)∣∣∣∣
≤

H∑
k=1

max
w∈Nδ,j(S,S,U)

1

n

∣∣∣∣ ∑
i∈Jk

(
ℓ(w, zi)−R(w)

)∣∣∣∣
≤

H∑
k=1

{
2βJ2

n1+α
+

1

n
max

w∈Nδ,j(S,S
\Jk ,U)

∣∣∣∣ ∑
i∈Jk

(
ℓ(w, zi)−R(w)

)∣∣∣∣}

=
2Jβ

nα
+

1

n

H∑
k=1

max
w∈Nδ,j(S,S

\Jk ,U)

∣∣∣∣ ∑
i∈Jk

(
ℓ(w, zi)−R(w)

)∣∣∣∣.
Putting this back into equation (45) we get:

sup
w∈Ws,U

|R(w)− R̂S(w)| ≤ δ +
B

K
+

2Jβ

nα
+ max

0≤j≤K−1

H∑
k=1

max
w∈Nδ,j(S,S

\Jk ,U)

1

n

∣∣∣∣ ∑
i∈Jk

(
ℓ(w, zi)−R(w)

)∣∣∣∣
≤ δ +

B

K
+

2Jβ

nα
+H max

0≤j≤K−1
max

1≤k≤H
max

w∈Nδ,j(S,S
\Jk ,U)

1

n

∣∣∣∣ ∑
i∈Jk

(
ℓ(w, zi)−R(w)

)∣∣∣∣︸ ︷︷ ︸
:=Mj,k(S,U)

.

(46)

Let ϵ be a random variable depending on Nδ,j(S, S
\Jk , U) only. We use a decoupling lemma (lemma 1 in (Hodgkinson

et al., 2022)) along with Hoeffding’s inequality to write:
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P
(
Mj,k(S,U) ≥ ϵ

)
≤ eI∞(Nδ,j(S,S

\Jk ,U),SJk
)PNδ,j(S,S

\Jk ,U) ⊗ PSJk

(
Mj,k(S,U) ≥ ϵ

)
≤ eI∞(Nδ,j(S,S

\Jk ,U),SJk
)ENδ,j(S,S

\Jk ,U)

[
PSJk

(
Mj,k(S,U) ≥ ϵ

)]
≤ eI∞(Nδ,j(S,S

\Jk ,U),SJk
)

× ENδ,j(S,S
\Jk ,U)

[
PSJk

( ⋃
w∈Nδ,j(S,S

\Jk ,U)

{
1

n

∣∣∣∣ ∑
i∈Jk

(
ℓ(w, zi)−R(w)

)∣∣∣∣ ≥ ϵ

})]

≤ eI∞(Nδ,j(S,S
\Jk ,U),SJk

)E

[
|Nδ,j(S, S

\Jk , U)|e−
2ϵ2n2

JB2

]
.

(47)

The key point of the proof, and the reason for which we have introduced this strong stability assumption on the coverings is
that we can now use the following Markov chain:

SJk
−→ WS,U −→ Nδ,j(S, S

\Jk , U). (48)

Therefore, by the data processing inequality:

I∞(Nδ,j(S, S
\Jk , U), JJk

) ≤ I∞(WS,U , SJk
).

Now using the easier Markov chain:

WS,U −→ S −→ SJk
,

We have:
I∞(Nδ,j(S, S

\Jk , U), SJk
) ≤ I∞(S,WS,U ). (49)

Note that the mutual information term appearing in equation (49) is the same than the one appearing in (Hodgkinson et al.,
2022).

Thus:

P
(
Mj,k(S,U) ≥ ϵ

)
≤ eI∞(S,WS,U )E

[
|Nδ,j(S, S

\Jk , U)|e−
2ϵ2n2

JB2

]
.

Equipped with this result we can make an informed choice for the random variable ϵ, for a fixed η > 0:

ϵ = ϵj,k :=

√
JB2

2n2

(
log |Nδ,j(S, S\Jk , U)|+ log(HK/η) + I∞(S,WS,U )

)
,

Now we can apply an union bound to get:

P
(

max
0≤j≤K−1

max
1≤k≤H

Mj,k(S,U) ≥ max
0≤j≤K−1

max
1≤k≤H

ϵj,k
)
≤

K−1∑
j=0

H∑
k=1

P
(
Mj,k(S,U) ≥ max

0≤j≤K−1
max

1≤k≤H
ϵj,k

)
≤

K−1∑
j=0

H∑
k=1

P
(
Mj,k(S,U) ≥ ϵj,k

)
= η.

Now let us have a closer look at those covering numbers |Nδ,j(S, S
\Jk , U)|. Note that we have:

∀w,w′ ∈ Rd, dS\Jk (w,w
′) ≤ n

n− J
dS(w,w

′),
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And therefore |Nδ,j(S, S
\Jk , U)| ≤ |N δ(n−J)

n ,j
(S, S, U)|.

Moreover, using the same reasoning than in the proof of Theorem 3.5, we know that we have |Nδ,j(S, S
\Jk , U)| ≤

|Nδ/2(S, S
\Jk , U)|.

Thus:
|Nδ,j(S, S

\Jk , U)| ≤ |N δ(n−J)
2n

(S, S, U)|.

As before, we will want to solve the trade-off in the values of H and J by setting J = nλ for some λ ∈ (0, 1) (this time we
do not allow the value λ = 1, which will be justified later when we find the actual value of λ). A very simple calculation
gives us:

δ(n− J)

2n
=
δ

2

(
1− 1

n1−λ

)
.

Therefore we can say that if n ≥ 2
1

1−λ , then δ(n−J)
2n ≥ δ/4 and therefore:

|Nδ,j(S, S
\Jk , U)| ≤ |N δ

4
(S, S, U)|. (50)

We know that:

dim
dS

B (WS,U ) = lim sup
δ→0

|N δ
4
(S, S, U)|

log(4/δ)
.

If we fix ϵ, γ > 0, we can apply Egoroff’s Theorem to write that with probability 1− γ, we have for δ small enough:

|N δ
4
(S, S, U)| ≤

(
ϵ+ dim

dS

B (WS,U )
)
log(4/δ).

Therefore, we can say that with probability 1− η − γ, we have for δ small enough:

sup
w∈Ws,U

|R(w)− R̂S(w)| ≤ δ +
B

K
+

2Jβ

nα

+H

√
JB2

2n2

((
ϵ+ dim

dS

B (WS,U )
)
log(4/δ) + log(HK/η) + I∞(S,WS,U )

)
.

(51)

Setting K = ⌊
√
n⌋ and noting that 1− α/3 ≤ 1 in the above equation gives us the result.

Corollary B.5. With the exact same setting than in proposition B.4, if we assume in addition that nα/3 ∈ N+, then for all
n ≥ 2

3
3−2α , with probability 1− γ − η, for all δ smaller than some δγ,ϵ,n > 0 we have:

sup
w∈Ws,U

|R(w)− R̂S(w)| ≤ δ +
B + 2β

nα/3
+B

√
log(1/η) +

(
1− α

3

)
log(n) + I +

(
ϵ+ d(S,U)

)
log(4/δ)

2n
2α
3

.

Proof. We want to write J in the form J = nλ with some λ > 0. We see that there is a trade-off to be solved in the values of
(J,H) if we want both all terms in equation (51) to have the same order of magnitude in n, which leads to H

√
J/n = J/nα.

Therefore we want to have 1/
√
J = J/nα and λ/2 = α− λ, which implies the following important formula:

λ =
2α

3
. (52)

Finally, we are left again with choosing the value of K, an obvious choice is K = nα/3 ∈ N+ to get the same order of
magnitude. Thus we get the final result: for n ≥ 2

3
3−2α , with probability 1− γ − η, for all δ smaller than some δγ,ϵ,n > 0

we have:
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sup
w∈Ws,U

|R(w)− R̂S(w)| ≤ δ +
B + 2β

nα/3
+B

{
log(1/η) +

(
1− α

3

)
log(n) + I +

(
ϵ+ d(S,U)

)
log(4/δ)

2n
2α
3

} 1
2

. (53)

Remark B.6. The asymptoticity in δ defined by δγ,ϵ,n above accounts for the asymptoticity coming both from the stability
assumption (definition 3.6) and the convergence of the limit defining the upper box-counting dimension.

Now we prove Theorem 3.8 which is based on the same idea than the previous corollary, but when nα/3 /∈ N.

Theorem B.7. under the same assumptions and notations than proposition B.4. We have that for n ≥ C(α) :=

max{2 3
2α , 21+

3
3−2α }, with probability 1− γ − η, for all δ smaller than some δγ,ϵ,n > 0 we have:

sup
w∈Ws,U

|R(w)− R̂S(w)| ≤ δ +
3B + 2β

nα/3
+B

√
log(1/η) +

(
1− α

3

)
log(n) + I +

(
ϵ+ d(S,U)

)
log(4/δ)

2n
2α
3

. (54)

Proof. We define J := ⌊n2α/3⌋, J := ⌊n1−2α/3⌋ and ñ := JH . We obviously have ñ ≤ n.

Using the boundedness assumption we have:

|R̂S(w)−R(w)| ≤ n− ñ

n
B +

ñ

n

∣∣∣∣ 1ñ
ñ∑

i=1

ℓ(w, zi)−R(w)

∣∣∣∣. (55)

For the first term we write:

n− ñ

n
B ≤

n−
(
n2α/3 − 1

)(
n1−2α/3 − 1

)
n

=
n2α/3 + nα/3 − 1

n
≤ 2B

nα/3
.

The idea is to apply the proof of Theorem B.4 to the last term of equation (55), replacing dSn
with dSñ

. For clarity we still
denote S = (z1, . . . , zn) and Sñ = (z1, . . . , zñ)

There are several terms we need to consider:
The mutual information term: The two data processing inequality we apply to prove equation (49) still apply so we can
still write I∞(S,WS,U ) in the bound.
Dimension term: Let us denote by d(S, S′, U) the upper-box dimension of WS,U for pseudo-metric dS′ . Using the same
reasoning than equation (50), we have:

|Nδ(S, Sñ, U)| ≤ |Nδ ñ
n
(S, S, U)|.

We have:

δ
ñ

n
≥ δ

(
n2α/3 − 1

)(
n1−2α/3 − 1

)
n

≥ δ

(
1− 1

n2α/3

)
.

And therefore, once we have n ≥ 2
3
2α we have:

|Nδ(S, Sñ, U)| ≤ |N δ
2
(S, S, U)|,

which implies:
d(S, Sñ,U ≤ d(S, S, U).

Terms in n: Now we look at equation (51), where we have 4 types of term in n which are of the form:

• 1/K,
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• H
√
J/n,

•
√
log(HK)H

√
J/n,

• J/nα.

We do not forget that we also have to multiply those terms by the factor ñ/n coming from equation (55). Setting
K := ⌊1 +

√
J⌋ we get successively:

ñ

n

1

K
≤ 1

nα/3
,

ñ

n
H
√
J/n ≤ 1

nα/3
,

ñ

n
J/nα ≤ 1

nα/3
.

For the logarithmic term we have:

log(HK) ≤ log(2
√
Jn1−2α/3) ≤ log(2n1−α/3).

Moreover, if n ≥ 2
3
2α we have:

ñ ≥
(
n2α/3 − 1

)(
n1−2α/3

)
≥ n/2.

Therefore the condition ñ ≥ 2
3

3−2α is implied by n/2 ≥ 2
3

3−2α . So now the condition on n becomes:

n ≥ C(α) := max{2 3
2α , 21+

3
3−2α }. (56)

Putting all of this together, we get that for n ≥ C(α) (defined in equation (56)), with probability 1− γ − η, for all δ smaller
than some δγ,ϵ,n > 0 we have:

sup
w∈Ws,U

|R(w)− R̂S(w)| ≤ δ +
3B + 2β

nα/3
+B

√
log(1/η) +

(
1− α

3

)
log(n) + I +

(
ϵ+ d(S,U)

)
log(4/δ)

2n
2α
3

. (57)

B.4. Proof of Theorem 4.1

Let (X, ρ) be a pseudo-metric space, we introduce the equivalence relation:

x ∼ y ⇐⇒ ρ(x, y) = 0.

We call metric identification of X the quotient of X by this equivalence relation. The canonical projection on the quotient
will be denoted as:

π : X −→ X/ ∼ .

ρ induces a metric on X/ ∼ that we will denote ρ⋆ = π⋆ρ.

We prove that upper box-counting dimension and persistent homology dimension are invariant by this identification operation.
Let us recall that we always consider the covers are made from closed δ-balls, even though equivalent definitions exist.
Lemma B.8 (Upper-box dimension with pseudo metric).

dimB(X) = dimB(X/ ∼). (58)

Let Nd
δ (F ) denote the minimum number of closed δ-balls coverings of F for the (pseudo)-metric d.

Proof. Let F ⊂ X , bounded. Let {x1, . . . , xn} be the centers of a closed δ-balls covering of F for metric ρ. We have:

∀x, x′ ∈ B(xi, δ), ρ
⋆(π(x), π(y′)) = ρ(x, x′) ≤ δ.

Therefore π(B(xi, δ)) ⊂ B(π(xi), δ), therefore Nρ
δ (F ) ≥ Nρ⋆

δ (π(F )).

On the other hand, if {y1, ..., yn} are the centers of a covering of F̄ ⊂ X/ ∼, a similar reasoning shows that the
π−1(B(yi, δ)) give a covering of π−1(F ) with (set included in) δ-balls.
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The result is also quite obvious for the persistent homology dimension, even though it is a bit more complicated to write it.
For more details on persistent homology please refer to (Boissonat et al., 2018; Memoli & Singhal, 2019; Schweinhart,
2019).
Lemma B.9 (Persistent homology dimension in pseudo metric spaces).

dimPH0(X) = dimPH0(X/ ∼). (59)

Intuitively, the proof of this result is as follows: When constructing the VR filtration in a pseudo-metric space, points within
0 pseudo-distance will only add pairs of the form (0, 0) in their persistence homology of degree 0, because they are created
with the same value of the distance parameter δ in construction of the VR filtration.

Proof. Let K be a simplicial complex based on a finite point set T ∈ X . Let us denote by K̃ := π(K) the image of K by
the canonical projection π : X −→ X/ ∼, defined by its value on the simplices:

π([a0, . . . , as]) := [π(a0), . . . , π(as)]. (60)

We also introduce a section of π, i.e. an injective application s : X/ ∼−→ X , such that π ◦ s = IdX/∼. Clearly, K̃ is still a
simplicial complex.The map π does not preserve the dimension of the simplices, as [π(a0), . . . , π(as)] is seen as a set, and
two ai can have the same image, but π always reduces the dimension.

Note that K̃ and s(K̃) clearly define simplicial complex, but that s(K̃) can only be seen as a sub-complex of K. Therefore,
we define s : K̃ −→ K analogously to Equation (60). Actually, by injectivity of s, this allows us to identify K̃ with a
sub-complex of K.

Thus, both π and s linear maps on the space of k-chains:

π : Ck(K) −→ Ck(K̃), s : Ck(K̃) −→ Ck(K),

which both commute with the boundary operator, indeed, for any simplex [a0, . . . , as] and ϵi ∈ K:

π ◦ ∂([a0, . . . , as]) = π

( s∑
i=0

ϵi[a0, . . . , ai−1, ai+1, . . . , as]

)

=

s∑
i=0

ϵi[π(a0), . . . , π(ai−1), π(ai+1), . . . , π(as)]

= ∂ ◦ π([a0, . . . , as]),

with the exact same computation for s, so that the following diagram commutes:

C1(K)
∂ //

π





C0(K)
∂ //

π





{0}

��
C1(K̃)

∂ //

s

II

C0(K̃)
∂ //

s

II

{0}

OO

Therefore, π and s induces linear maps between the homology groups, making the following diagram commute:

C0(K)
π ,,

��

C0(K̃)
s

ll

��
H0(K)

π̄ ,,
H0(K̃)

s̄
ll

Now let us consider P = {x1, . . . , xn} a finite set in (X, ρ) and denote accordingly P̃ := π(P ). Let us introduce a
Vietoris-Rips filtration of P denoted by:

∅ → Kδ0,1 → · · · → Kδ0,α0 → Kδ1,1 → · · · → Kδc,αC = K,
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where 0 ≤ δ1 < · · · < δC are the ‘time-distance’ indices of the filtration and for the same value of δ the simplices are
ordered by their dimension and arbitrarily if they also have the same dimension. Obviously δ0 = 0.

As π : P −→ P̃ preserves distances, it is clear that, up to allowing certain complexes to appear several times in a row, the
nested sequence (K̃i,j)(0≤i≤C,1≤j≤αi) is a Vietoris-Rips filtration for P̃ .

Let us fix some i ∈ 0, . . . , C and j ∈ 1, . . . , αi such that either i ≤ 1 or j = α0. This way we have:

∀a, b ∈ P, π(a) = π(b) =⇒ [a, b] ∈ Ki,j ,

by definition of the VR filtration (all simplices within δ0 = 0 ρ-distance have been added in the filtration). Therefore, if
π(a) = π(b), as ∂[a, b] = [a] + [b], we have that [a] = [b] in H0(K

i,j). As be definition of s, for any a ∈ P we have
π ◦ s ◦ π(a) = π(a), we have the following identity (the bars denote classes in homology groups):

s̄ ◦ π̄([a]) = s ◦ π([a]) = [a].

Therefore, as also π ◦ s = Id, we have that s̄ and π̄ are inverse of one another, so that we have an isomorphism H0(K
i,j) ∼=

H0(K̃
i,j) and the following diagram:

H0(K
0,1) //

��

. . .

��

// H0(K
0,α0−1) //

��

H0(K
0,α0) // . . . // H0(K

δC ,αC )

H0(K̃
0,1) // . . . // H0(K̃

0,α0−1) // H0(K̃
0,α0) // . . . // H0(K̃

δC ,αC )

As already mentioned, persistent homology of degree 0 is characterized by the multi-set of ‘death times’ δi. All death before
K0,α0−1 are 0 so they do not add anything the weighted life-sum of Equation (25). After K0,α0−1, the isomorphisms in the
diagram show that the basis will evolve exactly in the same way so the death times will be the same, therefore the weighted
sum are the same in both spaces for any P . Therefore, by definition, we have the equality between the persistent homology
dimension.

Combination of Equation (15), lemma B.8 and Lemma B.9 immediately gives the proof of Theorem 4.1.

B.5. Proof of Theorem 3.9

In this subsection, we show how we can leverage very classical tools from high dimensional probability to give one first step
toward proving lower bounds, even though the obtained lower bound may look a bit disappointing. We combine two tools,
namely Gaussian complexity and Sudakov’s theorem.

Definition B.10 (Gaussian complexity). Given a set A ⊂ Rn, and g1, . . . , gn ∼ N (0, 1) independent, the Gaussian
complexity of A is defined by:

Γ(A) :=
1

n
Eg

[
sup
a∈A

n∑
i=1

giai

]

As before we will denote, for S ∈ Zn:

Γ(ℓ(W, S)) :=
1

n
Eg

[
sup
w∈W

n∑
i=1

giℓ(w, zi)

]

We have the following lower bound of Rademacher complexity

Lemma B.11. We have:

Rad(A) ≥ 1

2
√

log(n)
Γ(A)
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Proof. For Rademacher random variables σ1, . . . , σn, let us define the following function, for α = (α1, . . . , αn) ∈ [0, 1]n:

f(α) := Eσ

[
sup
a∈A

n∑
i=1

σiαiai

]
.

it is easy to see that f is convex and continuous on the compact set [0, 1]n. Therefore we know that f attains its maximum for
some α0 ∈ [0, 1n.]. We denote the constant one vector by 1n ∈ Rn. For some 0 ≤ λ ≤ 1, let us write α0 = λα+(1−λ)1n,
for some α. We have, by convexity:

f(α0) ≤ λf(α) + (1− λ)f(1n) ≤ λf(α0) + (1− λ)Rad(A),

which implies that:

Eσ

[
sup
a∈A

n∑
i=1

σiαiai

]
≤ Rad(A) (61)

Now let g1, . . . , gn ∼ N (0, 1) be independent normal random variables. Let g∞ := maxi(|gi|). It is possible to write the
following decomposition: ∀i, gi = |gi|σi where the σi are Rademacher random variables independent of |gi|.

As g∞ > 0 almost surely, we have:

Γ(A) :=
1

n
Eg

[
sup
a∈A

n∑
i=1

giai

]

≤ 1

n
Eg∞

[
g∞Eσ

[
sup
a∈A

n∑
i=1

σi
|gi|
g∞

ai

]]
, (because Rad is non negative)

≤ 1

n
Eg∞

[
g∞Eσ

[
sup
a∈A

n∑
i=1

σiai

]]
, (by Equation (61))

=
1

n
Eg∞ [g∞]Rad(A), (Fubini’s theorem).

We conclude by using that E[g∞] ≤ 2
√

log(n).

Remark B.12. It is also possible to prove that Rad(A) ≤
√

π
2Γ(A)

The key ingredient for the lower bound is Sudakov’s theorem, see (Vershynin, 2020, Section 7):

Theorem B.13 (Sudakov’s theorem). Let (Xt)t∈T be a mean zero gaussian process, then for any ϵ > 0 we have:

E

[
sup
t∈T

Xt

]
≥ Cδ

√
Nδ(T, d),

where C is an absolute constant and Nϵ(T, d) the covering number of T for the following pseudo-metric:

d(t, s)2 := E[(Xt −Xs)
2]

To prove our lower bound, we first need a lower bound of the expected worst case generalization error in terms of Rademacher
complexity:

Proposition B.14. Desymmetrization inequality Assume that the loss ℓ is in the interval [0, B] (this does not make us lose
generality). Then we have:

E

[
sup
w∈W

∣∣R(w)− R̂S(w)
∣∣] ≥ 1

2
E
[
Rad(ℓ(W, S))

]
−B

√
log(2)

2n
.

While this result is classical, we present a proof for the sake of completeness, and to exhibit the absolute constants that we
get in our case.
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Proof. Similarly to the symmetrization inequality, we write, with (z′i)i an independent copy of (zi)i and (σi)i independent
Rademacher random variables:

E
[
Rad(ℓ(W, S))

]
≤ E

[
1

n
sup
w∈W

n∑
i=1

σi
(
ℓ(w, zi)−R(w)

)]
+ E

[
1

n
sup
w∈W

n∑
i=1

σiR(w)

]

≤ E
[
1

n
sup
w∈W

n∑
i=1

σi
(
ℓ(w, zi)− ℓ(w, z′i)

)]
+BE

[
1

n

∣∣∣∣ n∑
i=1

σi

∣∣∣∣], (Jensen’s inequality)

≤ E
[
1

n
sup
w∈W

n∑
i=1

(
ℓ(w, zi)− ℓ(w, z′i)

)]
+BE

[
1

n

∣∣∣∣ n∑
i=1

σi

∣∣∣∣], (Symmetrization argument)

≤ 2E

[
sup
w∈W

∣∣R(w)− R̂S(w)
∣∣]+BE

[
1

n

∣∣∣∣ n∑
i=1

σi

∣∣∣∣], (Triangle inequality)

≤ 2E

[
sup
w∈W

∣∣R(w)− R̂S(w)
∣∣]+B

√
2 log(2)

n
, (Simple case of Massart’s lemma),

hence the result.

Then we can prove the following result:

Proposition B.15. Lower bound in term of covering numbers Assume that the loss ℓ is bounded by B > 0, then there is an
absolute constant c > 0 (the one coming from Sudakov theorem) such that with probability at least 1− ζ, for all δ > 0 we
have

sup
w∈W

∣∣R(w)− R̂S(w)
∣∣ ≥ c

4

√
δ2 log |NρS

δ (W)|
n log(n)

−B

√
log(2) + 9 log(1/ζ)

n
,

where ρS is the data-dependent metric already used before in this project (based on an L1 empirical mean).

Proof. Using the same reasoning, based on Mc-Diarmid’s inequality, than for proving the upper bound, we write successively
that with probability at least 1− ζ:

sup
w∈W

∣∣R(w)− R̂S(w)
∣∣ ≥ E[ sup

w∈W

∣∣R(w)− R̂S(w)
∣∣]−B

√
2 log(1/ζ)

n
, (Mc-Diarmid’s inequality)

≥ 1

2
E
[
Rad(ℓ(W, S))

]
−B

√
log(2)

2n
−

√
2 log(1/ζ)

n

≥ 1

2
Rad(ℓ(W, S))−B

√
log(2)

2n
− 3

2

√
2 log(1/ζ)

n
, (Mc-Diarmid’s inequality)

≥ 1

4
√
log(n)

Γ(ℓ(W, S))−B

√
log(2)

2n
− 3

√
log(1/ζ)

2n

Now we note that:

Γ(ℓ(W, S)) :=
1

n
Eg

[
sup
w∈W

n∑
i=1

giℓ(w, zi)

]
,

and introduce the following gaussian process:

∀w ∈ W, Xw :=
1√
n

n∑
i=1

giℓ(w, zi).
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The L2 distance induced by this gaussian process on W can be computed by:

d(w,w′)2 =
1

n
E

[( n∑
i=1

gi(ℓ(w, zi)− ℓ(w′, zi))

)2]

=
1

n

n∑
i=1

(ℓ(w, zi)− ℓ(w′, zi))
2

≥ ρS(w,w
′)2, (Cauchy-Schwarz’s inequality)

where

ρS(w,w
′) :=

1

n

n∑
i=1

|ℓ(w, zi)− ℓ(w′, zi)|

is the data-dependent pseudo-metric we used previously in this work. The result then follows by applying Sudakov’s
theorem.

Using this proposition, we can prove the following result:

Theorem B.16 (Lower bound with data-dependent fractal dimension). Assume that the loss ℓ is bounded by B > 0 and that
almost surely we have dimρS

B (W) > 0. Then, for all γ, ζ > 0 there is an absolute constant c > 0 and some δn,γ,ζ > 0 such
that, with probability at least 1− ζ − γ, for all δ ≤ δn,γ,ζ we have:

sup
w∈W

∣∣R(w)− R̂S(w)
∣∣ ≥ c

4

√
δ2 log(1/δ)d(S)

2n log(n)
−B

√
log(2) + 9 log(1/ζ)

n
.

Remark B.17. As many of our results, the more interesting part of this result is the underlying covering numbers bound,
the annoying asymptoticity in δ being introduced when we go from the covering numbers to the data-dependent fractal
dimensions.

Proof. Let us fix γ, ζ ∈ (0, 1). Using the definition of the lower box-counting dimension and the fact that dimρS

B (W) > 0
almost surely, we can write:

lim inf
δ→0

log |NρS

δ (W)|
dimρS

B (W) log(1/δ)
= 1,

we can invoke Egoroff’s theorem, as in previous proofs, to argue that there exists Ωγ ∈ F⊗n, such that µ⊗n
z (Ωγ) ≥ 1− γ,

on which the above convergence is uniform. As dimρS

B (W) > 0 almost surely, we can assume without loss of generality
that this is also the case on Ωγ .

This implies that, on Ωγ , for δ smaller than some δn,γ,ζ , we have:

log |NρS

δ (W)| ≥ 1

2
log(1/δ)dimρS

B (W).

Then, the result immediately follows from the previous proposition.

B.6. Lipschitz case

As mentioned in the introduction, several authors (Şimşekli et al., 2021; Camuto et al., 2021; Hodgkinson et al., 2022) have
proven worst-case generalization bounds involving the Hausdorff dimension of the hypothesis set, computed based on the
Euclidean distance. Their is in particular based on a ‘Lipschitz loss ℓ’ assumption. It is therefore natural to ask whether we
can find a similar result, i.e. involving the Euclidean based dimension, from our results.

Therefore, in this section, we assume that the function (w, z) 7−→ ℓ(w, z) is L-Lipschitz in w, uniformly with respect to z,
with L > 0 a constant.

To simplify, we demonstrate the case of a fixed hypothesis set W ⊂ Rd, more general cases being derived in a similar
fashion.
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Then we can bound the pseudo-metric ρS by (∥ · ∥ is the Euclidean norm):

∀w,w′ ∈ Rd, ρS(w,w
′) =

1

n

n∑
i=1

|ℓ(w, zi)− ℓ(w′, zi)|

≤ 1

n

n∑
i=1

L∥w − w′∥

= L∥w − w′∥.

From this observation, denoting Ne the coverings associated to the Euclidean metric, we deduce that:

NρS

δ (W) ≤ Ne
δ/L(W). (62)

The proof of Theorem 3.4 therefore leads us to write, instead of Equation (38), that, with probability at least 1− 2η:

sup
w∈W

(
R(w)− R̂S(w)

)
≤ 2δ + 2B

√
2 log |Ne

δ/L(W)|
n

+ 3B

√
2 log(1/η)

n
.

Then we can use proof techniques similar to that in (Şimşekli et al., 2021) in the case of a fixed hypothesis set. More
precisely, let us fix some ϵ > 0, using the definition of upper box-counting dimension along with Egoroff’s theorem, we
have that there exists Ωγ ∈ F⊗n, such that µ⊗n

z (Ωγ) ≥ 1− γ, on which, for δ smaller than some δγ,ϵ (which is independent
of n, because the metric does not depend on the data anymore) , we have:

log |Ne
δ/L(W)| ≤

(
ϵ+ dim

e

B(W)
)
log(L/δ).

Because δγ,ϵ does not depend on n, it is possible to set ϵ = dim
e

B(W) and set:

δ = δn :=
2√
n
.

Therefore, we have that, with probability 1− 2η − γ for n big enough:

sup
w∈W

(
R(w)− R̂S(w)

)
≤ 4√

n
+ 2B

√
2dim

e

B(W) log(L
√
n)

n
+ 3B

√
2 log(1/η)

n
.

Thus, we recover a result analogous to (Şimşekli et al., 2021), up to potentially absolute constants (coming from the fact that
the proof technique is different). Their bound can therefore be seen as a particular case of our result.

C. Additional experimental details
C.1. Granulated Kendall’s coefficients

Kendall’s coefficient, initially introduced in (Kendall, 1938), is a well-known statistics to assess the co-monoticity of two
observations, or rank correlation. It is usually denoted with letter τ .

If we consider ((gi, di)1≤i≤n) a sequence of observation of two random random elements, in our case the generalization
error g and the intrinsic dimension d. In our setting it is very likely that both (gi) and (di) will have pairwise distinct
elements and that ties would therefore have little impact on the analysis. Therefore we will assume it in our presentation
to make it easier. To compute Kendall’s τ coefficient, denoted τ((gi)i, (di)i), we look at all the possible pairs of couples
(gi, di) and count 1 if they are ordered the same way and −1 otherwise. The coefficients is then normalized by the total
number of pairs which is

(
n
2

)
. Therefore an analytical formula is:

τ((gi)i, (di)i) =
1(
n
2

) ∑
i<j

sign(gi − gj)sign(di − dj) (63)

However, as highlighted in (Jiang et al., 2019), vanilla Kendall’s τ may fail to capture any notion of causality in the
correlation. Indeed, in our experiments we make vary several hyperparameters (e.g. learning rate L and batch size B),
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we want to somehow measure whether the observed correlation is due to the influence of a hyperparameter on both the
generalization error and the persistent homology dimension computation.

To overcome this issue, we follow the approach of (Jiang et al., 2019), whose authors introduced a notion of granulated
Kendall’s coefficient. Let ΘL an ΘB denote the (finite) set in which our two hyperparameters vary. We first compute τ
coefficients when fixing (all but) one hyperparameter, and then average those coefficients to get the granulated Kendall’s
coefficients:

ψη :=
1

|ΘB |
∑
b∈ΘB

τ
(
(g(η, b), d(η, b))η∈ΘL

)
, ψB :=

1

|ΘL|
∑
b∈ΘL

τ
(
(g(η, b), d(η, b))b∈ΘB

)
, (64)

Where g(η, b) and d(η, b) denote the generalization and dimension obtained with learning-rate η and batch size b. We can
then average those coefficients to get one numerical measure:

Ψ :=
ψ1 + ψ2

2
(65)

Remark C.1. Of course this analysis extends to more than 2 hyperparameters, but most of our experiments used only
learning-rate and batch size.

We created Python scripts to compute those granulated Kendall’s coefficients for all the results presented in this work.

Our analysis also report Spearman’s rank correlation coefficient (Kendall & Stuart, 1973), denoted ρ, which is another
widely used correlation statistics.

C.2. Hyperparameters and experimental setting

Here we present some additional experimental details concerning the experiments of the main part of the paper. Note that
all experiments were realized using the same random seed while we were making vary the hyperparameters (e.g. learning
rate and batch size). For each experiment both hyperparameters vary in a set of 6 values, making a total of 36 points if all
experiment converge.

All Fully Connected Networks (FCN) have standard ReLU activation.

Classification experiments: We trained FCN-5 and FCN-7 networks of width 200 (for each inner layer) on the full training
set of MNIST images until we reach 100% accuracy. Learning rate vary in the set [5.10−3, 10−1] and batch size vary in
[32, 256].

The stopping criterion in those experiments is reaching 100% accuracy, given that the model is evaluated on all data points
every 10000 iterations. To compute the PH dimension the last 5000 iterations were considered (this number essentially
comes from computational and time constraints). The model was evaluated on each data point for all those 5000 iterations,
producing a point cloud in R5000×n Persistent homology was computed on 20 subset of the generated point cloud with sizes
varying in [1000, 5000] in order to apply the method from (Birdal et al., 2021).

Additional classification experiments, presented in Figures 1, 6 and 7 and Tables 6 and 7 involve AlexNet and LeNet
networks trained on both MNIST and CIFAR-10 dataset within the same ranges of hyperparameters as described above.

Regression experiments on California Housing Dataset: We trained FCN-5 and FCN-7 of width 200 (for each inner
layer) on a training set corresponding to a random subset of 80% of the 20640 points of the California Housing Dataset,
using the remaining 20% for validation. Learning rate vary in the set [1.10−3, 10−2] and batch size vary in [32, 200].

The stopping criterion for regression experiments is the following: We periodically (every 2000 iterations in practice)
evaluate the empirical risk on the whole training set and stop the training when the relative difference difference between
two evaluations becomes smaller than some proportion, set to 0.5% in those experiments. Note that this choice may affect
the results. Indeed if we wait to long before stopping the training in a regression experiment, it is possible that the geometry
of the point cloud becomes trivial, so we need to ensure convergence while stopping training when the losses ℓ are still
”moving enough” to get interesting fractal geometry, both for our dimension and the one of (Birdal et al., 2021).

To compute the PH dimension the last 5000 iterations were considered. The model was evaluated on each data point for all
those 5000 iterations, producing a point cloud in R5000×n Persistent homology was computed on 20 subset of the generated
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point cloud with sizes varying in [1000, 5000] in order to apply the method from (Birdal et al., 2021).

Robustness experiment: For the robustness experiment presented in figure 3, we used the exact same hyperparameters
and random seed than in experiment on MNIST and California Housing Dataset as above. For proportion η varying in
[2%, 10%, 20%, . . . , 90%, 99%] we randomly select a subset T of the dataset S such that |T |/|S| = η and compute the PH
dimensions corresponding to pseudo-metric ρT , presented in equation (8). Note that the PH dimension computation involves
sampling different subsets of the last iterates (see above), of course this sampling has been done with the same random seed
for all values of η so that the observe difference in the dimensional value can only come from the selection of subset T ⊂ S.

D. Additional experimental results
D.1. More details on the experiments presented in Section 5

As mentioned above, for the experiments on MNIST and California Housing Dataset we performed 360 trainings with
various seeds, learning rates and batch sizes. This allowed us to compute various statistics, namely granulated Kendall’s
coefficients ψlr and ψbs for learning rate and batch size respectively, Average Kendall’s coefficient Ψ, Kendall’s tau τ and
Spearman’s rho ρ, which are all indicators of correlation. Tables 4 and 5 contain all those statistics (same data than the
tables in the main part of the paper but with additional coefficients displayed, for space issues). The variation of the seed
allows for displaying standard deviation of all those coefficients.

Table 4. Correlation coefficients on CHD

MODEL DIM. ρ ψLR ψBS Ψ τ

FCN-5 dimEUCL
PH0 0.77± 0.08 0.62± 0.11 0.46± 0.14 0.54± 0.11 0.59± 0.07

FCN-5 dimρS
PH0 0.87± 0.05 0.75± 0.10 0.61± 0.13 0.68± 0.10 0.71± 0.69

FCN-7 dimEUCL
PH0 0.40± 0.09 0.07± 0.13 0.25± 0.11 0.16± 0.08 0.28± 0.07

FCN-7 dimρS
PH0 0.77± 0.08 0.63± 0.05 0.58± 0.10 0.62± 0.06 0.77± 0.08

Table 5. Correlation coefficients on MNIST

MODEL DIM. ρ ψLR ψBS Ψ τ

FCN-5 dimEUCL
PH0 0.62± 0.10 0.78± 0.07 0.80± 0.10 0.78± 0.08 0.47± 0.07

FCN-5 dimρS
PH0 0.73± 0.07 0.84± 0.06 0.78± 0.10 0.81± 0.07 0.56± 0.06

FCN-7 dimEUCL
PH0 0.80± 0.04 0.92± 0.07 0.85± 0.11 0.88± 0.04 0.62± 0.04

FCN-7 dimρS
PH0 0.89± 0.02 0.96± 0.05 0.84± 0.05 0.90± 0.04 0.73± 0.03

In Table 6 we also report the full metrics on one experiment on AlexNet trained on CIFAR-10.

Table 6. Correlation coefficients with AlexNet on CIFAR-10

MODEL DIM. ρ ψLR ψBS Ψ τ

ALEXNET dimEUCL
PH0 0.86 0.78 0.84 0.81 0.68

ALEXNET dimρS
PH0 0.93 0.87 0.81 0.84 0.78

Table 7. Correlation coefficients with convolutional models on MNIST

MODEL DIM. ρ ψLR ψBS Ψ τ

ALEXNET dimEUCL
PH0 0.85 0.78 0.77 0.77 0.67

ALEXNET dimρS
PH0 0.88 0.78 0.77 0.77 0.70

LENET dimEUCL
PH0 0.74 0.78 0.77 0.78 0.57

LENET dimρS
PH0 0.80 0.80 0.77 0.79 0.62
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In Figures 5 and 4 we plot the values of dimρS

PH0 against the actual loss gap (computed based on the cross entropy loss).
While this has probably little practical interest compared to the plots shown in the main part of the paper, it highlights the fact
that the correlation is indeed still there. As before, we note that low batch sizes and high learning rates yields better results,
but that the correlation is very good for middle range values of those hyperparameters. As in the regression experiment, we
observe on figure 5 and 4 that a bigger network gives better empirical correlation between the data-dependent dimension and
the generalization error. Another interesting observation is that there seems to be more noise in the coefficients with respect
to the loss gap than with respect to the accuracy gap. In most all experiments, again, the proposed dimension in close or
better than the one proposed in (Birdal et al., 2021).

Figure 4. Plots of dimρS
PH0 against the loss gap (as opposed to the accuracy gap) for a FCN-7 trained on MNIST dataset.

On Table 8 we report the correlations coefficients (ρ, ψlr, ψbs,Ψ, τ) between our data-dependent intrinsic dimension and the
actual loss gap in the same classification experiments than in Figures 5 and 4.

Table 8. Correlation coefficients on MNIST, with respect to loss gap

MODEL DIM. ρ ψLR ψBS Ψ τ

FCN-5 dimEUCL
PH0 0.76± 0.06 0.33± 0.18 0.75± 0.09 0.54± 0.11 0.58± 0.05

FCN-5 dimρS
PH0 0.73± 0.09 0.30± 0.20 0.75± 0.09 0.52± 0.12 0.57± 0.07

FCN-7 dimEUCL
PH0 0.86± 0.05 0.77± 0.12 0.80± 0.08 0.79± 0.06 0.69± 0.06

FCN-7 dimρS
PH0 0.90± 0.03 0.80± 0.10 0.79± 0.06 0.80± 0.06 0.75± 0.05

Figures 6 and 7, as well as Table 7 show experimental results obtained by training Convolutional Neural Networks (CNN) on
the MNIST dataset, namely AlexNet (Krizhevsky et al., 2017) and LeNet (Lecun et al., 1998) networks. It further highlights
the pertinence of our intrinsic dimension, which is well correlated with the accuracy gap in those experiments.

D.2. Evaluation of the computable part of the bounds

Recent studies showed that, even when the overall scale of a generalization bound does not match the scale of the
actual generalization error, the bound can still be useful (e.g., for hyperparameter selection) if it correlates well with the
generalization error.

Our study of the correlation between our data-dependent intrinsic dimension the generalization error is inspired by Jiang et al.
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Figure 5. Plots of dimρS
PH0 against the loss gap (as opposed to the accuracy gap) for a FCN-5 trained on MNIST dataset.

Figure 6. Plots of dimρS
PH0 against the accuracy gap for an AlexNet trained on MNIST dataset.

(2019), who pointed out that correlation can be an efficient measure of the performance of different complexity measures.
Moreover, in our study, we use the Granulated Kendall’s coefficients, that Jiang et al. (2019) introduced, to better capture the
causal relationship in the correlation between the fractal dimension and the generalization.

That being said, one could argue that it would be better to plot the full bound and compare it to the generalization error.
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Figure 7. Plots of dimρS
PH0 against the accuracy gap for a LeNet trained on MNIST dataset.

However, as we are aiming to compute the bounds in Theorems 3.5 and 3.8, this is a notoriously difficult, and often
impossible task due to the presence of the mutual information (MI) terms. Hence the full computation of the bound is
unfortunately not possible. Yet, we would like to underline that this has been the case for most information theoretic bounds,
and fractal geometric bounds (Şimşekli et al., 2021; Birdal et al., 2021; Hodgkinson et al., 2022).

As an intermediate solution towards this direction, we propose the following experimental setting, which will be added to
the next version of the paper. Since our MI terms, especially I∞(S,WS,U ) appearing in Theorem 3.8, can be seen as similar
as terms appearing in previous fractal geometric works (Şimşekli et al., 2021; Birdal et al., 2021; Hodgkinson et al., 2022),
we can aim at plotting the remaining terms of the bound and still provide a meaningful experiment.

Hence, in an attempt to provide further experimental results, we can compare the generalization error to the ‘computable’
part of the bound, whose main term is of the form:

δ +
B√
n− 1

+
√
2B

√
dimPH(WS,U ) log(1/δ) + log(

√
n/η)

n
.

This expression can be approximated thanks to the persistent homology tools described in the paper. We will include these
experiments in the paper, where we will compute the full bounds of the prior art in the same way (which will require
estimating the Lipschitz constant).

One particular point of attention is that the loss functions we consider for the experiments are in practice not bounded.
Despite this fact, to allow for the experimentation to take place, we set the value of the constant B to the maximum loss
reached on one data-point in the whole trajectory, over all experiments. For a fully connected networks trained on MNIST,
we get Figures 8 and 9.

The figures report the value of the above formula compared to the actual generalization error. The correlation with the
generalization is quite well. However, an offset can be observed, corresponding to the scaling to what appears to be a rather
small absolute constant. We believe that this is due to the fact that the way we estimate B is a bad estimation of the potential
sub-Gaussian character of the loss (indeed, the statement of Theorem 3.5 can be easily extended for sub-Gaussian losses).
As the bound scales linearly with this quantity, we see that we can easily get pretty close to the true generalization gap.
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Figure 8. Plot of the generalization error against the computable part of our bounds for a 5-layer fully-connected network trained on
MNIST

Figure 9. Plot of the generalization error against the computable part of our bounds for a 7-layer fully-connected network trained on
MNIST

D.3. Experiments with bigger models and datasets

Most experiment presented in Sections 5 and D.1 are made on relatively small datasets and/or neural network models.
For the sake of completeness, we present here similar experiments computed with a Resnet-18 model on CIFAR10 and
CIFAR100 datasets.
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Note that the main difficulty to perform such experiments is that the computation of dimρS

PH0(WS,U ) requires the evaluation
of the model on every training data point, and the corresponding distance matrix. However, to be able to make this experiment
in a reasonable amount of time, and according to our computational resources, we leveraged the ideas from Section 5,
regarding the robustness analysis, and used only a subset of the dataset for the computation of dimρS

PH0(WS,U ) (while the
whole dataset is obviously used for training). Moreover, note that one advantage of the proposed data-dependent intrinsic
dimension is that it requires much less memory to be computed than the one proposed in (Birdal et al., 2021). Indeed, to
compute this last one, we would need to store all the weights of the network, for a few thousand iterations.

Hyperparameters details Both experiments (on CIFAR10 and CIFAR100) where realized on a 4×4 grid of hyperparameters
with the batch size varying from 32 to 256 and the learning rate varying from 0.1 to 0.001. In both experiments, the persistent
homology dimension has been computed using the last 2000 iterates and 5% of the dataset for the computation of the
associated distance matrix. For the experiment on CIFAR10, the network was trained until 100% accuracy before computing
the persistent homology dimensions. For the CIFAR100 experiment, because we were not able to train the model until 100%
accuracy, we stopped the training after 100000 iterations.

Figure 10. Plots of dimρS
PH0 against the accuracy gap for Resnet-18 network, trained on CIFAR10.

Figure 10 displays our results for the CIFAR10 experiments. As in previous experiments, we observe a very satisfying
correlation for lower learning rates and high batch sizes.

Results on the CIFAR100 dataset are shown on Figures 11 and 12. Something interesting is observed here; as the network
didn’t reach, in our experiment, an accuracy close to 100% for all hyperparameter settings, we observe two regimes regarding
the correlation between the accuracy gap and the data-dependent persistent homology dimension:

• For experiments achieving very good training accuracy, the correlation is excellent, as shown in Figure 12.

• Experiments with less training accuracy look like ‘out of distribution ’ experiments, this particular behavior is illustrated
on Figure 11.

This shows that the fractal behavior seems to be particularly pertinent in the ‘permanent regime’ of training, i.e. when the
distribution of the parameters reaches a stable distribution.
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Figure 11. Plots of dimρS
PH0 against the accuracy gap for Resnet-18 network, trained on CIFAR100, the training accuracy is shown to

highlight the importance of convergence for the correlation.

Figure 12. Plots of dimρS
PH0 against the accuracy gap for Resnet-18 network, trained on CIFAR100, displaying only points for which 98%

accuracy has been reached during training.
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