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Abstract
Population Based Training (PBT) is an effi-
cient hyperparameter optimization algorithm.
PBT is a single-objective algorithm, but many
real-world hyperparameter optimization prob-
lems involve two or more conflicting objectives.
In this work, we therefore introduce a multi-
objective version of PBT, MO-PBT. Our exper-
iments on diverse multi-objective hyperparame-
ter optimization problems (Precision/Recall, Ac-
curacy/Fairness, Accuracy/Adversarial Robust-
ness) show that MO-PBT outperforms random
search, single-objective PBT, and the state-of-the-
art multi-objective hyperparameter optimization
algorithm MO-ASHA.

1. Introduction
The computational complexity of machine learning tasks has
drastically increased in recent years. This has been caused
by larger models (especially, deep neural networks (Doso-
vitskiy et al., 2020; Kaplan et al., 2020)) and larger available
datasets (Thomee et al., 2016; Byeon et al., 2022). At the
same time, the problem of tuning model hyperparameters
remains crucial for achieving maximal performance (Kadra
et al., 2021; Zhang et al., 2021; Liu et al., 2022). Thus, there
is a growing demand for efficient algorithms to do hyper-
parameter tuning. Moreover, in real-world problems, there
might be more than one objective that a user is interested in.
An example of such a scenario which recently received a lot
of attention from the machine learning community is finding
a trade-off between the predictive accuracy of a classifier
and its fairness (Schmucker et al., 2020; Chuang & Mroueh,
2021). When different objectives are conflicting and the
target trade-off is not known a priori, usually no single best
model (or hyperparameter setting) exists. Thus, many mod-
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els with different trade-offs between the objectives should
be presented to the user. Finding hyperparameters that re-
sult in models with the best trade-offs is a multi-objective
optimization problem.

One of the most efficient approaches to single-objective
Hyperparameter Optimization (HPO) is Population Based
Training (PBT) (Jaderberg et al., 2017). PBT has two fea-
tures which ensure its efficiency. Firstly, it is a highly par-
allelizable, asynchronous algorithm, which means that the
available hardware can be effectively utilized. Secondly, in
contrast to standard optimization techniques which usually
train models from scratch in order to estimate the perfor-
mance of a particular hyperparameter setting, PBT opti-
mizes hyperparameters during model training. In this work,
we propose to expand Population Based Training (Jader-
berg et al., 2017) to Multi-Objective HPO (MO-HPO). The
population of models used in PBT should be especially
well suited for solving Multi-Objective (MO) problems, as
maintaining a population is naturally helpful for finding
a good trade-off front of solutions, which is known from
the Evolutionary Algorithms (EAs) literature (Deb, 2001;
Morales-Hernández et al., 2022). EAs such as NSGA-II
(Deb et al., 2002) have been used for efficiently solving
MO optimization problems, including Neural Architecture
Search (Lu et al., 2019).

The main contributions of our work are the following:

1. We expand Population Based Training to MO-HPO sce-
narios. The overview of the proposed Multi-Objective
PBT (MO-PBT) algorithm is demonstrated in Figure 1.

2. We demonstrate that using single-objective PBT for
MO-HPO by transforming it into a single-objective
problem (via a scalarization technique or simply opti-
mizing one of the objectives) is an inferior approach to
MO-PBT which uses an MO technique of domination-
based selection (Deb et al., 2002).

3. On a set of diverse MO-HPO problems, we demon-
strate that MO-PBT outperforms the state-of-the-art
efficient, parallelizable hyperparameter optimization
algorithm, Multi-Objective Asynchronous Successive
Halving (MO-ASHA) (Schmucker et al., 2021).
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Figure 1. The scheme of the proposed MO-PBT applied to a bi-objective maximization task. After the networks (weights and hyperparam-
eters) in a population have been trained for several epochs, they are ranked using a domination-based procedure. Here, each solution
inside the smaller, dark-orange oval is dominated by at least one solution inside the larger, green oval (and therefore is considered to be
worse). The inferior solutions are replaced with copies of the superior ones (copying is depicted with dotted lines), with hyperparameters
perturbed (depicted by adjusted colors). Then the networks are trained for several more epochs, and the loop continues.

Experiments are performed on three different types of
MO-HPO problems: precision/recall of a model, the pre-
dictive performance of a classifier/its fairness, and accu-
racy/adversarial robustness.

2. Related work
2.1. Multi-objective hyperparameter optimization

applications

There are different scenarios in which a user might be in-
terested in having the option to choose among models with
different trade-offs between two (or even more) objectives.
The classical example in machine learning is choosing a
trade-off between precision and recall of a classifier. The
importance of each metric might change depending on the
application requirements. Another example is choosing a
trade-off between the predictive quality of a classifier and
its fairness. It was shown in (Chuang & Mroueh, 2021)
that these objectives are conflicting. In (Zhang et al., 2019),
it was demonstrated that the classifier accuracy and its ro-
bustness to adversarial attacks are conflicting, and therefore,
finding a trade-off between them is another interesting MO-
HPO application.

2.2. Efficient multi-objective optimization algorithms

A popular class of algorithms for MO-HPO is the Bayesian
Optimization (BO) algorithms. Some of them work by re-
ducing an MO optimization problem into a single-objective
one by using scalarization techniques (Knowles, 2006;
Zhang & Golovin, 2020; Paria et al., 2020; Zhang et al.,
2009). An alternative approach to MO optimization with

BO is based on expected hypervolume improvement calcu-
lation (Emmerich et al., 2011). While BO algorithms are
sequential by nature, recently they were extended to the
batch-wise calculation of an objective function for solving
MO problems (Daulton et al., 2020; 2021). However, the
considered batch sizes were moderate (up to 32 solutions),
so parallelization capabilities remain limited.

One of the drawbacks of typical BO algorithms is the equal
allocation of resources to all evaluated solutions. In contrast
to this, it was proposed to greedily stop underperforming
model evaluations to save computational resources in Suc-
cessive Halving (Jamieson & Talwalkar, 2016) and its ex-
tension Hyperband (that proposes a more complex resource
allocation scheme) (Li et al., 2017). Then, an asynchronous
version of Hyperband called Asynchronous Successive Halv-
ing Algorithm (ASHA) was proposed, which was shown
to achieve a substantial wall-clock time speed-up (Li et al.,
2020). Hyperband was extended to MO problems by using
random scalarizations in (Schmucker et al., 2020; Guerrero-
Viu et al., 2021). Finally, ASHA was extended to MO
problems in (Schmucker et al., 2021). Different approaches
to adapting ASHA to MO optimization were compared in
(Schmucker et al., 2021) and it was concluded that the tech-
niques utilizing the geometry of the Pareto front, in other
words, domination-based selection such as in NSGA-II (Deb
et al., 2002), outperform scalarization-based techniques.

It was proposed to integrate BO algorithms into Hyper-
band: (Falkner et al., 2018) replaces random sampling of
new candidate solutions by using a Bayesian sampler (TPE
(Bergstra et al., 2011)) for more efficient search space ex-
ploration. MO-BOHB extends this idea to a multi-objective
TPE sampler (MOTPE) (Ozaki et al., 2020).
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2.3. Population Based Training

A general formulation of PBT was proposed in (Jaderberg
et al., 2017). It was shown to be an efficient way to jointly
optimize hyperparameters and model weights of agents in
reinforcement learning tasks, Generative Adversarial Net-
works, and Transformer networks applied to the machine
translation task. Later it was shown that it can be also used to
efficiently optimize data augmentation parameters for stan-
dard image classification datasets such as CIFAR-10/100
(Ho et al., 2019) and 3D object detection (Cheng et al.,
2020). In (Liang et al., 2021) it was proposed to incorporate
an exploration component in the evaluation procedure of
the solutions and add a crossover operator to recombine
hyperparameter vectors. In (Dalibard & Jaderberg, 2021) a
more complex training scheme with multiple populations
was proposed in order to improve the original PBT on prob-
lems where the greedy nature of the algorithm might lead
to suboptimal results. Other modifications of PBT aim
at improving its efficiency by integrating BO techniques
(Parker-Holder et al., 2020; Wan et al., 2022). However,
we would like to emphasize that all existing PBT modifica-
tions are single-objective and are not well-suited to solve
multi-objective problems.

In this work, we follow the original design of PBT, which is
simpler than the later proposed alternatives and was shown
to work well on a diverse set of problems (Jaderberg et al.,
2017; Ho et al., 2019; Cheng et al., 2020). However, our
approach is general and can potentially be used with any
PBT modification.

3. Preliminaries
3.1. Multi-objective optimization

MO optimization problems are characterized by the pres-
ence of multiple conflicting objectives. Thus, solving the
optimization problem entails finding the best possible trade-
offs between the objectives. An MO optimization problem
(without loss of generality, we consider maximization) with
K objectives can be formulated as follows:

max
x∈X

f(x) = max
x∈X

(f1(x), f2(x), . . . , fK(x)),

where X ⊆ S is a search space of solutions considered
feasible (S is a search space of all solutions). It is said that
a solution x′ dominates a solution x (x′ ≻ x) if ∀i fi(x′) ≥
fi(x) and ∃i s.t. fi(x′) > fi(x).

The Pareto set Ps of f is a set of all non-dominated so-
lutions, i.e. Ps = {x ∈ X|∄ x′ : x′ ≻ x} while the
Pareto front Pf is a set of objective values of solutions in
Ps: Pf = {(f1(x), f2(x), . . . , fK(x))|x ∈ Ps}. While the
Pareto front is often not known, the considered tangible
goal of MO optimization algorithms is to obtain a good
approximation of it. A popular measure of approximation

quality is the dominated hypervolume (Zitzler, 1999). The
hypervolume of a finite set of solutions S is calculated as
follows: HVr(S) = λK(z ∈ RK : ∃y ∈ S, r ≺ z ≺ f(y)),
where r ∈ RK is a chosen reference point and λK is a
Lebesgue measure. Intuitively, the hypervolume represents
the volume (the area in the bi-objective case) between the
reference point and the non-dominated trade-off front of
solutions (see Appendix F, Figure 17 for visualization).

3.2. Scalarization techniques

Scalarization is a commonly used technique for MO opti-
mization, which transforms a multi-objective problem into
a single-objective one: maxx∈X V (f(x), w), where V is a
scalarization function and w is a scalarizing weight vector.
Following MO optimization literature (Karl et al., 2022),
we use ParEGO scalarization function (Knowles, 2006)
(also called augmented Chebyshev scalarization (Steuer &
Choo, 1983)): VParEGO = ρVWS + VChebyshev, where
VWS is Weighted Sum scalarization: VWS(f(x), w)) =∑

i wifi(x) and VChebyshev is the Chebyshev scalarization:
VChebyshev(f(x), w)) = mini(wifi(x)), ρ is set to 0.05
in the original ParEGO implementation. Following MO-
ASHA (Schmucker et al., 2021), we also use Golovin scalar-
ization (Zhang & Golovin, 2020): VGolovin(f(x), w)) =
mini(max(0, fi(x)/wi))

K (K is the number of objectives).

4. Multi-Objective Population Based Training
We start with a short summary of PBT and then describe
our extension of it to the MO setting.

The goal of PBT is to optimize an objective function f . PBT
has a population of N solutions P = {pi}Ni=1, where each
individual pi comprises a tuple of model weights and hyper-
parameters: (θi,Hi). The main working principle of PBT is
to optimize weights and hyperparameters in an interleaved
fashion, which is achieved via two key operators: exploit
and explore. The exploit operator replaces a bad solution
with a copy of a good one (both weights and hyperparam-
eters are copied). The solution quality is determined by a
ranking procedure. The explore operator creates a new solu-
tion by, e.g., perturbing the hyperparameters of the existing
one. Between exploit-and-explore steps, the weights of the
models are trained as usual, e.g., using gradient descent.

How solutions are ranked needs to be changed when go-
ing from single- to multi-objective optimization. In the
single-objective scenario, the population members can be
ranked according to the optimization objective value, but
with multiple objectives, ranking becomes less trivial.

The first approach we consider is using a scalarization tech-
nique, i.e., mapping an objective vector into a scalar. It
is then used for ranking solutions, just as in the single-
objective case. Secondly, we consider domination-based
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ranking, as used for example in NSGA-II (Deb et al.,
2002). The main component of such an approach is the
non-dominated sort of solutions. The idea of the non-
dominated sort is to partition a population of solutions P
into non-dominated fronts of solutions, i.e., P = F 1 ∪
F 2, . . . ,∪FR;F i ∩ F j = ∅ ∀i, j such that:

1. All solutions in each front are non-dominated by each
other: ∀k : ∀v1, v2 ∈ F k v1 ⊁ v2 and v2 ⊁ v1

2. In the k th front (k > 1), all solutions are dominated by
a solution from a front with a smaller index: ∀k, 2 ≤
k ≤ R : ∀v1 ∈ F k ∃v2 ∈ Fm,m < k : v2 ≻ v1

In the sorting procedure, all solutions from F 1 are ranked
higher than the solutions from F 2, the ones from F 2 are
ranked higher than the solutions from F 3, etc. Within
each front, the solutions are ranked according to an ad-
ditional ranking criterion. In the original NSGA-II algo-
rithm, the crowding distance criterion was used. However,
in (Schmucker et al., 2021) it was shown that the greedy scat-
tered subset selection (Bosman & Thierens, 2003) (called
ϵ−network in (Schmucker et al., 2021; Salinas et al., 2021))
ranking performs better when integrated into the MO-ASHA
algorithm (compared to MO-ASHA with the crowding dis-
tance). We also experimentally found that MO-PBT with
the greedy scattered subset selection performs slightly bet-
ter than MO-PBT with the crowding distance, as shown in
Appendix A.3.

The main idea behind the greedy scattered subset selection
is to rank higher the solutions that are further away from the
others. Specifically, the next solution is iteratively chosen in
a greedy way such that it has the largest Euclidean distance
(in the objective space) to the closest already ranked solu-
tion. The visualization of this ranking procedure is shown
in Figure 2, its pseudocode is listed in Appendix G, Algo-
rithm 1.

The exploit and explore operators of MO-PBT are described
in Section 6.1.

5. Multi-objective hyperparameter
optimization tasks

5.1. Precision/Recall in classification

Balancing between precision and recall of a model is a
classical trade-off problem in machine learning (Karl et al.,
2022; Lévesque et al., 2012). In this work, we use mod-
ern FT-Transformer (Feature Tokenizer Transformer) neural
networks (Gorishniy et al., 2021) and three diverse binary
classification datasets: Adult (Dua & Graff, 2017), Higgs
(Baldi et al., 2014), and Click prediction (Vanschoren et al.,
2013). We optimize the regularization parameters: weight
decay and dropout, and additionally the class weights in the
cross-entropy-loss function (which is a natural way to bal-
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Figure 2. The ranking procedure of solutions (shown with cir-
cles) in MO-PBT. Numbers inside circles show the assigned rank
(smaller is better). First, solutions are sorted using non-dominated
sort. Here, it partitions the solutions into the non-dominated front
F 1 (green), the second front F 2 (light orange), and the third front
F 3 (dark orange). The solutions in the first front are considered
first. The solution with the largest f1 value is ranked first. Then
other solutions from F 1 are ranked one-by-one such that the so-
lution which is the furthest away from the already ranked ones
is picked next. This distance-based ranking is continued in the
second (third, etc.) fronts.

ance between class-wise performances, and therefore preci-
sion and recall). The training procedure for FT-Transformer
is adopted from (Gorishniy et al., 2021) (but without early
stopping). The early stopping is not included because it is
not well-suited for a standard PBT setup (also used here),
where a predetermined number of exploit-and-explore steps
(and therefore training epochs) is performed.

5.2. Model Accuracy/Fairness

The fairness of a model is understood as its ability to pre-
dict the target attribute, e.g., income, without a bias on the
sensitive attribute, e.g., gender or race. In our experiments,
we consider the standard setup of model fairness in binary
classification, where labels Y ∈ {0, 1}, sensitive attributes
A ∈ {0, 1}, and model predictions are Ŷ . Different fairness
metrics have been proposed (Garg et al., 2020). Two of the
most popular ones are Statistical Parity (SP) and Equalized
Odds (EO). SP requires the independence of predictions Ŷ
on the sensitive attribute A: P(Ŷ |A = 0) = P (Ŷ |A = 1).
EO requires conditional independence of Ŷ and A with re-
spect to Y : P (Ŷ |A = 1, Y = y) = P (Ŷ |A = 0, Y = y)
for y ∈ {0, 1}.

Following (Madras et al., 2018; Schmucker et al., 2021;
Chuang & Mroueh, 2021), we optimize the relaxed versions
of SP and EO called Difference in Statistical Parity (DSP)
and Difference in Equalized Odds (DEO).

DSP (f) = |Ex∼P0
f(x)− Ex∼P1

f(x)|

DEO(f) =
∑

y∈{0,1}

|Ex∼Py
0
f(x)− Ex∼Py

1
f(x)|,

where Pa = P (·|A = a) and P y
a = P (·|A = a, Y = y).
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Following (Chuang & Mroueh, 2021), the loss during train-
ing can be composed of standard Cross-Entropy (CE) and
weighted DSP (gap regularization):

Lfairness(f(x), y) = CE(f(x), y) + λDSP (f),

where x is a training sample, y is the target, and λ is a
trade-off parameter.

We consider the Adult dataset with gender as the sensitive
attribute and income as the target. We use the same setup as
in 5.1 (FT-Transformer neural networks, optimizing regular-
ization), but instead of a class weighting parameter in the
cross-entropy loss, we use the Lfairness loss and optimize
the λ parameter. Also, we use the CelebA dataset (Liu et al.,
2015) with gender as the sensitive attribute and Attractive-
ness as the binary classification target. The training setup is
the same as in Section 5.3, but with the Lfairness loss.

5.3. Accuracy/Adversarial robustness

It has been shown that standard model accuracy and its
adversarial robustness (accuracy on samples generated by
an adversarial attack) are conflicting objectives (Zhang et al.,
2019). In this task, we use the TRADES loss (Zhang et al.,
2019):

LTRADES(f(x), y) = CE(f(x), y)

+ max
x′∈B(x,ϵ)

λCE(f(x), f(x′)),

where x is a training sample, x′ is a generated adversarial
sample in the ϵ−neighborhood of x, and y is the target. The
parameter λ affects the trade-off between accuracy and ad-
versarial robustness. We use the same adversarial attack and
TRADES loss parameters as in (Zhang et al., 2019). We
search for data augmentation parameters: parameters of the
RandAugment augmentation strategy (Cubuk et al., 2020)
and Cutout (DeVries & Taylor, 2017) (probability and size).
Experiments are performed for CIFAR-10/100 datasets us-
ing the WideResNet-28-2 (Zagoruyko & Komodakis, 2016)
and the training setup from (Zhang et al., 2019).

5.4. Search spaces

In this work, we perform search in discretized search spaces.
Such an approach was successfully used, for instance, for
augmentations search (Ho et al., 2019; Cubuk et al., 2020).
For all described optimization tasks, search spaces of hyper-
parameters are specified in Appendix H.

6. Experimental setup
6.1. PBT operators

Here we describe the operators of MO-PBT following the
notation from (Jaderberg et al., 2017).

Exploit We use the simple truncation selection operator
used in the original PBT (Jaderberg et al., 2017) algorithm.
After the population is sorted according to some criterion
(non-dominated sort followed by the greedy scattered subset
selection in the case of MO-PBT), each of the bottom τ%
of solutions in the population is randomly replaced by a
solution from the top τ% (we use the default value of τ ,
25). The pseudocode of the used exploit operator is listed in
Appendix G, Algorithm 2.

Explore We use the explore operator previously used in Pop-
ulation Based Augmentations (Ho et al., 2019). It assumes
that the encoding of hyperparameter values in a search space
is ordinal. The key idea of the operator is locality: the new
value of a hyperparameter is chosen from the vicinity of the
current value. The pseudocode of the used explore operator
is listed in Appendix G, Algorithm 3.

Ready In all considered tasks, we perform the exploit-and-
explore procedure every 2 epochs of training.

We use a population of size 32 in our main experiments
and in Section 7.4 study how the performance scales with
increasing population size. Note that we do not specifi-
cally tune exploit and explore operators of MO-PBT, but in
Appendix A we analyze how their design impacts the per-
formance and conclude that the considered design options
perform similarly.

6.2. Hypervolume as the performance metric

We use the hypervolume, a commonly used metric in MO
optimization (Riquelme et al., 2015) (see Section 3.1). We
calculate the reference point r = (r1, . . . , rK) with the fol-
lowing approach, which is used, for instance, in (Knowles,
2006; Ishibuchi et al., 2011). First, all non-dominated fronts
are collected from all evaluation points of all algorithms
and all performed runs and stored in a set F . Then, the
reference point r is calculated as ri = minx∈F f(xi) −
ρ(maxx∈F f(xi) − minx∈F f(xi)), for i = 1, . . . ,K,
where ρ is typically set to a small value, here we use ρ = 0.1.
This strategy selects the reference point that is guaranteed
to be worse than all points on all fronts. This ensures that
all non-dominated points are considered in the hypervol-
ume calculation and are not discarded. Furthermore, the
reference point is shifted with respect to the range of values
of each objective in order to prevent its positioning too far
away from the fronts.

In the experimental evaluation, we use the following com-
mon metric (used, e.g., in (Schmucker et al., 2021; Daulton
et al., 2021). First, we obtain an approximation of the Pareto
front by collecting all evaluated solutions from all runs of
all algorithms and selecting the non-dominated subset P∗

of them. The approximation of the optimal hypervolume
is then calculated as HV ∗ = Hypervolume(P∗). The
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reported performance metric of an algorithm run r at times-
tamp t is the logarithmic difference of the hypervolume of a
non-dominated set of solutions obtained by this timestamp
and the ideal hypervolume: log10(HV ∗ −HV t

r ). Finally,
this metric is averaged over multiple runs.

Datasets are split into train/validation/test subsets before
experiments. In our main results, we report the above-
described hypervolume metric on the validation subset to
evaluate the search performance of the algorithms. Addition-
ally, we provide results on the test subsets in Appendix C.

6.3. Baselines

6.3.1. RANDOM SEARCH

First, we consider a trivial search baseline — random search:
for each hyperparameter, a random value is sampled at the
beginning of model training.

6.3.2. SINGLE-OBJECTIVE PBT

We use modifications of PBT that convert an MO problem
into a SO one. First, we use one of the objectives as the
fitness function of PBT. Comparing against this baseline can
show that the considered MO problems are challenging, and
optimizing just one objective is inferior to using MO tech-
niques. Secondly, we implement different scalarization func-
tions in PBT. The first technique we use is random scalar-
ization as, for instance, in the ParEGO algorithm (Knowles,
2006): at each invocation of the evaluation procedure, the
scalarization vector is sampled randomly. Here we use the
ParEGO scalarization function (as defined in Section 3.2) as
it was originally proposed to use for random scalarizations in
(Knowles, 2006). Secondly, we use the maximum scalariza-
tion technique proposed in (Schmucker et al., 2020): the ob-
jective value is calculated as maxw∈W,||w||=1 V (f(x), w),
where W is a set of randomly sampled unit vectors and V
is a scalarization function. Following (Schmucker et al.,
2021), we use |W | = 100 and the Golovin scalarization,
which was demonstrated to outperform other scalarization
functions.

6.3.3. MO-ASHA VARIANTS

We consider MO-ASHA with greedy scattered subset selec-
tion ranking (ϵ-network), which was shown to perform better
than alternative MO-ASHA variants in (Schmucker et al.,
2021). Secondly, to compare MO-PBT against a strong BO
baseline that is well parallelizable we adapt the MO-BOHB
(Guerrero-Viu et al., 2021) approach to MO-ASHA. We
refer to this MO-ASHA modification as BO-MO-ASHA.

6.4. Evaluation setup

The main design principle of our evaluation of algorithms
is to compare the achieved performance with respect to
elapsed wall-clock time instead of the performed number
of training epochs. We choose this approach because in
practice we are more interested in the achieved performance
by a specific time point rather than a specific epoch. We do
not set a time limit for all PBT variants and random search
but rather allow them to fully finish the training cycle of all
solutions in the population. For MO-ASHA, we allocate
the time budget equal to the run time of the slowest PBT
run. We ran each algorithm 10 times on tabular datasets
(Adult, Higgs, Click prediction), and 5 times on image ones
(CIFAR-10/100, CelebA). When plotting performance over
time, we plot mean performance, with the area between the
worst and the best runs shaded.

Further experimental setup details are provided in Ap-
pendix, B. The code is available at https://github.
com/ArkadiyD/MO-PBT.

7. Results
7.1. Overall performance

Results of hypervolume-based performance evaluation (as
described in 6.2) are shown in Figures 3,4,5. On every con-
sidered task, MO-PBT outperforms baselines (the standard
deviations of the hypervolume are provided in Appendix I,
Table 5). Noteworthy, on the three-objective problems MO-
PBT is also the best-performing algorithm. The consistently
good performance of MO-PBT on the considered diverse
tasks empirically demonstrates its generality.

On Accuracy/Fairness tasks, optimizing the fairness ob-
jective with SO PBT leads to obtaining mostly inaccurate
models, and, therefore, poor hypervolume values. Similarly,
on the Accuracy/Robustness task, if only accuracy is op-
timized, the results achieved for the robustness objective
are poor. PBT with scalarization techniques performs, in
general, better than single-objective PBT.

Comparing MO-ASHA variants, we cannot conclude that
BO-MO-ASHA performs better than MO-ASHA. We note
that on CIFAR-10/100 Accuracy/Robustness tasks (Fig-
ure 5), MO-ASHA and BO-MO-ASHA perform better than
MO-PBT in the beginning of the search as they train net-
works in a different order compared to MO-PBT: some
selected networks are fully trained earlier in time than in
MO-PBT, where all the networks are trained simultaneously.
However, as soon as the population is trained for more
epochs, MO-PBT catches up and at the end of the search
substantially outperforms MO-ASHA. We note that this be-
havior occurs only because the number of parallel workers
in our experiments is smaller than the population size.

6

https://github.com/ArkadiyD/MO-PBT
https://github.com/ArkadiyD/MO-PBT


Multi-Objective Population Based Training

0 5 10
Time (minutes)

−2.0

−1.5

−1.0

−0.5

Lo
g 1

0 H
yp

er
vo

lu
m

e 
di

ffe
re

nc
e

Precision/Recall, Adult

0 10 20 30
Time (minutes)

−2.0

−1.5

−1.0

−0.5

Lo
g 1

0 H
yp

er
vo

lu
m

e 
di

ffe
re

nc
e

Precision/Recall, Higgs

0 25 50 75 100
Time (minutes)

−2.0

−1.5

−1.0

Lo
g 1

0 H
yp

er
vo

lu
m

e 
di

ffe
re

nc
e

Precision/Recall, Click prediction

−0.04 −0.02 0.00 0.02 0.04

−0.04

−0.02

0.00

0.02

0.04

random search
PBT: precision

PBT: recall
PBT: random scalarization

PBT: max. scalarization
MO-ASHA

BO-MO-ASHA
MO-PBT

Figure 3. Optimization results on the Precision/Recall task.
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Figure 4. Optimization results on the Accuracy/Fairness task.

7.2. Analysis of the obtained trade-off fronts

The comparison of non-dominated fronts of solutions ob-
tained by different algorithms is shown in Figure 6. Quan-
titative results of the front diversity evaluation (using the
coverage metric introduced in (Scriven et al., 2009) and
described in Appendix F) are shown in Appendix I, Table 7.

We observe that on the Precision/Recall and the Accu-
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Figure 5. Optimization results on the Accuracy/Robustness task.

racy/Robustness tasks, MO-PBT achieves substantially bet-
ter coverage of the trade-off front compared to other algo-
rithms. On Accuracy/DSP tasks, MO-ASHA on average
has slightly better coverage than MO-PBT (though the vari-
ance of the results is large and in some runs MO-PBT has
better coverage). Nevertheless, it should be noted that the
quality of the most points on the trade-off fronts obtained
by MO-ASHA is worse in terms of domination (can be seen
on Figure 6).

These results demonstrate that MO-PBT can not only find so-
lutions closer to the reference front than MO-ASHA (which
is reflected in the better hypervolume performance), but
also produce more diverse fronts along the entire trade-off
curve. For practical usage, this means that more options for
trade-offs between objectives are available for the user to
choose from.

7.3. Where do different algorithms focus their search?

We analyze how algorithms differ in their search behavior
by plotting all solutions collected during the search in the
objective space and highlighting areas where more solutions
are concentrated. These plots are shown in Figure 7. They
show a clear difference between approaches which turn an
MO problem into an SO one (scalarization and optimizing
one objective) and MO-PBT. MO-PBT obtains solutions
scattered more uniformly along the entire trade-off trajectory
between two objectives, in contrast to concentrating on one
area of it.

7.4. Scalability

7.4.1. POPULATION SIZE

We investigate whether MO-PBT benefits from increasing
the population size. The scaling experimental results are
shown in Figure 8. We find that for the population sizes
we considered (16, 32, 64), performance keeps improving.
For reference, we also ran MO-ASHA with correspondingly
increased time budgets and found that it scales similarly. We
note that the performance gains when the population size
is increased (from 16 to 32 and from 32 to 64) are stronger
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Figure 6. Comparison of the non-dominated fronts obtained by
different algorithms. For each algorithm, the run with the median
hypervolume value is shown. For each front, the values of the
hypervolume and coverage metrics (multiplied by 100) are reported
in the corresponding color.

on the task with 3 objectives. This is expected behavior,
as the algorithm needs more solutions to scatter along 3D
approximation fronts compared to 2D in the bi-objective
case.

7.4.2. SEARCH SPACE SIZE

In our main experiments on image datasets, we search for
the two parameters (number of augmentations and their mag-
nitude) of the RandAugment augmentation policy, which
was shown to be effective (Cubuk et al., 2020). The whole
search space has in that case 5 variables. To additionally
study whether MO-PBT is capable of performing search ef-
ficiently in larger search spaces, we construct a substantially
larger search space (comprising 31 variables) by replacing
the RandAugment policy with an augmentation policy simi-
lar to the one used in (Ho et al., 2019): the magnitude and
probability of each augmentation can be adjusted separately;
additionally, the number of applied augmentations is search-
able too. The results are shown in Figure 9. We observe
that in a larger search space, MO-PBT does not lose its
efficiency and has even a slightly better performance.

7.5. Further experiments to demonstrate the
effectiveness of MO-PBT

In addition to our main experiments, we compare MO-
PBT to the algorithms which are not (fully) parallel. In

Appendix D we demonstrate that MO-PBT outperforms
state-of-the-art BO algorithm for MO optimization: Paral-
lel Noisy Expected Hypervolume Improvement (qNEHVI)
(Daulton et al., 2021). Furthermore, we conduct experi-
ments to ensure that MO-PBT is an efficient optimization
algorithm even in the scenario when it is executed sequen-
tially. In Appendix E, MO-PBT is shown to outperform
common MO baselines NSGA-II (Deb et al., 2002) and
ParEGO (Knowles, 2006) in the sequential setup.

8. Discussion and limitations
We have proposed MO-PBT and compared it with various
baselines, including a prominent parallelizable algorithm for
MO-HPO, MO-ASHA, reaching the conclusion that MO-
PBT performs better. We note however that an advantage
of MO-ASHA (and similar algorithms such as Hyperband)
is its ability to perform not only HPO, but also architecture
search, and, furthermore, joint optimization of the archi-
tecture and hyperparameters. In PBT and MO-PBT all
architectures are assumed to be identical in the population,
therefore architecture search cannot be performed (without
additional modifications).

We note that quantifying the results of MO algorithms is,
in, general, challenging. Many metrics have been proposed
(Audet et al., 2021) and each has its own pros and cons.
While hypervolume remains, arguably, the most commonly
used metric, its downside is the dependence on a user-
selected reference point. Thus, while we ensured that the
proposed MO-PBT outperformed alternative algorithms in
terms of hypervolume, we also visually analyzed the ob-
tained non-dominated fronts of solutions and quantified the
results using a coverage metric (Scriven et al., 2009). This
analysis also demonstrated good performance of MO-PBT
in terms of solutions diversity and density (they are well
spread across different areas of the objective space).

In principle, MO-PBT (as well as the original PBT) can
operate with any type of search space as long as an explore
operator is defined (moreover, the search spaces can be de-
fined separately for each hyperparameter). One of the bene-
fits of the discretized search space used in this work is (in
contrast to a real-valued search space), its ability to explic-
itly set some values: e.g., zero value of λ in the Lfairness

turns this loss into the standard cross-entropy. Thus, more
interpretable hyperparameter search results can be obtained.
However, a real-valued search space can, potentially, enable
performing a more fine-grained search which in some cases
might be more important than the interpretability of results.

For the main experiments of this work, we used MO-PBT
with population size of 32. We additionally observed that its
performance scales with increasing population size. How-
ever, population size remains a hyperparameter of MO-PBT
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Figure 7. 2D histograms of solutions (in the objective space) collected during one run of each algorithm. Darker color denotes more
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darkest color on the plot). For each algorithm, solutions obtained during the run with the median hypervolume value are plotted. SO
denotes PBT applied to optimizing one of the objectives.
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Figure 8. Comparison of MO-PBT with increasing population size
and MO-ASHA. The time budget for MO-ASHA was adjusted
accordingly. The hypervolume is normalized by the average hyper-
volume performance of MO-PBT with population 32.
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Figure 9. Comparison of MO-PBT and MO-ASHA applied to the
search spaces of different sizes.

that needs to be set by the user. Adjusting it automatically
(for example, as done in EA literature (Harik et al., 1999))
could be an interesting direction for future work.

9. Conclusion
We introduced a multi-objective version of Population Based
Training: MO-PBT. We considered diverse multi-objective
hyperparameter optimization tasks and found that a multi-
objective approach to ranking solutions, non-dominated
sort, outperforms more simple ones such as scalarization
techniques. This was demonstrated by not only better hy-
pervolume performance, but also a better tradeoff front cov-
erage by MO-PBT. MO-PBT was shown to outperform
MO-ASHA variants (standard and Bayesian optimization
based), single-objective PBT, and random search.
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rithms for hyper-parameter optimization. Advances in
Neural Information Processing Systems, 24, 2011.

Bosman, P. A. and Thierens, D. The balance between prox-
imity and diversity in multiobjective evolutionary algo-
rithms. IEEE Transactions on Evolutionary Computation,
7(2):174–188, 2003.

Byeon, M., Park, B., Kim, H., Lee, S., Baek, W., and Kim,
S. COYO-700M: Image-text pair dataset, 2022.

Cheng, S., Leng, Z., Cubuk, E. D., Zoph, B., Bai, C., Ngiam,
J., Song, Y., Caine, B., Vasudevan, V., Li, C., et al. Im-
proving 3d object detection through progressive popula-
tion based augmentation. In European Conference on
Computer Vision, pp. 279–294. Springer, 2020.

Chuang, C.-Y. and Mroueh, Y. Fair Mixup: Fairness via
interpolation. arXiv preprint arXiv:2103.06503, 2021.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Ran-
dAugment: Practical automated data augmentation with
a reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 702–703, 2020.

Dalibard, V. and Jaderberg, M. Faster improvement rate pop-
ulation based training. arXiv preprint arXiv:2109.13800,
2021.

Daulton, S., Balandat, M., and Bakshy, E. Differentiable
expected hypervolume improvement for parallel multi-
objective bayesian optimization. Advances in Neural
Information Processing Systems, 33:9851–9864, 2020.

Daulton, S., Balandat, M., and Bakshy, E. Parallel Bayesian
optimization of multiple noisy objectives with expected
hypervolume improvement. Advances in Neural Informa-
tion Processing Systems, 34:2187–2200, 2021.

Deb, K. Multi-objective optimization using evolutionary
algorithms. John Wiley & Sons, Inc., 2001.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A fast
and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation, 6(2):
182–197, 2002.

DeVries, T. and Taylor, G. W. Improved regularization
of convolutional neural networks with CutOut. arXiv
preprint arXiv:1708.04552, 2017.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Emmerich, M. T., Deutz, A. H., and Klinkenberg, J. W.
Hypervolume-based expected improvement: Monotonic-
ity properties and exact computation. In 2011 IEEE
Congress of Evolutionary Computation (CEC), pp. 2147–
2154. IEEE, 2011.

Falkner, S., Klein, A., and Hutter, F. BOHB: Robust and
efficient hyperparameter optimization at scale. In Interna-
tional Conference on Machine Learning, pp. 1437–1446.
PMLR, 2018.

Garg, P., Villasenor, J., and Foggo, V. Fairness metrics: A
comparative analysis. In 2020 IEEE International Con-
ference on Big Data (Big Data), pp. 3662–3666. IEEE,
2020.

Gorishniy, Y., Rubachev, I., Khrulkov, V., and Babenko,
A. Revisiting deep learning models for tabular data. Ad-
vances in Neural Information Processing Systems, 34:
18932–18943, 2021.

Guerrero-Viu, J., Hauns, S., Izquierdo, S., Miotto, G.,
Schrodi, S., Biedenkapp, A., Elsken, T., Deng, D., Lin-
dauer, M., and Hutter, F. Bag of baselines for multi-
objective joint neural architecture search and hyperpa-
rameter optimization. arXiv preprint arXiv:2105.01015,
2021.

Harik, G. R., Lobo, F. G., et al. A parameter-less genetic al-
gorithm. In Proceedings of the Genetic and Evolutionary
Computation Conference, volume 99, pp. 258–267, 1999.

Ho, D., Liang, E., Chen, X., Stoica, I., and Abbeel, P. Popu-
lation based augmentation: Efficient learning of augmen-
tation policy schedules. In International Conference on
Machine Learning, pp. 2731–2741. PMLR, 2019.

Ishibuchi, H., Akedo, N., and Nojima, Y. A many-objective
test problem for visually examining diversity maintenance
behavior in a decision space. In Proceedings of the 13th
annual conference on Genetic and Evolutionary Compu-
tation, pp. 649–656, 2011.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M.,
Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning,

10

http://archive.ics.uci.edu/ml


Multi-Objective Population Based Training

I., Simonyan, K., et al. Population based training of
neural networks. arXiv preprint arXiv:1711.09846, 2017.

Jamieson, K. and Talwalkar, A. Non-stochastic best arm
identification and hyperparameter optimization. In Ar-
tificial Intelligence and Statistics, pp. 240–248. PMLR,
2016.

Kadra, A., Lindauer, M., Hutter, F., and Grabocka, J. Well-
tuned simple nets excel on tabular datasets. Advances
in Neural Information Processing Systems, 34:23928–
23941, 2021.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Karl, F., Pielok, T., Moosbauer, J., Pfisterer, F., Coors, S.,
Binder, M., Schneider, L., Thomas, J., Richter, J., Lang,
M., et al. Multi-objective hyperparameter optimization–
an overview. arXiv preprint arXiv:2206.07438, 2022.

Knowles, J. ParEGO: A hybrid algorithm with on-line
landscape approximation for expensive multiobjective op-
timization problems. IEEE Transactions on Evolutionary
Computation, 10(1):50–66, 2006.
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A. Ablation studies
A.1. Explore operator

We compare the used local explore operator from PBA (Ho et al., 2019) with random mutation from classic EAs: for each
of P variables, the new value is randomly sampled from the corresponding search domain HP with probability 1

P . As
demonstrated in Figure 10, the local mutation performs slightly better.
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Figure 10. Comparison of MO-PBT with different explore operators (mutations) and MO-ASHA. PBA denotes the mutation used in PBA
(Ho et al., 2019) (local mutation), random denotes simple and random mutation.

A.2. Exploit operator

In (Jaderberg et al., 2017) it was shown that using truncation selection as the exploit operator works best out of considered
options. Here, we study whether the truncation selection parameter (τ in Algorithm 2, larger value means more solutions are
replaced) has a significant impact on performance. As demonstrated in Figure 11, the value of τ = 25 used in (Jaderberg
et al., 2017) performs slightly better than values 10 and 50.
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Figure 11. Comparison of MO-PBT with different truncation selection values in the exploit operator (parameter τ in Algorithm 2) and
MO-ASHA.
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A.3. Ranking criterion

We study whether greedy scattered subset selection used for solutions ranking (together with non-dominated sort as described
in Section 4) performs better than the crowding distance (the default ranking criterion in NSGA-II).
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Figure 12. Comparison of MO-PBT with different criteria of ranking solutions and MO-ASHA.

A.4. Ablation studies conclusions

We can conclude that MO-PBT demonstrates robustness to its operators’ design: while the default designs of explore and
exploit operators also used in PBT for augmentations policy search (Jaderberg et al., 2017) perform slightly better than
considered alternatives, MO-PBT outperforms MO-ASHA for all considered operators. A similar result is observed for the
ranking criterion of the solutions: MO-PBT with the greedy scattered subset selection performs better than MO-PBT with
the crowding distance, but the difference is not substantial.

B. Implementation and experimental details
We implemented all algorithms using Ray Tune library (Liaw et al., 2018). Network training was performed using PyTorch
(Paszke et al., 2019). We used machines with 3 Nvidia A5000 GPUs and trained 4 networks on each GPU simultaneously,
i.e., 12 networks could be trained in parallel. The total utilized number of GPU hours to reproduce all of our experiments (8
algorithms and 10 (5) seeds per algorithm on tabular (image) datasets) is 900 GPU hours for the experiments on tabular
datasets and 10,000 GPU hours for the experiments on image datasets. One run of MO-PBT took less than 2 wall-clock
hours on tabular datasets and less than 25 wall-clock hours on image datasets.

The training procedure for FT-Transformer (in Precision/Recall tasks and Accuracy/Fairness on the Adult dataset) is adapted
from (Gorishniy et al., 2021): AdamW (Loshchilov & Hutter, 2017) with learning rate 10−5 (no learning rate scheduler is
used) but without early stopping. Batch size is set to 512. The training is performed for 100 epochs. On the image datasets,
we use standard for WideResNet (used, for instance, in (Cubuk et al., 2020)) cosine learning rate schedule with an initial
learning rate 0.1 for SGD with momentum value of 0.9, and batch size 128. The training is performed for 100 epochs.
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C. Generalization results
In this section, we inspect how the performance of the algorithms transfers from the validation set to the test set. The
solutions on the trade-off front were determined based on the validation metrics. Then, these selected models are evaluated
on the test set. Some of them may perform worse than expected, and not be a part of the trade-off front anymore because
they are dominated by other solutions on it. The hypervolume of the remaining solutions is computed and visualized in
Figure 13 and listed in Table 6.

MO-PBT outperforms the baselines, although on some tasks (Precision/Recall, Accuracy/DSP on the Adult dataset) the
difference in final performance becomes smaller.
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Figure 13. Generalization results (on the test data subset) on all tasks: Precision/Recall (top row), Accuracy/Fairness (middle row),
Accuracy/Robustness(bottom row).

15



Multi-Objective Population Based Training

D. Comparison to parallel BO algorithms
Here we compare MO-PBT to the state-of-the-art BO algorithm qNEHVI (Daulton et al., 2021) which, in contrast to
traditional BO algorithms, is capable of evaluating solutions in batches. The used batch sizes for qNEHVI are chosen
according to our maximal available parallel capacity: 16 for tabular datasets and 12 for the image ones. These results are
shown in Figure 14. They demonstrate that MO-PBT outperforms qNEHVI.

We further note that the parallel capacity of MO-PBT is limited only by the available hardware: the whole population of N
networks can be potentially trained in approximately the same amount of time as one network if N parallel workers are
available and no bottlenecks appear in the system. This is not the case for, for instance, qNEHVI: first, multiple sequential
training iterations (one batch comprises multiple networks) are required to achieve better than random performance; secondly,
its performance is expected to deteriorate when the batch size is scaled up to large values (Daulton et al., 2021).
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Figure 14. Comparison of MO-PBT against the state-of-the-art BO algorithm, qNEHVI (Daulton et al., 2021). Similar to our main
experimental setup described in Section 6.4, time budgets of qNEHVI are equal to the longest run of MO-PBT in the corresponding task.
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E. Search effectiveness of MO-PBT
Our main experiments demonstrated the efficiency of MO-PBT for practical applications to MO-HPO tasks. Its highly
parallel nature plays an important role in its efficiency. Here, we additionally test the search effectiveness of MO-PBT
regardless of its parallelization capabilities. For this purpose, we test it against well-known MO baselines: NSGA-II (Deb
et al., 2002) and ParEGO (Knowles, 2006). We allow each algorithm to fully train 32 networks (not taking the required
wall-clock time into account) and evaluate the performance of the algorithms based on the hypervolume value of obtained
non-dominated fronts of solutions. The results are shown in Figure 15. We can conclude that MO-PBT outperforms the
considered alternatives.
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Figure 15. Comparison of MO-PBT against common MO optimization baselines NSGA-II and ParEGO. Here, all algorithms are allowed
to fully train 32 networks (the population size in MO-PBT) and the consumed wall-clock time is not taken into account in the evaluation.

F. Visualization of the used performance metrics
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Figure 16. Calculation procedure of the hypervolume metric.
Here the green points form the non-dominated front, the gray one
is the reference point. The total hypervolume is calculated as the
area of the union of rectangles, where each rectangle is formed
by a point on the non-dominated front and the reference point.
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Figure 17. Calculation procedure of the coverage metric (Scriven
et al., 2009). Here the green points form the non-dominated front,
the reference point is gray. The quadrant in objective space is
divided in equal sectors by M dashed lines. The metric value is
calculated as the number of sectors with at least one point (here:
4) divided by the total number of sectors M + 1 (here: 8). In
our experiments, we use M = 360 (larger M means a more
fine-grained metric calculation (Scriven et al., 2009)).
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G. Pseudocode

Algorithm 1 Procedure to sort solutions in MO-PBT (sortPopulation)

▷ For the sake of implementation simplicity, we sort all fronts regardless of their sizes (the overhead of this operation is
negligible) even though not all of them might be needed to select the top and the bottom solutions of the population.
Input: Population P
Output: Sorted population P∗

(F 1, . . . , FR)← non-dominated sort of P ▷ F i is the i th non-dominated front
P∗ ← {argmaxv∈F 1 f1(v)} ▷ add the solution with the largest f1 first
F 1 ← F 1 \ {v}
for i = 1, . . . , R do

while F i ̸= ∅ do
nextToAdd← argmaxv∈F i argminv′∈P∗ D(f(v), f(v′)) ▷ D is Euclidean distance in the objective space
F i ← F i \ {nextToAdd}
P∗ ← P∗ ∪ {nextToAdd}

end while
end for
return P∗

Algorithm 2 Exploit in MO-PBT (exploit)

1: Input: population P , truncation selection parameter τ
Output: population P with changed weights and hyperparameters (in-place)

2: P ← sortPopulation(P)
3: for p ∈ τ |P| bottom solutions of P do
4: select a solution d from τ |P| top solutions
5: pθ ← dθ ▷ copy weights
6: ph ← dh ▷ copy hyperparameters
7: ph ← explore(ph) ▷ perturb hyperparameters
8: end for
9: return P

Algorithm 3 Explore in MO-PBT (explore)

1: Input: hyperparameter value h, hyperparameter values domainH = v1, . . . vM , resample probability p
Output: perturbed hyperparameter value h′

2: x← sample from uniform distribution U(0, 1)
3: if x < p then
4: h′ ← uniformly sampled value fromH ▷ with small probability it is resampled
5: else
6: shift← uniformly sampled value from [0, 1, 2, 3]
7: shift← − shift with probability 0.5
8: h′ ← h+shift ▷ local perturbation
9: end if

10: return h′
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H. Search spaces
H.1. Precision/Recall

Hyperparameter Range of values Scale Number of values

Attention dropout [0, 0.8] linear 10
FFN dropout [0, 0.8] linear 10
Residual dropout [0, 0.8] linear 10
Weight decay [0, 0.1] log 10
Class weight in CE loss [0.1, 0.9] linear 10

Table 1. Search space for the Precision/Recall task.

H.2. Accuracy/Fairness

Hyperparameter Range of values Scale Number of values

Attention dropout [0, 0.8] linear 10
FFN dropout [0, 0.8] linear 10
Residual dropout [0, 0.8] linear 10
Weight decay [0, 0.1] log 10
Class weight in fairness loss [0, 10] log 10

Table 2. Search space for the Accuracy/Fairness tasks on the Adult dataset.

Hyperparameter Range of values Scale Number of values

RandAugment N [0, 4] linear 5
RandAugment M [0, 9] linear 10
CutOut probability [0, 1] linear 10
CutOut magnitude [0, 9] linear 10
Class weight in fairness loss [0, 10] log 10

Table 3. Search space for the Accuracy/Fairness tasks on the CelebA dataset.

H.3. Accuracy/Adversarial robustness

Hyperparameter Range of values Scale Number of values

RandAugment N [0, 4] linear 5
RandAugment M [0, 9] linear 10
CutOut probability [0, 1] linear 10
CutOut magnitude [0, 9] linear 10
Coefficient in the TRADES loss [0, 10] log 10

Table 4. Search space of the Accuracy/Robustness task.
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I. Tabulated results

Problem Dataset random search obj. 1 obj. 2 obj. 3 rand. scalar. max. scalar. MO-PBT MO-ASHA BO-MO-ASHA

Precision/Recall
Adult 68.69 ± 0.50 69.61 ± 0.27 63.80 ± 0.90 - 68.13 ± 0.97 68.79 ± 0.57 70.59 ± 0.13 67.89 ± 0.52 66.10 ± 1.56
Higgs 36.88 ± 0.26 38.14 ± 0.36 33.40 ± 0.61 - 36.50 ± 0.43 37.40 ± 0.56 39.22 ± 0.22 37.46 ± 0.32 36.34 ± 0.75
Click 35.22 ± 0.45 34.65 ± 0.50 34.33 ± 0.86 - 35.01 ± 0.39 34.89 ± 0.52 37.39 ± 0.24 35.69 ± 0.43 35.66 ± 0.58

Fairness:
Acc./DSP

CelebA 16.51 ± 0.09 16.53 ± 0.03 15.17 ± 0.12 - 16.59 ± 0.07 16.51 ± 0.02 16.76 ± 0.08 16.39 ± 0.06 16.40 ± 0.05
Adult 3.64 ± 0.04 3.69 ± 0.02 2.80 ± 0.11 - 3.55 ± 0.11 3.55 ± 0.17 3.81 ± 0.02 3.74 ± 0.01 3.73 ± 0.03

Fairness:
Acc./DSP/EOdd

CelebA 11.09 ± 0.08 11.11 ± 0.05 10.10 ± 0.11 10.13 ± 0.13 11.00 ± 0.07 11.20 ± 0.10 11.43 ± 0.04 11.12 ± 0.07 11.15 ± 0.10
Adult 1.62 ± 0.02 1.64 ± 0.02 1.30 ± 0.11 1.32 ± 0.09 1.63 ± 0.05 1.47 ± 0.02 1.76 ± 0.02 1.70 ± 0.02 1.68 ± 0.02

Acc./Robustness CIFAR-10 33.84 ± 0.28 24.65 ± 0.81 33.94 ± 0.26 - 34.74 ± 0.48 34.51 ± 0.29 35.40 ± 0.09 33.62 ± 0.59 33.82 ± 0.32
CIFAR-100 17.90 ± 0.27 12.06 ± 0.15 17.44 ± 0.13 - 17.77 ± 0.25 18.13 ± 0.24 18.65 ± 0.11 16.98 ± 0.53 16.92 ± 1.07

Table 5. Obtained hypervolume (larger values are better) data for all algorithms and all tasks. Average and standard deviation values
of the best obtained hypervolume over multiple runs are provided. Obj.1, obj 2., and obj. 3 denote single-objective PBT applied to
optimizing the corresponding objective of the task. Acc. denotes accuracy. For better readability, all values are multiplied by 100.

Problem Dataset random search obj. 1 obj. 2 obj. 3 rand. scalar. max. scalar. MO-PBT MO-ASHA BO-MO-ASHA

Precision/Recall
Adult 68.57 ± 0.25 69.38 ± 0.17 64.94 ± 0.70 - 68.27 ± 0.64 68.63 ± 0.52 69.95 ± 0.18 67.47 ± 0.65 65.92 ± 1.41
Higgs 36.01 ± 0.53 37.42 ± 0.31 32.74 ± 0.80 - 35.67 ± 0.54 36.49 ± 0.51 38.31 ± 0.19 36.56 ± 0.38 35.21 ± 0.95
Click 34.06 ± 0.53 33.60 ± 0.51 33.60 ± 0.74 - 34.14 ± 0.40 34.16 ± 0.56 36.38 ± 0.25 34.81 ± 0.87 34.95 ± 0.63

Fairness:
Acc./DSP

CelebA 16.47 ± 0.09 16.50 ± 0.05 15.28 ± 0.07 - 16.57 ± 0.09 16.49 ± 0.05 16.79 ± 0.04 16.34 ± 0.10 16.33 ± 0.05
Adult 3.69 ± 0.02 3.68 ± 0.01 3.04 ± 0.12 - 3.65 ± 0.08 3.65 ± 0.10 3.79 ± 0.02 3.75 ± 0.02 3.73 ± 0.02

Fairness:
Acc./DSP/EOdd

CelebA 10.97 ± 0.09 10.99 ± 0.03 10.09 ± 0.07 10.14 ± 0.10 10.94 ± 0.05 11.08 ± 0.11 11.36 ± 0.04 11.04 ± 0.07 11.02 ± 0.09
Adult 1.69 ± 0.01 1.68 ± 0.02 1.42 ± 0.11 1.44 ± 0.10 1.72 ± 0.04 1.60 ± 0.03 1.80 ± 0.01 1.75 ± 0.01 1.74 ± 0.01

Acc./Robustness CIFAR-10 33.40 ± 0.40 24.54 ± 0.91 33.45 ± 0.24 - 34.40 ± 0.45 34.13 ± 0.27 34.99 ± 0.13 32.97 ± 0.69 33.30 ± 0.31
CIFAR-100 18.30 ± 0.29 11.98 ± 0.20 17.69 ± 0.15 - 18.13 ± 0.27 18.50 ± 0.26 19.03 ± 0.16 17.42 ± 0.61 17.25 ± 1.28

Table 6. Obtained hypervolume (larger values are better) data for all algorithms and all tasks on test data subsets. Average and standard
deviation values of the best obtained hypervolume over multiple runs are provided. Obj.1, obj. 2, and obj. 3 denote single-objective PBT
applied to optimizing the corresponding objective of the task. Acc. denotes accuracy. For better readability, all values are multiplied by
100.

Problem Dataset random search obj. 1 obj. 2 rand. scalar. max. scalar. MO-PBT MO-ASHA BO-MO-ASHA

Precision/Recall
Adult 29.36 ± 1.63 21.39 ± 1.01 23.68 ± 2.02 29.34 ± 3.36 26.12 ± 1.41 40.39 ± 2.62 28.14 ± 1.71 25.65 ± 2.40
Higgs 27.87 ± 2.50 21.99 ± 1.83 14.38 ± 1.71 22.33 ± 2.15 17.76 ± 1.21 35.71 ± 2.07 20.08 ± 1.89 19.22 ± 2.41
Click 30.11 ± 2.79 17.17 ± 1.81 20.39 ± 2.38 27.70 ± 1.65 18.39 ± 1.92 34.96 ± 2.90 25.71 ± 1.75 26.29 ± 2.19

Fairness:
Acc./DSP

CelebA 8.14 ± 0.95 7.20 ± 0.63 4.25 ± 0.26 6.26 ± 0.89 5.37 ± 0.62 7.20 ± 0.70 7.42 ± 0.66 7.87 ± 1.22
Adult 5.90 ± 1.44 6.93 ± 1.26 2.16 ± 0.41 4.60 ± 1.44 3.02 ± 0.84 6.76 ± 1.26 7.26 ± 1.09 5.57 ± 1.71

Acc./Robustness CIFAR-10 4.38 ± 0.73 4.80 ± 0.13 3.05 ± 0.80 4.60 ± 0.57 5.60 ± 0.44 9.58 ± 0.51 2.99 ± 0.54 3.32 ± 0.63
CIFAR-100 5.43 ± 1.22 5.45 ± 0.47 3.71 ± 0.48 4.99 ± 0.72 6.70 ± 0.27 10.75 ± 1.37 3.49 ± 1.06 4.38 ± 0.98

Table 7. Obtained coverage metric introduced in (Scriven et al., 2009) and illustrated in Figure 17 (larger values are better) data for all
algorithms and all bi-objective tasks. Average and standard deviation values of the best obtained coverage value over multiple runs are
provided. Obj.1, obj 2. denote single-objective PBT applied to optimizing the corresponding objective of the task. Acc. denotes accuracy.
For better readability, all values are multiplied by 100.
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J. Effects of the constraints on the performance
We noticed that on the CelebA Accuracy/Fairness task, many trivial classifiers (they always predict one of the classes,
which leads to a perfect fairness score) appear in the population. However, we are not interested in obtaining trivial
classifiers, as such a classifier is the most straightforward way to obtain a perfectly fair model, but it is not particularly
useful. Therefore, we can consider a solution to be feasible if its accuracy is better than the accuracy of a trivial classifier. If
constraints are imposed, the domination criterion can be extended to constraint domination (Deb et al., 2002) (the solutions
that violate constraints are considered to be dominated by the solutions that do not). We hypothesized that with such
constraints, the algorithm can become more effective in finding non-trivial solutions. The imposed constraint on the accuracy
to be higher than the accuracy of a trivial classifier reduces the number of trivial classifiers in the population, but the
hypervolume-measured performance improvement is subtle, as shown in Figure 18. Therefore, we did not use this technique
in the main experiments.
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Figure 18. Comparison of MO-PBT performance on the CelebA Accuracy/DSP and Accuracy/DSP/DEO tasks with and without constraint
that demands the models to have better accuracy than trivial classifiers.
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