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Abstract
Given a reference set R of n points and a query
set Q of m points in a metric space, this paper
studies an important problem of finding k-nearest
neighbors of every point q ∈ Q in the set R in
a near-linear time. In the paper at ICML 2006,
Beygelzimer, Kakade, and Langford introduced a
cover tree on R and attempted to prove that this
tree can be built inO(n log n) time while the near-
est neighbor search can be done in O(n logm)
time with a hidden dimensionality factor. This
paper fills a substantial gap in the past proofs
of time complexity by defining a simpler com-
pressed cover tree on the reference set R. The
first new algorithm constructs a compressed cover
tree in O(n log n) time. The second new algo-
rithm finds all k-nearest neighbors of all points
from Q using a compressed cover tree in time
O(m(k + log n) log k) with a hidden dimension-
ality factor depending on point distributions of
the given sets R,Q but not on their sizes.

1. The Neighbor Search, Overview Of Results
In the modern formulation, the k-nearest neighbor problem
is to find all k ≥ 1 nearest neighbors in a given reference
set R for all points from another given query set Q.

Both sets belong to a common ambient space X with a
distance metric d satisfying all metric axioms. The simplest
example of X is Rn with the Euclidean metric. A query set
Q can be a point or a finite subset of a reference set R.

The exact k-nearest neighbor problem asks for all true (ex-
act) k-nearest neighbors in R for every point q ∈ Q.

Another (probabilistic) version of the k-nearest neighbor
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search Har-Peled & Mendel (2006); Manocha & Girolami
(2007) aims to find exact k-nearest neighbors with a given
probability. The approximate version Arya & Mount (1993);
Krauthgamer & Lee (2004); Andoni et al. (2018); Wang
et al. (2021) of the nearest neighbor search looks for an
ϵ-approximate neighbor r ∈ R of every query point q ∈ Q
such that d(q, r) ≤ (1 + ϵ)d(q,NN(q)) , where ϵ > 0 is
fixed and NN(q) is the exact first nearest neighbor of q.

Definition 1.1 (diameter and aspect ratio). For any fi-
nite set R with a metric d, the diameter is diam(R) =

max
p∈R

max
q∈R

d(p, q). The aspect ratio is ∆(R) =
diam(R)

dmin(R)
,

where dmin(R) is the shortest distance between points of R.

Definition 1.2 (k-nearest neighbor set NNk). For any point
q ∈ Q, let d1 ≤ · · · ≤ d|R| be ordered distances from q to
all points of a reference set R whose size (number of points)
is denoted by |R|. For any k ≥ 1, the k-nearest neighbor
set NNk(q;R) consists of all u ∈ R with d(q, u) ≤ dk.

For Q = R = {0, 1, 2, 3}, the point q = 1 has ordered
distances d1 = 0 < d2 = 1 = d3 < d4 = 2. The
nearest neighbor sets are NN1(1;R) = {1}, NN2(1;R) =
{0, 1, 2} = NN3(1;R), NN4(1;R) = R. So 0 can be a
2nd neighbor of 1, then 2 becomes a 3rd neighbor of 1, or
these neighbors of 0 can be found in a different order.

Problem 1.3 (all k-nearest neighbors search). Let Q,R be
finite subsets of query and reference sets in a metric space
(X, d). For any fixed k ≥ 1, design an algorithm to exactly
find k distinct points from NNk(q;R) for all q ∈ Q so that
the parametrized worst-case time complexity is near-linear
in time max{|Q|, |R|}, where hidden constants may depend
on structures of Q,R but not on their sizes |Q|, |R|.

In a metric space, let B̄(p, t) be the closed ball with a cen-
ter p and a radius t ≥ 0. The notation |B̄(p, t)| denotes
the number (if finite) of points in the closed ball. Defini-
tion 1.4 recalls the expansion constant c from Beygelzimer
et al. (2006a) and introduces the new minimized expansion
constant cm, which is a discrete analog of the doubling
dimension Cole & Gottlieb (2006).

Definition 1.4 (expansion constants c and cm). A subset
R of a metric space (X, d) is called locally finite if the set
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B̄(p, t) ∩R is finite for all p ∈ X and t ∈ R+. Let R be a
locally finite set in a metric space X .

The expansion constant c(R) is the smallest c(R) ≥ 2 such
that |B̄(p, 2t)| ≤ c(R) · |B̄(p, t)| for any point p ∈ R and
t ≥ 0, see Beygelzimer et al. (2006a).

Introduce the new minimized expansion constant cm(R) =

lim
ξ→0+

inf
R⊆A⊆X

sup
p∈A,t>ξ

|B̄(p, 2t) ∩A|
|B̄(p, t) ∩A|

, where A is a locally

finite set which covers R.

Lemma 1.5. For any finite sets R ⊆ U in a metric space,
we have that cm(R) ≤ cm(U) and cm(R) ≤ c(R).

Note that both c(R), cm(R) are always defined when R is
finite. We show below that a single outlier can make the
expansion constant c(R) as large as O(|R|).

In the Euclidean line R, The set R = {1, 2, . . . , n, 2n+ 1}
of |R| = n + 1 points has c(R) = n + 1 because B̄(2n +
1;n) = {2n+1} is a single point, while B̄(2n+1; 2n) = R
is the full set of n + 1 points. On the other hand, the
same set R can be extended to a larger uniform set A =
{1, 2, . . . , 2n− 1, 2n} whose expansion constant is c(A) =
2. So the minimized constant of the original set R is much
smaller: cm(R) ≤ c(A) = 2 < c(R) = n+ 1.

The constant c from Beygelzimer et al. (2006a) equals
2dimKR from Krauthgamer & Lee (2004, Section 2.1).

In Krauthgamer & Lee (2004, Section 1.1) the doubling
dimension 2dim is defined as a minimum value ρ such that
any set X can be covered by 2ρ sets whose diameters are
half of the diameter of X . The past work Krauthgamer &
Lee (2004) proves that 2dim ≤ 2n for any subset of Rn.

Theorem C.15 in appendix C will prove that cm(R) ≤ 2n

for any a finite subset R ⊂ Rn, so cm(R) mimics 2dim.

Navigating nets. In 2004, Krauthgamer & Lee (2004, The-
orem 2.7) claimed that a navigating net can be constructed
in time O

(
2O(dimKR(R)|R|(log |R|) log(log |R|)

)
and all k-

nearest neighbors of a query point q can be found in time
O(2O(dimKR(R∪{q})(k + log |R|), where dimKR(R ∪ {q})
is the expansion constant defined above. The paper above
sketched a proof of Krauthgamer & Lee (2004, Theorem 2.7)
in one sentence and skipped pseudo-codes. Unfortunately,
the authors didn’t reply to our request for these details.

Modified navigating nets Cole & Gottlieb (2006) were
used in 2006 to claim the time O(log(n) + (1/ϵ)O(1)) to
find (1 + ϵ)-approximate neighbors. The proof and pseudo-
code were skipped for this claim and for the construction
of the modified navigating net for the claimed time O(|R| ·
log(|R|)).

Cover trees. In 2006, Beygelzimer et al. (2006a) introduced
a cover tree inspired by the navigating nets Krauthgamer &
Lee (2004). This cover tree was designed to prove a worst-
case time for the nearest neighbor search in terms of the size
|R| of a reference set R and the expansion constant c(R)
from Definition 1.4. Assume that a cover tree is already
constructed on the set R. Then Beygelzimer et al. (2006a,
Theorem 5) claimed that a nearest neighbor of any query
point q ∈ Q could be found in time O(c(R)12 · log |R|).

In 2015, Curtin (2015, Section 5.3) pointed out that the
proof of Beygelzimer et al. (2006a, Theorem 5) contains a
crucial gap, now also confirmed by a specific example in
Elkin & Kurlin (2022a, Counterexample 5.2).

The time complexity result of the cover tree construction
algorithm Beygelzimer et al. (2006a, Theorem 6) had a
similar issue, the gap of which is exposed rigorously in
Elkin & Kurlin (2022a, Counterexample 4.2).

Further studies in cover trees. A noteworthy paper on
cover trees Kollar (2006) introduced a new probabilistic al-
gorithm for the nearest neighbor search, as well as corrected
the pseudo-code of the cover tree construction algorithm
of Beygelzimer et al. (2006a, Algorithm 2). Later in 2015,
a new, more efficient implementation of cover tree was in-
troduced in Izbicki & Shelton (2015). However, no new
time-complexity results were proven.

Another study Jahanseir & Sheehy (2016) explored con-
nections between modified navigating nets Cole & Gottlieb
(2006) and cover trees Beygelzimer et al. (2006a).

Several papers Beygelzimer et al. (2006b); Ram et al.
(2009); Curtin et al. (2015) studied the possibility of solving
k-nearest neighbor Problem 1.3 by using cover trees on both
sets Q,R, see Elkin & Kurlin (2022a, Section 6).

New contributions. This work corrects the past gaps of
the single-tree approach Beygelzimer et al. (2006a), which
were discovered in Elkin & Kurlin (2022a) by using a new
compressed cover tree T (R) from Definition 2.1, which can
be constructed on any finite reference set R with a metric d.

• Definition 2.1 introduces a new compressed cover tree.

• Theorem 3.6 and Corollary 3.10 estimate the time to
build a compressed cover tree, which corrects the proof
of Beygelzimer et al. (2006a, Theorem 6).

• Theorem 4.9 and Corollary 4.7 estimate the time to
find all k-nearest neighbors as in Problem 1.3. These
advances correct and generalize Beygelzimer et al.
(2006a, Theorem 5).
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Table 1. Building data structures with hidden cm(R) or dimensionality constant 2dim Krauthgamer & Lee (2004, Section 1.1).

Data structure claimed time complexity space proofs
Navigating nets
Krauthgamer &
Lee (2004)

O
(
2O(dim) · |R| · log(∆) · log(log((∆))

)
O(2O(dim)|R|) Krauthgamer & Lee

(2004, Theorem 2.5)

Compressed cover tree
[Definition 2.1]

O
(
cm(R)O(1) · |R| log(∆(R))

)
O(|R|)
Lemma B.1

Theorem 3.6

Table 2. Results for building data structures with the hidden classical expansion constant c(R) of Definition 1.4 or KR-type constant
2dimKR Krauthgamer & Lee (2004, Section 2.1).

Data structure claimed time complexity space proofs
Navigating nets
Krauthgamer &
Lee (2004)

O
(
2O(dimKR) · |R| log(|R|) log(log |R|)

)
,

Krauthgamer & Lee (2004, Theorem 2.6)
O(2O(dim)|R|) Not available

Cover tree Beygelz-
imer et al. (2006a)

O(c(R)O(1) · |R| · log |R|), Beygelzimer
et al. (2006a, Theorem 6)

O(|R|) Elkin & Kurlin (2022a,
Counterexample 4.2)
shows that the past
proof is incorrect

Compressed cover tree
[Definition 2.1]

O
(
c(R)O(1) · |R| · log |R|

)
O(|R|)
Lemma B.1

Corollary 3.10

Table 3. Results for exact k-nearest neighbors of one query point q ∈ X using the hidden classical expansion constant c(R) of Definition
1.4 or KR-type constant 2dimKR Krauthgamer & Lee (2004, Section 2.1) and assuming that all data structures are already built. Note that
the dimensionality factor 2dimKR is equivalent to c(R)O(1).

Data structure claimed time complexity space proofs
Navigating nets
Krauthgamer &
Lee (2004)

O
(
2O(dimKR)(log(|R|) + k)

)
for k ≥ 1 Krauthgamer &
Lee (2004, Theorem 2.7)

O(2O(dim)|R|) Not available

Cover tree Beygelz-
imer et al. (2006a)

O
(
c(R)O(1) log |R|

)
for

k = 1 Beygelzimer et al.
(2006a, Theorem 5)

O(|R|) Elkin & Kurlin (2022a, Coun-
terexample 5.2) shows that
the past proof is incorrect

Compressed cover
tree, Definition 2.1

O
(
c(R ∪ {q})O(1) · log(k) ·

(log(|R|) + k)
) O(|R|),

Lemma B.1
Theorem 4.9

Table 4. Results for exact k-nearest neighbors of one point q using hidden cm(R) or dimensionality constant 2dim Krauthgamer & Lee
(2004, Section 1.1) assuming that all structures are built.

Data structure claimed time complexity space proofs
Navigating nets
Krauthgamer &
Lee (2004)

O
(
2O(dim) · log(∆) +

|B̄(q,O(d(q,R))|
)

for k = 1

O(2O(dim)|R|) a proof outline in
Krauthgamer & Lee
(2004, Theorem 2.3)

Compressed cover
tree, Definition 2.1

O
(
log(k) · (cm(R)O(1) log(|∆|) +

|B̄(q,O(dk(q,R))|)
) O(|R|),

Lemma B.1
Corollary 4.7
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Figure 1. A comparison of past cover trees and a new compressed cover tree in Example B.3. Left: an implicit cover tree contains infinite
repetitions. Middle: an explicit cover tree. Right: a compressed cover tree from Definition 2.1 includes each given point exactly once.

2. A New Compressed Cover Tree
This section introduces in Definition 2.1 a new compressed
cover tree to solve Problem 1.3. We also prove relevant
properties of the expansion constant c(R) and minimized
expansion constant cm(R) of Definition 1.4. All extra de-
tails and proofs of this section are in Appendices B,D.

A compressed cover tree in Definition 2.1 will be signifi-
cantly simpler than an explicit cover tree Elkin & Kurlin
(2022a, Definition 2.2), where any given point p can appear
in many different nodes simultaneously.

To regain the functionality of the explicit cover tree, we
introduce the new concept of a distinctive descendant set
Si(p, T (R)) in Definition 2.8. See Figure 1 for a compari-
son between implicit, explicit, and compressed cover trees.

Definition 2.1 (a compressed cover tree T (R)). Let R be a
finite set in a metric space (X, d). A compressed cover tree
T (R) has the vertex set R with a root r ∈ R and a level
function l : R→ Z satisfying the conditions below.

(2.1a) Root condition : the level of the root node r satisfies
l(r) ≥ 1 + max

p∈R\{r}
l(p).

(2.1b) Cover condition : for every node q ∈ R \ {r}, we
select a unique parent p and a level l(q) such that d(q, p) ≤
2l(q)+1 and l(q) < l(p); this parent node p has a single link
to its child node q.

(2.1c) Separation condition : for i ∈ Z, the cover
set Ci = {p ∈ R | l(p) ≥ i} has dmin(Ci) =
min
p∈Ci

min
q∈Ci\{p}

d(p, q) > 2i.

Since there is a 1-1 map between R and all nodes of T (R),
the same notation p can refer to a point in the set R or
to a node of the tree T (R). Set lmax = 1 + max

p∈R\{r}
l(p)

and lmin = min
p∈R

l(p). For any node p ∈ T (R), Children(p)
denotes the set of all children of p, including p itself. For any
node p ∈ T (R), define the node-to-root path as a unique
sequence of nodes w0, . . . , wm such that w0 = p, wm is the
root and wj+1 is the parent of wj for j = 0, ...,m− 1.

A node q ∈ T (R) is a descendant of a node p if p is in the
node-to-root path of q. A node p is an ancestor of q if q is in
the node-to-root path of p. Let Descendants(p) be the set
of all descendants of p, including itself p.

Lemma 2.2 links the minimized expansion constant with
the doubling dimension. This result is used in the proofs of
the width bound of a compressed cover tree in Lemma 2.3,
also for the time complexity of a compressed cover tree
construction in Lemma 3.3, and for the k-nearest neighbor
search in Lemma 4.5. All hyperlinks are clickable.

Lemma 2.2 (packing). Let S be a finite δ-sparse set in
a metric space (X, d), so d(a, b) > δ for all a, b ∈ S.
Then, for any point p ∈ X and any radius t > δ, we have
|B̄(p, t) ∩ S| ≤ (cm(S))µ, where µ = ⌈log2( 4tδ + 1)⌉.

Proof of Lemma 2.2 is in Appendix B.

Lemma 2.3 shows that the number of children of any node
of a compressed cover tree on any specific level can be
bounded by using minimized expansion constant cm(R).

Lemma 2.3 (width bound). Let R be a finite subset of a
metric space (X, d). For any compressed cover tree T (R),
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Figure 2. Consider a compressed cover tree T (R) that was built on set R = {1, 2, 3, 4, 5, 7, 8}. Let Si(p, T (R)) be a distinctive
descendant set of Definition 2.8. Then V2(1) = ∅, V1(1) = {5} and V0(1) = {3, 5, 7}. And also S2(1, T (R)) = {1, 2, 3, 4, 5, 7, 8},
S1(1, T (R)) = {1, 2, 3, 4} and S0(1, T (R)) = {1}.

any node p and any level i ≤ l(p) we have

{q ∈ Children(p) | l(q) = i} ∪ {p} ≤ (cm(R))4,

where cm(R) is the minimized expansion constant of R.

Lemma 2.4 is an important property of the expansion con-
stant, which allows us to calculate the low-bound of the
number of points in the larger ball B̄(q, 4r) for any node
q ∈ R and radius r ∈ R+ using the smaller ball B̄(q, r) and
the expansion constant c(R), if there exists a point p ∈ R
which is located in annulus 2r < d(p, q) ≤ 3r.

Lemma 2.4 (growth bound). Let (A, d) be a finite metric
space, let q ∈ A be an arbitrary point and let r ∈ R be
a real number. Let c(A) be the expansion constant from
Definition 1.4. If there exists a point p ∈ A such that
2r < d(p, q) ≤ 3r, then |B̄(q, 4r)| ≥ (1+ 1

c(A)2 )·|B̄(q, r)|.

Lemma 2.5 is a generalization of Lemma 2.4 and will be
used to estimate the number of iterations in compressed
cover tree construction algorithm, Lemma 3.8 and in the
k-nearest neighbors algorithm, Lemma 4.8.

Lemma 2.5 (extended growth bound). Let (A, d) be a finite
metric space, let q ∈ A be an arbitrary point. Let p1, ..., pn
be a sequence of distinct points in R, in such a way that for
all i ∈ {2, ..., n} we have 4 · d(pi, q) ≤ d(pi+1, q). Then

|B̄(q,
4

3
· d(q, pn))| ≥ (1 +

1

c(A)2
)n · |B̄(q,

1

3
· d(q, p1))|.

Definition 2.6 (the height of a compressed cover tree). For
a compressed cover tree T (R) on a finite set R, the height
set is H(T (R)) = {i | Ci−1 ̸= Ci} ∪ {lmax, lmin}. The
size |H(T (R))| of this set is called the height of T (R).
Lemma 2.7. Any finite set R has the upper bound
|H(T (R))| ≤ 1 + log2(∆(R)).

Intuitively Si(p, T (R)) denotes all the descendants of pair
(p, i) in the explicit or implicit cover tree.

Definition 2.8 (Distinctive descendant sets). Let R ⊆ X
be a finite reference set with a compressed cover tree T (R).
For any node p ∈ T (R) and level i ≤ l(p) − 1, set
Vi(p) = {u ∈ Descendants(p) | i ≤ l(u) ≤ l(p) − 1}. If
i ≥ l(p), then set Vi(p) = ∅. For any level i ≤ l(p), the dis-
tinctive descendant set is Si(p, T (R)) = Descendants(p)\⋃
u∈Vi(p)

Descendants(u) and has the size |Si(p, T (R))|.

Lemma 2.9 shows that if q ∈ Si(p, T (R)) then there is a
node-to-node path q = a0, ..., am = p, so that l(am−1) ≤
i− 1.

Lemma 2.9. Let R ⊆ X be a finite reference set with a
cover tree T (R). In the notations of Definition 2.8, let
p ∈ T (R) be any node. If w ∈ Si(p, T (R)) then either
w = p or there exists a ∈ Children(p) \ {p} such that
l(a) < i and w ∈ Descendants(a).

Definition 2.10 explains the concrete implementation of a
compressed cover tree.

Definition 2.10 (Children(p, i) and Next(p, i, T (R))). In
a compressed cover tree T (R) on a setR, for any level i and
a node p ∈ R, set Children(p, i) = {a ∈ Children(p) |
l(a) = i}. Let Next(p, i, T (R)) be the maximal level j
satisfying j < i and Children(p, i) ̸= ∅. If such level does
not exist, we set j = lmin(T (R))− 1. For every node p, we
store its set of children in a linked hash map so that

(a) any key i gives access to Children(p, i),

(b) Children(p, i)→ Children(p,Next(p, i, T (R))),

(c) we can directly access max{j | Children(p, j) ̸= ∅}.

3. Construction Of a Compressed Cover Tree
This section discusses a construction of a compressed cover
tree. New Algorithm 3.4 builds a compressed cover tree by
using the Insert() method from Beygelzimer et al. (2006a,
Algorithm 2), which was specifically adapted for a com-
pressed cover tree, see details in Appendix E.
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The proof of Beygelzimer et al. (2006a, Theorem 6), which
estimated the time complexity of Beygelzimer et al. (2006a,
Algorithm 2), was shown to be incorrect by Elkin & Kurlin
(2022a, Counterexample 4.2). The main contribution of this
section estimate the time complexity of Algorithm 3.4:

• Theorem 3.6 bounds the time complexity as
O(cm(R)10 · log2(∆(R)) · |R|) via the minimized ex-
pansion constant cm(R) and the aspect ratio ∆(R).

• Theorem 3.9 bounds the time complexity asO(c(R)12 ·
log2 |R| · |R|) via the expansion constant c(R).

Definition 3.1 (construction iteration set L(T (W ), p)). Let
W be a finite subset of a metric space (X, d). Let T (W ) be
a cover tree of Definition 2.1 built on W and let p ∈ X \W
be an arbitrary point. Let L(T (W ), p) be the set of all
levels i during iterations 5-14 of Algorithm 3.5 launched
with the inputs T (W ), p. We set

η(i) = min{t ∈ L(T (W ), p) | t > i}.

Theorem 3.2 (correctness of Algorithm 3.4). Algorithm 3.4
builds a compressed cover tree in Definition 2.1.

Lemma 3.3 (time complexity of a key step for T (R)).
Arbitrarily order all points of a finite reference set R in
a metric space (X, d) starting from the root: r = p1,
p2, . . . , p|R|. Set W1 = {r} and Wy+1 = Wy ∪ {py} for
y = 1, ..., |R| − 1. Then Algorithm 3.4 builds a compressed
cover tree T (R) in time

O
(
(cm(R))8 · max

y=1,...,|R|−1
L(T (Wy), py) · |R|

)
,

where cm(R) is the minimized expansion constant from
Definition 1.4.

Algorithm 3.4 Building a compressed cover tree T (R) from
Definition 2.1.

1: Input : a finite subset R of (X, d), root r ∈ R
2: Output : a compressed cover tree T (R).
3: Build the initial compressed cover tree T = T ({r})

consisting of the root node r by setting l(r) = +∞.
4: for p ∈ R \ {r} do
5: T ← run AddPoint(T , p), Algorithm 3.5.
6: end for
7: For the root r of T set l(r) = 1 +maxp∈R\{r} l(p)

Theorem 3.6 (time complexity of T (R) via aspect ratio).
Let R be a finite subset of a metric space (X, d) having
the aspect ratio ∆(R). Algorithm 3.4 builds a compressed
cover tree T (R) in time O((cm(R))8 · log2(∆(R)) · |R|),
where cm(R) is the minimized expansion constant from
Definition 1.4.

Algorithm 3.5 Building T (W ∪ {p}) in lines 4-6 of Algo-
rithm 3.4.

1: Function AddPoint(a compressed cover tree T (W )
with a root r, a point p ∈ X)

2: Output : compressed cover tree T (W ∪ {p}).
3: Set i← lmax(T (W ))− 1 and η(lmax − 1) = lmax

{If the root r has no children then i← −∞}
4: Set Rlmax ← {r}.
5: while i ≥ lmin do
6: V = ∪q∈Rη(i)

{a ∈ Children(q) | l(a) = i}.
7: Assign Ci(Rη(i))← Rη(i) ∪ V .
8: Set Ri = {a ∈ Ci(Rη(i)) | d(p, a) ≤ 2i+1}
9: if Ri is empty then

10: Move to line 15.
11: end if
12: t = maxa∈Ri

Next(a, i, T (W ))
{If Ri has no children, then we set t = lmin − 1}

13: η(i)← i and i← t
14: end while
15: Pick v ∈ Rη(i) minimizing d(p, v). Set l(p) =
⌊log2(d(p, v)⌋ − 1 and define v to be the parent of p
and exit.

Proof. In Lemma 3.3, use the bounds from Lemma 2.7:

max
y=2,...,|R|

|L(T (Wy−1), py)| ≤ H(T (R)) ≤ 1+log2 ∆(R).

Lemma 3.7. Let (X, d) be a metric space and let W ⊆ X
be its finite subset. Let q ∈ X \W be an arbitrary point.
Let i ∈ L(T (W ), q) be arbitrarily iteration of Definition
3.1. Assume that t = η(η(i + 1)) is defined. Then there
exists p ∈W satisfying 2i+1 < d(p, q) ≤ 2t+1.

Lemma 3.8 (Construction iteration bound). Let A,W be
finite subsets of a metric space X satisfying W ⊆ A ⊆ X .
Take a point q ∈ A \W . Given a compressed cover tree
T (W ) on W , Algorithm 3.5 runs lines 5-14 this number of
times: |L(T (W ), q)| = O

(
c(A)2 · log2(|A|)

)
.

Outline Proof. Assume that Algorithm 3.5 was launched
with parameters (q, T (W )) Lemma 3.7 showed that for any
iterations i ∈ L(T (W ), q), if t = η(η(i + 1)) exists, then
there exists p ∈W which belongs to annulus B̄(q, 2t+1) \
B̄(q, 2i+1). We can select a subsequence S of iterations
L(T (W ), q), in such a way that for every i ∈ S there exists
point pi ∈ B̄(q, 2t+1) \ B̄(q, 2i+1). It can be shown that
the size of S selected this way is 12 · |S| ≥ |L(T (W ), q)|

Denote by P = (p1, ..., pn) the sequence of points pi ob-
tained from S. Using Lemma 2.5 we obtain

|B̄(q,
4

3
d(q, pn))| ≥ (1 +

1

c(R)2
)n · |B̄(q,

1

3
d(q, p1))|
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which can be written as

|A| ≥
|B̄(q, 43 · d(q, pn))|
|B̄(q, 13 · d(q, p1))|

≥ (1 +
1

c(A)2
)|S|

Lemma B.7 gives c(A)2 log(A) ≥ |S|. Combining this with
the fact that 12 · |S| ≥ |L(T (W ), q)| we finally conclude
that |L(T (W ), q)| ≤ 12 · c(A)2 · log2(|A|).

Theorem 3.9 (time for T (R) via expansion constants). Let
R be a finite subset of a metric space (X, d). Let A be
a finite subset of X satisfying R ⊆ A ⊆ X . Then Al-
gorithm 3.4 builds a compressed cover tree T (R) in time
O((cm(R))8 · c(A)2 · log2(|A|) · |R|), see the expansion
constants c(A), cm(R) in Definition 1.4.

Proof. It follows from Lemmas 3.8 and 3.3.

Corollary 3.10. Let R be a finite subset of a metric space
(X, d). Then Algorithm 3.4 builds a compressed cover tree
T (R) in time O((cm(R))8 · c(R)2 · log2(|R|)) · |R|), where
the constants c(R), cm(R) appeared in Definition 1.4.

Proof. In Theorem 3.9 set A = R.

4. New k-nearest Neighbor Search Algorithm
This section is motivated by Elkin & Kurlin (2022a, Coun-
terexample 5.2), which showed that the proof of past time
complexity claim in Beygelzimer et al. (2006a, Theorem 5)
for the nearest neighbor search algorithm contained gaps.
For extra details and all proofs, see Appendix F.

The gaps are filled by new Algorithm 4.3 for all k-nearest
neighbors, which generalizes and improves the original
method in Beygelzimer et al. (2006a, Algorithm 1).

The first improvement is the λ-point in line 7, which helps
find all k-nearest neighbors of a given query point for any
k ≥ 1. The second improvement is a new break condition
for the loop in line 9. This condition is used in the proof
of Lemma 4.8 to conclude that the total number of per-
formed iterations is bounded by O(c(R)2 log(|R|)) during
the whole run-time of the algorithm.

The latter improvement corrects the past gap in proof of
Beygelzimer et al. (2006a, Theorem 5) by bounding the
number of iterations independently from the explicit depth
Elkin & Kurlin (2022a, Definition 3.2).

Assuming that we have already constructed a compressed
cover tree on a reference setR, the two main results estimate
the time complexity of a new k-nearest neighbor method in
Algorithm 4.3m which finds all k-nearest neighbors of any
query point q ∈ X in a reference set R ⊆ X as follows:

• Corollary 4.7 bounds the time complexity as
O
(
log2(k) · (log2(∆(R)) + |B̄(q, 5dk(q,R))|)

)
,

where ∆(R) is the aspect ratio and cm(R) is consid-
ered fixed (hence hidden).

• Theorem 4.9 bounds the time complexity as
O
(
log2(k) ·

(
log2(|R|) + k

))
, where the expansion

constant c(R∪{q}) is considered fixed (hence hidden).

Definition 4.1 (λ-point). Fix a query point q in a metric
space (X, d) and fix any level i ∈ Z. Let T (R) be its
compressed cover tree on a finite reference set R ⊆ X .
Let C be a subset of a cover set Ci from Definition 2.1
satisfying

∑
p∈C

|Si(p, T (R))| ≥ k, where Si(p, T (R)) is

the distinctive descendant set from Definition 2.8. For any
k ≥ 1, define λk(q, C) as a point λ ∈ C that minimizes
d(q, λ) subject to

∑
p∈N(q;λ)

|Si(p, T (R))| ≥ k.

Definition 4.2. Let R be a finite subset of a metric space
(X, d). Let T (R) be a cover tree of Definition 2.1 built onR
and let q ∈ X be arbitrary point. Let L(T (R), q) be the set
of all levels i during iterations of lines 4-15 of Algorithm 4.3
launched with inputs T (R), q. If Algorithm 4.3 reaches line
11 at a level ϱ ∈ L(T (R), q), then we say that ϱ is special.
Set η(i) = min{t ∈ L(T (R), q) | t > i}.

Algorithm 4.3 k-nearest neighbor search by a compressed
cover tree

1: Input : compressed cover tree T (R), a query point
q ∈ X , an integer k ∈ Z+

2: Set i← lmax(T (R))− 1 and η(lmax − 1) = lmax

3: Let r be the root node of T (R). Set Rlmax
= {r}.

4: while i ≥ lmin do
5: V = ∪q∈Rη(i)

{a ∈ Children(q) | l(a) = i}.
6: Assign Ci(Rη(i))← Rη(i) ∪ V .
7: Compute λ = λk(q, Ci(Rη(i))) by Algorithm D.8.
8: Ri = {p ∈ Ci(Rη(i)) | d(q, p) ≤ d(q, λ) + 2i+2}
9: if d(q, λ) > 2i+2 then

10: Collect the distinctive descendants Si(p, T (R)) of
all points p ∈ R in set S, see Algorithm F.3.

11: Compute and output k-nearest neighbors of the
query point q from set S.

12: end if
13: Set j ← maxa∈Ri

Next(a, i, T (R))
{If such j is undefined, we set j = lmin − 1}

14: Set η(j)← i and i← j.
15: end while
16: Compute and output k-nearest neighbors of query point

q from the set Rlmin
.

Theorem 4.4 (correctness of Algorithm 4.3). Algorithm 4.3
correctly finds all k-nearest neighbors of query point q
within the reference set R.
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Lemma 4.5. Algorithm 4.3 has the following time complex-
ities of its lines

(a) max{#Line[4 − 9],#Line[12 − 15],#Line[16]} =
O
(
cm(R)10 · log2(k)

)
;

(b) #Line[8− 14] = O
(
|B̄(q, 5dk(q,R))| · log2(k)

)
.

Theorem 4.6. Let R be a finite set in a metric space (X, d),
cm(R) be the minimized constant from Definition 1.4. Given
a compressed cover tree T (R), Algorithm 4.3 finds all k-
nearest neighbors of a query point q ∈ X in time

O
(
log2(k)·((cm(R))10·|L(q, T (R))|+|B̄(q, 5dk(q,R))|)

)
,

where L(T (R), q) is the set of all performer iterations
(lines 4-15 ) of Algorithm 4.3.

Proof. Apply Lemma 4.5 to estimate the time complexity
of Algorithm 4.3:
O
(
|L(T (R), q)| · (#Line[4 − 9] + #Line[12 − 15] +

#Line[16]) + #Line[9− 12]
)
.

Corollary 4.7 gives a run-time bound using only mini-
mized expansion constant cm(R), where if R ⊂ Rm, then
cm(R) ≤ 2m. Recall that ∆(R) is the aspect ratio of R
introduced in Definition 1.1.

Corollary 4.7. LetR be a finite set in a metric space (X, d).
Given a compressed cover tree T (R), Algorithm 4.3 finds

all k-nearest neighbors of q in timeO
(
(cm(R))10 · log2(k) ·

log2(∆(R)) + |B̄(q, 5dk(q,R))| · log2(k)
)
.

Proof. Replace |L(q, T (R))| in the time complexity of The-
orem 4.6 by its upper bound in Lemma 2.7: |L(q, T (R))| ≤
|H(T (R))| ≤ log2(∆(R)).

Lemma 4.8 is proved similarly to Lemma 3.8. For full
details see Appendix G.

Lemma 4.8. Algorithm 4.3 executes lines 4-15 the follow-
ing number of times: |L(T (R), q)| = O(c(R ∪ {q})2 ·
log2(|R|)).

Theorem 4.9. Let R be a finite reference set in a metric
space (X, d). Let q ∈ X be a query point, c(R ∪ {q})
be the expansion constant of R ∪ {q} and cm(R) be the
minimized expansion constant from Definition 1.4. Given
a compressed cover tree T (R), Algorithm 4.3 finds all k-

nearest neighbors of q in time O
(
c(R ∪ {q})2 · log2(k) ·(

(cm(R))10 · log2(|R|) + c(R ∪ {q}) · k
))
.

Proof. By Theorem 4.6 the required time complexity is
O
(
(cm(R))10 · log2(k) · |L(q, T (R))|+ |B̄(q, 5d(q, β))| ·

log2(k)
)

, for some point β among the first k-nearest neigh-
bors of q. Apply Definition 1.4 to get the upper bound

|B(q, 5d(q, β))| ≤ (c(R ∪ {q}))3 · |B(q,
5

8
d(q, β))| (1)

Since |B(q, 58d(q, β))| ≤ k, we have |B(q, 5d(q, β))| ≤
(c(R ∪ {q}))3 · k. It remains to apply Lemma 4.8:
|L(q, T (R))| = O(c(R ∪ {q})2 · log2 |R|).

5. Discussion Of Contributions and Next Steps
This paper rigorously proved the time complexity of the
exact k-nearest neighbor search. The submission to ICML
is strongly motivated by the past gaps in the proofs of time
complexities in the highly cited Beygelzimer et al. (2006a,
Theorem 5) at ICML, Ram et al. (2009, Theorem 3.1) at
NIPS, and March et al. (2010, Theorem 5.1) at KDD.

Though Elkin & Kurlin (2022a) provided concrete coun-
terexamples, no corrections were published. Main Theo-
rem 4.9 and Corollary 3.10 finally filled all the gaps.

Since the past obstacles were caused by unclear descriptions
and missed proofs, often without pseudo-codes, this paper
necessarily fills in all technical details. Otherwise, future
generations would continue citing unreliable results.

To overcome the discovered challenges, first Definition 1.2
and Problem 1.3 rigorously dealt with a potential ambiguity
of k-nearest neighbors at equal distances. This singular case
was unfortunately not discussed in the past work at all.

A new compressed cover tree in Definition 2.1 substantially
simplified the navigating net Krauthgamer & Lee (2004) and
original cover tree Beygelzimer et al. (2006a) by avoiding
repetitions of given data points. This compression clarified
the construction and search in Algorithms 3.4 and 4.3.

Sections 3 and 4 corrected the approach of Beygelzimer
et al. (2006a) as follows. Assuming that the expansion
constants and aspect ratio of a reference set R are fixed,
Corollaries 3.10 and 4.9 rigorously showed that the time
complexities are linear in the maximum size of R,Q and
near-linear O(k log k) in the number k of neighbors.

The library MLpack (Curtin et al., 2013) implemented a
version of an explicit cover tree, which was later defined in
Elkin & Kurlin (2022a, Counterexample 4.2). The imple-
mentation of a compressed cover tree is similar but concep-
tually simpler due to its easier structure in Fig. 1.

The new results justify that the MLpack implementations of
the k-nearest neighbors search now have proved theoretical
guarantees for a near-linear time complexity, which was
practically important for the recent advances below.
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Main Theorem 4.9 helped justify a near-linear time com-
plexity for several invariants based on computing k-nearest
neighbors in a new area of Geometric Data Science, whose
aim is to build continuous geographic-style maps for moduli
space of real data objects parametrized by complete invari-
ants under practically important equivalence relations.

The key example is a finite cloud of unlabeled points up
to isometry maintaining all inter-point distances. The most
general isometry invariant SDD (Simplexwise Distance Dis-
tribution (Kurlin, 2023a)) is conjectured to be complete for
any fintie point clouds in any metric space.

In a Euclidean space Rn, the SDD was adapted to the
stronger invariant SCD (Simplexwise Centered Distribution
(Widdowson & Kurlin, 2023)), whose completeness and
polynomial complexity (in the number m of points for a
fixed dimension n) was proved in (Kurlin, 2023b).

The related and much harder problem is for periodic sets of
unlabeled points, which model all solid crystalline materials
(periodic crystals). The first generically complete invari-
ant using k-nearest neighbors was the sequence of density
functions ψk(t) measuring a fractional volume of k-fold
intersections of balls with a variable radius t and centers at
all atoms of a crystal (Edelsbrunner et al., 2021).

These density functions have efficient algorithms in the
low dimensions n = 2, 3 through higher-degree Voronoi
domains (Smith & Kurlin, 2022) of periodic point sets.

The first continuous and complete invariant for periodic
point sets in Rn is the isoset of local atomic environments
up to a justified stable radius (Anosova & Kurlin, 2021).
The first continuous metric on isosets was introduced in
(Anosova & Kurlin, 2022) with an approximate algorithm
that has a polynomial time complexity (for a fixed dimension
n) and a small approximation factor (about 4 in R3).

The much faster generically complete isometry invariant for
both finite and periodic sets of points is the PDD (Point-
wise Distance Distribution (Widdowson & Kurlin, 2021))
consisting of distances to k nearest neighbors per point.

The implemented search for atomic neighbors was so fast
that all (more than 660 thousand) periodic crystals in the
world’s largest database of real materials were hierarchi-
cally compared by the PDD and its simplified version AMD
(Average Minimum Distance (Widdowson et al., 2022)).

Due to the ultra-fast running time, more than 200 billion
pairwise comparisons were completed over two days on a
modest desktop while past tools were estimated to require
over 34 thousand years (Widdowson & Kurlin, 2022).

The most important conclusion from the search results is
the Crystal Isometry Principle saying that any real periodic
crystal has a uniquely defined location in a single contin-

uous space of all isometry classes of periodic point sets
(Widdowson & Kurlin, 2022).

This Crystal Isometry Space contains all known and not yet
discovered crystals similar to the much simpler and discrete
Mendeleev’s table of chemical elements.

The next step is to improve the complexity of the k-nearest
neighbor search to a purely linear time O(c(R)O(1)|R|)
with no other extra hidden parameters by using a new com-
pressed cover tree on both sets Q,R.

Since a similar approach Ram et al. (2009) was shown to
have incorrect proof in Elkin & Kurlin (2022a, Counterex-
ample 6.5) and Curtin et al. (2015) used some additional
parameters I, θ, this goal will require significantly more ef-
fort to understand if O(c(R)O(1)|R|) is achievable by using
a compressed cover tree.

We thank all reviewers for their time and helpful sugges-
tions. This work was supported by the EPSRC grants
EP/R018472/1, EP/X018474/1, and the Royal Academy
Engineering fellowship IF2122/186 of the second author.
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The appendices below contain the full version of the paper with detailed proofs and pseudo codes

A. The k-nearest neighbor search and overview of results
In the modern formulation, k-nearest neighbors problem intends to discover all k ≥ 1 nearest neighbors in a given reference
set R for all points from another given query set Q. Both sets belong to a common ambient space X with a distance d
satisfying all metric axioms. The simplest example of X is Rn with the Euclidean metric. A query set Q can be a single
point or a subset of a larger reference set R.

The exact k-nearest neighbor problem asks for all true (non-approximate) k-nearest neighbors in R for every query point
q ∈ Q. Another probabilistic version of the k-nearest neighbor search Har-Peled & Mendel (2006); Manocha & Girolami
(2007) aims to find exact k-nearest neighbors with a given probability. The probabilistic k-nearest neighbor problem can be
simplified to k instances of 1-nearest-neighbors problem by splitting R into k subsets R1, ..., Rk and searching for nearest
neighbors in each subset. The approximate version Arya & Mount (1993); Krauthgamer & Lee (2004); Andoni et al. (2018);
Wang et al. (2021) of the nearest neighbor search looks for an ϵ-approximate neighbor r ∈ R of every query point q ∈ Q
such that d(q, r) ≤ (1 + ϵ)d(q,NN(q)) , where ϵ > 0 is fixed and NN(q) is the exact first nearest neighbor of q.

Spacial data structures. It is well known that the time complexity of a brute-force approach of finding all 1st nearest
neighbors of points from Q within R is proportional to the product |Q| · |R| of the sizes of Q,R. Already in the 1970s real
data was big enough to motivate faster algorithms and sophisticated data structures. One of the first spacial data structures, a
quadtree Finkel & Bentley (1974), hierarchically splits a reference set R ⊂ R2 by subdividing its bounding box (a root) into
four smaller boxes (children), which are recursively subdivided until final boxes (leaf nodes) contain only a small number of
reference points. A generalization of the quadtree to Rn exposes an exponential dependence of its computational complexity
on the dimension n, because the n-dimensional box is subdivided into 2n smaller boxes.

The first attempt to overcome this curse of dimensionality was the kd-tree Bentley (1975) that subdivides a subset of R at
every step into two subsets instead of 2n subsets. Many more advanced algorithms utilizing spatial data structures have
positively impacted various related research areas such as a minimum spanning tree Bentley & Friedman (1978), range
search Pelleg & Moore (1999), k-means clustering Pelleg & Moore (1999), and ray tracing Fussell & Subramanian (1988).
The spacial data structures for finding nearest neighbors in the chronological order are k-means tree Fukunaga & Narendra
(1975), R tree Beckmann et al. (1990), ball tree Omohundro (1989), R∗ tree Beckmann et al. (1990), vantage-point tree
Yianilos (1993), TV trees Lin et al. (1994), X trees Berchtold et al. (1996), principal axis tree McNames (2001), spill tree
Liu et al. (2004), cover tree Beygelzimer et al. (2006a), cosine tree Holmes et al. (2008), max-margin tree Ram et al. (2012),
cone tree Ram & Gray (2012) and others.

Definition 1.1 (diameter and aspect ratio). For any finite setR with a metric d, the diameter is diam(R) = max
p∈R

max
q∈R

d(p, q).

The aspect ratio is ∆(R) =
diam(R)

dmin(R)
, where dmin(R) is the shortest distance between points of R.

Definition 1.2 (k-nearest neighbor set NNk). For any point q ∈ Q, let d1 ≤ · · · ≤ d|R| be ordered distances from q to all
points of a reference set R whose size (number of points) is denoted by |R|. For any k ≥ 1, the k-nearest neighbor set
NNk(q;R) consists of all u ∈ R with d(q, u) ≤ dk.

For Q = R = {0, 1, 2, 3}, the point q = 1 has ordered distances d1 = 0 < d2 = 1 = d3 < d4 = 2. The nearest neighbor
sets are NN1(1;R) = {1}, NN2(1;R) = {0, 1, 2} = NN3(1;R), NN4(1;R) = R. So 0 can be a 2nd neighbor of 1, then 2
becomes a 3rd neighbor of 1, or these neighbors of 0 can be found in a different order.

Problem 1.3 (all k-nearest neighbors search). Let Q,R be finite subsets of query and reference sets in a metric space
(X, d). For any fixed k ≥ 1, design an algorithm to exactly find k distinct points from NNk(q;R) for all q ∈ Q so that the
parametrized worst-case time complexity is near-linear in time max{|Q|, |R|}, where hidden constants may depend on
structures of Q,R but not on their sizes |Q|, |R|.

In a metric space, let B̄(p, t) be the closed ball with a center p and a radius t ≥ 0. The notation |B̄(p, t)| denotes the number
(if finite) of points in the closed ball. Definition 1.4 recalls the expansion constant c from Beygelzimer et al. (2006a) and
introduces the new minimized expansion constant cm, which is a discrete analog of the doubling dimension Cole & Gottlieb
(2006).
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Definition 1.4 (expansion constants c and cm). A subset R of a metric space (X, d) is called locally finite if the set
B̄(p, t) ∩R is finite for all p ∈ X and t ∈ R+. Let R be a locally finite set in a metric space X .

The expansion constant c(R) is the smallest c(R) ≥ 2 such that |B̄(p, 2t)| ≤ c(R) · |B̄(p, t)| for any point p ∈ R and t ≥ 0,
see Beygelzimer et al. (2006a).

Introduce the new minimized expansion constant cm(R) = lim
ξ→0+

inf
R⊆A⊆X

sup
p∈A,t>ξ

|B̄(p, 2t) ∩A|
|B̄(p, t) ∩A|

, where A is a locally

finite set which covers R.

Lemma 1.5. For any finite sets R ⊆ U in a metric space, we have that cm(R) ≤ cm(U) and cm(R) ≤ c(R).

Proof. Let us first prove that cm(R) ≤ cm(U). Let ϵ > 0 be arbitrary real number. By definition of cm(U) there exists set
ξ > 0 and set A satisfying U ⊆ A for which

sup
p∈A,t>ξ

| |B̄(p, 2t) ∩A|
|B̄(p, t) ∩A|

− cm(U)| ≤ ϵ (2)

Since R ⊆ U we have R ⊆ A therefore we can choose the same ξ and set U which satisfy inequality (2). Therefore it
follows cm(R) ≤ cm(U) + ϵ. Since ϵ was chosen arbitrarily it follows that cm(R) ≤ cm(U).

To prove that cm(R) ≤ c(R), note that sup
p∈A,t>ξ

| |B̄(p, 2t) ∩A|
|B̄(p, t) ∩A|

≤ sup
p∈A,t>0

| |B̄(p, 2t) ∩A|
|B̄(p, t) ∩A|

. Then by choosing ξ = dmin(R)
4

and A = R we have:

cm(R) ≤ sup
p∈R,t>0

| |B̄(p, 2t) ∩R|
|B̄(p, t) ∩R|

− cm(U)| = c(R)

Note that both c(R), cm(R) are always defined when R is finite. We will show that a single outlier can make the expansion
constant c(R) as large as O(|R|). The set R = {1, 2, . . . , n, 2n + 1} of |R| = n + 1 points has c(R) = n + 1 because
B̄(2n + 1;n) = {2n + 1} is a single point, while B̄(2n + 1; 2n) = R is the full set of n + 1 points. On the other hand
the same set R can be extended to a larger uniform set A = {1, 2, . . . , 2n− 1, 2n} whose expansion constant c(A) = 2,
therefore the minimized constant of the original set R becomes much smaller: cm(R) ≤ c(A) = 2 < c(R) = n+ 1.

The constant c from Beygelzimer et al. (2006a) equals to 2dimKR from Krauthgamer & Lee (2004, Section 2.1). In
Krauthgamer & Lee (2004, Section 1.1) the doubling dimension 2dim is defined as a minimum value ρ such that any set X
can be covered by 2ρ sets whose diameters are half of the diameter of X . The past work Krauthgamer & Lee (2004) proves
that 2dim ≤ 2n for any subset of Rn. Theorem C.15 will prove that cm(R) ≤ 2n for any a finite subset R ⊂ Rn, so cm(R)
mimics 2dim.

Navigating nets. In 2004, Krauthgamer & Lee (2004, Theorem 2.7) claimed that a navigating net can be constructed
in time O

(
2O(dimKR(R)|R|(log |R|) log(log |R|)

)
and all k-nearest neighbors of a query point q can be found in time

O(2O(dimKR(R∪{q})(k + log |R|), where dimKR(R ∪ {q}) is the expansion constant defined above. All proofs and pseudo-
codes were omitted. The authors didn’t reply to our request for details.

Modified navigating nets Cole & Gottlieb (2006) were used in 2006 to claim the time O(log(n) + (1/ϵ)O(1)) for the
(1 + ϵ)-approximate neighbors. All proofs and pseudo-codes were left out, also for the construction of the modified
navigating net for the claimed time O(|R| · log(|R|)).

Cover trees. In 2006, Beygelzimer et al. (2006a) introduced a cover tree inspired by the navigating nets Krauthgamer & Lee
(2004). This cover tree was designed to prove a worst-case bound for the nearest neighbor search in terms of the size |R| of a
reference set R and the expansion constant c(R) of Definition 1.4. Assume that a cover tree is already constructed on set R.
Then Beygelzimer et al. (2006a, Theorem 5) claims that nearest neighbor of any query point q ∈ Q could be found in time
O(c(R)12 · log |R|). In 2015, Curtin (2015, Section 5.3) pointed out that the proof of Beygelzimer et al. (2006a, Theorem 5)
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C−∞ 1 2 3 4 5

C−1 1 2 3 4 5

C0 1 3 5

C1 1 5

C2 1

C∞ 1

Level 2

Level 1

Level 0

Level -1

1

5

3

2 4

Figure 3. Left: an implicit cover tree from Beygelzimer et al. (2006a, Section 2) at ICML 2006 for a finite set of reference points
R = {1, 2, 3, 4, 5} with the Euclidean distance d(x, y) = |x− y|. Right: a new compressed cover tree in Definition 2.1 corrects the past
worst-case complexity for k-nearest neighbors search in R.

contains a crucial gap, now have been confirmed by a specific dataset in Elkin & Kurlin (2022a, Counterexample 5.2). The
time complexity result of the cover tree construction algorithm Beygelzimer et al. (2006a, Theorem 6) had a similar issue,
the gap of which is exposed rigorously in Elkin & Kurlin (2022a, Counterexample 4.2).

Further studies in cover trees. A noteworthy paper on cover trees Kollar (2006) introduced a new probabilistic algorithm
for the nearest neighbor search, as well as corrected the pseudo-code of the cover tree construction algorithm of Beygelzimer
et al. (2006a, Algorithm 2). Later in 2015, a new, more efficient implementation of cover tree was introduced in Izbicki
& Shelton (2015). However, no new time-complexity results were proven. A study Jahanseir & Sheehy (2016) explored
connections between modified navigating nets Cole & Gottlieb (2006) and cover trees Beygelzimer et al. (2006a). Multiple
papers Beygelzimer et al. (2006b); Ram et al. (2009); Curtin et al. (2015) studied possibility of solving k-nearest neighbor
problem ( Problem 1.3 ) by using cover tree on both, the query set and the reference set, for further details see Elkin &
Kurlin (2022a, Section 6).

The main contributions are the following.

• Definition 2.1 introduces a compressed cover tree.

• Theorem 3.6 and Corollary 3.10 estimate the time to build a compressed cover tree.

• Theorem 4.9 and Corollary 4.7 estimate the time to find all k-nearest neighbors as in Problem 1.3.

• Theorem G.6 estimates the time complexity of approximate k-nearest neighbor search.

This work corrects the past gaps of the single-tree approach via an original cover tree Beygelzimer et al. (2006a) by using a
new compressed cover tree T (R) from Definition 2.1, which can be constructed on any finite reference set R with a metric
d. Theorem 3.9 will prove that a compressed cover tree T (R) can be built in time O(cm(R)8 · c(R)2 · log2(|R|) · |R|).

The past gap in the proof of the time complexity Beygelzimer et al. (2006a, Theorem 1) for nearest neighbor search is tackled
by new Algorithm F.2, which add an essential block to the original code in Beygelzimer et al. (2006a, Algorithm 1). The
extra block eliminates the issue of having too many successive iterations when a query point q is disproportionately far away
from the remaining candidate set Ri on some level i. Then Lemma 4.8 shows that the number of iterations of Algorithm F.2
is bounded by O(c(R)2 log2(|R|)). This new lemma replaces the old result Beygelzimer et al. (2006a, Lemma 4.3), which
had a similar bound for the number of explicit levels of a cover tree, for further information see Elkin & Kurlin (2022a,
Definition 3.2) The old result cannot be used to estimate the number of iterations of Beygelzimer et al. (2006a, Algorithm 1)
due to Elkin & Kurlin (2022a, Counterexample 5.2).
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Assume that a compressed cover tree T (R) is already constructed on a reference set R. Our first main Theorem 4.9 shows
that k-nearest neighbors of a query node q can be found in time of

O
(
c(R ∪ {q})2 · log2(k) ·

(
(cm(R))10 · log2(|R|) + c(R ∪ {q}) · k

))
.

Recall that c(R) can potentially become as large as O(|R|) when R is not uniformly distributed. Our second main
Corollary 4.7 estimates the time complexity of the new k-nearest neighbor search by using only the minimized expansion
constant cm(R) of Definition 1.4 and the aspect ratio ∆(R) of Definition 1.1 as parameters. These parameters are less
dependent on the point distribution (or noise) in the sets R,Q. In many cases, ∆(R) is relatively small and cm(R) depends
mostly on the dimension of the ambient space X . It is shown that k-nearest neighbors of q in a reference set R can be found
in time

O
(
(cm(R))10 · log2(k) · log2(∆(R)) + |B̄(q, 5dk(q,R))| · log2(k)

)
, where

dk(q,R) is the distance from q to its kth nearest neighbor. Tables 7-8 summarize past and new results.

Table 5. Results for building data structures with hidden classic expansion constant c(R) of Definition 1.4 or KR-type constant 2dimKR

Krauthgamer & Lee (2004, Section 2.1)

Data structure claimed time complexity space proofs
Navigating nets
Krauthgamer &
Lee (2004)

O
(
2O(dimKR) · |R| log(|R|) log(log |R|)

)
,

Krauthgamer & Lee (2004, Theorem 2.6)
O(2O(dim)|R|) Not available

Cover tree Beygelz-
imer et al. (2006a)

O(c(R)O(1) · |R| · log |R|), Beygelzimer
et al. (2006a, Theorem 6)

O(|R|) Elkin & Kurlin (2022a,
Counterexample 4.2)
shows that the past
proof is incorrect

Compressed cover
tree [dfn 2.1]

O
(
c(R)O(1) · |R| · log(R)

)
O(|R|)
Lemma B.1

Corollary 3.10

Table 6. Results for exact k-nearest neighbors of one query point q ∈ X using hidden classic expansion constant c(R) of Definition 1.4 or
KR-type constant 2dimKR Krauthgamer & Lee (2004, Section 2.1) and assuming that all data structures are already built. Note that the
dimensionality factor 2dimKR is equivalent to c(R)O(1).

Data structure claimed time complexity space proofs
Navigating nets
Krauthgamer &
Lee (2004)

O
(
2O(dimKR)(log(|R|) + k)

)
for k ≥ 1 Krauthgamer &
Lee (2004, Theorem 2.7)

O(2O(dim)|R|) Not available

Cover tree Beygelz-
imer et al. (2006a)

O
(
c(R)O(1) log |R|

)
for

k = 1 Beygelzimer et al.
(2006a, Theorem 5)

O(|R|) Elkin & Kurlin (2022a,
Counterexample 5.2)
shows that the past
proof is incorrect

Compressed cover
tree, Definition 2.1

O
(
c(R)O(1)·log(k)·(log(|R|)+k)

)
O(|R|),
Lemma B.1

Theorem 4.9
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Table 7. Building data structures with hidden cm(R) or dimensionality constant 2dim Krauthgamer & Lee (2004, Section 1.1)

Data structure claimed time complexity space proofs
Navigating nets
Krauthgamer &
Lee (2004)

O
(
2O(dim) · |R| · log(∆) · log(log((∆))

)
O(2O(dim)|R|) Krauthgamer & Lee

(2004, Theorem 2.5)

Compressed cover
tree [dfn 2.1]

O
(
cm(R)O(1) · |R| log(∆(|R|))

)
O(|R|)
Lemma B.1

Theorem 3.6

Table 8. Results for exact k-nearest neighbors of one point q using hidden cm(R) or dimensionality constant 2dim Krauthgamer & Lee
(2004, Section 1.1) assuming that all structures are built.

Data structure claimed time complexity space proofs
Navigating nets
Krauthgamer &
Lee (2004)

O
(
2O(dim) · log(∆) +

|B̄(q,O(d(q,R))|
)

for k = 1

O(2O(dim)|R|) a proof outline in
Krauthgamer & Lee
(2004, Theorem 2.3)

Compressed cover
tree, Definition 2.1

O
(
cm(R)O(1) · log(k) · (log(|∆|) +

|B̄(q,O(dk(q,R))|)
) O(|R|),

Lemma B.1
Corollary 4.7

B. Compressed cover tree
This section introduces in Definition 2.1 a new compressed cover tree, which will be used to solve Problem 1.3. Other
important results are Lemmas 2.2 and 2.4. Given a δ-sparse finite metric spaceR, Lemma 2.2 shows that the number of points
of R in the closed ball B̄(p, t) has the upper bound cm(S)µ, where µ depends on t

δ . Lemma 2.4 will imply that if there are
points p, q in a finite metric space R satisfying 2r < d(p, q) ≤ 3r for some r ∈ R, then |B̄(q, 4r)| ≥ (1 + 1

c(R)2 )|B̄(q, r)|.

Definition 2.1 (a compressed cover tree T (R)). Let R be a finite set in a metric space (X, d). A compressed cover tree
T (R) has the vertex set R with a root r ∈ R and a level function l : R→ Z satisfying the conditions below.

(2.1a) Root condition : the level of the root node r satisfies l(r) ≥ 1 + max
p∈R\{r}

l(p).

(2.1b) Cover condition : for every node q ∈ R \ {r}, we select a unique parent p and a level l(q) such that d(q, p) ≤ 2l(q)+1

and l(q) < l(p); this parent node p has a single link to its child node q.

(2.1c) Separation condition : for i ∈ Z, the cover set Ci = {p ∈ R | l(p) ≥ i} has dmin(Ci) = min
p∈Ci

min
q∈Ci\{p}

d(p, q) > 2i.

Since there is a 1-1 map between R and all nodes of T (R), the same notation p can refer to a point in the set R or to a node
of the tree T (R). Set lmax = 1 + max

p∈R\{r}
l(p) and lmin = min

p∈R
l(p). For any node p ∈ T (R), Children(p) denotes the set

of all children of p, including p itself. For any node p ∈ T (R), define the node-to-root path as a unique sequence of nodes
w0, . . . , wm such that w0 = p, wm is the root and wj+1 is the parent of wj for j = 0, ...,m− 1.

A node q ∈ T (R) is a descendant of a node p if p is in the node-to-root path of q. A node p is an ancestor of q if q is in the
node-to-root path of p. Let Descendants(p) be the set of all descendants of p, including itself p.

Lemma B.1 (Linear space of T (R)). Let (R, d) be a finite metric space. Then any cover tree T (R) from Definition 2.1
takes O(|R|) space.

Proof. Since T (R) is a tree , both its vertex set and its edge set contain at most |R| nodes. Therefore T (R) takes at most
O(|R|) space.
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Figure 4. Compressed cover trees T (R) from Definition 2.1 for R = {0, 1, 2i}.
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Figure 5. Compressed cover tree T (R) on the set R in Example B.2 with root 16.

Example B.2 (T (R) in Fig. 5). Let (R, d = |x − y|) be the real line with euclidean metric. Let R = {1, 2, 3, ..., 15}
be its finite subset. Fig. 5 shows a compressed cover tree on the set R with the root r = 8. The cover sets of T (R)
are C−1 = {1, 2, 3, ..., 15}, C0 = {2, 4, 6, 8, 10, 12, 14}, C1 = {4, 8, 12} and C2 = {8}. We check the conditions of
Definition 2.1.

• Root condition (2.1a): since maxp∈R\{8} d(p, 8) = 7 and ⌈log2(7)⌉ − 1 = 2, the root can have the level l(8) = 2.

• Covering condition (2.1b) : for any i ∈ −1, 0, 1, 2, let pi be arbitrary point having l(pi) = i. Then we have
d(p−1, p0) = 1 ≤ 20, d(p0, p1) = 2 ≤ 21 and d(p1, p2) = 4 ≤ 22.

• Separation condition (2.1c) : dmin(C−1) = 1 > 1
2 = 2−1, dmin(C0) = 2 > 1 = 20, dmin(C1) = 4 > 2 = 21. ■

A cover tree was defined in Beygelzimer et al. (2006a, Section 2) as a tree version of a navigating net from Krauthgamer &
Lee (2004, Section 2.1). For any index i ∈ Z ∪ {±∞}, the level i set of this cover tree coincides with the cover set Ci

above, which can have nodes at different levels in Definition 2.1. Any point p ∈ Ci has a single parent in the set Ci+1, which
satisfied conditions (2.1b,c). Beygelzimer et al. (2006a, Section 2) referred to this original tree as an implicit representation
of a cover tree. Such a tree in Figure 6 (left) contains infinitely many repetitions of every point p ∈ R in long branches and
will be called an implicit cover tree.

Since an implicit cover tree is formally infinite, for practical implementations, the authors of Beygelzimer et al. (2006a)
had to use another version that they named an explicit representation of a cover tree. We call this version an explicit cover
tree. Here is the full defining quote at the end of Beygelzimer et al. (2006a, Section 2): ”The explicit representation of the
tree coalesces all nodes in which the only child is a self-child”. In an explicit cover tree, if a subpath of every node-to-root
path consists of all identical nodes without other children, all these identical nodes collapse to a single node, see Figure 6
(middle).

Since an explicit cover tree still contains repeated points, Definition 2.1 is well-motivated by the aim to include every point
only once, which saves memory and simplifies all subsequent algorithms, see Fig. 6 (right).

Example B.3 (a short train line tree). Let G be the unoriented metric graph consisting of two vertices r, q connected by
three different edges e, h, g of lengths |e| = 26 , |h| = 23 , |g| = 1. Let p4 be the middle point of the edge e. Let p3 be the
middle point of the subedge (p4, q). Let p2 be the middle point of the edge h. Let p1 be the middle point of the subedge
(p2, q). Let R = {p1, p2, p3, p4, r}. We construct a compressed cover tree T (R) by choosing the level l(pi) = i and by
setting the root r to be the parent of both p2 and p4, p4 to be the parent of p3, and p2 to be the parent of p1. Then T (R)
satisfies all the conditions of Definition 2.1, see a comparison of the three cover trees in Fig. 6. ■

17



A new compressed cover tree for k-nearest neighbors

l =∞

l = 5

l = 4

l = 3

l = 2

l = 1

l = −∞

r

r

r

r

r

r

r

p4

p4

p4

p4

p4

p3

p3

p3

p3

p2

p2

p2

p1

p1

r

r

r

p4

p4 p3

p2

p2p1

r

p4

p2

p1

p3

Figure 6. A comparison of past cover trees and a new tree in Example B.3. Left: an implicit cover tree contains infinite repetitions.
Middle: an explicit cover tree. Right: a compressed cover tree from Definition 2.1 includes each point once.

p

R \ {p}

Figure 7. Example B.4 describes a set R with a big expansion constant c(R). Let R \ {p} be a finite subset of a unit square lattice in R2,
but a point p is located far away from R \ {p} at a distance larger than diam(R \ {p}). Definition 1.4 implies that c(R) = |R|.

Even a single outlier point can make the expansion constant big. Consider set R = {1, 2, ..., n− 1, 2n} for some n ∈ Z+.
Since |B̄(2n, n)| = 1 and |B̄(2n, n)| = |R|, we have c(R) = |R|. Example B.4 shows that expansion constant of a set R
can be as big as |R|.
Example B.4 (one outlier can make the expansion constant big). Let R be a finite metric space and p ∈ R satisfy
d(p,R \ {t}) > diam(R \ {p}). Since B̄(p, 2d(p,R \ {t}) = R , B̄(p, d(p,R \ {t}) = {p}, we get c(R) = N , see Fig. 7.
■

Example B.5 shows that the minimized expansion can be significantly smaller than the original expansion constant.

Example B.5 (minimized expansion constants). Let (R, d) be the Euclidean line. For an integer n > 10, consider the
finite sets R = {2i | i ∈ [1, n]} and let Q = {i | i ∈ [1, 2n]}. If 0 < ϵ < 10−9, then B̄(2n, 2n−1 − ϵ) = {2n} and
B̄(2n, 2(2n−1 − ϵ)) = R, so c(R) = n. For any q ∈ Q and any t ∈ R, we have that B̄(q, t) = Z ∩ [q − t, q + t] and
B̄(q, 2t) = Z ∩ [q − 2t, q + 2t], so c(Q) ≤ 4. Then cm(R) ≤ cm(Q) ≤ c(Q) ≤ 4 by Lemma 1.5. ■

Lemma B.6 provides an upper bound for a distance between a node and its descendants.

Lemma B.6 (a distance bound on descendants). Let R be a finite subset of an ambient space X with a metric d. In a
compressed cover tree T (R), let q be any descendant of a node p. Let the node-to-root path S of q contain a node u
satisfying u ∈ Children(p) \ {p}. Then d(p, q) ≤ 2l(u)+2 ≤ 2l(p)+1. ■

Proof. Let (w0, ..., wm) be a subpath of the node-to-root path for w0 = q , wm−1 = u, wm = p. Then d(wi, wi+1) ≤
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p
δ/2

tS

Figure 8. This volume argument proves Lemma 2.2. By using an expansion constant, we can find an upper bound for the number of
smaller balls of radius δ

2
that can fit inside a larger B̄(p, t).

2l(wi)+1 for any i. The first required inequality follows from the triangle inequality below:

d(p, q) ≤
m−1∑
j=0

d(wj , wj+1) ≤
m−1∑
j=0

2l(wj)+1 ≤
l(u)+1∑
t=lmin

2t ≤ 2l(u)+2

Finally, l(u) ≤ l(p)− 1 implies that d(p, q) ≤ 2l(p)+1.

Lemma 2.2 uses the idea of Curtin et al. (2015, Lemma 1) to show that if S is a δ-sparse subset of a metric space X , then S
has at most (cm(S))µ points in the ball B̄(p, r), where cm(S) is the minimized expansion constant of S, while µ depends
on δ, r.

Lemma 2.2 (packing). Let S be a finite δ-sparse set in a metric space (X, d), so d(a, b) > δ for all a, b ∈ S. Then, for any
point p ∈ X and any radius t > δ, we have |B̄(p, t) ∩ S| ≤ (cm(S))µ, where µ = ⌈log2( 4tδ + 1)⌉.

Proof. Assume that d(p, q) > t for any point q ∈ S. Then B̄(p, t) ∩ S = ∅ and the lemma holds trivially. Otherwise
B̄(p, t) ∩ S is non-empty. By Definition 1.4 of a minimized expansion constant, for any small enough ϵ > 0, we can always

find ξ ≤ 2t+ δ
2

2µ and a set A such that S ⊆ A ⊆ X for which:

|B(q, 2s) ∩A| ≤ (cm(S) + ϵ) · |B(q, s) ∩A| (3)

for any q ∈ A and s > ξ. Note that for any u ∈ B̄(p, t) ∩ S we have B̄(u, δ2 ) ⊆ B̄(p, t + δ
2 ). Therefore, for any point

q ∈ B̄(p, t) ∩ S, we get ⋃
u∈B̄(p,t)∩S

B̄(u,
δ

2
) ⊆ B̄(p, t+

δ

2
) ⊆ B̄(q, 2t+

δ

2
)

Since all the points of S were separated by δ, we have

|B̄(p, t) ∩ S| · min
u∈B̄(p,t)∩S

|B̄(u,
δ

2
) ∩A| ≤

∑
u∈B̄(p,t)∩S

|B̄(u,
δ

2
) ∩A| ≤ |B̄(q, 2t+

δ

2
) ∩A|

In particular, by setting q = argmina∈S∩B̄(p,t)|B̄(a, δ2 )|, we get:

|B̄(p, t) ∩ S| · |B̄(q,
δ

2
) ∩A| ≤ |B̄(q, 2t+

δ

2
) ∩A| (4)

Inequality (3) applied µ times for the radii si =
2t+ δ

2

2i
, i = 1, ..., µ, implies that:

|B̄(q, 2t+
δ

2
) ∩A| ≤ (cm(S) + ϵ)µ|B̄(q,

2t+ δ
2

2µ
) ∩A| ≤ (cm(S) + ϵ)µ|B̄(q,

δ

2
) ∩A|. (5)
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By combining inequalities (4) and (5), we get

|B̄(p, t) ∩ S| ≤
|B̄(q, 2t+ δ

2 ) ∩A|
|B̄(q, δ2 ) ∩A|

≤ (cm(S) + ϵ)µ.

The required inequality is obtained by letting ϵ→ 0.

Krauthgamer & Lee (2004, Section 1.1) defined dim(X) of a space (X, d) as the minimum number m such that every set
U ⊆ X can be covered by 2m sets whose diameter is a half of the diameter of U . If U is finite, an easy application of
Lemma 2.2 for δ = r

2 shows that dim(X) ≤ supA⊆X(cm(A))4 ≤ supA⊆X infA⊆B⊆X(c(B))4, where A and B are finite
subsets of X .

Let T (R) be an implicit cover tree of Beygelzimer et al. (2006a) on a finite set R. Beygelzimer et al. (2006a, Lemma 4.1)
showed that the number of children of any node p ∈ T (R) has the upper bound (c(R))4. Lemma 2.3 generalizes Beygelzimer
et al. (2006a, Lemma 4.1) for a compressed cover tree.

Lemma 2.3 (width bound). Let R be a finite subset of a metric space (X, d). For any compressed cover tree T (R), any
node p and any level i ≤ l(p) we have

{q ∈ Children(p) | l(q) = i} ∪ {p} ≤ (cm(R))4,

where cm(R) is the minimized expansion constant of R.

Proof. By the covering condition of T (R), any child q of p located on the level i has d(q, p) ≤ 2i+1. Then the number
of children of the node p at level i at most |B̄(p, 2i+1)|. The separation condition in Definition 2.1 implies that the set
Ci is a 2i-sparse subset of X . We apply Lemma 2.2 for t = 2i+1 and δ = 2i. Since 4 · tδ + 1 ≤ 4 · 2 + 1 ≤ 24, we get
|B̄(q, 2i+1) ∩ Ci| ≤ (cm(Ci))

4. Lemma 1.5 implies that (cm(Ci))
4 ≤ (cm(R))4, so the upper bound is proved.

Lemma 2.4 (growth bound). Let (A, d) be a finite metric space, let q ∈ A be an arbitrary point and let r ∈ R be a real
number. Let c(A) be the expansion constant from Definition 1.4. If there exists a point p ∈ A such that 2r < d(p, q) ≤ 3r,
then |B̄(q, 4r)| ≥ (1 + 1

c(A)2 ) · |B̄(q, r)|.

Proof. Since B̄(q, r) ⊂ B̄(p, 3r + r), we have |B̄(q, r)| ≤ |B̄(q, 4r)| ≤ c(A)2 · |B̄(p, r)|. And since B̄(p, r) and B̄(q, r)
are disjoint and are subsets of B̄(q, 4r), we have

|B̄(q, 4r)| ≥ |B̄(q, r)|+ |B̄(p, r)| ≥ |B̄(q, r)|+ |B̄(q, r)|
c(A)2

≥ (1 +
1

c(A)2
) · |B̄(q, r)|,

which proves the claim.

Lemma 2.5 (extended growth bound). Let (A, d) be a finite metric space, let q ∈ A be an arbitrary point. Let p1, ..., pn be
a sequence of distinct points in R, in such a way that for all i ∈ {2, ..., n} we have 4 · d(pi, q) ≤ d(pi+1, q). Then

|B̄(q,
4

3
· d(q, pn))| ≥ (1 +

1

c(A)2
)n · |B̄(q,

1

3
· d(q, p1))|.

Proof. Let us prove this by induction. In basecase n = 1 define r = d(q,pm)
3 . Now by Lemma 2.4 we have

|B̄(q,
4

3
d(q, p1))| = |B̄(q, 4r)| ≥ (1 +

1

c(A)2
) · |B̄(q, r)| = |B̄(q,

1

3
d(q, p1))|.

Assume now that the claim holds for some i = m and let p1, ..., pm+1 be a sequence satisfying the condition of Lemma 2.5.
By induction assumption we have |B̄(q, 43d(q, pm))| ≥ (1 + 1

c(A)2 )
m · |B̄(q, 13d(q, p1))|. Let us pick r = d(q,pm+1)

3 . Then
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we have:

|B̄(q,
4

3
· d(q, pm+1))| ≥ (1 +

1

c(A)2
) · |B̄(q,

1

3
· d(q, pm+1))|

≥ (1 +
1

c(A)2
) · |B̄(q,

4

3
· d(q, pm))|

≥ (1 +
1

c(A)2
) · (1 + 1

c(A)2
)m · |B̄(q,

1

3
· d(q, p1))|

≥ (1 +
1

c(A)2
)m+1 · |B̄(q,

1

3
· d(q, p1))|

which proves the claim.

Lemma B.7. For every x ∈ R satisfying x ≥ 2, the following inequality holds:

x2 ≥ 1

log2(1 +
1
x2 )

.

Proof. Let ln be natural logarithm. Note first that for any u > 0 we have:

u

u+ 1
=

∫ u

0

dt

u+ 1
≤

∫ u

0

dt

t+ 1
= ln(u+ 1).

By setting u = 1
x2 > 0 we get:

log2(1 +
1

x2
) =

ln( 1
x2 )

ln(2)
≥ 1

ln(2)
·

1
x2

1
x2 + 1

=
1

ln(2)
· 1

x2 + 1
.

Let us now show that for x ≥ 2 we have: 1
ln(2) ·

1
x2+1 ≥

1
x2 . Note first that 4 ≥ ln(2)

1−ln(2) . Since x ≥ 2 we have x2 ≥ ln(2)
1−ln(2) .

Therefore x2 − ln(2) · x2 ≥ ln(2) and x2 ≥ ln(2) · (1 + x2). It follows that 1
ln(2)

1
1+x2 ≥ 1

x2 , which proves the claim.

Definition 2.6 (the height of a compressed cover tree). For a compressed cover tree T (R) on a finite set R, the height set is
H(T (R)) = {i | Ci−1 ̸= Ci} ∪ {lmax, lmin}. The size |H(T (R))| of this set is called the height of T (R).

The new concept of the height |H(T )| will justify a near-linear parameterized worst-case complexity in Theorem 4.9. By
condition (2.1b), the height |H(T (R))| counts the number of levels i whose cover sets Ci include new points that were
absent on higher levels. Then |H(T )| ≤ |R| as any point can be alone at its own level.

Lemma B.8. Any finite set R has the bound |H(T (R))| ≤ 1 + log2(∆(R)). ■

Proof. We have |H(T (R))| ≤ lmax − lmin + 1 by Definition 2.6. We estimate lmax − lmin as follows.

Let p ∈ R be a point such that diam(R) = maxq∈R d(p, q). Then R is covered by the closed ball B̄(p; diam(R)). Hence
the cover set Ci at the level i = log2(diam(R)) consists of a single point p. The separation condition in Definition 2.1
implies that lmax ≤ log2(dmax(R)). Since any distinct points p, q ∈ R have d(p, q) ≥ dmin(R), the covering condition
implies that no new points can enter the cover set Ci at the level i = [log2(dmin(R))], so lmin ≥ log2(dmin(R)). Then
|H(T (R))| ≤ 1 + lmax − lmin ≤ 1 + log2(

diam(R)
dmin(R) ).

If the aspect ratio ∆(R) = O(Poly(|R|)) polynomially depends on the size |R|, then |H(T (R))| ≤ O(log(|R|)). Lemma
2.4 corresponds Beygelzimer et al. (2006a, Lemma 4.2) with slightly modified notation.
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C. The minimized expansion constant in a normed vector space on R
In this section, main Theorem C.15 will show that, for any finite subsetR of a normed vector space (Rn, ∥·∥), the minimized
expansion constant from Definition 1.4 has the upper bound 2n, so

cm(R) = inf
0<ξ

inf
R⊆A⊆Rn

sup
p∈A,t>ξ

|B̄(p, 2t) ∩A|
|B̄(p, t) ∩A|

≤ 2n.

The proof of Theorem C.15 is based on the volume argument. We briefly explain the idea before giving the proof later. For
this purpose, we recall the definition of the Lebesgue measure in Definition C.2.

In Definition C.5 we define concepts of grid G(δ) = δ · Zn and cubic regions V̄ (p, δ) = p+ [− δ
2 ,

δ
2 ]

n. For every δ > 0 we
define grid extension U(δ) of R as set U(δ) = (G(δ) \ f(R)) ∪ R, where f : R → G(δ) is used to replace points of R
with their nearest neighbors in grid G(δ).

Note that ξ in the definition of cm(R) acts as a low bound for radius t > ξ. Let γ > 0 be a constant, that depends on
dimension n and norm ∥ · ∥. In Lemma C.13 it is shown that if δ satisfies 0 < δ < ξ

γ , then for any p ∈ U(δ) and t > ξ we
can bound |B̄(p, t) ∩ U(δ)| as follows:

µ(B̄(p, t− δ · γ))
δn

≤ |B̄(p, t) ∩ U(δ)| ≤ µ(B̄(p, t+ δ · γ))
δn

.

Therefore
|B̄(p, 2t) ∩ U(δ)|
|B̄(p, t) ∩ U(δ)|

≤ µ(B̄(p, 2t+ δ · γ))
µ(B̄(p, t− δ · γ))

.

Now since this inequality is satisfied for any δ > 0, we can choose arbitrary dense grid extension U(δ). It will be shown
that when δ → 0 , then

µ(B̄(p, 2t+ δ · γ))
µ(B̄(p, t− δ · γ))

→ 2n.

Then we can conclude that cm(R) ≤ 2n.

Definition C.1 (Normed vector space (Rn, ∥ · ∥) on real numbers R Rudin (1990)). Consider Rn as a vector space. A norm
is a function ∥ · ∥ : Rn → R satisfying the properties below.

1. Non-negativity : ∥x∥ ≥ 0.

2. The norm is positive on nonzero vectors, so ∥x∥ = 0 implies that x = 0.

3. For every vector x ∈ Rn, and every scalar a ∈ R: ∥a · x∥ = |a| · ∥x∥.

4. The triangle inequality holds for every x ∈ Rn and y ∈ Rn, ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

A norm induces a metric by the formula d(x, y) = ∥x − y∥. For every i ∈ {1, ..., n} let ei be a unit vector of Rn i.e.
ei(i) = 1 and ei(j) = 0 for all j ∈ {1, ..., n} \ {i}. Define ρ = maxi∈{1,...,n} ∥ei∥. ■

Definition C.2 (Lebesgue outer measure, Jones (2000, Section 2.A)). Let Rn be an n-dimensional space. Define n-
dimensional interval as

I = {x ∈ Rn | ai ≤ xi ≤ bi, i = 1, ..., n} = [a1, b1]× ...× [an, bn],

with sides parallel to the coordinate axes. Define Lebesgue outer measure µ∗ : {A | A ⊆ Rn} → [0,∞) ∪ {∞} of interval
I as µ∗(I) = (b1 − a1) · ... · (bn − an). The Lebesgue µ measure of a set A ⊆ Rn is defined as:

µ∗(A) = inf
A
{

∞∑
i=0

µ∗(Ii) | A ⊆ ∪∞i=0Ii},

where the infinium is taken over all covering of A by countably many intervals Ii, i = 1, 2.... If set E ⊆ Rn satisfies
µ∗(A) = µ∗(A ∩ E) + µ∗(A \ E) for all A ⊆ Rn, then E is lebesgue-measurable and we set µ(E) = µ∗(E). ■
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It should be noted that all open sets and closed sets , as well as compact sets are Lebesgue-measurable.

Lemma C.3 (Basic properties of Lebesgue measure, Jones (2000, Section 2.A)). A Lebesgue outer measure µ∗ of Definition
C.2 satisfies the following conditions:

1. µ∗(∅) = 0,

2. µ∗(A) ≤ µ∗(B) whenever A ⊆ B ⊆ Rn and

3. µ∗(∪∞i=1µ
∗(Ai)) ≤

∑∞
i=1 µ

∗(Ai).

Lemma C.4 (Lebesgue measure scale property, Jones (2000, Section 3.B)). Let µ be Lebesgue measure on a normed vector
space (Rn, ∥ · ∥). Then, for any p ∈ Rn and t ∈ R+, we have: µ(B̄(p, t)) = tn · µ(B̄(p, 1)).

Definition C.5 (Grid and Cubic region). Let Rn be a normed vector space and let δ ∈ R. Define δ-grid on Rn as the set
G(δ) = {t · δ | t ∈ Zn}. For any p ∈ Rn define its open cubic region V (p, δ) ⊆ Rn as the set {p+ u | u ∈ (− δ

2 ,
δ
2 )

n} and
closed cubic region V̄ (p, δ) ⊆ Rn as {p+ u | u ∈ [− δ

2 ,
δ
2 ]

n}.

Note that the union ∪p∈G(δ)V (p, δ) covers whole set Rn.

Lemma C.6 (Cubic regions are separate). In conditions of Definition C.5 let p, q ∈ G(δ) be distinct points. Then their cubic
regions are separate i.e. V (p, δ) ∩ V (q, δ) = ∅.

Proof. Assume contrary that there exists a ∈ V (p, δ) ∩ V (q, δ), then |a(i) − p(i)| < δ
2 and |a(i) − q(i)| < δ

2 for all
i ∈ {1, ..., n}. Since p ̸= q, there exists index j, such that p(j) ̸= q(j). By definition of grid G(δ) it follows that
|p(j)− q(j)| ≥ δ. However, by triangle inequality we have

|p(j)− q(j)| ≤ |p(j)− a(j)|+ |q(j)− a(j)| < δ

2
+
δ

2
= δ,

which is a contradiction. Therefore V (p, δ) ∩ V (q, δ) = ∅.

Lemma C.7. Let Rn be a normed vector space of Definition C.1. Let δ ∈ R and let G(δ) be a grid of Definition C.5. Let
p ∈ G(δ) and let q ∈ V (p, δ), then d(p, q) ≤ n·δ·ρ

2

Proof. Let γ ∈ R be such that q = p + γ. By condition (3) of Definition C.1 we have ∥γ(i)∥ ≤ ∥ei∥ · δ2 ≤
δ·ρ
2 for all

i ∈ {1, ..., n}. By the definition of norm and triangle inequality we have:

d(p, q) = ∥p− q∥ = ∥γ∥ ≤
n∑

i=1

∥γ(i)∥ ≤ n · δ · ρ
2

.

Any normed vector space (Rn, ∥ · ∥) has the metric d(x, y) = ∥x− y∥.
Lemma C.8 (Existence of covering grid ). Let R be a finite subset of a normed vector space (Rn, ∥ · ∥). Then for any δ ∈ R
having δ < dmin(R)

n·ρ , then any map f : R→ G(δ) which maps p ∈ R to one of its nearest neighbor in G(δ) is a well-defined
injection.

Proof. Let f be an arbitrary map f : R→ G(δ) mapping point p ∈ R to one of its nearest neighbors. This map is clearly
well-defined. Let us now show that it is injective. Assume that x, y ∈ R are such that f(x) = f(y). Then by triangle
inequality and Lemma C.7 we have:

d(x, y) ≤ d(x, p) + d(p, y) ≤ n · δ · ρ < dmin(R),

it follows that x = y. Therefore map f is injective.
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Lemma C.9. Let R be a finite subset of normed space (Rn, d), let ρ be as in Definition C.1 and let δ ∈ R be such that
0 < δ < dmin(R)

n·ρ . Let p ∈ R be arbitrary point and let t > n·δ·ρ
2 be a real number. Then there exists a set U(δ) satisfying

R ⊆ U(δ) and

|G(δ) ∩ B̄(p, t− n · δ · ρ
2

)| ≤ |U(δ) ∩ B̄(p, t)| ≤ |G(δ) ∩ B̄(p, t+
n · δ · ρ

2
)|

Proof. Let f : R → G(δ) be an injection from Lemma C.8, which maps every q ∈ R to one of its nearest neighbors in
G(δ). Define U(δ) = (G(δ) \ f(R)) ∪R. Let us first show that

g : U(δ) ∩ B̄(p, t)→ G(δ) ∩ B̄(p, t+
n · δ · ρ

2
),

defined by g(q) = f(q), if q ∈ R and g(q) = q, if q /∈ R, is an injection. Let us show first that the map g is well-defined, if
q /∈ R, the claim is trivial. Let q /∈ R, then by triangle inequality d(g(q), p) ≤ d(q, p) + d(g(q), q) ≤ t+ n·δ·ρ

2 . Assume
now that g(a) = g(b) for some a, b ∈ U(δ) ∩ B̄(p, t). Let us first show that either a, b both belong to R or neither of a, b
belong to R. Assume contrary that a ∈ R and b /∈ R. Since b /∈ R we have b ∈ G(δ) \ f(R). On the other hand since
h(a) = h(b) we have f(a) = b, therefore b ∈ f(R), which is a contradiction. If both, a and b belong to R we have a = b,
similarly if a, b /∈ R we have a = b by injectivity of function f . Therefore we have now shown that g is well-defined
injection. It follows |U(δ) ∩ B̄(p, t)| ≤ |G(δ) ∩ B̄(p, t+ n·δ·ρ

2 )|. Let us now show that map

h : G(δ) ∩ B̄(p, t− n · δ · ρ
2

)→ U(δ) ∩ B̄(p, t),

defined by h(q) = f−1(q), if q ∈ f(R) and h(q) = q, if q /∈ f(R) is well-defined injection. Let us first show that the map
is well-defined. Let q ∈ G(δ) ∩ B̄(p, t− n·δ·ρ

2 ), if q /∈ f(R) the claim is satisfied trivially. If q ∈ f(R), then by definition
d(h(q), q) ≤ n·δ·ρ

2 . By using triangle inequality we obtain:

d(p, h(q)) ≤ d(p, q) + d(q, h(q)) ≤ t− n · δ · ρ
2

+
n · δ · ρ

2
≤ t.

Therefore h(q) ∈ U(δ) ∩ B̄(p, t).

Let us now show that h is an injection. Let a, b ∈ G(δ)∩ B̄(p, t− n·δ
2 ) assume that h(a) = h(b), let us show that a = b. Let

us first show that either a, b ∈ f(R) or neither of a, b belong to f(R). Assume contrary that a ∈ f(R) and b /∈ f(R). Then
h(a) = h(b) implies that f−1(a) = b. Since f−1(a) ∈ R, we have b ∈ R. Since b ∈ G(δ), it follows that f(b) = b, which
is a contradiction since b /∈ f(R). Assume now that a, b ∈ f(R), then the claim follows by noting that f−1 is injection.
If a, b /∈ f(R) , then claim follows by noting that h(a) = a and h(b) = b. Therefore map h is injection. It follows that
|G(δ) ∩ B̄(p, t− n·δ·ρ

2 )| ≤ |U(δ) ∩ B̄(p, t)|.

Lemma C.10. Let R be a finite subset of normed vector space Rn and let δ ∈ R. For any p ∈ G(δ) recall that V (p, δ) is
Minkowski sum p+ (− δ

2 ,
δ
2 )

n. Define

W̄ (p, t, δ) =
⋃

q∈B̄(p,t)∩G(δ)

V̄ (q, δ).

Then for any p ∈ R and t > n·δ·ρ
2 we have:

B̄(p, t− n · δ · ρ
2

) ⊆ W̄ (p, t, δ) ⊆ B̄(p, t+
n · δ · ρ

2
).

Proof. Let u ∈ B̄(p, t − n·δ·ρ
2 ) be an arbitrary point. Since {V̄ (q, δ) | q ∈ G(δ)} covers R it follows that there exists

a ∈ G(δ) such that u ∈ V̄ (a, δ). By triangle inequality we obtain:

d(a, p) ≤ d(a, u) + d(u, p) ≤ n · δ · ρ
n

+ t− n · δ · ρ
n

≤ t.
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It follows that V̄ (w, δ) ∈ W̄ (p, t), therefore p ∈ W̄ (p, t, δ). We have B̄(p, t − n·δ·ρ
2 ) ⊆ W̄ (p, t, δ). Let u ∈ W̄ (p, t, δ),

then there exists a ∈ G(δ) such that u ∈ V̄ (a, δ) and V̄ (a, δ) ∈ W̄ (p, t). By triangle inequality we obtain:

d(u, p) ≤ d(u, a) + d(a, p) ≤ n · δ · ρ
n

+ t.

It follows that u ∈ B̄(p, t+ n·δ·ρ
2 ). Therefore W̄ (p, t, δ) ⊆ B̄(p, t+ n·δ·ρ

2 ) which proves the claim.

Lemma C.11 (Countable additivity, Jones (2000, Section 2.A)). Assume that Ai ⊆ Rn, i = 1, 2, ..., are pairwise disjoint
i.e. Ai ∩Aj = ∅ for all i ̸= j Lebesgue-measurable sets. Then

µ(

∞⋃
i=0

Ai) =

∞∑
i=1

µ(Ai).

Lemma C.12 (Lebesgue measure of W̄ (p, t, δ)). In notations of Lemma C.10 let µ be a Lebesgue measure on R from
Definition C.2, then µ(W̄ (p, t, δ)) = δn · |B̄(p, t) ∩G(δ)|.

Proof. Define W (p, t, δ) =
⋃

q∈B̄(p,t)∩G(δ)

V (q, δ). Recall that for all p ∈ Rn and δ > 0 set V̄ (p, t) is a closed

n−dimensional interval and V (p, t) is an open n-dimensional interval. Therefore we have µ(V̄ (p, t)) = µ(V (p, t)).
Since V̄ (p, t) is a closed interval, it follows that µ(V̄ (p, t)) = δn. Since all the sets of W are separate we can use Lemma
C.11 to obtain:

µ(W (p, t, δ)) =
∑

A∈W (p,t)

µ(A) =
∑

A∈W̄ (p,t)

µ(A) = δn · |B̄(p, t) ∩G(δ)|

By Lemma C.3 (2), since W (p, t, δ) ⊆ W̄ (p, t, δ) we obtain µ(∪W̄ (p, t)) ≥ δn · |B̄(p, t) ∩G(δ)|. On the other hand, by
Lemma C.3 (3) we obtain

µ(W̄ (p, t, δ)) ≤
∑

A∈W̄ (p,t)

µ(A) = δn · |B̄(p, t) ∩G(δ)|

Therefore we have shown that µ(W̄ (p, t, δ)) = δn · |B̄(p, t) ∩G(δ)|.

Lemma C.13 (Set U(δ) bounds). Let Rn be a normed vector space. Let R ⊆ Rn be its finite subset. Then any set U(δ) of
Lemma C.9 satisfies the following inequalities:

µ(B̄(p, t− δ · n · ρ))
δn

≤ |B̄(p, t) ∩ U(δ)| ≤ µ(B̄(p, t+ δ · γ · n · ρ))
δn

,

for all p ∈ R and t > n · δ · ρ.

Proof. Let p ∈ Rn be an arbitrary point and let t > n · δ · ρ be an arbitrary real number. By Lemma C.9 it follows:

|G(δ) ∩ B̄(p, t+
n · δ · ρ

2
)| ≤ |B̄(p, t) ∩ U(δ)| ≤ |G(δ) ∩ B̄(p, t+

n · δ · ρ
2

)|.

Let W̄ (p, t+ n·δ·ρ
2 , δ) = ∪q{V̄ (q, δ) | q ∈ B̄(p, t+ n·δ·ρ

2 )}. By Lemma C.10 we have:

B̄(p, t− n · δ · ρ) ⊆ W̄ (p, t− n · δ · ρ
2

, δ) and W̄ (p, t+
n · δ · ρ

2
, δ) ⊆ B̄(p, t+ n · δ · ρ)

By Lemma C.3 we have µ(W̄ (p, t+ n·δ·ρ
2 , δ)) ≤ µ(B̄(p, t+ n · δ · ρ)). By Lemma C.12 we have:

µ(W̄ (p, t+
n · δ · ρ

2
, δ)) = δn · |B̄(p, t+

n · δ · ρ
2

) ∩G(δ)|.

By combining the facts we obtain:

|B̄(p, t) ∩ U(δ)| ≤ |G(δ) ∩ B̄(p, t+
n · δ · ρ

2
)| ≤

µ(W̄ (p, t+ n·δ·ρ
2 , δ))

δn
≤ µ(B̄(p, t+ n · δ · ρ))

δn
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|B̄(p, t) ∩ U(δ)| ≥ |G(δ) ∩ B̄(p, t− n · δ · ρ
2

)| ≥
µ(W̄ (p, t− n·δ·ρ

2 , δ))

δn
≥ µ(B̄(p, t− n · δ · ρ))

δn

which concludes the proofs.

Lemma C.14 (Set U(δ) is locally finite). Let Rn be a normed vector space. Let R ⊆ Rn be its finite subset Then any set
U(δ) from Lemma C.9 is locally finite.

Proof. With the exact same proof of Lemma C.13 it can be shown that

|B̄(p, t) ∩ U(δ)| ≤ µ(B̄(p, t+ δ · n · ρ))
δn

is satisfied for all p ∈ R and t > 0. Therefore |B̄(p, t) ∩ U(δ)| is finite as well.

Recall that minimized expansion constant of Definition 1.4 of a finite subset R of a metric space (X, d) was defined as

cm(R) = lim
ξ→0+

inf
R⊆A⊆X

sup
p∈A,t>ξ

|B̄(p, 2t) ∩A|
|B̄(p, t) ∩A|

where A is a locally finite set which covers R.

Theorem C.15 (The minimized expansion constant of a finite subset R of Rn is at most 2n). Let R be a finite subset of a
normed Euclidean space Rn. Let cm(R) be the minimized expansion constant of Definition 1.4, then cm(R) ≤ 2n.

Proof. Let 0 < ξ < dmin(R)
2 be an arbitrary real number. Let 0 < δ < ξ

n·ρ be a real number. Since δ < dmin(R)
2·n·ρ by Lemma

C.13 we have:
µ(B̄(p, t− δ · n · ρ))

δn
≤ |B̄(p, t) ∩ U(δ)| ≤ µ(B̄(p, t+ δ · γ · n · ρ))

δn

Note that by Lemma C.4 we have: µ(B̄(q, y)) = yn · µ(B̄(q, 1)) for any q ∈ Rn and y ∈ R+. Therefore

|B̄(p, 2t) ∩ U(δ)|
|B̄(p, t) ∩ U(δ)|

≤ µ(B̄(p, 2t+ nδρ)) · δ2

µ(B̄(p, t− nδρ)) · δ2
=

(2t+ nδρ)n · µ(B̄(p, 1))

(t− nδρ)n · µ(B̄(p, 1))
=

(2t+ nδρ)n

(t− nδρ)n
,

is satisfied for for all t > ξ. Since 0 < ξ < dmin(R)
2 was chosen arbitrarily, we conclude that:

cm(R) = lim
ξ→0+

inf
R⊆A⊆X

sup
p∈A,t>ξ

|B̄(p, 2t)| ∩A
|B̄(p, t)| ∩A

≤ lim
δ→0

|B̄(p, 2t) ∩ U(δ)|
|B̄(p, t) ∩ U(δ)|

= lim
δ→0

(2t+ δ · nρ)n

(t− δ · nρ)n
=

2n · tn

tn
= 2n.

D. Distinctive descendant sets
This section introduces auxiliary concepts for future proofs. The main concept is a distinctive descendant set in Definition
2.8. The distinctive descendant set at a level i of a node p ∈ T (R) in a compressed cover tree corresponds to the set of
descendants of a copy of node p at level i in the original implicit cover tree T (R). Other important concepts are λ-point of
Definition D.6 that is used in Algorithm F.2 as an approximation for k-nearest neighboring point. The β-point property of
λ-point defined in Lemma D.15 plays a major role in the proof of the main worst-case time complexity result Theorem 4.9.

Definition 2.8 (Distinctive descendant sets). Let R ⊆ X be a finite reference set with a compressed cover tree T (R).
For any node p ∈ T (R) and level i ≤ l(p) − 1, set Vi(p) = {u ∈ Descendants(p) | i ≤ l(u) ≤ l(p) − 1}. If
i ≥ l(p), then set Vi(p) = ∅. For any level i ≤ l(p), the distinctive descendant set is Si(p, T (R)) = Descendants(p) \⋃
u∈Vi(p)

Descendants(u) and has the size |Si(p, T (R))|.

Lemma D.1 (Distinctive descendant set inclusion property). In conditions of Definition 2.8 let p ∈ R and let i, j be integers
satisfying lmin(T (R)) ≤ i ≤ j ≤ l(p)− 1. Then Si(p, T (R)) ⊆ Sj(p, T (R)).
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Level 2

Level 1

Level 0

Level -1

1
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3

2 4
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Figure 9. Consider a compressed cover tree T (R) that was built on set R = {1, 2, 3, 4, 5, 7, 8}. Let Si(p, T (R)) be a distinctive
descendant set of Definition 2.8. Then V2(1) = ∅, V1(1) = {5} and V0(1) = {3, 5, 7}. And also S2(1, T (R)) = {1, 2, 3, 4, 5, 7, 8},
S1(1, T (R)) = {1, 2, 3, 4} and S0(1, T (R)) = {1}.

Essential levels of a node p ∈ T (R) have 1-1 correspondence to the set consisting of all nodes containing p in the explicit
representation of cover tree in (Beygelzimer et al., 2006a), see Figure 6 middle.

Definition D.2 (Essential levels of a node). Let R ⊆ X be a finite reference set with a cover tree T (R). Let q ∈ T (R) be a
node. Let (ti) for i ∈ {0, 1, ..., n} be a sequence of H(T (R)) in such a way that t0 = l(q), tn = lmin(T (R)) and for all i
we have ti+1 = Next(q, ti, T (R)). Define the set of essential indices E(q, T (R)) = {ti | i ∈ {0, ..., n}}. ■

Lemma D.3 (Number of essential levels). Let R ⊆ X be a finite reference set with a cover tree T (R). Then∑
p∈R |E(p, T (R))| ≤ 2 · |R|, where E(p, T (R)) appears in Definition D.2. ■

Proof. Let us prove this claim by induction on size |R|. In basecase R = {r} and therefore |E(r, T (R))| = 1. Assume
now that the claim holds for any tree T (R), where |R| = m and let us prove that if we add any node v ∈ X \ R to tree
T (R), then

∑
p∈R |E(p, T (R ∪ {v}))| ≤ 2 · |R| + 2. Assume that we have added u to T (R), in such a way that v is its

new parent. Then |E(p, T (R ∪ {v}))| = |E(p, T (R))|+ 1 and |E(v, T (R ∪ {v}))| = 1. We have:∑
p∈R∪{u}

|E(p, T (R))| =
∑
p∈R

|E(p, T (R))|+ 1 + |E(v, T (R ∪ {v}))| ≤ 2 · |R|+ 2 ≤ 2(|R ∪ {v}|)

which completes the induction step.

Algorithm D.4 This algorithm returns sizes of distinctive descendant set Si(p, T (R)) for all essential levels i ∈ E(p, T (R))
1: Function : CountDistinctiveDescendants(Node p, a level i of T (R))
2: Output : an integer
3: if i > lmin(T (Q)) then
4: for q ∈ Children(p) having l(p) = i− 1 or q = p do
5: Set s = 0
6: j ← 1 + Next(q, i− 1, T (R))
7: s← s+CountDistinctiveDescendants(q, j)
8: end for
9: else

10: Set s = 1
11: end if
12: Set |Si(p)| = s and return s

Lemma D.5. Let R be a finite subset of a metric space. Let T (R) be a compressed cover tree on R. Then, Algorithm D.4
computes the sizes |Si(p, T (R))| for all p ∈ R and essential levels i ∈ E(p, T (R)) in time O(|R|). ■

Proof. By Lemma D.3 we have
∑

p∈R |E(p, T (R))| ≤ 2 · |R|. Since CountDistinctiveDescendants is called once for every
any combination p ∈ R and i ∈ E(p, T (R)) it follows that the time complexity of Algorithm D.4 is O(R).
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Recall that the neighbor set N(q; r) = {p ∈ C | d(q, p) ≤ d(q, r)} was introduced in Definition 1.2.

Definition D.6 (λ-point). Fix a query point q in a metric space (X, d) and fix any level i ∈ Z. Let T (R) be its com-
pressed cover tree on a finite reference set R ⊆ X . Let C be a subset of a cover set Ci from Definition 2.1 satisfying∑

p∈C |Si(p, T (R))| ≥ k, where Si(p, T (R)) is the distinctive descendant set from Definition 2.8. For any k ≥ 1, define
λk(q, C) as a point λ ∈ C that minimizes d(q, λ) subject to

∑
p∈N(q;λ) |Si(p, T (R))| ≥ k. ■

Algorithm D.7 Finding k-lowest element of a finite subset A ⊆ R with priority function f : A→ R
1: Input: Ordered subset A ⊆ R, priority function f : A→ R, an integer k ∈ Z
2: Initialize an empty max-binary heap B and an empty array D on points A.
3: for p ∈ A do
4: add p to B with priority f(p)
5: if |H| ≥ k then
6: remove the point with a maximal value from B
7: end if
8: end for
9: Transfer points from the binary heap B to the array D in reverse order.

10: return D.

Algorithm D.8 Computation of a λ-point of Definition D.6 in line 6 of Algorithm F.2

1: Input: A point q ∈ X , a subset C of a level set Ci of a compressed cover tree T (R), an integer k ∈ Z
2: Define f : C → R by setting f(p) = d(p, q).
3: Run Algorithm D.7 on inputs (C, f, k) and retrieve array D.
4: Find the smallest index j such that

∑j
t=0 |Si(D[t], T (R))| ≥ k.

5: return λ = D[j].

Lemma D.9. Let A ⊆ R be a finite subset and let f : A→ R be a priority function and let k ∈ Z+. Then Algorithm D.7
finds k-smallest elements of A in time |A| · log2(k)

Proof. Adding and removing element from binary heap data structure Cormen (1990, section 6.5) takes at most O(log(n))
time, where n is the size of binary heap. Since the size of our binary heap is capped at k and we add/remove at most |A|
elements, the total time complexity is O(|A| · log2(k)).

Lemma D.10 (time complexity of a λ-point). In the conditions of Definition D.6, the time complexity of Algorithm D.8 is
O(|C| · log2(k)).

Proof. Note that in line 4 we have |Si(D[t], T (R))| ≥ 1 for all t = 0, ..., j. Therefore the time complexity of line 4 is
O(k). By Lemma D.9 The time complexity of line 3 is O(|C| · log2(k)), which proves the claim.

Lemma D.11 (separation). In the conditions of Definition 2.8, let p ̸= q be nodes of T (R) with l(p) ≥ i, l(q) ≥ i. Then
Si(p, T (R)) ∩ Si(q, T (R)) = ∅. ■

Proof. Without loss of generality assume that l(p) ≥ l(q). If q is not a descendant of p, the lemma holds trivially due to
Descendants(q) ∩Descendants(p) = ∅. If q is a descendant of p, then l(q) ≤ l(p)− 1 and therefore q ∈ Vi(p). It follows
that Si(p, T (R)) ∩Descendants(q) = ∅ and therefore

Si(p, T (R)) ∩ Si(q, T (R)) ⊆ Si(p, T (R)) ∩Descendants(q) = ∅.

Lemma D.12 (Sum lemma). In the notations of Definition 2.8 assume that i is arbitrarily index and a subset V ⊆ R
satisfies l(p) ≥ i for all p ∈ V . Then

|
⋃
p∈V

Si(p, T (R))| =
∑
p∈V

|Si(p, T (R))|.
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Proof. Proof follows from Lemma D.11.

By Lemma D.12 in Definition D.6 one can assume that |
⋃

p∈C Si(p, T (R))| ≥ k.

Lemma 2.9. Let R ⊆ X be a finite reference set with a cover tree T (R). In the notations of Definition 2.8, let p ∈ T (R)
be any node. If w ∈ Si(p, T (R)) then either w = p or there exists a ∈ Children(p) \ {p} such that l(a) < i and
w ∈ Descendants(a).

Proof. Let w ∈ Si(p) be an arbitrary node satisfying w ̸= p. Let s be the node-to-root path of w. The inclusion
Si(p) ⊆ Descendants(p) implies that w ∈ Descendants(p). Let a ∈ Children(p) \ {p} be a child on the path s. If
l(a) ≥ i then a ∈ Vi(p). Note that w ∈ Descendants(a). Therefore w /∈ Si(p), which is a contradiction. Hence
l(a) < i.

Lemma D.13. In the notations of Definition 2.8, let p ∈ T (R) be any node. If w ∈ Si(p, T (R)) then d(w, p) ≤ 2i+1. ■

Proof. By Lemma 2.9 either w = γ or w ∈ Descendants(a) for some a ∈ Children(γ) \ {γ} for which l(a) < i. If
w = γ, then trivially d(γ,w) ≤ 2i. Else w is a descendant of a, which is a child of node γ on level i− 1 or below, therefore
by Lemma B.6 we have d(γ,w) ≤ 2i anyway.

Lemma D.14. Let R be a finite subset of a metric pace. Let T (R) be a compressed cover tree on R. Let Rj ⊆ Cj , where
Cj is the ith cover set of T (R). Let i = maxp∈Rj

Next(p, j, T (R)). Set Ci(Rj) = Rj ∪ {a ∈ Children(p) for some p ∈
Ri | l(a) = i}. Then ⋃

p∈Ci(Rj)

Si(p, T (R)) =
⋃

p∈Rj

Sj(p, T (R)).

Proof. Let a ∈
⋃

p∈Ci(Rj)
Si(p, T (R)) be an arbitrary node. Then there exits u ∈ Ci(Rj) having a ∈ Si(u, T (R)). By

definition of index i, either u ∈ Rj or u has a parent in Rj . If u ∈ Rj then we note that Vj(u) ⊆ Vi(u). Since a /∈ Vi(u),
we also have a /∈ Vj(u).

Otherwise let w be a parent of u. Therefore there are no descendants of w in having level in interval [l(u) + 1, l(p)− 1].
Since l(u) = i and j > i it follows that Vj(w) = ∅. Denote w to be the lowest level ancestor of u on level j. By cases above
we have a /∈ Vj(w). Therefore it follows that

a ∈ Sj(w, T (R)) ⊆
⋃

p∈Rj

Sj(p, T (R)).

To prove the converse inclusion assume now that a ∈
⋃

p∈Rj

Sj(p, T (R)). Then a ∈ Sj(v, T (R)) for some w ∈ Rj . Assume

that w has no children at the level i. Then Vj(w) = Vi(w) and

a ∈ Si(w, T (R)) ⊆
⋃

p∈Ci(Rj)

Si(p, T (R)).

Assume now that w has children at the level i. If there exists b ∈ Children(w) for which a ∈ Descendants(b). Since
Vi(b) = ∅, we conclude that

a ∈ Si(b, T (R)) ⊆
⋃

p∈Ci(Rj)

Si(p, T (R)).

Assume that a /∈ Descendants(b) for all b ∈ Children(w) with l(b) = i. Then a ∈ Descendants(w) and
a /∈ Descendants(b′) for any b′ ∈ Vj(w). Then a ∈ Si(w, T (R)) and the proof finishes:⋃

p∈Rj

Sj(p, T (R)) ⊆
⋃

p∈Ci(Rj)

Si(p, T (R)).
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Lemma D.15 (β-point). In the notations of Definition D.6, let C ⊆ Ci so that ∪p∈CSi(p, T (R)) contains all k-nearest
neighbors of q. Set λ = λk(q, C). Then R has a point β among the first k nearest neighbors of q such that d(q, λ) ≤
d(q, β) + 2i+1. ■

Proof. We show that R has a point β among the first k nearest neighbors of q such that

β ∈
⋃
p∈C

Si(p, T (R)) \
⋃

p∈N(q,λ)\{λ}

Si(p, T (R)).

Lemma D.12 and Definition D.6 imply that

|
⋃

p∈N(q,λ)\{λ}

Si(p, T (R))| =
∑

p∈N(q,λ)\{λ}

|Si(p, T (R))| < k.

Since ∪p∈CSi(p, T (R)) contains all k-nearest neighbors of q, a required point β ∈ R exists.

Let us now show that β satisfies d(q, λ) ≤ d(q, β) + 2i+1. Let γ ∈ C \ N(q, λ) ∪ {λ} be such that β ∈ Si(γ, T (R)).
Since γ /∈ N(q, λ) \ {λ}, we get d(γ, q) ≥ d(q, λ). The triangle inequality says that d(q, γ) ≤ d(q, β) + d(γ, β). Finally
Lemma D.13 implies that d(γ, β) ≤ 2i+1. Then

d(q, λ) ≤ d(q, γ) ≤ d(q, β) + d(γ, β) ≤ d(q, β) + 2i+1

So β is a desired k-nearest neighbor satisfying d(q, λ) ≤ d(q, β) + 2i+1.

E. Construction of a compressed cover tree
This section introduces a new method Algorithm E.2 for construction of a compressed cover tree, which is based on Insert()
method Beygelzimer et al. (2006a, Algorithm 2) that was specifically adapted for compressed cover tree. The proof of
Beygelzimer et al. (2006a, Theorem 6), which estimated the time complexity of Beygelzimer et al. (2006a, Algorithm 2)
was shown to be incorrect Elkin & Kurlin (2022a, Counterexample 4.2). The main contribution of this section are two new
time complexity results that bound the time complexity of Algorithm E.2:

• Theorem 3.6 bounds the time complexity as O(cm(R)10 · log2(∆(R)) · |R|) by using minimized expansion constant
cm(R) and aspect ratio ∆(R) as parameters.

• Theorem 3.9 bounds the time complexity as O(c(R)12 · log2 |R| · |R|) by using expansion constant c(R) as parameter.

Definition 2.10 explains the concrete implementation of compressed cover tree.

Definition 2.10 (Children(p, i) and Next(p, i, T (R))). In a compressed cover tree T (R) on a set R, for any level i and a
node p ∈ R, set Children(p, i) = {a ∈ Children(p) | l(a) = i}. Let Next(p, i, T (R)) be the maximal level j satisfying
j < i and Children(p, i) ̸= ∅. If such level does not exist, we set j = lmin(T (R))− 1. For every node p, we store its set of
children in a linked hash map so that

(a) any key i gives access to Children(p, i),

(b) Children(p, i)→ Children(p,Next(p, i, T (R))),

(c) we can directly access max{j | Children(p, j) ̸= ∅}.

Definition E.1 (construction iteration set L(T (W ), p)). Let W be a finite subset of a metric space (X, d). Let T (W ) be a
cover tree of Definition 2.1 built onW and let p ∈ X\W be an arbitrary point. LetL(T (W ), p) ⊆ H(T (R)) be the set of all
levels i during iterations 5-13 of Algorithm E.3 launched with inputs T (W ), p. Set η(i) = mint{t ∈ L(T (W ), p) | t > i}.

Let R be a finite subset of a metric space (X, d). A compressed cover tree T (R) will be incrementally constructed by
adding points one by one as summarized in Algorithm E.2. First we select a root node r ∈ R and form a tree T ({r}) of a
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Algorithm E.2 Building a compressed cover tree T (R) from Definition 2.1.

1: Input : a finite subset R of a metric space (X, d)
2: Output : a compressed cover tree T (R).
3: Choose a random point r ∈ R to be a root of T (R)
4: Build the initial compressed cover tree T = T ({r}) by making l(r) = +∞.
5: for p ∈ R \ {r} do
6: T ← run AddPoint(T , p) described in Algorithm E.3.
7: end for
8: For root r of T set l(r) = 1 +maxp∈R\{r} l(p)

Algorithm E.3 Building T (W ∪ {p}) in lines 5-7 of Algorithm E.2.

1: Function AddPoint(a compressed cover tree T (W ) with a root r, a point p ∈ X)
2: Output : compressed cover tree T (W ∪ {p}).
3: Set i← lmax(T (W ))− 1 and η(lmax − 1) = lmax {If the root r has no children then i← −∞}
4: Set Rlmax ← {r}.
5: while i ≥ lmin do
6: Assign Ci(Rη(i))← Rη(i) ∪ {a ∈ Children(q) for some q ∈ Rη(i) | l(a) = i}
7: Set Ri = {a ∈ Ci(Rη(i)) | d(p, a) ≤ 2i+1}
8: if Ri is empty then
9: Launch Algorithm E.4 with parameters (p,Rη(i)).

10: end if
11: t = maxa∈Ri

Next(a, i, T (W )) {If Ri has no children we set t = lmin − 1}
12: η(i)← i and i← t
13: end while
14: Launch Algorithm E.4 with parameters (p,Rη(i)).

Algorithm E.4 Assign node subprocedure

1: Function AssignParent(Point p, subset of nodes U ⊆ T (W ))
2: Output: Compressed cover tree T (W ∪ {p})
3: Pick v ∈ U minimizing d(v, p).
4: Set l(p) = ⌊log2(d(p, v)⌋ − 1 and let v be a parent of p.
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single node r at the level lmax = lmin = +∞. Assume that we have a compressed cover tree T (W ) for a subset W ⊂ R.
For any point p ∈ R \W , Algorithm E.3 builds a larger compressed cover tree T (W ∪ {p}) from T (W ).

Note that during the construction of the compressed cover tree in Algorithm E.3 we write down additional information for
every node p , which includes the number of descendants of node p and the maximal level of nodes in set Children(p).

Lemma E.5. Let T (R) be a cover tree and let p ∈ X be a point and let i ∈ Z. Assume that for some q ∈ T (R) we
have d(p, q) > 2i+1. Let Si(q, T (R)) be as defined in Definition 2.8. Then for any θ ∈ Si(q, T (R)) \ {q} we have
d(θ, p) > 2l(θ).

Proof. Let S = (θ = a0, ..., am = q) be a node to node path. Since θ ∈ Si(q, T (R)) \ {q} by Lemma 2.9 we have
l(am−1) ≤ i− 1. Therefore l(θ) = l(a0) ≤ ... ≤ l(am−1) ≤ i− 1. We have the following inequality:

d(q, θ) ≤
h−1∑
z=0

d(az, az+1) ≤
j∑

x=l(θ)+1

2x = (2j+1 − 2l(θ)+1).

By triangle inequality we have: d(p, θ) ≥ d(p, γ)− d(γ, θ) > 2j+1 − (2j+1 − 2l(θ)+1) > 2l(θ). Therefore d(p, θ) > 2l(θ)

which proves the claim.

Theorem 3.2 (correctness of Algorithm 3.4). Algorithm 3.4 builds a compressed cover tree in Definition 2.1.

Proof. It suffices to prove that Algorithm E.3 correctly extends a compressed cover tree T (W ) for any finite subset W ⊆ X
by adding a point p. Let us prove that T (W ∪ {p}) satisfies Definition 2.1.

We first note that the parent v of p is always assigned in Algorithm E.4 by setting l(p) = ⌊log2(d(p, v)⌋ − 1. Note that the
set U is never empty, when Algorithm E.4 is launched. The covering condition (2.1b) after adding point p to T (W ) follows
from the following inequality:

d(p, v) ≤ 2⌊log2(d(p,v)⌋ ≤ 2l(p)+1.

To check (2.1c) Consider arbitrary cover set Ch = {q ∈ T (W ∪ {p}) | l(q) ≥ h}. Since we have assumed that T (W ) is a
valid cover tree, all the cover sets Ch for h > l(p) satisfy the condition. Let us consider cover sets having h ≤ l(p). Let
θ ∈ Ch be an arbitrary node. Consider a sequence of iterations lmin(T (W )) ≤ a(0) < a(1) < ... < a(t) = lmax(T (W ))
that were considered during run-time of the algorithm. Note that the parent of p was assigned at i = a(0). Since
θ ∈W = Slmax(r,T (W )), either (a) θ ∈

⋃
q∈Ra(0)

Sa(0)(q,Ra(0)) or (b) there exists index j satisfying

θ ∈
⋃

q∈Ra(j+1)

Sa(j+1)(q, T (W )) \
⋃

q∈Ri

Sa(j)(q, T (W )).

Let us first consider case (a). Let v be a parent of p in T (W ∪ {p}). Recall that the parent v of p was assigned in line 4 of
Algorithm E.4. Therefore we have d(v, p) ≤ d(p, θ) and by line 4 we have:

d(p, θ) ≥ d(p, v) ≥ 2l(p)+1 > 2l(p) ≥ 2h,

which proves the claim.

Assume now (b) holds. Denote i = a(j + 1), since a(j) was previous level, it follows η(i) = a(j). By Lemma D.14 we
have: ⋃

q∈Ci(Rη(i))

Si(q, T (W )) =
⋃

q∈Rη(i)

Sη(i)(q, T (W )).

Therefore there exists a node u ∈ Ci(Rη(i)) \ Ri for which θ ∈ Si(u, T (W )). By line 7 of Algorithm E.3 we have
d(u, p) > 2i+1. If u = θ, then the parent of p was selected from set Rη(i) and the proof is similar to (a). Else by Lemma E.5
it follows that d(p, θ) > 2l(θ) ≥ 2h which proves the claim.
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Lemma 3.3 (time complexity of a key step for T (R)). Arbitrarily order all points of a finite reference set R in a metric
space (X, d) starting from the root: r = p1, p2, . . . , p|R|. Set W1 = {r} and Wy+1 = Wy ∪ {py} for y = 1, ..., |R| − 1.
Then Algorithm 3.4 builds a compressed cover tree T (R) in time

O
(
(cm(R))8 · max

y=1,...,|R|−1
L(T (Wy), py) · |R|

)
,

where cm(R) is the minimized expansion constant from Definition 1.4.

Proof. The worst-case time complexity of Algorithm E.2 is dominated by lines 5-7 which call Algorithm E.3 O(|R|) times
in total.

Assume that we have already constructed a cover tree on set T (Wy), the goal Algorithm E.3 is to construct tree T (Wy ∪
{py+1}). By Definition E.1 loop on lines 5-13 is performed L(T (Wy), py+1) times. Let R∗ be the maximal size of set Ri

during all iterations i ∈ L(T (Wy), py+1). By Lemma 2.3 since Wy+1 ⊆ R ⊆ X we have

|Ci(Rη(i))| ≤ cm(Wy+1)
4 · |R∗| ≤ cm(R)4 · |R∗|

nodes, where Cη(i)(Rη(i)) is defined in line 6. Therefore both, lines 7 and 6 take at most cm(R)4|R∗| time. In line 11 we
handle |R∗| elements, for each of them we can retrieve index Next(a, i, T (Wy)) in O(1) time, since for every a ∈ T (R)
we can update the last index j, when a had children on level j in line 6. Therefore line 11 takes at most O(|R∗|) time.
Algorithm E.4 takes at most O(|R∗|) time. Therefore line 9 and line 14 take at most O(|R∗|) time. Let us now bound |R∗|
during the whole run-time of the algorithm.

Let i be an arbitrary level. Note that Ri ⊆ B(p, 2i+1)∩Ci where Ci is a ith cover set of T (R). Since Ci is 2i-spares subset
of R we can apply packing Lemma 2.2 with r = 2i+1 and δ = 2i to obtain |B(p, 2i+1) ∩ Ci| ≤ (cm(W ))4. Lemma 1.5
implies (cm(W ))4 ≤ (cm(R))4, therefore |B(p, 2i) ∩ Ci| ≤ (cm(R))4.

The time complexity of loop 5 - 13 in Algorithm E.3 is dominated by line 6 that has timeO(|C(Ri)|) ≤ O((cm(R))4·|R∗|) ≤
O((cm(R))8). Then the whole Algorithm E.2 has time

O((cm(R))8 · max
y=2,...,|R|

L(T (Wy−1), py) · |R|)

as desired.

Theorem 3.6 (time complexity of T (R) via aspect ratio). Let R be a finite subset of a metric space (X, d) having the aspect
ratio ∆(R). Algorithm 3.4 builds a compressed cover tree T (R) in time O((cm(R))8 · log2(∆(R)) · |R|), where cm(R) is
the minimized expansion constant from Definition 1.4.

Proof. In Lemma 3.3 use the upper bounds due to Lemma B.8 as follows:
max

y∈2,...,|R|
|L(T (Wy−1), py)| ≤ H(T (R)) ≤ 1 + log2(∆(R)).

Lemma 3.7. Let (X, d) be a metric space and let W ⊆ X be its finite subset. Let q ∈ X \W be an arbitrary point. Let
i ∈ L(T (W ), q) be arbitrarily iteration of Definition 3.1. Assume that t = η(η(i+ 1)) is defined. Then there exists p ∈W
satisfying 2i+1 < d(p, q) ≤ 2t+1.

Proof. Note first that since η(i + 3) ∈ L(T (R), q), there exists distinct u ∈ Rη(η(i+3)) and v ∈ Cη(i+1)(Rη(η(i+1))),
in such a way that u is the parent of v. Let us show that both of u, v cant belong to set Ri. Assume contrary that
both u, v ∈ Ri. Then by line 7 of Algorithm E.3 we have d(v, q) ≤ 2i+1 and d(u, q) ≤ 2i+1. By triangle inequality
d(u, v) ≤ d(u, q) + d(q, v) ≤ 2i+2 ≤ 2η(i+1). Recall that we denote a level of a node by l. On the other hand we have
l(u) ≥ η(i + 1) and l(v) ≥ η(i + 1), by separation condition of Definition 2.1 we have d(u, v) > 2η(i+1), which is a
contradiction. Therefore only one of {u, v} can belong to Ri. It sufficies two consider the two cases below:

Assume that v /∈ Ri. Since v is children of u we have d(u, v) ≤ 2η(i+1)+1. By line 7 of Algorithm E.3 we have
d(u, q) ≤ 2η(i+1)+1. By triangle inequality

d(v, q) ≤ d(v, u) + d(u, q) ≤ 2η(i+1)+1 + 2η(i+1)+1 ≤ 2η(i+1)+2 ≤ 2η(η(i+1))+1
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Since v /∈ Ri there exists level t having η(i+ 1) ≥ t ≥ i and v ∈ Ct(Rη(t)) \Rt. Therefore by line 7 of Algorithm E.3 we
have d(q, v) > 2t+1 ≥ 2i+1. It follows that we have found point v ∈ R satisfying 2i+1 < v ≤ 2η(η(i+1))+1. Therefore
p = v, is the desired point.

Assume that u /∈ Ri. Since u ∈ Rη(η(i+1)), by line 7 of Algorithm E.3 we have d(u, q) ≤ 2η(η(i+1))+1. On the other hand
since u /∈ Ri, there exists level t having η(i+ 3) ≥ t ≥ i and u ∈ Ct(Rη(t)) \Rt. Therefore by line 7 of Algorithm E.3 we
have d(q, u) > 2t+2 ≥ 2i+2. It follows that we have found point u ∈ R satisfying 2i+1 < u ≤ 2η(η(i+1))+1. Therefore
p = u, is the desired point.

Lemma 3.8 (Construction iteration bound). Let A,W be finite subsets of a metric space X satisfying W ⊆ A ⊆ X . Take
a point q ∈ A \W . Given a compressed cover tree T (W ) on W , Algorithm 3.5 runs lines 5-14 this number of times:
|L(T (W ), q)| = O

(
c(A)2 · log2(|A|)

)
.

Proof. Let x ∈ L(T (R), q) be the lowest level ofL(T (R), q). Define s1 = η(η(x)+1) and let si = η(η(η(si−1+1))+1), if
it exists. Assume that sn+1 is the last sequence element for which η(η(η(sn−1+1))+1) is defined. Define S = {s1, ..., sn}.
For every i ∈ {1, ..., n} let pi be the point provided by Lemma 3.7 that satisfies

2si+1 < d(pi, q) ≤ 2η(η(si+1))+1.

Let P be the sequence of points pi. Denote n = |P | = |S|. Let us show that S satisfies the conditions of Lemma 2.5. Note
that:

4 · d(pi, q) ≤ 4 · 2η(η(si+1))+1 ≤ 2η(η(si+1))+3 ≤ 2η(η(η(si+1))+1)+1 ≤ 2si+1+1 ≤ d(pi+1, q)

By Lemma 2.5 applied for set A and sequence P we get:

|B̄(q,
4

3
d(q, pn))| ≥ (1 +

1

c(R)2
)n · |B̄(q,

1

3
d(q, p1))|

Since η(x) ∈ L(T (R), q) , there exists some point u ∈ Rη(x). By definition of Ri we have d(u, q) ≤ 2η(x)+1. Also

2η(η(x)+1)−1 ≤ 2η(η(x)+1)+1

3
<
d(q, p1)

3

It follows that:

1 ≤ |B̄(q, 2η(x)+1)| ≤ |B̄(q, 2η(η(x)+1)−1| ≤ |B̄(q,
d(q, p1)

3
)|

Therefore we have

|A| ≥
|B̄(q, 43 · d(q, pn))|
|B̄(q, 13 · d(q, p1))|

≥ (1 +
1

c(A)2
)n

Note that c(A) ≥ 2 by definition of expansion constant. Then by applying log and by using Lemma B.7 we obtain:
c(A)2 log(A) ≥ n = |S|. Let x be minimal level of L(T (W ), q) and let y be the maximal level of L(T (W ), q) Note that
S is a sub sequence of L in such a way that:

• [x, s1] ∩ L(T (R), q) ≤ 3,

• for all i ∈ 1, ..., n we have [si, si+1] ∩ L(T (R), q) ≤ 6

• [sn, y] ∩ L(T (R), q) < 12

Since segments [x, s1], [s1, s2], ..., [s2, sn], [sn, y] cover |L(T (R), q)|, it follows that |S| ≥ |L(T (R),q)|
12 . We obtain that

|L(T (R), q)| ≤ 12 · c(A)2 · log2(|A|),

which proves the claim.
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Theorem 3.9 (time for T (R) via expansion constants). Let R be a finite subset of a metric space (X, d). Let A be a finite
subset of X satisfying R ⊆ A ⊆ X . Then Algorithm 3.4 builds a compressed cover tree T (R) in time O((cm(R))8 · c(A)2 ·
log2(|A|) · |R|), see the expansion constants c(A), cm(R) in Definition 1.4.

Proof. It follows from Lemmas 3.8 and 3.3.

Corollary 3.10. Let R be a finite subset of a metric space (X, d). Then Algorithm 3.4 builds a compressed cover tree T (R)
in time O((cm(R))8 · c(R)2 · log2(|R|)) · |R|), where the constants c(R), cm(R) appeared in Definition 1.4.

Proof. The proof follows from Theorem 3.9 by setting A = R.

F. k-nearest neighbor search algorithm
This section is motivated by Elkin & Kurlin (2022a, Counterexample 5.2), which showed that the proof of past time
complexity claim in Beygelzimer et al. (2006a, Theorem 5) for the nearest neighbor search algorithm contained gaps.
The two main results of this sections are Corollary 4.7 and Theorem 4.9 which provide new time complexity results for
k-nearest neighbor problem, assuming that a compressed cover tree was already constructed for the reference set R. For the
construction algorithm of compressed cover tree and its time complexity, we refer to Section E.

The past mistakes are resolved by introducing a new Algorithm F.2 for finding k-nearest neighbors that generalize and
improves the original method for finding nearest neighbors using an implicit cover. Beygelzimer et al. (2006a, Algorithm 1).
The first improvement is λ-point of line 6 which allows us to search for all k-nearest neighbors of a given query point for
any k ≥ 1. The second improvement is a new loop break condition on line 8. The new loop break condition is utilized in the
proof of Lemma 4.8 to conclude that the total number of performed iterations is bounded byO(c(R)2 log(|R|)) during whole
run-time of the algorithm. The latter improvement closes the past gap in proof of Beygelzimer et al. (2006a, Theorem 5)
by bounding the number of iterations independently from the explicit depth Elkin & Kurlin (2022a, Definition 3.2), that
generated the past confusion.

Recall from Definition D.2 that an essential set E(p, T (R)) ⊆ H(T (R) consists of all levels i ∈ H(T (R)) for which p has
non-trivial children in T (R) at level i. By Lemma D.5 the sizes of distinctive descendants |Si(p, T (R))| can be precomputed
in a linear time O(|R|) for all p ∈ R and i ∈ E(p, T (R)). Since the size of distinctive descendant set |Si(p, T (R))| can
only change at indices i ∈ E(p, T (R)), we assume that the sizes of |Si(p, T (R))| can be retrieved in a constant time O(1)
for any p ∈ R and i ∈ H(T (R)) during the run-time of Algorithm F.2.

Definition F.1. Let R be a finite subset of a metric space (X, d). Let T (R) be a cover tree of Definition 2.1 built on R
and let q ∈ X be arbitrary point. Let L(T (R), q) ⊆ H(T (R)) be the set of all levels i during iterations of lines 4-17 of
Algorithm F.2 launched with inputs T (R), q. If Algorithm F.2 reaches line 13 at level ϱ ∈ L(T (R), q), then we say that is
special. We denote η(i) = mint{t ∈ L(T (R), q) | t > i}. ■

Note that η(i) of Definition F.1 may be undefined. If η(i) is defined, then by definition we have η(i) ≥ i+ 1. Let dk(q,R)
be the distance of q to its kth nearest neighbor in R.

Example F.4 (Simulated run of Algorithm F.2). Let R and T (R) be as in Example B.2. Let q = 0 and k = 5. Figures 10,
11, 12 and 13 illustrate simulated run of Algorithm F.2 on input (T (R), q, k). Recall that lmax = 2 and lmin = −1. During
the iteration i of Algorithm F.2 we maintain the following coloring: Points in Ri are colored orange. Points Cη(i)(Rη(i)) (of
line 5) that are not contained in Ri are colored yellow. The λ-point of line 6 is denoted by using purple color. All the nodes
that were present in Rη(i) , but are no longer included in Ri will be colored red. Finally all the points that are selected as
k-nearest neighbors of q are colored green in the final iteration. Nodes that haven’t been yet visited or that will never be
visited are colored white. Let R2 = {8}. Consider the following steps:

Iteration i = 1: Figure 10 illustrates iteration i = 1 of the Algorithm F.2. In line 5 we find C1(R2) = {4, 8, 12}. Since
node 4 minimizes distance d(C1(R2), 0) and distinctive descendant set S2(4, T (R)) consists of 7 elements we get λ = 4
and therefore d(q, λ) = 4 ≤ 2i+2 = 8. In line 7 we find R1 = {r ∈ C | d(0, r) ≤ d(q, λ) + 23 = 12} = {4, 8, 12}.

Iteration i = 0: Figure 11 illustrates iteration i = 0 of the Algorithm F.2. In line 5 we find C0(R1) = {2, 4, 6, 8, 10, 12, 14}.
Since |S1(2, T (R))| = 3, |S1(4, T (R))| = 1 and |T1(6)| = 3 and 6 is the node with smallest to distance 0 satisfying
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Algorithm F.2 k-nearest neighbor search by a compressed cover tree

1: Input : compressed cover tree T (R), a query point q ∈ X , an integer k ∈ Z+

2: Set i← lmax(T (R))− 1 and η(lmax − 1) = lmax

3: Let r be the root node of T (R). Set Rlmax
= {r}.

4: while i ≥ lmin do
5: Assign Ci(Rη(i))← Rη(i) ∪ {a ∈ Children(p) for some p ∈ Rη(i) | l(a) = i}

{Recall that Children(p) contains node p }
6: Compute λ = λk(q, Ci(Rη(i))) from Definition D.6 by Algorithm D.8.
7: Find Ri = {p ∈ Ci(Rη(i)) | d(q, p) ≤ d(q, λ) + 2i+2}
8: if d(q, λ) > 2i+2 then
9: Define list S = ∅

10: for p ∈ Ri do
11: Update S by running Algorithm F.3 on (p, i)
12: end for
13: Compute and output k-nearest neighbors of the query point q from set S.
14: end if
15: Set j ← maxa∈Ri

Next(a, i, T (R)) {If such j is undefined, we set j = lmin − 1}
16: Set η(j)← i and i← j.
17: end while
18: Compute and output k-nearest neighbors of query point q from the set Rlmin .

Algorithm F.3 The node collector called in line 11 of Algorithm F.2.

1: Input: p ∈ R, index i.
2: Output: a list S ⊆ R containing all nodes of Si(p, T (R)).
3: Add p to list S.
4: if i > lmin(T (R)) then
5: Set j = Next(p, i, T (R))
6: Set C = {a ∈ Children(p) | l(a) = j}
7: for u ∈ C do
8: Call Algorithm F.3 with (u, j).
9: end for

10: end if
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p∈N(0,6)={2,4,6} |S1(p, T (R))| ≥ 5 = k. It follows that λ = 6. In line 7 we find R0 = {r ∈ C(R1) | d(0, r) ≤

d(q, λ) + 22 = 10} = {2, 4, 6, 8, 10}. Since d(q, λ) > 2i+2 = 4. We proceed into lines 8 - 14

Final block lines 8 - 14 for i = 0: Figure 12 marks all the points S discovered by line 11 as orange. Figure 13 illustrates the
final selection of k points from set S that are selected as the final output {1, 2, 3, 4, 5}.

Level 2

Level 1

Level 0

Level −1 1 3 5 7 9 11 13 15

2 6 10 14

4 12

8

Figure 10. Iteration i = 1 of simulation in Example F.4 of Algorithm F.2

Level 2

Level 1

Level 0

Level −1 1 3 5 7 9 11 13 15

2 6 10 14

4 12

8

Figure 11. Iteration i = 0 of simulation in Example F.4 of Algorithm F.2
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Level −1 1 3 5 7 9 11 13 15
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8

Figure 12. Line 11 of Iteration i = 0 of simulation in Example F.4 of Algorithm F.2
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Level −1 1 3 5 7 9 11 13 15

2 6 10 14
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Figure 13. Line 13 of iteration i = 0 of simulation in Example F.4 of Algorithm F.2
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Note that
⋃

p∈Ri
Si(p, T (R)) is decreasing set for which

⋃
p∈Rlmax

Slmax
(p, T (R)) = R and⋃

p∈Rlmin

Slmin
(p, T (R)) = Rlmin

.

Lemma F.5 (k-nearest neighbors in the candidate set for all i). Let R be a finite subset of an ambient metric space (X, d),
let q ∈ X be a query point and let k ∈ Z ∩ [1,∞) be a parameter. Let T (R) be a compressed cover tree of R. Assume
that |R| ≥ k. Then for any iteration i ∈ L(T (R), q) of Definition F.1 the candidate set

⋃
p∈Ri

Si(p, T (R)) contains all
k-nearest neighbors of q. ■

Proof. Since Rlmax
= {r}, where r is the root T (R) we have Slmax

(r, T (R)) = R and therefore any point among k-nearest
neighbor of q is contained in Rlmax

. Let i be the largest index for which there exists a point among k-nearest neighbor of q
that doesn’t belong to

⋃
p∈Ri

Si(p, T (R)). Let us denote such point by β, then:

β ∈
⋃

p∈Rη(i)

Sη(i)(p, T (R)) \
⋃

p∈Ri

Si(p, T (R)).

By Lemma D.14 we have ⋃
p∈Cη(i)(Rη(i))

Si(p, T (R)) =
⋃

p∈Rη(i)

Sη(i)(p, T (R)) (6)

Let λ be as in line 6 of Algorithm F.2. By Equation (6) we have

|
⋃

p∈Cη(i)(Rη(i))

Si(p, T (R))| ≥ k,

therefore by Definition D.6 such λ exists. Since β ∈
⋃

p∈Cη(i)(Rη(i))
Si(p, T (R)), there exists α ∈ Cη(i)(Rη(i)) satisfying

β ∈ Si(α, T (R)). By assumption it follows α /∈ Ri. By line 7 of the algorithm we have

d(α, q) > d(q, λ) + 2i+2. (7)

Let w be arbitrary point in set
⋃

p∈N(q;λ) Si(p, T (R)). Therefore w ∈ Si(γ, T (R)) for some γ ∈ N(q;λ). By Lemma
D.13 applied on i we have d(γ,w) ≤ 2i+1. By Definition D.6 since γ ∈ N(q;λ) we have d(q, γ) ≤ d(q, λ). By (7) and the
triangle inequality we obtain:

d(q, w) ≤ d(q, γ) + d(γ,w) ≤ d(q, λ) + 2i+1 < d(α, q)− 2i+1 (8)

On the other hand β is a descendant of α thus we can estimate:

d(q, β) ≥ d(q, α)− d(α, β) ≥ d(α, q)− 2i+1 (9)

By combining Inequality (8) with Inequality (9) we obtain d(q, w) < d(q, β). Since w was arbitrary point from⋃
p∈N(q;λ) Si(p, T (R)), that contains at least k points, β cannot be any k-nearest neighbor of q, which is a contradiction.

Theorem 4.4 (correctness of Algorithm 4.3). Algorithm 4.3 correctly finds all k-nearest neighbors of query point q within
the reference set R.

Proof. Note that Algorithm F.2 is terminated by either reaching line 18 or by going inside block 10 - 12.

Assume first that Algorithm F.2 is terminated by reaching line 18. Claim follows directly from Lemma F.5 by noting that
since i = lmin all the nodes p ∈ Rlmin do not have any children. Therefore it follows

⋃
p∈Rlmin

Si(p, T (R)) = Rlmin . Thus
all the k-nearest neighbors of q are contained in the set Rlmin .

Assume then that block 10 - 12 is reached during some iteration i ∈ L(T (R), q). By Lemma F.5 set
⋃

p∈Ri
Si(p, T (R))

contains all k-nearest neighbors of q. Note that in line 11 we collect all nodes of
⋃

p∈Ri
Si(p, T (R)) into single array S.

Therefore in line 13 we correctly select k nearest neighbors of q from array S, which proves the claim.
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Lemma 4.5. Algorithm 4.3 has the following time complexities of its lines

(a) max{#Line[4− 9],#Line[12− 15],#Line[16]} = O
(
cm(R)10 · log2(k)

)
;

(b) #Line[8− 14] = O
(
|B̄(q, 5dk(q,R))| · log2(k)

)
.

Proof. (a) Let ϱ ∈ L(T (R), q) be as in Definition F.1. Note that if iteration ϱ is encountered, it becomes the last iteration
of L(T (R), q). The total number of children encountered in line 5 during single iteration (4-17) is at most is at most
(cm(R))4 · max

i∈L(T (R),q)\ϱ
|Ri| by Lemma 2.3. From Lemma D.10 we obtain that line 6, which launches Algorithm D.8 takes

at most
|C(Ri)| · log2(k) = (cm(R))4 · max

L(q,T (R))\ϱ
|Ri| · log2(k)

time. Line 7 never does more work than line 5, since in the worst case scenario Rη(i) is copied to Ri in its current form.
Line 15 handles |Ri| nodes, since we can keep track of value of Next(a, i, T (R)) of Definition 2.10 by updating it when
necessary in line 5 we can retrieve its value in O(1) time. Therefore maximal run-time of line 15 is max

i∈L(q,T (R))\ϱ
|Ri|.

Final line 18 picks lowest k-elements Rη(i) ranked by function f(p) = d(p, q). By Lemma D.9 it can be computed in time
O(log2(k) · max

L(q,T (R))\ϱ
|Ri|). It follows that

max(#Line[4, 8],#Line[14, 17],#Line[18]) = O
(
cm(R)4 · max

i∈L(q,T (R))\ϱ
|Ri| · log2(k)

)
(10)

Let us now bound maxi∈L(q,T (R))\ϱ |Ri|, by showing |Ri| ≤ cm(R)6. Let Ci be the ith level of T (R) as in Definition 2.1.
For all i ∈ L(T (R), q) \ ϱ we have:

Ri = {r ∈ Ci(Rη(i)) | d(p, q) ≤ d(q, λ) + 2i+2} (11)

= B(q, d(q, λ) + 2i+2) ∩ Ci(Ri) (12)

⊆ B(q, 2i+3) ∩ Ci (13)

From cover-tree condition we know that all the points in Ci are separated by 2i. We will now apply Lemma 2.2 with
t = 2i+3 and δ = 2i. Since 4 t

δ +1 = 25 +1 ≤ 26 we obtain max
i∈L(q,T (R))\ϱ

|Ri| ≤ |B(q, 2i+2)∩Ci| ≤ cm(R)6. The claim

follows by replacing max
i∈L(q,T (R))\ϱ

|Ri| with cm(R)6 in (10).

(b) Let us now bound the run-time of #Line[8, 17]. which runs Algorithm F.3 for all (p, i), where p ∈ Ri. Let S be a
distinctive descendant set from Definition 2.8. Algorithm F.3 visits every node u ∈ ∪p∈RiSi(p, T (R)) once, therefore its
running time is O(∪p∈Ri

|Si(p, T (R))|). Let us now show that

∪p∈Ri
Si(p, T (R)) ⊆ B̄(q, 5dk(q,R))

Note first that by Lemma F.5 set ∪p∈Ri
Si(p, T (R)) contains all k-nearest neighbors of q. Using Lemma D.15 we find β

among k-nearest neighbors of q satisfying d(q, λ) ≤ d(q, β) + 2i+1. From assumption It follows 2i+1 ≤ d(q, β) .

By line 8 we have d(q, λ) ≤ 2i+1. By line 13 we perform depth-first traversal on

A = ∪p∈Ri
Si(p, T (R)).

Let u ∈ ∪p∈Ri
Si(p, T (R)) be arbitrary node and let v ∈ Ri be such that u ∈ Si(v, T (R)). By Lemma D.13 we have

d(u, v) ≤ 2i+1. Since v ∈ Ri we have d(q, v) ≤ d(λ, q) + 2i+2. By triangle inequality

d(u, q) ≤ d(u, v) + d(v, q) ≤ 2i+1 + d(λ, v) + 2i+2 ≤ 2i+1 + 2i+1 + d(q, β) + 2i+2 ≤ 5 · d(q, β)

It follows that ∪p∈RiSi(p, T (R)) ⊆ B̄(q, 5 · d(q, β)). Let us now bound the time complexity of line 13. By Lemma D.9 for
any set A is takes log(k) · |A| time to select k-lowest elements. We have:

#Line[8, 17] = O(|B̄(q, 5 · dk(q,R))| · log(k)).
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Theorem 4.6. Let R be a finite set in a metric space (X, d), cm(R) be the minimized constant from Definition 1.4. Given a
compressed cover tree T (R), Algorithm 4.3 finds all k-nearest neighbors of a query point q ∈ X in time

O
(
log2(k) · ((cm(R))10 · |L(q, T (R))|+ |B̄(q, 5dk(q,R))|)

)
,

where L(T (R), q) is the set of all performer iterations (lines 4-15 ) of Algorithm 4.3.

Proof. Apply Lemma 4.5 to estimate the time complexity of Algorithm F.2:
O
(
|L(T (R), q)| · (#Line[4− 8] + #Line[14− 17] + #Line[18]) + #Line[8− 14]

)
.

Corollary 4.7 gives a run-time bound using only minimized expansion constant cm(R), where ifR ⊂ Rm, then cm(R) ≤ 2m.
Recall that ∆(R) is aspect ratio of R introduced in Definition 1.1.

Corollary 4.7. Let R be a finite set in a metric space (X, d). Given a compressed cover tree T (R), Algorithm 4.3 finds all

k-nearest neighbors of q in time O
(
(cm(R))10 · log2(k) · log2(∆(R)) + |B̄(q, 5dk(q,R))| · log2(k)

)
.

Proof. Replace |L(q, T (R))| in the time complexity of Theorem 4.6 by its upper bound from Lemma B.8: |L(q, T (R))| ≤
|H(T (R))| ≤ log2(∆(R)).

If we are allowed to use the standard expansion constant, that corresponds to KR-dimension of Krauthgamer & Lee (2004),
then we obtain a stronger result, Theorem 4.9.

Lemma F.6. Let R be a finite reference set in a metric space (X, d) and let q ∈ X be a query point. Let ϱ be the special
level of L(T (R), q). Let i ∈ L(T (R), q) \ ϱ be any level. Then if p ∈ Ri we have d(p, q) ≤ 2i+3.

Proof. By assumption in this part of the algorithm we have d(q, λ) ≤ 2i+2. By line 7 of Algorithm F.2, since p ∈ Ri we
have d(p, q) ≤ d(q, λ) + 2i+2 ≤ 2i+2 + 2i+2 ≤ 2i+3, which proves the claim.

Lemma F.7. Let R be a finite reference set in a metric space (X, d) and let q ∈ X be a query point. Let ϱ be the special
level of L(T (R), q). Let i ∈ L(T (R), q) \ ϱ be any level. Then if p ∈ Ci(Rη(i)) \Ri, we have d(p, q) > 2i+2.

Proof. By assumption p ∈ Ci(Rη(i)) \ Ri. By line 7 of Algorithm F.2 it follows that d(q, p) > 2i+2 + d(q, λ) ≥ 2i+2.
Therefore d(q, p) > 2i+2, which proves the claim.

Lemma F.8. Let i be a non-minimal level of L(T (R), q) of Definition F.1. Assume that t = η(η(i+ 3)) is defined. Then
there exists p ∈ R satisfying 2i+2 < d(p, q) ≤ 2t+4.

Proof. Note first that since η(i + 3) ∈ L(T (R), q), there exists distinct u ∈ Rη(η(i+3)) and v ∈ Cη(i+3)(Rη(η(i+3))), in
such a way that u is the parent of v. Let us show that both of u, v cant belong to set Ri. Assume contrary that both u, v ∈ Ri.
Then by Lemma F.6 we have d(v, q) ≤ 2i+3 and d(u, q) ≤ 2i+3. By triangle inequality d(u, v) ≤ d(u, q) + d(q, v) ≤
2i+4 ≤ 2η(i+3). Recall that we denote a level of a node by l. On the other hand we have l(u) ≥ η(i+3) and l(v) ≥ η(i+3),
by separation condition of Definition 2.1 we have d(u, v) > 2η(i+3), which is a contradiction. Therefore only one of {u, v}
can belong to Ri. It sufficies two consider the two cases below:

Assume that v /∈ Ri. Since v is children of u we have d(u, v) ≤ 2η(i+3)+1. By Lemma F.6 we have d(u, q) ≤ 2η(η(i+3))+3.
By triangle inequality

d(v, q) ≤ d(v, u) + d(u, q) ≤ 2η(η(i+3))+3 + 2η(i+3)+1 ≤ 2η(η(i+3))+4

Since v /∈ Ri there exists level t having η(i + 3) ≥ t ≥ i and v ∈ Ct(Rη(t)) \ Rt. Therefore by Lemma F.7 we have
d(q, v) > 2t+2 ≥ 2i+2. It follows that we have found point v ∈ R satisfying 2i+2 < v ≤ 2η(η(i+3))+4. Therefore p = v, is
the desired point.

Assume that u /∈ Ri. Since u ∈ Rη(η(i+3)), by Lemma F.6 we have d(u, q) ≤ 2η(η(i+3))+3. On the other hand since
u /∈ Ri, there exists level t having η(i + 3) ≥ t ≥ i and u ∈ Ct(Rη(t)) \ Rt. Therefore by Lemma F.7 we have
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d(q, u) > 2t+2 ≥ 2i+2. It follows that we have found point u ∈ R satisfying 2i+2 < u ≤ 2η(η(i+3))+4. Therefore p = u, is
the desired point.

Lemma 4.8. Algorithm 4.3 executes lines 4-15 the following number of times: |L(T (R), q)| = O(c(R∪ {q})2 · log2(|R|)).

Proof. Let x ∈ L(T (R), q) be the lowest level ofL(T (R), q). Define s1 = η(η(x)+1) and let si = η(η(η(si−1+3))+3), if
it exists. Assume that sn+1 is the last sequence element for which η(η(η(sn−1+3))+3) is defined. Define S = {s1, ..., sn}.
For every i ∈ {1, ..., n} let pi be the point provided by Lemma F.8 that satisfies

2si+2 < d(pi, q) ≤ 2η(η(si+3))+4.

Let P be the sequence of points pi. Denote n = |P | = |S|. Let us show that S satisfies the conditions of Lemma 2.5. Note
that:

4 · d(pi, q) ≤ 4 · 2η(η(si+3))+4 ≤ 2η(η(si+3))+6 ≤ 2η(η(η(si+3))+3)+2 ≤ 2si+1+2 ≤ d(pi+1, q)

By Lemma 2.5 applied for A = R ∪ q and sequence P we get:

|B̄(q,
4

3
d(q, pn))| ≥ (1 +

1

c(R)2
)n · |B̄(q,

1

3
d(q, p1))|

Since η(x) ∈ L(T (R), q) , there exists some point u ∈ Rη(x). By Lemma F.6 we have d(u, q) ≤ 2η(x)+3. Also

2η(η(x)+1)+1 ≤ 2η(η(x)+1)+2

3 < d(q,p1)
3 It follows that:

1 ≤ |B̄(q, 2η(x)+3)| ≤ |B̄(q, 2η(η(x)+1) + 1)| ≤ |B̄(q,
d(q, p1)

3
)|

Therefore we have

|R| ≥
|B̄(q, 43 · d(q, pn))|
|B̄(q, 13 · d(q, p1))|

≥ (1 +
1

c(R ∪ {q})2
)n

Note that c(R ∪ {q}) ≥ 2 by definition of expansion constant. Then by applying log and by using Lemma B.7 we obtain:
c(R ∪ {q})2 log(|R|) ≥ n = |S|. Let x be minimal level of L(T (R), q) and let y be the maximal level of L(T (R), q) Note
that S is a sub sequence of L in such a way that:

• [x, s1] ∩ L(T (R), q) ≤ 3,

• for all i ∈ 1, ..., n we have [si, si+1] ∩ L(T (R), q) ≤ 10

• [sn, y] ∩ L(T (R), q) < 20

Since segments [x, s1], [s1, s2], ..., [s2, sn], [sn, y] cover |L(T (R), q)|, it follows that |S| ≥ |L(T (R),q)|
20 . We obtain that

|L(T (R), q)| ≤ 20 · c(R ∪ {q})2 · log2(|R|),

which proves the claim.

Theorem 4.9. Let R be a finite reference set in a metric space (X, d). Let q ∈ X be a query point, c(R ∪ {q}) be the
expansion constant of R ∪ {q} and cm(R) be the minimized expansion constant from Definition 1.4. Given a compressed

cover tree T (R), Algorithm 4.3 finds all k-nearest neighbors of q in timeO
(
c(R∪{q})2 · log2(k) ·

(
(cm(R))10 · log2(|R|)+

c(R ∪ {q}) · k
))
.

Proof. By Theorem 4.6 the required time complexity is

O
(
(cm(R))10 · log2(k) · |L(q, T (R))|+ |B̄(q, 5d(q, β))| · log2(k)

)
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for some point β among the first k-nearest neighbors of q. Apply Definition 1.4:

|B(q, 5d(q, β))| ≤ (c(R ∪ {q}))3 · |B(q,
5

8
d(q, β))| (14)

Since |B(q, 58d(q, β))| ≤ k, we have |B(q, 5d(q, β))| ≤ (c(R∪{q}))3 ·k. It remains to apply Lemma 4.8: |L(q, T (R))| =
O(c(R ∪ {q})2 · log2 |R|).

Corollary F.9 combines Theorem 3.9 with Theorem 4.9, to show that Problem 1.3 can be solved in O(cO(1) · log(k) ·
max{|Q|, |R|} · (log |R|) + k) time.

Corollary F.9 (solution to Problem 1.3). In the notations of Theorem 4.9, set c = max
q∈Q

c(R ∪ {q}). Algorithms E.2 and F.2

solve Problem 1.3 in time

O
(
max(|Q|, |R|) · c2 · log2(k) ·

(
(cm(R))10 · log2(|R|) + c · k

))
.

Proof. For any q ∈ Q, since log2 |R ∪ {q}| ≤ 2 log2 |R|, a tree T (R) can be built in time

O(c2 · cm(R)8 · log |R|)

by Theorem 3.9. Therefore the time complexity is dominated by running Algorithm F.2 on all points q ∈ Q. The final
complexity is obtained by multiplying the time from Theorem 4.9 by |Q|.

G. Approximate k-nearest neighbor search
The original navigating nets and cover trees were used in Krauthgamer & Lee (2004, Theorem 2.2) and Beygelzimer et al.
(2006a, Section 3.2) to solve the (1 + ϵ)-approximate nearest neighbor problem for k = 1. The main result, Theorem G.6
justifies a near linear parameterized complexity to find approximate a k-nearest neighbor set P formalized in Definition G.1.

Definition G.1 (approximate k-nearest neighbor set P). Let R be a finite reference set and let Q be a finite query set
of a metric space (X, d). Let q ∈ Q ⊆ X be a query point, k ≥ 1 be an integer and ϵ > 0 be a real number. Let
Nk = ∪ki=1NNi(q) be the union of neighbor sets from Definition 1.2. A set P ⊆ R is called an approximate k-nearest
neighbors set, if |P| = k and there is an injection f : P → Nk satisfying d(q, p) ≤ (1 + ϵ) · d(q, f(p)) for all p ∈ P . ■

Definition G.3 is analog of Definition F.1 for (1 + ϵ)-approximate k-nearest neighbor search.

Definition G.3 (Iteration set of approximate k-nearest neighbor search). Let R be a finite subset of a metric space (X, d).
Let T (R) be a cover tree of Definition 2.1 built on R and let q ∈ X be an arbitrary point. Let L(T (R), q) ⊆ H(T (R))
be the set of all levels i during iterations of lines 3-19 of Algorithm G.2 launched with inputs (T (R), q). We denote
η(i) = mint{t ∈ L(T (R), q) | t > i}. ■

Lemma G.4 (k-nearest neighbors in the candidate set for all i). Let R be a finite subset of an ambient metric space (X, d),
let q ∈ X be a query point , let k ∈ Z ∩ [1,∞) and ϵ ∈ R+ be parameters. Let T (R) be a compressed cover tree of
R. Assume that |R| ≥ k. Then for any iteration i ∈ L(T (R), q) of Algorithm G.2 the candidate set

⋃
p∈Ri

Si(p, T (R))
contains all k-nearest neighbors of q. ■

Proof. Proof of this lemma is similar to Lemma G.4 and is therefore omitted.

Lemma G.5 shows that Algorithm G.2 correctly returns an Approximate k-nearest neighbor set of Definition G.1.

Lemma G.5 (Correctness of Algorithm G.2). Algorithm G.2 finds an approximate k-nearest neighbors set of any query
point q ∈ X . ■

Proof. Assume first that condition on line 7 of Algorithm G.2 is satisfied during some iteration i ∈ H(T (R)) of Algorithm
G.2. Let us denote

A =
⋃

p∈Ci(Rη(i))

{Si(p, T (R)) | d(p, q) < d(q, λ)},B =
⋃

p∈Ci(Rη(i))

{Si(p, T (R)) | d(p, q) = d(q, λ)}.
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Algorithm G.2 This algorithm finds approximate k-nearest neighbor of Definition G.1.

1: Input : compressed cover tree T (R), a query point q ∈ X , an integer k ∈ Z+, real ϵ ∈ R+.
2: Set i← lmax(T (R))− 1 and η(lmax − 1) = lmax. Set Rlmax = {root(T (R))}.
3: while i ≥ lmin do
4: Assign Ci(Rη(i))← Rη(i) ∪ {a ∈ Children(p) for some p ∈ Rη(i) | l(a) = i}.
5: Compute λ = λk(q, Ci(Rη(i))) from Definition D.6 by Algorithm D.8.
6: Find Ri = {p ∈ Ci(Rη(i)) | d(q, p) ≤ d(q, λ) + 2i+2} .
7: if 2i+2

ϵ + 2i+1 ≤ d(q, λ) then
8: Let P = ∅.
9: for p ∈ Ci(Rη(i)) do

10: if d(p, q) < d(q, λ) then
11: P = P ∪ Si(p, T (R))
12: end if
13: end for
14: Fill P until it has k points by adding points from sets Si(p, T (R)), where d(p, q) = d(q, λ).
15: return P .
16: end if
17: Set j ← maxa∈Ri Next(a, i, T (R)). {If such j is undefined, we set j = lmin − 1}
18: Set η(j)← i and i← j.
19: end while
20: Compute and output k-nearest neighbors of query point q from the set Rlmin

.

By Algorithm G.2 set P contains all points of A and rest of the points are filled form B. We will now form f : P → Nk by
mapping every point p ∈ A ∩ P into itself and then by extending f to be injective map on whole set P . The claim holds
trivially for all points p ∈ A∩P . Let us now consider points p ∈ P\A. Let γ ∈ Ci(Rη(i)) be such that p ∈ Si(γ, T (R)) and
let ψ ∈ Ci(Rη(i)) be such that f(p) ∈ Si(ψ, T (R)). By using triangle inequality, Lemma B.6 and the fact that p ∈ A ∪ B
we obtain:

d(q, p) ≤ d(q, γ) + d(γ, p) ≤ d(q, λ) + 2i+1 (15)

On the other hand since f(p) /∈ A we have

(1 + ϵ) · d(q, f(p)) ≥ (1 + ϵ) · (d(q, ψ)− d(ψ, f(p))) ≥ (1 + ϵ) · (d(q, λ)− 2i+1) (16)

Note that by line 7 we have 2i+2

ϵ + 2i+1 ≤ d(q, λ). It follows that 2i+2 ≤ ϵ · d(q, λ)− ϵ · 2i+1. Therefore we have:

d(q, λ) + 2i+1 ≤ d(q, λ) + 2i+2 − 2i+1 ≤ (1 + ϵ) · (d(q, λ)− 2i+1) (17)

By combining Equations (15) - (17) we obtain d(q, p) ≤ (1 + ϵ) · d(q, f(p)). If the condition on line 7 of Algorithm G.2 is
never satisfied, then the Algorithm finds real k-nearest neighbors of point q in the end of the algorithm and therefore the
claim holds.

Theorem G.6 (Time complexity of Algorithm G.2 ). In the notations of Definition G.1, the complexity of Algorithm G.2 is

O
(
(cm(R))8+⌈log(2+ 1

ϵ )⌉ · log2(k) · log2(∆(R)) + k
)
.

■

Proof. Similarly to Lemma 4.5 it can be shown that Algorithm G.2 is bounded by:

O((cm(R))4 · log2(k) ·max
i
|Ri| · |H(T (R))|+#Line[7− 16]) (18)

Note first that in lines 7 - 16 we loop over set Ci(Rη(i)) and select k points from it. Therefore #Line[7−16] = k+|Ci(Rη(i))|.
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Let us now bound the size of Ri. By line 7 of Algorithm G.2 either Algorithm G.2 is launched that terminates the program or
2i+2

ϵ + 2i+1 > d(q, λ). Let Ci be the ith cover set of T (R). To bound |Ri| we can assume the latter. Similarly to Theorem
4.9 we have:

Ri = {r ∈ Ci(Rη(i)) | d(p, q) ≤ d(q, λ) + 2i+2} (19)

= B̄(q, d(q, λ) + 2i+2) ∩ Ci(Rη(i)) (20)

⊆ B̄(q, d(q, λ) + 2i+2) ∩ Ci (21)

⊆ B̄(q, 2i+2(
3

2
+

1

ϵ
)) ∩ Ci (22)

Since the cover set Ci is a 2i-sparse subset of the ambient metric space X , we can apply Lemma 2.2 with t = 2i+2( 32 + 1
ϵ )

and δ = 2i. Since 4 t
δ + 1 = 24( 32 + 1

ϵ ) + 1 ≤ 24(2 + 1
ϵ ), we get max |Ri| ≤ (cm(R))4+⌈log2(2+

1
ϵ )⌉. The final complexity

is obtained by plugging the upper bound of |Ri| above into (18).

Corollary G.7 (complexity for approximate k-nearest neighbors set P). In the notations of Definition G.1, an approximate
k-nearest neighbors set is found for all q ∈ Q in time O

(
|Q| · (cm(R))8+⌈log(2+ 1

ϵ )⌉ · log(k) · log2(∆(R)) + |Q| · k
)
. ■

Proof. This corollary follows directly from Theorem G.6 .

H. Discussions: current contributions and future steps
This paper rigorously proved the time complexity of the exact k-nearest neighbor search. The motivations were the past gaps
in the proofs of time complexities in Beygelzimer et al. (2006a, Theorem 5), Ram et al. (2009, Theorem 3.1), March et al.
(2010, Theorem 5.1). Though Elkin & Kurlin (2022a) provided concrete counterexamples, no corrections were published.
Main Theorem 4.9 and Corollary 3.10 have finally filled the above gaps.

To overcome all past obstacles, first Definition 1.2 and Problem 1.3 rigorously dealt with a potential ambiguity of k-nearest
neighbors at equal distances, which was not discussed in the past work.

A new compressed cover tree in Definition 2.1 substantially simplified the navigating nets Krauthgamer & Lee (2004) and
original cover trees Beygelzimer et al. (2006a) by avoiding any repetitions of given data points. This compression has
substantially clarified the construction and search Algorithms E.2 and F.2.

Second, section C showed that the new minimized expansion constant cm of any finite subset R of a normed vector space Rn

has the upper bound 2m. In the future, it can be similarly shown that if R is uniformly distributed then classical expansion
constant c(R) is 2m as well.

Third, sections E and F corrected the approach of Beygelzimer et al. (2006a) as follows. Assuming that expansion constants
and aspect ratio of a reference set R are fixed, Corollaries 3.10 and F.9 rigorously showed that the times are linear in the
maximum size of R,Q and near-linear O(k log k) in the number k of neighbors.

The future problem is to improve the complexity of k-nearest neighbor search to a pure linear time O(c(R)O(1)|R| by using
cover trees on both sets Q,R. Since a similar approach Ram et al. (2009) was shown to have incorrect proof in Elkin &
Kurlin (2022a, Counterexample 6.5) and Curtin et al. (2015); Elkin & Kurlin (2022b) used additional parameters I, θ, this
goal will require significantly more effort to understand if O(c(R)O(1)|R|) is achievable by using a compressed cover tree.

Corollary F.9 allowed us to justify the near-linear time of generically complete PDD Widdowson & Kurlin (2021) invariants
(Pointwise Distance Distributions), which recently distinguished all (more than 660 thousand) periodic crystals in the
world’s largest database of real materials Widdowson et al. (2022). Due to these ultra-fast invariants, more than 200 billion
pairwise comparisons were completed over two days on a modest desktop while past tools were estimated to require over 34
thousand years Widdowson & Kurlin (2022). The huge speed of PDD is complemented by slower but provably complete
invariant isosets Anosova & Kurlin (2021) with continuous metrics that allow polynomial-time approximations Anosova &
Kurlin (2022).

44



A new compressed cover tree for k-nearest neighbors

For the purpose of open access, the authors applied a Creative Commons Attribution (CC BY) licence to any accepted
version.

45


