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Abstract
We study a variation of vanilla stochastic gradient
descent where the optimizer only has access to a
“Markovian sampling scheme”. These schemes
encompass applications that range from decentral-
ized optimization with a random walker (token
algorithms), to RL and online system identifica-
tion problems. We focus on obtaining rates of
convergence under the least restrictive assump-
tions possible on the underlying Markov chain
and on the functions optimized. We first unveil the
theoretical lower bound for methods that sample
stochastic gradients along the path of a Markov
chain, making appear a dependency in the hitting
time of the underlying Markov chain. We then
study Markov chain SGD (MC-SGD) under much
milder regularity assumptions than prior works.
We finally introduce MC-SAG, an alternative to
MC-SGD with variance reduction, that only de-
pends on the hitting time of the Markov chain,
therefore obtaining a communication-efficient to-
ken algorithm.

1. Introduction
In this paper, we consider a stochastic optimization problem
that takes root in decentralized optimization, estimation
problems, and Reinforcement Learning. Consider a function
f defined as:

f(x) = Ev∼π [fv(x)] , x ∈ Rd , (1)

where π is a probability distribution over a set V , and fv
are smooth functions on Rd for all v in V . Classicaly, this
represents the loss of a model parameterized by x on data
parameterized by v. If i.i.d. samples (vt)t⩾0 of law π and
their corresponding gradient estimates (∇fvt) were acces-
sible, one could directly apply SGD-like algorithms, that
have proved to be efficient in large scale machine learning
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problems (Bottou et al., 2018). We however consider in
this paper a different setting: we assume the existence of
a Markov chain (vt) of state space V and stationary dis-
tribution π. The optimizer may then use biased stochastic
gradients along the path of this Markov chain to perform
incremental updates. She may for instance use the Markov
chain SGD (MC-SGD) algorithm, defined through the fol-
lowing recursion:

xt+1 = xt − γ∇fvt(xt) . (2)

Being “ergodically unbiased”, such iterates should behave
closely to those of vanilla SGD. The analysis is however
notoriously difficult, since in (2), variable xt and the current
state of the Markov chain vt are not independent, so that
E [∇fvt(xt)|xt] can be arbitrarily far from ∇f(xt). This
paper focuses on analyzing algorithms that incrementally
sample stochastic gradients alongside the Markov chain
(vt), motivated by the following applications.

1.1. Token algorithms

Traditional machine learning optimization algorithms re-
quire data centralization, raising scalability and privavy
issues, hence the alternative of Federated Learning, where
users’ data is held on device, and the training is orchestrated
at a server level. Decentralized optimization goes further,
by removing the dependency over a central entity, leading
to increased scalability, privacy and robustness to node fail-
ures, broadening the range of applications to IoT (Internet
of Things) networks. In decentralized optimization, users
(or agents) are represented as nodes of a connected graph
G = (V, E) over a finite set of users V (of cardinality n).
The problem considered is then the minimization of

f(x) =
1

n

∑
v∈V

fv(x) , x ∈ Rd , (3)

where each fv is locally held by user v ∈ V , using only com-
munications between neighboring agents in the graph. There
are several known decentralized algorithmic approaches to
minimize f under these constrains. The prominent one con-
sists in alternating between communications using gossip
matrices (Boyd et al., 2006; Dimakis et al., 2010) and local
gradient computations, until a consensus is reached. These
gossip approaches suffer from a high synchronization cost
(nodes in the graph are required to perform simultaneous
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operations, or to be aware of operations at the other end
of the communication graph) that can be prohibitive if we
aim at removing the dependency on a centralized orchestra-
tor. Further, a high number of communications are required
to reach consensus, whether all nodes in the graph (as in
synchronous gossip) or only two neighboring ones (as in
randomized gossip) communicate at each iteration. To alle-
viate these communication burdens, based on the original
works of Lopes & Sayed (2007); Johansson et al. (2007;
2010), we study algorithms based on Markov chain SGD: a
variable x performs a random walk on graph G, and is incre-
mentally updated at each step of the random walk, using the
local function available at its location. This approach thus
boils down to the one presented above with the function
defined in (1), where V is the (finite) set of agents, π is the
uniform distribution over V , and (vt) is the Markov chain
consisting of the consecutive states of the random walk per-
formed on graph G. The random walk guarantees that every
communications are spent on updating the global model,
as opposed to gossip-based algorithms, where communica-
tions are used to reach a running consensus while locally
performing gradient steps.

These algorithms are referred to as token algorithms: a to-
ken (that represents the model estimate) randomly walks the
graph and performs updates during its walk. There are two
directions to design and analyze token algorithms. Johans-
son et al. (2007) designed and analyzed its algorithm using,
based on SGD with subdifferentials and a Markov chain
sampling (consisting of the random walk). Following works
(Duchi et al., 2011; Sun et al., 2018) tried to improve con-
vergence guarantees of such stochastic gradient algorithms
with Markov chain sampling, under various scenarii (mir-
ror SGD e.g.). However, all these analyses rely on overly
strong assumption: bounded gradients and/or bounded do-
mains are assumed, and the rates obtained are of the form
τmix/T +

√
τmix/T for a number T of steps, where τmix

is the mixing time of the underlying Markov chain. More
recently, Dorfman & Levy (2022) obtained similar rates
under similar assumptions (bounded losses and gradients),
but without requiring any prior knowledge of τmix, using
adaptive stepsizes.

A more recent approach consists in deriving token algo-
rithms from Lagrangian duality and from variants of coordi-
nate gradient methods or ADMM algorithms with Markov
chain sampling. Mao et al. (2020) introduce the Walkman
algorithm, whose analysis works on any graph, and obtain
rates of τ2

mixn
T to reach approximate-stationary points, while

Hendrikx (2022) introduced a more general framework, but
whose analysis only works on the complete graph (and is
thus equivalent to an i.i.d. sampling). Yet, Hendrikx (2022)
extend their analysis to arbitrary graph, by performing gradi-
ent updates every τmix steps of the random walk, obtaining
a a dependency on τmixn, making their algorithm state of

the art for these problems. Altenatively, Wang et al. (2022)
studies the algorithm stability of MC-SGD in order to de-
rive generalization upper-bounds for this algorithm, and Sun
et al. (2022) provides and studies adaptive token algorithms.
Recently, and concurrently to this work, Doan (2023) also
studies MC-SGD without smoothness; however, their de-
pendency on the mixing time of the random walk (in their
Theorem 1) scales as exp(cτmix): this is prohibitive as soon
as the mixing time becomes larger than O(1).

In summary, current token algorithms and their analyses
either rely on strong noise and regularity assumptions (e.g.
bounded gradients), or suffer from an overly strong depen-
dency on Markov chain-related quantities (as in (Mao et al.,
2020; Hendrikx, 2022)).

The token algorithms we consider are to be put in contrast
with consensus-based decentralized algorithms, or gossip
algorithms (with fixed gossip matrices (Dimakis et al., 2010)
or with randomized pairwise communications (Boyd et al.,
2006)). They originally were introduced to compute the
global average of local vectors through peer-to-peer com-
munication. Among the classical decentralized optimization
algorithms, some alternate between gossip communications
and local steps (Nedic & Ozdaglar, 2009; Koloskova et al.,
2019; 2020), others use dual formulations and formulate the
consensus constraint using gossip matrices to obtain decen-
tralized dual or primal-dual algorithms (Scaman et al., 2017;
Hendrikx et al., 2019; Even et al., 2021a; Kovalev et al.,
2021; Alghunaim & Sayed, 2019), and benefit from natu-
ral privacy amplification mechanisms (Cyffers et al., 2022).
Other approaches include non-symetric communication ma-
trices (Assran & Rabbat, 2021) that are more scalable. We
refer the reader to Nedic et al. (2018) for a broader survey on
decentralized optimization. The works we relate to in this
line of research are Koloskova et al. (2020), where a unified
analysis of decentralized SGD is performed (the “gossip
equivalent” of our algorithm MC-SGD), and in particular
contains rates for convex-non-smooth functions, and Yu et al.
(2019), that performs an analysis of decentralized SGD with
momentum in the smooth-non-convex case, which is the
“gossip equivalent” of our algorithm MC-SAG.

1.2. Reinforcement Learning problems and online
system identification

In several applications (RL, time-series analysis e.g.), a
statistician may have access to values (Xt)t⩾0 generated
sequentially along the path of a Markov chain, observa-
tions from which she wishes to estimate a parameter For
instance, Kowshik et al. (2021) consider a sequence of ob-
servations Xt+1 = A⋆Xt + ξt for ξt i.i.d. centered noise,
and A⋆ to estimate, and aim at finding Â minimizing the
MSE E

[∥∥∥∑t<T (Â−A⋆)X
∥∥∥] where X ∼ π is the sta-

tionary distribution. Studying this problem under the lens
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of stochastic optimization, this boils down to building effi-
cient strategis for SGD under Markov chain sampling, be-
yond the case of linear mean-squared regressions studied in
(Kowshik et al., 2021). While optimal offline policies have
extensively been studied in this setting (Jedra & Proutiere,
2019; Simchowitz et al., 2018), online algorithms that take
the form of SGD-like algorithms have received little atten-
tion, and only focus on the case of quadratic losses with
Markov chain as described above. However, these analyses
only focus on least squares and Markov chains of the form
Xt+1 = A⋆Xt + ηt. Under these specific assumptions,
Nagaraj et al. (2020) prove that a dependency on τmix for
MC-SGD is inevitable, while using reverse-experince replay,
Kowshik et al. (2021) breaks this and obtain sample-optimal
online algorithms. Their algorithm however require to store
a number of iterates that grow linearly with τmix.

The convergence guarantees we prove in the sequel for SGD
under Markov chain sampling fit in this online framework,
and refine previous analyses by removing strong regularity
assumptions such as bounded iterates or bounded gradients
(Sun et al., 2018), or strong assumptions on the Markovian
structure data and least-squares problems (Nagaraj et al.,
2020; Kowshik et al., 2021).

Finally, note that in our setting, the iterates of the algo-
rithms considered (denoted as (xk)k⩾0) and the Markov
chain (vk)k⩾0 are dependent of each other. More precisely,
(vk)k⩾0 is a Markov chain whose states do not depend on the
iterate sequence, while xk is (vℓ)ℓ⩽k−1-measurable. This
setting is sometimes referred to as exogenous Markov noise
(Rust, 1986). Another line of works, pioneered by (Ben-
veniste et al., 1990), considers Markov transitions for (vk)
where vk+1|vk is sampled using a Markov transition ker-
nel Px0,...,xk−1

that is directly linked to the iterates. This
orthogonal line of work of stochastic approximation with
Markovian noise is related to sampling (through the MCMC
algorithm), adaptive filtering, and other related problems
that involve exploration (Brown & Rutan, 1985; Andrieu
et al., 2005; Andrieu & Moulines, 2006; Fort et al., 2016;
Blanke & Lelarge, 2023). Our work aims at finding pre-
cise rates of convergence as in the convex or non-convex
optimization literature (Bubeck, 2015; Carmon et al., 2021),
under the mildest assumptions on the exogenous Markov-
chain (vk)k⩾0.

Before unrolling our results, we start by reminding defini-
tions and results related to Markov chain theory in Section 2,
before presenting our contributions in Section 3

2. Markov chains preliminaries
We refer the interested reader to Levin et al. (2006) for a
thorough introduction to Markov chain theory. In this sec-
tion, we define mixing, hitting and cover times for a Markov

chain on a finite space set V of cardinality n. However, note
that these definitions can be extended to the more general
setting where V is infinite (either countable or not). We
focus on Markov chain on finite state spaces, but note that
the mixing time of a Markov chain can similarly be defined
on inifinite state spaces (countable and continuous state
spaces). In this paper, all results that involve only the mix-
ing time of the Markov chain (the results from Section 5)
easily generalize to infinite state spaces.
Definition 2.1. Let P ∈ RV×V be a stochastic matrix
(i.e. Pv,w ⩾ 0 for all v, w ∈ V and

∑
w∈V Pv,w = 1 for all

v ∈ V). A time-homogeneous Markov chain on V of transi-
tion matrix P is a stochastic process (Xt)t⩾0 with values in
V such that, for any t ⩾ 0 and w, v0, . . . , vt−1, v ∈ V ,

P (Xt+1= w|Xt=v,Xt−1=vt−1, . . . , X0=v0) = Pv,w .

A Markov chain of transition matrix P is irreducible if, for
any v, w ∈ V , there exists t ⩾ 0 such that (P t)vw > 0. A
Markov chain of transition matrix P is aperiodic if there ex-
ists t0 > 0 such that for all t ⩾ t0 and v, w ∈ V , (P t)v,w >
0. Any irreducible and aperiodic Markov chain on V admits
a stationary distribution π, that verifies πP = π. It finally
holds that, if P is reversible (πvPv,w = πwPw,v for all
v, w ∈ V), denoting as λP = 1−maxλ∈Sp(P )\{1} |λ| > 0
the absolute spectral gap of P , where Sp(P ) is the spectrum
of P , for any stochastic vector π0 ∈ RV : 1∥∥π0P

t − π
∥∥
π
⩽ (1− λP )

t∥π0 − π∥π .

If the chain is not reversible, there is still a linear decay,
but in terms of total variation distance rather than in the
norm ∥·∥π (Chapter 4.3 of Levin et al. (2006)). In the
sequel, (vt)t⩾0 is any irreducible aperiodic Markov chain
of transition matrix P on V of stationary distribution π (not
necessarily the uniform distribution on V).

Furthermore, we define the graph G = (V, E) over the state
space V through the relation {v, w} ∈ E ⇐⇒ Pv,w > 0
for v and w two distinct states. Consequently, the Markov
chain (vt)t can also be seen as a random walk on graph
G, with transition probability P . In the random walk de-
centralized optimization case, this graph coincides with
the communication graph. In the sequel, for t ⩾ 0 and
v ∈ V , E [·|vt = v] and P (·|vt = v) respectively denote
the expectation and probability conditioned on the event
vt = v. Similarly for πt a probability distribution on V ,
E [·|vt ∼ πt] and P (·|vt ∼ πt) refers to conditioning on the
law of vt.
Definition 2.2 (Mixing, hitting and cover times). For
w ∈ V , let τw = inf {t ⩾ 1 | vt = w} be the time the chain
reaches w (or returns to w, in the case v0 = w). We define
the following quantities.

1we write ∥z∥2π =
∑

v∈V πvz
2
v for z ∈ RV , and ∥·∥ always

stands for the Euclidean norm
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1. Mixing time. For ε > 0, the mixing time τmix(ε) of (vt)
is defined as, where dTV is the total-variation distance:

τmix(ε) = inf
{
t ⩾ 1 | ∀π0 ,dTV(P

tπ0, π) ⩽ ε
}
,

and we define the mixing time τmix as τmix =
τmix(πmin/2)

2 where πmin = minv∈V πv .

2. Hitting and cover times. The hitting time τhit and cover
time τcov of (vt) are defined as:

τhit = max
(v,w)∈V2

E [τw|v0 = v] ,

τcov = max
v∈V

E
[
max
w∈V

τw|v0 = v

]
.

The mixing time is the number of steps of the Markov chain
required for the distribution of the current state to be close
to the stationary probability π. Starting from any arbitrary
v0, the hitting time bounds the time it takes to reach any
fixed w, while the cover time bounds the number of steps
required to visit all the nodes in the graph.

Note that if the chain is reversible, τmix(ε) is closely re-
lated to λP through τmix(ε) ⩽ ⌈λ−1

P ln(π−1
minε

−1)⌉. Un-
der reversibility assumptions, we defined the relaxation
time of the Markov chain as τrel = 1/λP . More gener-
ally without reversibility, τmix(ε) ⩽ ⌈log2(1/ε)⌉τmix(1/4).
Then, as we prove in Appendix A, τhit always satisfies
τhit ⩽ 2π−1

minτmix. Finally, using Matthews (1988)’ method
(detailed in Chapter 11.4 of Levin et al. (2006)), we have
τcov ⩽ ln(n)τhit.

3. Contributions
In our paper, we analyze theoretically stochastic gradient
methods with Markov chain sampling (such as MC-SGD
in Equation (2)), and aim at deriving complexity bounds
under the mildest assumptions possible. We first derive
in Section 4 complexity lower bounds for such methods,
making appear τhit as the Markov chain quantity that slows
down such algorithms.

We then study MC-SGD under various regularity assump-
tions in Section 5: we remove the bounded gradient as-
sumption of all previous analyses, obtain rates under a µ-PL
assumption, and prove a linear convergence in the interpola-
tion regime, where noise and function dissimilarities only
need to be bounded at the optimum.

In the data-heterogeneous setting (functions fv that can be
arbitrarily dissimilar) and in the case where V (the state

2this definition of mixing time is not standard: Levin et al.
(2006) define it as τmix(1/4), Mao et al. (2020) define it as we do;
however, as explained in Chapter 4.5 of Levin et al. (2006), these
definitions are equivalent up to a factor ln(1/πmin)

space of the Markov chain) is finite, we introduce MC-
SAG in Section 6, a variance-reduced alternative to MC-
SGD, that is perfectly suited to decentralized optimization.
Using time adaptive stepsizes, this algorithm has a rate of
convergence of τhit/T and thus matches that of our lower
bound, up to acceleration.

We discuss in Section 7 the implications of our results. In
particular, we prove that random-walk based decentraliza-
tion is more communication efficient than consensus-based
approaches; prior to our analysis, this was only shown em-
pirically (Mao et al., 2020; Johansson et al., 2010). Further,
our results formally prove that using all gradients along
the Markov chain trajectory leads to faster rates; as in the
previous case, this was only empirically observed before
(Sun et al., 2018). These two consequences are derived
from the fact that MC-SAG depends only on τhit rather than
the traditionally used quantity nτmix, that can be arbitrarily
bigger (Table 2).

4. Oracle complexity lower bounds under
Markov chain sampling

In this section, we provide oracle complexity lower bounds
for finding stationary points of the function f defined in (3),
for a class of algorithms that satisfy a “Markov sampling
scheme”. For a given Markov chain (vt) on V , we consider
algorithms verifying the following procedural constraints,
for some fixed initializationM0 = {x0} an then for t ⩾ 0,

1. A iteration t, the algorithm has access to function fvt
and may extend its memory:

Mt+1 = Span({x , ∇fvt(x) , x ∈Mt}) .

2. Output: the algorithm specifies an output value xt ∈
Mt.

We call algorithms verifying such constraints “black box
procedures with Markov sampling (vt)”. Such procedures
as well as the result below are inspired by the distributed
black-box procedures defined in Scaman et al. (2017). We
use the notation a(·) = Ω(b(·)) for ∃C > 0 such that
a(·) ⩾ Cb(·) in the theorem below, and classically consider
the limiting situation d→∞, by assuming we are working
in ℓ2 =

{
(θk)k∈N ∈ RN :

∑
k θ

2
k <∞

}
.

Theorem 4.1. Assume that τv (see Definition 2.2) has finite
second moment for any v ∈ V . Let ∆, B > 0, L > 0 and
µ > 0, denote κ = L/µ. Let x0 be fixed.

1. Non-convex lower bound: there exist functions
(fv)v∈V such that f =

∑
v∈V πvfv is L-smooth, and

f(x0)−minx f(x) ⩽ ∆ and such that for any T and
any Markov black-box algorithm that outputs xT after
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T steps, we have:

∥∇f(xT )∥2 = Ω

(
L∆

(τhit
T

)2)
.

2. Convex lower bound: there exist functions (fv)v∈V
such that f =

∑
v∈V πvfv is convex and L-smooth and

minimized at some x⋆ that verifies
∥∥x0 − x⋆

∥∥2 ⩽ B2,
and such that for any T and any Markov black-box
algorithm that outputs xT after T steps, we have:

f(xT )− f(x⋆) = Ω

(
LB2

(τhit
T

)2)
.

3. Strongly convex lower bound: there exist functions
(fv)v∈V such that f =

∑
v∈V πvfv is µ-strongly con-

vex and L-smooth and minimized at some x⋆ that ver-
ifies

∥∥x0 − x⋆
∥∥2 ⩽ B2, and such that for any T and

any Markov black-box algorithm that outputs xT after
T steps, we have:

f(xT )− f(x⋆) = Ω

(
LB2 exp

(
− T√

κτhit

))
.

A complete proof can be found in Appendix B. The hitting
time of the Markov chain bounds, starting from any point in
V , the mean time it takes to reach any other state in the graph.
Making no other assumptions than smoothness, having rates
that depend on this hiting time is thus quite intuitive.

5. Analysis of Markov-Chain SGD
We have shown in last subsection that, in order to reach an
ε-stationary point with Markov sampling, the optimizer is
slowed down by the hitting time of the Markov chain; this
lower bound being worst-case on the functions (fv), we here
add additional similarity assumptions, that are still milder
than classical ones in this setting (Sun et al., 2018).Studying
the iterates generated by (2), we obtain in this section a
dependency on τmix, provided bounded gradient dissimilari-
ties (Assumptions 5.1 and 5.4).

We here assume that (vt)t⩾0 is a Markov chain on V of
invariant probability π (not necessarily the uniform measure
on V). In this section, the function f studied is defined as

f(·) = Ev∼π[fv(·)] ,

as in (1). Consequently, for the MC-SGD algorithm for
decentralized optimization over a given graph G to minimize
the averaged function over all nodes (as in (3)), π needs to
be the uniform probability over V .

We first derive convergence rates under smoothness assump-
tions with or without a µ-PL inequality that holds, before
improving our results under strong convexity assumptions,

under which we prove a linear convergence rate in the inter-
polation regime. We finally add local noise (due to sampling,
or additive gaussian noise to enforce privacy) in the final
paragraph of this Section.

5.1. Analysis under bounded gradient dissimilarities

Assumption 5.1. There exists (σ2
v)v∈V such that for all

v ∈ V and all x ∈ Rd, we have3:

∥∇fv(x)−∇f(x)∥2 ⩽ σ2
v ,

and we denote σ̄2 = Ev∼π

[
σ2
v

]
and σ2

max = maxv∈V σ2
v .

Assumption 5.2. Each fv is L-smooth, f is lower bounded,
its minimum is attained at some x⋆ ∈ Rd.
Theorem 5.3 (MC-SGD). Assume that Assumptions 5.1
and 5.2 hold, and let ∆ ⩾ f(x0)− f(x⋆) + σ2

max/L.

1. For a constant time-horizon dependent step size γ (i.e.,
γ is a functiion of T ), the iterates generated by Equa-
tion (2) satisfy, for T ⩾ 2τmix ln(τmix): 4

E∥∇f(x̂T )∥2=Õ
(
∆Lτmix

T
+

√
L∆σ̄2τmix + σ̄2

√
T

)
,

where x̂T is drawn uniformly at random amongst
x0, . . . ,xT−1.

2. If f additionally verifies a µ-PL inequality (for any x ∈
Rd, ∥∇f(x)∥2) ⩾ 2µ(f(x)− f(x⋆))), for a constant
time-horizon dependent step size γ, the iterates gener-
ated by Equation (2) satisfy, for T ⩾ 2τmix ln(τmix)
a numerical constant c > 0, and κ = L/µ, with
FT = E [f(xT )− f(x⋆)]:

FT ⩽ e
− cT

κτmix ln(T )∆+ Õ
(
τmixσ̄

2

µT

)
,

Theorem 5.3 is proved in Appendix C, by enforcing a delay
of order τmix and relying on recent analyses of delayed
SGD and SGD with biased gradients. As explained in
the introduction, removing the bounded gradient assump-
tion present in previous works (Johansson et al., 2010;
Sun et al., 2018; Duchi et al., 2011) that study Markov
chain SGD (in the mirror setting, or with subdifferentials),
and replacing it by a much milder and classical assump-
tion of bounded gradient dissimilarities (Karimireddy et al.,
2020), we thus still managed to obtain similar rates. Fur-
ther, if f verifies a µ-PL inequality (if for any x ∈ Rd,
∥∇f(x)∥2) ⩾ 2µ(f(x) − f(x⋆))), we have an almost-
linear rate of convergence: this is the first rate under µ-PL or
strong convexity assumptions for MC-SGD-like algorithms,
that we even refine further in next subsection.

3this assumption could be replaced by a more relaxed noise
assumption of the form ∥∇fv(x)−∇f(x)∥2 ⩽ M∥∇f(x)∥2 +
σ2
v

4Õ hides logarithmic factors
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5.2. Tight rates and linear convergence in the
interpolation regime

We now study MC-SGD under the following assumptions,
to derive faster rates, that only depend on the sampling noise
at the optimum. The interpolation regime – often related to
overparameterization – refers to the case where there exists
a model x⋆ ∈ Rd minimizing all fv for v ∈ V , leading to
σ2
⋆ = 0 in Assumption 5.5, and to a linear convergence rate

below.
Assumption 5.4. Functions fv are L-smooth and µ-strongly
convex. We denote κ = L/µ.
Assumption 5.5 (Noise at the optimum). Let x⋆ be a mini-
mizer of f . We assume that for some σ⋆ ⩾ 0, we have for
all v ∈ V:

∥∇fv(x⋆)∥2 ⩽ σ2
⋆ .

Theorem 5.6 (Unified analysis). Under Assumptions 5.4
and 5.5, the sequence generated by (2) satisfies, if γL < 1:

E
[
∥xT − x⋆∥2

]
⩽ 2(1− γµ)T ∥x0 − x⋆∥2

+ 2
γ3TL

µ

∑
0⩽s⩽T

(1− γµ)T−sE


∥∥∥∥∥∥
∑

s⩽t<T

∇fvt(x⋆)

∥∥∥∥∥∥
2
 .

In the interpolation regime, ∇fv(x⋆) = 0 for all v ∈ V , so
that:

E
[
∥xT − x⋆∥2

]
⩽ 2(1− γµ)T ∥x0 − x⋆∥2 .

The result in Theorem 5.6 is in fact true irrespectively of the
sequence (vt) chosen: it does not require (vt) to specifically
be a Markov chain. This property is used in the next Corol-
lary, that also highlights the fact that by studying distance to
the optimum, a condition number is lost in the process. This
is the case in many previous analyses of other different algo-
rithms (e.g., Bregman/Mirror-SGD (Dragomir et al., 2021)
or SGD with random-resfhuffling (Mishchenko et al., 2020),
which is in fact a particular instance of MC-SGD, that our
analysis recovers), that study distances to the optimum (with
respect to some mirror map, in the case of Mirror SGD),
and therefore obtain an extra κ factor in the noise term.
Theorem 5.6 is proved by generalizing the proof technique
of (Mishchenko et al., 2020) to arbitrary orderings and for
unbounded time horizons.
Remark 5.7 (Random resfhuffling). A special case of The-
orem 5.6 is SGD with random reshuffling. By analyzing
SGD with random-reshuffling as SGD with a Markovian
ordering (on an extended state space), Theorem 1,2 also
recover rates for SGD with random reshuffling for which
we have τmix = n. Moreover, since Theorem 5.6 gener-
alizes Theorem 1 of (Mishchenko et al., 2020), we also
recover their rate as a special case by bounding each term

E
[∥∥∥∑s⩽t<T ∇fvt(x⋆)

∥∥∥2].

We specify Theorem 5.6 under a Markovian sampling
scheme in next corollary: the noise term at the optimum
takes the form τmix/T .

Corollary 5.8 (MC-SGD, interpolation). Under Assump-
tions 5.4 and 5.5, for T ⩾ 1 and for a well chosen stepsize
γ > 0, the iterates generated by (2) satisfy:

E
[
∥xT − x⋆∥2

]
⩽ 2e−

T
κ ∥x0 − x⋆∥2

+ Õ

(
Lτmix

(
1
4

)
σ2
⋆

µ3T

)
.

This result is stronger than Theorem 5.3.2, for (i) noise am-
plitude and gradient dissimilarities only need to be bounded
at the optimum; (ii) the “optimization term” (the first one)
is not slowed down by the mixing time. This comes at the
cost of strong convexity assumptions, stronger than a µ-PL
inequality for f . The term τmixσ⋆

T cannot be removed in
the general case, as next proposition shows. Hence, since
the two other terms have optimal dependency in terms of
Markov-chain and noise related quantities, our analysis ends
up being sharp.

Corollary 5.6 together with the following proposition are
an extension of Nagaraj et al. (2020), who proved similar
results for MC-SGD with constant stepsize on least square
problems on Markovian data of a certain form (for linear
online system identification).

Proposition 5.9. For any V (such that |V| ⩾ 2) and τ >
1, there exists a Markov chain on V of relaxation time τ ,
functions (fv)v∈V and x0 ∈ Rd such that given any stepsize
γ, the iterates of Equation (2) output xT for any T > 0
verifying ∥xT − x0∥2 = Ω̃(τσ2

⋆/T ), and the assumptions
of Theorem 5.6 hold.

5.3. MC-SGD with local noise

In the two previous subsections, we analyzed SGD with
Markovian sampling schemes, where the stochasticity only
came from the Markov chain (vk)k⩾0. We now general-
ize the analysis and results to SGD with both Markovian
sampling, and local noise, by studying the sequence:

xt+1 = xt − γtgt . (4)

We now formulate the form stochastic gradients gt can take.

Assumption 5.10. For all v ∈ V , the function fv satisfies
fv(x) = E [Fv(x, ξv)] for all x ∈ Rd, where ξv ∼ Dv.
Furthermore, there exists a Markov-chain (vt)t⩾0 such that
for all t ⩾ 0,

gt = ∇xFvt(xt, ξt) ,

where ξt ∼ Dvt |vt is independent from v0, . . . , vt−1 and
ξ0, . . . , ξt−1.

6
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A direct consequence of Assumption 5.4 is that
E [gt|xt, vt] = ∇fvt(xt). Two main applications of As-
sumption 5.4 are:

1. Local sampling. If fv(x) = 1
m

∑m
i=1 fv,i(x) (agent v

has m local samples), agent m may use only a batch
B ⊂ [m] of its samples, leading to stochastic gradients
gt in (4) of the form:

gt =
1

|Bt|
∑
i∈Bt

∇fvt,i(xt) ,

for random batches (Bt)t⩾0.

2. Differential privacy. Adding local noise (e.g., additive
Gaussian random noise) enforces differential privacy
under suitable assumptions. A private decentralized to-
ken algorithm is then Differentially Private MC-SGD
(DP-MC-SGD), with iterates (4) where gt satisfies

gt = ∇fvt(xt) + ηt , (5)

where (vt) is the Markov chain (random walk per-
formed by the token on the communication graph), and
ηt ∼ N (0, σ2

t Id) is sampled independently from the
past, to enforce differential privacy.

Under Assumption 5.4, a direct generalization of Theo-
rem 5.6 and Corollary 5.8 is the following.

Theorem 5.11 (MC-SGD with local noise). Assume that As-
sumptions 5.10,5.5 holds, each Fv(·, ξ) is µ-strongly convex
L-smooth, and there exists σ2

local such that:

E
[
∥gt −∇fvt(xt)∥2|xt, vt

]
⩽ σ2

local .

Then, for a well chosen γ > 0, the iterates generated by (4)
satisfy:

E
[
∥xT − x⋆∥2

]
⩽ 2e−

T
κ ∥x0 − x⋆∥2

+ Õ
(

L

µ3T

(
σ2
local + τmix

(1
4

)
σ2
⋆

))
.

Importantly, and as one would have expected, local noise
is not impacted by the mixing time of the underlying ran-
dom walk. While we did not pursue in this direction, this
observation could easily be made under other regularity as-
sumptions, and such a result would hold for instance under
the assumptions of Theorem 1 or 2. While Differentially
Private MC-SGD sounds appealing for performing decen-
tralized and differentially private optimization, we here only
provided a utility analysis, the privacy analysis being left
for future works.

Algorithm 1 Markov Chain SAG (MC-SAG)

1: Input: x0 ∈ Rd, hv ∈ Rd for v ∈ V and h̄0 ∈ Rd,
stepsizes γt > 0, v0 ∈ V

2: for t = 0, 1, . . . do
3: Compute ∇fvt(xt)
4: h̄t+1 = h̄t +

1
n

(
∇fvt(xt)− hvt

)
5: xt+1 = xt − γth̄t+1

6: hvt ←− ∇fvt(xt)
7: Sample vt+1 ∼ Pvt,·
8: end for

6. Analysis of Markov-Chain SAG
After providing convergence guarantees for the most natu-
ral algorithm (MC-SGD) under a Markov chain sampling
on the set V , we prove that one can achieve a rate of or-
der 1/T (rather than the 1/

√
T previously obtained) in the

smooth setting, by applying the variance reduction tech-
niques present in Schmidt et al. (2017), that first introduced
the Stochastic Averaged Gradient algorithm, together with
a time-adaptive stepsize policy described below. Our faster
rate with variance reduction leads of a dependency on τhit
instead of τmix; since we do not make any other assumption
other than smoothness, this is unavoidable in light of our
lower bound (Theorem 4.1).

MC-SAG The MC-SAG algorithm is described in Algo-
rithm 1. The recursion leading to the iterate xt can then be
summarized as, for stepsizes (γt)t⩾0, under the initializa-
tion hv = ∇fv(x0) and h̄ = ∇f(x0):

xt+1 = xt −
γt
n

∑
v∈V
∇fv(xdv(t)) , (6)

where for v ∈ V , we define dv(t) = sup {s ⩽ t | vs = v}
as the last previous iterate at which v was the current state of
the Markov chain. By convention, if the set over which the
supremum is taken is empty, we set dv(t) = 0. We handle
both the initialization described just above for hv, h̄ and
arbitrary initialization in our analysis below.

In the same way that MC-SGD reduces to vanilla SGD if (vt)
is an i.i.d. uniform sampling over V , MC-SAG boils down
to the SAG algorithm (Schmidt et al., 2017) in that case and
under the initialization hv = ∇fv(x0) and h̄ = ∇f(x0).
In a decentralized setting, nodes keep in mind their last
gradient computed (variable hv at node v). At all times,
h̄t is an average of these hv over the graph, and is, in the
same way as xt, updated along the random walk. The MC-
SAG algorithm is thus perfectly adapted to decentralized
optimization.

Time-adaptive stepsize policy To obtain our convergence
guarantees, a time-adaptive stepsize policy (γt) is used, as
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in Asynchronous SGD (Mishchenko et al., 2022) to obtain
delay-independent guarantees. For t ⩾ 0, let the stepsize γt
be defined as:

γt =
1

2L
(
τhit +maxv∈V(t− dv(t))

) . (7)

Denoting τt = maxv∈V(t − dv(t)), this quantity can be
tracked down during the optimization process. Indeed, if
agent vt receives τt−1 together with (xt, h̄t), she may com-
pute τt as:

τt = max
(
τt−1 + 1 , t− dvt(t)

)
,

where t− dvt(t) is the number of iterations that took place
since the last time the Markov chain state was vt. Hence, if
agents keep track of the number of iterations, the adaptive
stepsize policy (7) can be used in Algorithm 1, as long as
agent vt sends (τt, t) to vt+1, yielding the following result.

We now present the convergence results for MC-SAG. (vt)
is in this section assumed to be a Markov chain on V of
finite hitting time τhit. Importantly, the next Theorem does
not require any additional assumption on (vt) such as re-
versibility, or even that it has a stationary probability that is
the uniform distribution: the non-symmetric but easily im-
plementable transition probabilities Pv,w = 1/(dv + 1) for
w = v or w ∼ v can be used here, as well as non-reversible
random walks than can have much smaller mixing and hit-
ting times. The function f studied is here independent of
the Markov chain, and is defined as in (3), the uniformly
averaged function over all states v ∈ V (or over all agents
in the network).

Theorem 6.1 (MC-SAG). Assume that Assumption 5.2
holds and that the Markov chain has a finite hitting time
(for an arbitrary invariant probability).

1. Under the initialization:

hv = ∇fv(x0) ,

h̄ = ∇f(x0) ,

using the adaptive stepsize policy defined in Equa-
tion (7), the sequence generated by Algorithm 1 satis-
fies, for any T > 0:

E
[
min
t<T
∥∇f(xt)∥2

]
⩽ 8L

(
f(x0)−f(x⋆)

)τhit ln(n)
T

.

2. Under any arbitrary initialization that satisfies h̄ =
1
n

∑
v∈V hv , using the adaptive stepsize policy defined

in Equation (7), the sequence generated by Algorithm 1
satisfies, for any T > 0:

E
[
min
t<T
∥∇f(xt)∥2

]
⩽ 16L∆

τhit ln(n)

T
,

where

∆ = f(x0)− f(x⋆) +
1

8n

∑
v∈V
∥∇fv(x0)− hv∥2 .

Theorem 6.1 is proved in Appendix 6.1. Up to the loga-
rithmic factor in n, the rates in Theorem 6.1 are the non-
accelerated versions of the lower-bound in Theorem 4.1.

7. Discussion of our results
7.1. Communication efficiency: comparison of our

results with consensus-based approaches

We summarize the communication efficiencies in Table 1
(in terms of total number of communications required to
reach an ε-stationary point), of classical gossip-based decen-
tralized gradient methods (non-accelerated, since no accel-
erated method is known under our regularity assumptions).
We consider the algorithm of (Yu et al., 2019) (decentralized
SGD with momemtum, state of the art decentralized gossip-
based algorithm for this problem) with fixed communication
matrix W on the graph G together with the Walkman algo-
rithm (Mao et al., 2020) and our algorithms, for a Markov
chain with transition matrix P . For the sake of comparison,
we take as gossip matrix W = P .Consequently as shown in
Table 1, our algorithm (MC-SAG) always outperforms non-
accelerated gossip-based decentralized gradient descent
algorithms in terms of number of communications required
to reach ε-stationary points. Note that we do not claim
the “overall superiority” of our approach over classical de-
centralized optimization algorithms (the latter benefit from
parallelization while ours do not), but a superiority in terms
of communication efficiency.

Table 1: Number of communications required (# comm.
below) to obtain an ε-stationary point x (verifying
∥∇f(x)∥2 ⩽ ε). Logarithmic/constant factors hidden.

A B Our work

# comm. ε−1|E|τmix ε−1nτ2mix

ε−2τmix
c

ε−1τhit
d

A: (Yu et al., 2019).
B: (Mao et al., 2020).
c MC-SGD under Assumption 5.1.
d MC-SAG.

The dependency on the quantity τhit we obtain (under no
other assumptions than smoothness) is always better than
the dependency on nτmix of previous works (using gossip
communications or a random walker), since τhit ⩽ 2nτmix

always holds. As illustrated in Table 2 on some known
graphs, this inequality is rather loose when the connectiv-
ity decreases (i.e. the mixing time increases), so that the
speedup our results lead to is even more effective on ill-
connected graphs; the difference between the two can scale
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Table 2: Hitting and mixing times of some known graphs,
for the simple random walk.

Cycle d-dim. torus Complete graph

τhit O(n2) O(n1+ 1
d ) O(n)

nτmix O(n3) O(n1+ 2
d ) O(n)

up to a factor n. In fact, we prove in Appendix A that for
d-regular and symetric graphs, we have:

τhit ⩽
2|E|Diam(G)

d
,

where Diam is the diameter of G. The dependency nτ2mix

obtained in (Mao et al., 2020) (the only work that does not
make bounded gradient assumptions) is prohibitive when
graph connectivity decreases (n3 on the grid, n5 on the cy-
cle). Our analysis does not rely on a reversibility assumption
of the Markov chain, so that non symetric random walks
can be used, therefore accelerating mixing; on the cycle for
a non-symmetric random walk for instance, the hitting time
decreases to O(n).

7.2. Using all gradient along the trajectory of (vt) is
provably more efficient

Sun et al. (2018) empirically motivated through empirical
evidence the use of all gradients ∇fvt sampled along the
trajectory of the Markov chain rather than waiting for the
chain to mix before every stochastic gradient step in order
to mimic the behavior of vanilla SGD. However, their rates
(as well as those of (Johansson et al., 2010; Duchi et al.,
2011) and ours for MC-SGD) are functions of S = T/τmix,
and of order 1/S + 1/

√
S. These are exactly what one

would obtain, by waiting for τmix steps of the chain in or-
der to have an approximate uniform sampling before each
update! Consequently, there are no theoretical ground or
evidence for using all the gradients along the trajectory of
the Markov chain with these results, other than by doing
so, one does not do worse than waiting for the chain to mix
to mimic vanilla SGD. This is exactly the approach taken
by Hendrikx (2022): a gradient step is performed every
τmix random walk steps. This is where MC-SAG and its
guarantees that depend on T/τhit come in place. Under
our assumptions, the rate of SAG for finding approximate
stationary points when waiting for the chain to mix before
using a stochastic gradient is of order n/S = nτmix/T
where S = T/τmix is the number of stochastic gradients
used. We obtain τhit/T instead: hence, in cases where
τhit = o(nτmix), using all stochastic gradients along the
trajectory of the Markov chain - instead of waiting for mix-
ing before performing a stochastic gradient step - provably
helps. Hence, we here provided a realistic scenario where

using all stochastic gradients proves to accelerate the rate;
this was previously noticed in another setting with RER-
SGD (SGD with reverse-experience replay, (Kowshik et al.,
2021)).

7.3. Running-time complexity and robustness to
“stragglers”

The total time it takes to run random walk-based decen-
tralized algorithms depends on Tv→w, the time it takes to
compute a gradient at v, and then the communication time
to send it to w. Using ergodicity of the Markov chain, the
time timeMC(T ) it takes to run MC-SAG or MC-SGD for
T iterations verifies:

timeMC(T )

T
→

∑
(v,w)∈V2

πvPv,wTv→w ,

where the limit is a weighted sum of the local computa-
tion/communication times, with weights summing to 1.
Random-walk based decentralized algorithms are therefore
robust to slow edges or nodes (“stragglers”), a property
that synchronous gossip algorithms do not verify (their
time complexity depends on maxv,w Tv→w), while study-
ing asynchronous gossip is notoriously difficult (Even et al.,
2021b).

Numerical illustration of our theory We present in Ap-
pendix G two experiments on synthetic problems, com-
paring MC-SAG and MC-SGD to gossip-based and token
baselines. We consider two settings (a well-connected graph
with homogeneous functions, an ill-connected graph with
heterogeneous functions) in an effort to illustrate how these
two difficulties (graph connectivity and data-heterogeneity)
are both bypassed by the MC-SAG algorithm.

Conclusion Without variance reduction and under
bounded data-heterogeneity assumptions, SGD under MC
sampling is slowed down by a factor τmix, due to increased
sampling variance. Using variance-reduction techniques,
we obtain faster rates, that depend on τhit rather than nτmix,
which one would have expected by directly extending known
results in the i.i.d. setting to our MC sampling schemes.
Leveraging such a dependency yields a fast token algorithm
(MC-SAG), robust to both ill-connectivity of the graph and
data-heterogeneity.
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A. Preliminary results
A.1. Mixing time and relaxation time, mixing time and hitting time

We first begin by the two following lemmas. The first one is very classical, and bounds the mixing time in terms of 1/λP , in
the case where the chain is reversible; we provide a proof for completeness. Note that if the chain is reversible, we still have
a linear decay (Levin et al., 2006). The second lemma we provide bounds the hitting time of the Markov chain with the
mixing time. This result is somewhat less classical, and is not present in the classical Markov chain literature surveys.
Lemma A.1 (τmix and λP ). For any ε > 0, if the chain is reversible:

τmix(ε) ⩽

⌈
1

λP
ln(ε−1π−1

min)

⌉
,

so that τmix ⩽
⌈

1
λP

ln(π−2
min/2)

⌉
.

Proof. We have:

dTV(P
tπ0, π) =

1

2

∑
w∈V
|(P tπ0)w − πw|

⩽
1

2πmin

∑
w∈V

πw|(P tπ0)w − πw|

⩽
1

2πmin

√
∥P tπ0 − π∥2π

⩽
(1− λP )

t

2πmin
∥π0 − π∥π

⩽
(1− λP )

t

πmin
,

so that |(P t)v,w − πw| ⩽ ε for t ⩾ λ−1
P ln(π−1

minε
−1/2).

Lemma A.2 (Mixing times and hitting times).
τhit ⩽ 2π−1

minτmix ,

so that if π is the uniform distribution over V , τhit ⩽ 2nτmix.

Proof. for any v, w ∈ V ,

E [τw|v0 = v] =
∑
k⩾1

P (τw ⩾ k|v0 = v)

⩽
∑
ℓ⩾0

P (τw > ℓτmix|v0 = v) .

Then, for ℓ ⩾ 0,

P (τw > (ℓ+ 1)τmix|v0 = v) = P (τw > (ℓ+ 1)τmix|τw > ℓτmix, v0 = v)P (τw > ℓτmix|v0 = v) ,

and, conditioning on vℓτmix
, P (τw > (ℓ+ 1)τmix|τw > ℓτmix, vℓτmix

) ⩽ P
(
v(ℓ+1)τmix ̸= w|vℓτmix

)
. By definition of τmix,

we have that P
(
v(ℓ+1)τmix ̸= w|vℓτmix

)
⩽ (1− πw/2), so that:

P (τw > (ℓ+ 1)τmix|v0 = v) ⩽ (1− πw/2)P (τw > ℓτmix|v0 = v) ,

and P (τw > ℓτmix|v0 = v) ⩽ (1− πw/2)
ℓ by recursion. Finally,

E [τw|v0 = v] ⩽ τmix

∑
ℓ⩾0

(1− πw/2)
ℓ

⩽
2τmix

πw
,

concluding the proof by taking the maximum over w.
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A.2. Matthews’ bound for cover times

The following result bounds the cover time of the Markov chain: it is in fact closely related to its hitting time, and the two
differ with a most a factor ln(n). This surprising result is proved in a very elegant way in the survey Levin et al. (2006),
using the famous Matthews’ method (Matthews, 1988).

Theorem A.3 (Matthews’ bound for cover times). The hitting and cover times of the Markov chain verify:

τcov ⩽

(
n−1∑
k=1

1

k

)
τhit .

A.3. A bound on the hitting time of regular and symetric graphs

Using results from Rao (2012), we relate the hitting time of symmetric regular graphs (in a sense that we define below) to
well-known graph-related quantities: number of edges |E|, diameter δ and degree d.

Lemma A.4 (Bounding hitting times of regular graphs). Let (vt) be the simple random walk on a d-regular graph G of
diameter δ, that satisfies the following symetry property: for any {u, v}, {v, w} ∈ E , there exists a graph automorphism
that maps v to w. Then, we have:

τhit ⩽
2|E|δ
d

Proof. Using Theorem 2.1 of Rao (2012), for {v, w} ∈ E , we have

E [τw|v0 = v] =
2|E|
d

,

where |E| is the number of edges in the graph. Let v and w in V , at distance δ′ ⩽ δ. There exists nodes
v = v(0), v(1) . . . , v(δ′ − 1), v(δ′) = w such that for all 0 ⩽ s < δ′, {v(s), v(s+ 1)} ∈ E , and by using the Markov
property:

E [τw|v0 = v] ⩽
∑
s<δ′

E
[
τv(s+1)v0 = v(s)

]
⩽ δ

2|E|
d

.

A.4. Two miscellaneous lemmas

We finally end this “preliminary results” section with the two following lemmas, that we help us conclude the proof of

Theorem 6.1. The first lemma will lead to a bound on
(∑

t<T γt

)−1

where γt is the adaptive stepsize policy defined
in Equation (7), while the second one is used to conclude the proof of Theorem 6.1 to show that a remaining term is
non-positive.

Lemma A.5. For t ⩾ 0 and v ∈ V , let pv(t) = inf {s > t|vs = v} and dv(t) = sup {s < t|vs = v} be the next and the
last previous iterates for which vt = v (dv(t) = 0 by convention, if v has not yet been visited). Assume that (vt) has
stationary distribution π. For t ⩾ 0, let At = supv∈V

(
t− dv(t)

)
and Bt = supv∈V

(
pv(t)− t

)
. We have:

E [Bt|vt = v] ⩽ τcov , ∀v ∈ V ,

and for T ⩾ 1: ∑
t<T

E [At] ⩽ Tτcov .

Proof. The first bound on Bt is obtained using the Markov property of the chain, and by definition of τcov. We have:

E [At] =

t−1∑
k=0

P (At ⩾ k) .
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For t ⩾ 0 fixed, we denote d = infv dv(t), so that At = t− d. We then have the equality between the following events:

{At ⩾ k} = {t− d ⩾ k} = {d ⩽ t− k} = {Bt−k ⩾ k} ,

that all coincide with the event “there exists some v ∈ V such that for all t− k ⩽ s ⩽ t, vs ̸= v”. Summing over t < T :∑
t<T

E [At] =
∑
t<T

∑
k<t

P (Bt−k ⩾ k)

=
∑
ℓ<T

∑
s<T−ℓ

P (Bℓ ⩾ s)

⩽
∑
ℓ<T

∑
s⩾0

P (Bℓ ⩾ s)

⩽
∑
ℓ<T

E [Bℓ]

⩽ Tτcov .

Lemma A.6. Let (at)t⩾0, (bt)t⩾0 be two sequences of real-valued random variables. Let (Ft)t⩾0 be a filtration. Assume

that bt is positive and Ft-measurable for all t, and that E [at|Ft] ⩽ 0. Then, denoting HT =
∑T

t=0 at∑T
t=0 bt

, the sequence

(E [HT ])T⩾0 is non-increasing, so that E [HT ] ⩽ 0 for all T .

Proof. For fixed T ⩾ 1, we have, using the fact tha bt is FT measurable for t ⩽ T

E [HT |FT ] =
E [aT |FT ] +

∑
t<T E [at|FT ]∑

t⩽T bt

⩽

∑
t<T E [at|FT ]∑

t⩽T bt

⩽

∑
t<T E [at|FT ]∑

t<T bt
,

using E [aT |FT ] ⩽ 0 and bT > 0. Consequently, taking the mean, we obtain E [HT ] ⩽ E [HT−1].

B. Lower bound
We prove the smooth non-convex version of Theorem 4.1; the convex cases are proved in a similar way using exactly the
same arguments, and the “most difficult function in the world”, as defined by Nesterov (2014), rather than the one used by
Carmon et al. (2021), albeit the two are closely related.

Proof of Theorem 4.1. For x ∈ ℓ2 and k ∈ N, denote by x(k) its kth coordinate. We split the function defined in Section
3.2 of Carmon et al. (2021) (inspired by the “most difficult function in the world” of Nesterov (2014)) between two nodes
v, w ∈ V maximizing E [τw|v0 = v], by setting πvfv(x) =

1
2

∑
k⩾1 2x(2k)

2− 2x(2k− 1)x(2k) + 1
2αx(0)

2− bx(0) + α
2

and πwfw(x) =
1
2

∑
k⩾0 2x(2k + 1)2 − 2x(2k + 1)x(2k) for some b, α > 0. Then, we define T0 = τv and for t ⩾ 0,

T2k+1 = inf {t ⩾ T2k | vt = w} and
T2k+2 = inf {t ⩾ T2k+1 | vt = w} .

The second step of the proof is somewhat classical, and consists in observing that the black-box constraints of the algorithm
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together with the construction of the functions fv and fw defined in the proof sketch of Section 4 imply that:

if vt = v and

{
Mt ⊃ Span(ei, i ⩽ 2k − 1) then Mt+1 ⊃ Span(ei, i ⩽ 2k) ,

Mt ⊂ Span(ei, i ⩽ 2k) then Mt+1 ⊂ Span(ei, i ⩽ 2k) ,

if vt = w and

{
Mt ⊃ Span(ei, i ⩽ 2k) then Mt+1 ⊃ Span(ei, i ⩽ 2k + 1) ,

Mt ⊂ Span(ei, i ⩽ 2k + 1) then Mt+1 ⊂ Span(ei, i ⩽ 2k + 1) ,

if vt /∈ {v, w}, then Mt =Mt+1 .

In other words, even dimensions are discovered by node v, while odd ones are discovered by node w. The dimension Re0 is
discovered by node v thanks to the term −be0. Using Theorem 1 of Carmon et al. (2021), for a right choice of parameters
α, b > 0, f is L-smooth and satisfies f(x0)− infx f(x) ⩽ ∆, together with, any k and any x ∈Mt ⊂ Span(ei, i ⩽ 2k),

∥∇f(x)∥2 =
L∆

16k2
.

This lower bound proof technique is explained in a detailed and enlightening fashion in Chapter 3.5 of Bubeck (2015).

Then, the final and more technical step of the proof consists in upper bounding Ek(t). If (Tk+1 − Tk)k⩾0 were independent
from k(t), using E [Tk+1 − Tk] = τhit for k even, we would directly obtain t ⩾ E

[
Tk(t)

]
⩾ E [k(t)]− 1)τhit/2. However,

these random variables are not independent: since tail effects can happen, we need a finite second moment for hitting times,
and the proof is a bit trickier. First, note that:

E [k(t)] =
∑

0⩽k⩽t

P (k(t) ⩾ k) =
∑

0⩽k⩽t

P (Tk ⩽ t) .

Let (Xℓ)ℓ⩾0 be i.i.d. random variables of same law as τw conditioned on v0 = v. We have E [Xℓ] = E [τw|v0 = v] = τhit,
and var (Xℓ) <∞ (by assumption). Let Sk =

∑k−1
ℓ=0 Xℓ (Sk has the same law as

∑k−1
ℓ=0 T2k+1 − T2k ), so that, using the

Markov property of (vt), Tk stochastically dominates S⌊k/2⌋. Hence, P (Tk ⩽ t) ⩽ P
(
S⌊k/2⌋ ⩽ t

)
. Then, using Chebychev

inequality, for any ℓ ⩾ 0 and for t such that ℓτhit ⩾ t, we have:

P (Sℓ ⩽ t) = P (Sℓ − ℓτhit ⩽ t− ℓτhit)

= P
(
(Sℓ − ℓτhit)

2 ⩽ (t− ℓτhit)
2
)

⩽
ℓvar (X0)

(t− ℓτhit)2
.

We then have:

E [k(t)] ⩽ 2
∑

0⩽ℓ⩽t/2

P (Sℓ ⩽ t)

= 2
∑

0⩽ℓ⩽2t/τhit

P (Sℓ ⩽ t) + 2
∑

2t/τhit⩽ℓ⩽t/2

P (Sℓ ⩽ t)

⩽
4t

τhit
+ 2

∑
2t/τhit⩽ℓ⩽t/2

ℓvar (X0)

(t− ℓτhit)2
.

We finally show that the second term stays bounded:∑
2t/τhit⩽ℓ⩽t/2

ℓ

(t− ℓτhit)2
=

1

τ2hit

∑
0⩽ℓ⩽t/2−2t/τhit

ℓ+ 2t/τhit
(ℓ+ t/τhit)2

=
1

τ2hit

∑
0⩽ℓ⩽t/2−2t/τhit

ℓ

(ℓ+ t/τhit)2
+

2

τ2hit

∑
0⩽ℓ⩽t/2−2t/τhit

t/τhit
(ℓ+ t/τhit)2

.

First, using a comparison with a continuous sum, we have:∑
0⩽ℓ⩽t

ℓ

(ℓ+ t/τhit)2
⩽
∑

0⩽ℓ⩽t

1

(ℓ+ t/τhit)
⩽ ln(

t

t/τhit
) = ln(τhit) ,
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since for a, x > 0,
∫ ax

0
ydy

(y+a)2 ⩽
∫ ax

0
dy

(y+a) = ln(x). Finally, using
∑

ℓ⩾1
1

(a+ℓ)2 ⩽
∫∞
0

dy
(y+a)2 = 1

a , we bound the second
sum as: ∑

0⩽ℓ⩽t/2−2t/τhit

t/τhit
(ℓ+ t/τhit)2

⩽
τhit
t

+ 1 .

Wrapping our arguments together, we end up with:

E [k(t)] ⩽
4t

τhit
+

2var (τv)

τ2hit
(ln(τhit) + 1 +

τhit
t

) .

For t big enough, we end up with E [k(t)] ⩽ 5t/τhit, so that since E∥∇f(xt)∥2 ⩾ L∆/(16E [k(t)]
2
) as explained in the

main text, we have:

∥∇f(xt)∥2 = Ω

(
L∆τ2hit

t2

)
.

C. Markov chain stochastic gradient descent: proof of Theorem 5.3

We start by proving the following bound on E
[
∥∇fvt(xt)∥2

]
. Note that this bound can be used for any t ⩾ τmix.

Lemma C.1. For t ⩾ 0 and if vt ∼ πt for dTV(πt, π) ⩽ πmin/2, we have:

E
[
∥∇fvt(xt)∥2

]
⩽ 3σ̄2 + 2E

[
∥∇f(xt)∥2

]
.

Proof of the Lemma. We have for any v ∈ V that P (vt = v) ⩽ πv + πv/2 = 3πv/2, so that

E
[
∥∇fvt(xt)∥2

]
⩽ 2E

[
∥∇fvt(xt)−∇f(xt)∥2

]
+ 2E

[
∥∇f(xt)∥2

]
⩽ 2

∑
v∈V

P (vt = v)σ2
v + 2E

[
∥∇f(xt)∥2

]
= 3σ̄2 + 2E

[
∥∇f(xt)∥2

]
.

The proof borrows ideas from both the analyses of delayed SGD (Mania et al., 2017) and SGD with biased gradients (Even
et al., 2022), thus refining MC-SGD initial analysis (Johansson et al., 2010). While a biased gradient analysis would not
yield convergence to an ε-stationary point for arbitrary ε (at every iterations, biases are non-negligible and can be arbitrary
high), by enforcing a delay τ (of order τmix) in the analysis, we manage to take advantage of the ergodicity of the biases.

C.1. Smooth non-convex case of Theorem 5.3

Proof of Theorem 5.3.1. Denoting Ft = Ef(xt)− f(x⋆), we have using smoothness:

Ft+1 − Ft ⩽ −γE [⟨∇fvt(xt),∇f(xt)⟩] +
γ2L

2
E
[
∥∇fvt(xt)∥2

]
.

For the first term on the righthandside of the inequality, assuming that t ⩾ τ for some τ > 0 we explicit later in the proof:

E [−γ⟨∇fvt
(xt),∇f(xt)⟩] = E [−γ⟨∇fvt(xt−τ ),∇f(xt−τ )⟩] + E [−γ⟨∇fvt(xt),∇f(xt)−∇f(xt−τ )⟩]

+ E [−γ⟨∇fvt(xt)−∇fvt(xt−τ ),∇f(xt−τ )⟩] .

First, we condition the first term on the filtration up to time t− τ :

E [−γ⟨∇fvt(xt−τ ),∇f(xt−τ )⟩] = E [−γ⟨Et−τ∇fvt(xt−τ ),∇f(xt−τ )⟩]

⩽ −γ

2
E
[∥∥Et−τ∇fvt−τ (xt)

∥∥2]+ γ

2
E [∥∇f(xt−τ )− Et−τ∇fvt(xt−τ )∥]

− γ

2
E
[
∥∇f(xt−τ )∥2

]
.
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Then, for τ ⩾ τmix(πminε), using the following lemma, we have, for ε < 1/2:

E [−γ⟨Et−τ∇fvt(xt−τ ),∇f(xt−τ )⟩] ⩽ −
γ

4
E
[
∥∇f(xt−τ )∥2

]
+ γε2σ̄2 .

Lemma C.2. For τ ⩾ τmix(επmin) and t ⩾ τ ,

E
[
∥Et−τ∇fvt(xt−τ )−∇f(xt−τ )∥2

]
⩽ 2ε2E

[
∥∇f(xt−τ )∥2

]
+ 2ε2σ̄2 .

Proof of the Lemma. We have:

E
[
∥Et−τ∇fvt(xt−τ )−∇f(xt−τ )∥2

]
= E

∥∥∥∥∥∑
v∈V

(P (vt = v|xt−τ )− πv)∇fv(xt−τ )

∥∥∥∥∥
2


⩽ ε2
∑
v∈V

πvE
[
∥∇fv(xt−τ )∥2

]
,

where we used |P (vt = v|xt−τ )− πv| ⩽ επv and convexity of the squared Euclidean norm. For that last term,∑
v∈V

πvE
[
∥∇fv(xt−τ )∥2

]
⩽
∑
v∈V

2πv

(
E
[
∥∇f(xt−τ )∥2

]
+ σ2

v

)
= 2E

[
∥∇f(xt−τ )∥2

]
+ 2σ̄2 ,

concluding the proof of the Lemma.

Using gradient Lipschitzness and writing xt − xt−τ = −γ
∑t−1

s=max(t−τ,0)∇fvs(xs), we have:

E [−γ⟨∇fvt(xt),∇f(xt)−∇f(xt−τ )⟩] ⩽ γ2LE

∥∇fvt(xt)∥

∥∥∥∥∥∥
t−1∑

s=max(t−τ,0)

∇fvs(xs)

∥∥∥∥∥∥


⩽
γ2L

2
(τE

[
∥∇fvt(xt)∥2

]
+

t−1∑
s=max(t−τ,0)

E
[
∥∇fvs(xs)∥2

] )
.

Similarly,

E [−γ⟨∇fvt(xt)−∇fvt(xt−τ ),∇f(xt−τ )⟩] ⩽
γ2L

2
(τE

[
∥∇f(xt−τ )∥2

]
+

t−1∑
s=max(t−τ,0)

E
[
∥∇fvs(xs)∥2

] )
.

Wrapping things up, we obtain, for t ⩾ τ and τ ⩾ τmix:

Ft+1 − Ft ⩽ −
γ

4
E
[
∥∇f(xt−τ )∥2

]
+ γε2σ̄2

+
γ2L

2

(
(τ + 1)E

[
∥∇fvt(xt)∥2

]
+ τE

[
∥∇f(xt−τ )∥2

]
+ 2

t−1∑
s=max(t−τ,0)

E
[
∥∇fvs(xs)∥2

] )
⩽ −γ

4
E
[
∥∇f(xt−τ )∥2

]
+ γε2σ̄2 + (3τ + 1)

γ2L

2

+
γ2L

2

(
(τ + 1)E

[
∥∇f(xt)∥2

]
+ τE

[
∥∇f(xt−τ )∥2

]
+ 2

t−1∑
s=max(t−τ,0)

E
[
∥∇f(xs)∥2

] )
.

Summing for τ ⩽ t < T :

1

T

∑
τ⩽t<T

E
[
∥∇f(xt−τ )∥2

]
⩽

4Fτ

γT
+

1

T

∑
τ⩽t<T

6γLτ
(
E
[
∥∇f(xt)∥2

]
+E

[
∥∇f(xt−τ )∥2

] )
+ 2
(
2ε2 + γ(3τ + 1)

)
σ̄2 ,
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leading to, for γ ⩽ 1
12Lτ :

1

T

∑
t<T−τ

E
[
∥∇f(xt)∥2

]
⩽

4Fτ

γT
+

6γLτ

T

∑
T−τ⩽t<T

E
[
∥∇f(xt)∥2

]
+ 2
(
2ε2 + γ(3τ + 1)

)
σ̄2 . (8)

We now prove that for any t ⩾ 0, we have supt⩽s⩽t+τ E
[
∥∇f(xs)∥2

]
⩽ 4E

[
∥∇f(xt)∥2

]
+ 8γ2L2τ2σ2. Let t ⩽ s <

t+ τ .

E
[
∥∇f(xs)∥2

]
⩽ 2E

[
∥∇f(xt)∥2

]
+ 2E

[
∥∇f(xs)−∇f(xt)∥2

]
⩽ 2E

[
∥∇f(xt)∥2

]
+ 2L2γ2E

[
s−1∑
r=t

∥∇fvr (xr)∥2
]

⩽ 2E
[
∥∇f(xt)∥2

]
+ 4L2γ2τ

s−1∑
r=t

E
[
∥∇f(xr)∥2

]
+ σ̄2

⩽ 2E
[
∥∇f(xt)∥2

]
+ 4L2γ2τ2( sup

t⩽s⩽t+τ
E
[
∥∇f(xs)∥2

]
+ σ̄2) ,

leading to the desired result for γ ⩽ 1/(8Lτ). Plugging this in (8):

1

T

∑
t<T−τ

E
[
∥∇f(xt)∥2

]
⩽

4Fτ

γT
+

24γLτ

T

∑
T−τ⩽t<T

E
[
∥∇f(xt−τ )∥2

]
+

τ

T
4L2γ2τ2σ̄2 + 2

(
2ε2 + γ(3τ + 1)

)
Lσ̄2 .

Now, for γ = min(1/(48Lτ),
√

F0/(TLτσ̄2)), ε = 1/
√
T , and so τ = τmix ln(T ), we have:

1

T

∑
t<T−τ

E
[
∥∇f(xt)∥2

]
⩽

196τLFτ

T
+ 7

√
LF0σ̄2

T
. (9)

We now upper bound Fτ . For any t and γ < 1/(2L),

Ft+1 − Ft ⩽
γ

2
E
[
∥∇f(xt)−∇fvt(xt)∥2

]
⩽ γσ2

max/2 ,

where the first inequality is a simplified version of the descent lemma with biased gradient at the beggining of this proof,
and the second inequality uses the initialization properties of v0. Thus, we obtain Fτ ⩽ F0 + γτσ2

max/2 ⩽ F0 + σ2
max/L

for our choice of γ. We thus conclude by plugging this in (9) applied for T + τ instead of T , yielding the desired result.

The condition for the upper-bound we proved above to be true, namely T ⩾ τ = τmix ln(T ), is always satisfied for
T ⩾ 2τmix ln(τmix). Indeed, if T ⩽ τ2mix, then τmix ln(T ) ⩽ 2τmix ln(τmix) ⩽ T , and otherwise we have τmix ln(T ) ⩽√
T ln(T ) ⩽ T . This concludes the proof, and x̃0 in the Theorem corresponds to xτ .

C.2. Under a µ-PL inequality

Proof of Theorem 2.2. We start from:

Ft+1 − Ft ⩽ −
γ

4
E
[
∥∇f(xt−τ )∥2

]
+ γε2σ̄2 + (3τ + 1)

γ2L

2

+
γ2L

2

(
(τ + 1)E

[
∥∇f(xt)∥2

]
+ τE

[
∥∇f(xt−τ )∥2

]
+ 2

t−1∑
s=max(t−τ,0)

E
[
∥∇f(xs)∥2

] )
.

If f satisfies a µ-PL inequality, then −E
[
∥∇f(xt−τ )∥2

]
⩽ −2µFt−τ , so that, for some α ∈ (0, 1):

Ft+1 − Ft ⩽ −
αγµ

4
Ft−τ −

(1− α)γ

8
E
[
∥∇f(xt−τ )∥2

]
+ γε2σ̄2 + (3τ + 1)

γ2L

2
σ̄2

+
γ2L

2

(
(τ + 1)E

[
∥∇f(xt)∥2

]
+ τE

[
∥∇f(xt−τ )∥2

]
+ 2

t−1∑
s=max(t−τ,0)

E
[
∥∇f(xs)∥2

] )
.
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For t ⩾ 0, let Pt = (1−αγµ/4)−t. We multiply the above expression by Pt+1 and sum for t < T , hoping for cancellations.
For T ⩾ τ :∑

τ⩽t<T

Pt+1

(
Ft − Ft+1 −

αγµ

4
Ft−τ

)
=

∑
τ⩽t<T

Pt+1

(
(1− αγµ

4
)Ft − Ft+1 +

αγµ

4
(Ft − Ft−τ )

)
=

∑
τ⩽t<T

PtFt −
∑

τ+1⩽t⩽T

PtFt

+
αγµ

4

∑
τ⩽t<T

Pt+1Ft −
αγµ

4

∑
τ⩽t<T

Pt+1Ft−τ

⩽ PτFτ − PTFT +
αγµ

4

∑
τ⩽t<T

Pt+1Ft −
Pταγµ

4

∑
0⩽t<T−τ

Pt+1Ft

⩽ PτFτ − PTFT +
αγµ

4

∑
T−τ⩽t<T

Pt+1Ft

⩽ PτFτ − PTFT +
αγ

8

∑
T−τ⩽t<T

Pt+1E
[
∥∇f(xt)∥2

]
,

using the µ-PL inequality. For t ⩾ 0, we denote Rt = E
[
∥∇f(xt)∥2

]
. We now handle the “Rt” terms.

−
∑

τ⩽t<T

(1− α)γ

8
Pt+1Rt−τ +

∑
τ⩽t<T

γ2L

2

(
(τ + 1)Pt+1Rt + τPt+1Rt−τ + 2

t−1∑
s=t−τ

Pt+1Rs

)
⩽ −

∑
0⩽t<T−τ

(1− α)γ

8
Pt+τ+1Rt

+
γ2L

2

(τ + 1)
∑

τ⩽t<T

Pt+1Rt + τ
∑

0⩽t<T−τ

Pt+1Rt + 2τ
∑
t<T

RtPt+τ


= −

∑
0⩽t<T−τ

Pt+1Rtγ
( (1− α)

8
Pτ −

γL

2
(2τ + 1 + 2τPτ−1)

)
+

γ2L

2

∑
T−τ⩽t<T

(
(τ + 1 + 2τPτ−1)

)
Pt+1Rt

⩽ −
∑

0⩽t<T−τ

(1− α)γ

16
Pt+τ+1Rt

+
(1− α)γ

16β

∑
T−τ⩽t<T

Pt+1Rt ,

if γ satisfies γ ⩽ 1−α
8βL(5τ+1) and Pτ ⩽ 2, for some β ⩾ 1. Since for γµ ⩽ 1, Pτ ⩽ eτµγ , Pτ ⩽ 2 can be ensured with

γ ⩽ 1
2τL . All in one, we have:

0 ⩽ PτFτ − PTFT + γ
(α
8
+

1− α

16β

) ∑
T−τ⩽t<T

Pt+1Rt

−
∑

0⩽t<T−τ

(1− α)γ

16
Pt+τ+1Rt

+
(
γε2σ̄2 + (3τ + 1)

γ2L

2
σ̄2
) ∑

τ⩽t<T

Pt+1 .
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Using what we proved in the previous proof, we have Rt ⩽ 4Rt−τ + 8γ2L2τ2σ2 for T − τ ⩽ t < T , so that:

γ
(α
8
+

1− α

16β

) ∑
T−τ⩽t<T

Pt+1Rt ⩽ 4γ
(α
8
+

1− α

16β

) ∑
T−2τ⩽t<T−τ

Pt+τ+1Rt

+ 8γ2L2τ2σ2γ
(α
8
+

1− α

16β

) ∑
T−2τ⩽t<T−τ

Pt+τ+1 .

Consequently, for 4γ
(

α
8 + 1−α

16β

)
⩽ 1−α

16 γ, which can be ensured with α = 1/16 and β = 8, we have:

0 ⩽ PτFτ − PTFT +
1

8
γ3L2τ2σ2

∑
T−2τ⩽t<T−τ

Pt+τ+1

+
(
γε2 + (3τ + 1)

γ2L

2

)
σ̄2

∑
τ⩽t<T

Pt+1 ,

so that:

FT ⩽ Fτ/PT−τ + γ2σ̄2L
( ε2

Lγ
+

3τ + 1

2
+

γLτ2

8

)∑
t⩽T Pt

PT

⩽ 2Fτ/PT +
2γσ̄2

µ
L
( ε2

Lγ
+

3τ + 1

2
+

γLτ2

8

)
⩽ 2Fτ/PT +

2γσ̄2

µ
L(

ε2

Lγ
+

1

2
+ 2τ) .

Finally, using Fτ ⩽ F0 + σ2
max/L, if γ ⩽ 1

64(5τ+1) where τ = τmix(ε):

FT ⩽ 2(F0 + σ2
max/L)(1−

γµ

8
)T +

2γσ̄2

µ
(
ε2

Lγ
+

1

2
+ 2τ)

We thus choose ε =
√

1/T so that τ ⩽ τmix ln(T ), and stepsize γ = min( 8 ln(T (F0+σ̄2)/σ̄2)
µT , 1

64(5τ+1) ) , leading to the
desired result for c = 64× 6 = 384.

The same discussion than in the smooth non-convex proof regarding the condition T ⩾ τ applies here.

D. Markov chain SGD: results in the interpolation regime
D.1. Proof of Theorem 5.6

We begin by proving the following lemma.
Lemma D.1. For any T ⩾ 1, we have:

E

∥∥∥∥∥∑
t<T

∇fvt(x⋆)

∥∥∥∥∥
2
 ⩽ Tσ2

⋆ + σ2
⋆

∑
t<T

dTV(P
t
v0,·, π

⋆) + 2σ2
⋆

∑
s<t<T

dTV(t− s) ,

where dTV(r) = sup {dTV((P
r)v,·, π

⋆) , v ∈ V} for r ∈ N, so that:

E

∥∥∥∥∥∑
t<T

∇fvt(x⋆)

∥∥∥∥∥
2
 ⩽ σ2

⋆

(
4τmix(1/4) + T (1 + 8τmix(1/4))

)
.

Proof. We have:

E

∥∥∥∥∥∑
t<T

∇fvt(x⋆)

∥∥∥∥∥
2
 = E

(∑
t<T

∇fvt(x⋆)

)⊤(∑
t<T

∇fvt(x⋆)

)
=
∑
t<T

E
[
∥∇fvt(x⋆)∥2

]
+ 2

∑
s<t<T

E [⟨∇fvs(x⋆),∇fvt(x⋆)⟩] .
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Denote G⋆ = (∇fv(x⋆))v∈V ∈ RV×d. For the first term above,∑
t<T

E
[
∥∇fvt(x⋆)∥2

]
=
∑
t<T

E
[
∥G⋆,vs

∥2
]

=
∑
t<T

(
σ2
⋆ +

∑
v∈V

(
P (vt = v)− πv

)
∥G⋆,v∥2

)
⩽ Tσ2

⋆ + σ2
⋆

∑
t<T

dTV(P
t
v0,·, π

⋆) .

Finally, ∑
s<t<T

E [⟨∇fvs(x⋆),∇fvt(x⋆)⟩] =
∑

s<t<T

E [⟨G⋆,vs
,G⋆,vt

⟩]

=
∑

s<t<T

∑
v,w∈V

(P s)v0,v(P
t−s)v,wG

⊤
⋆,vG⋆,w

=
∑

s<t<T

∑
v,w∈V

(P s)v0,v
(
(P t−s)v,w −

1

n

)
G⊤

⋆,vG⋆,w

⩽
∑

s<t<T

∑
v,w∈V

(P s)v0,v
∣∣(P t−s)v,w −

1

n

∣∣σ2
⋆

= σ2
⋆

∑
s<t<T

∑
v∈V

(P s)v0,v
∑
w∈V

∣∣(P t−s)v,w −
1

n

∣∣
⩽ σ2

⋆

∑
s<t<T

dTV(t− s) ,

where dTV(r) = sup {dTV((P
r)v,·, π

⋆) , v ∈ V} for r ∈ N.

We finally bound
∑

t<T dTV(t). Using Chapter 4.5 of Levin et al. (2006), we have τmix(ε) ⩽ (log2(ε
−1) + 1)τmix(1/4),

so that for any t ⩾ 0, dTV(t) ⩽ 2−t/τmix(1/4)+1. Hence,∑
t<T

dTV(t) ⩽
2

1− 2−1/τmix(1/4)
⩽ 4τmix(1/4) ,

and ∑
s<t<T

dTV(t− s) ⩽ 4Tτmix(1/4) ,

concluding the proof.

Lemma D.2. For any yt ∈ Rd and t ⩾ 0, denoting yt+1 = yt − γ∇fvt(x⋆), we have:

∥xt+1 − yt+1∥2 ⩽ (1− γµ)∥xt − yt∥2 + γL∥yt − x⋆∥2 .

Proof. Denote ft = fvt
(·). We expand:

∥xt+1 − yt+1∥2 = ∥xt − yt∥2 − 2γ⟨∇ft(xt)−∇ft(x⋆),xt − yt⟩+ γ2∥∇ft(xt)−∇ft(x⋆)∥2 .

Using the three points equality as Mishchenko et al. (2020), we have:

−2γ⟨∇ft(xt)−∇ft(x⋆),xt − yt⟩ = −2γDft(yt,xt)− 2γDft(xt,x
⋆) + 2γDft(yt,x

⋆) .

First, −2γDft(yt,xt) ⩽ −γµ∥xt − yt∥2 using strong convexity. Then, −2γDft(xt,x
⋆) cancels the term

γ2∥∇ft(xt)−∇ft(x⋆)∥2 ⩽ 2γ2LDft(xt,x
⋆) for γ ⩽ 1/L, using smoothness of ft. And finally, using smoothness

again, 2γDft(yt,x
⋆) ⩽ γL∥yt − x⋆∥2, concluding the proof.
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Proof of Theorem 5.6. Fix some y0 ∈ Rd and let (yt) be defined with the recursion

yt+1 = yt − γ∇fvt(x⋆, ξt) .

Unrolling the previous Lemma, we have, for a fixed time horizon T :

∥xT − yT ∥2 ⩽ (1− γµ)T ∥x0 − y0∥2 + γL
∑
t<T

(1− γµ)T−t∥yt − x⋆∥2 .

This is possible, since the descent lemma is deterministic, in the sense that no expectations are taken so far. Since we want
control over the distance to the optimum, we wish to have yT = x⋆, leading to:

y0 = x⋆ + γ
∑
t<T

∇fvt(x⋆, ξt) , ys = x⋆ + γ
∑

s⩽t<T

∇fvt(x⋆, ξt) , s < T .

We thus have:

E∥xT − x⋆∥2 ⩽ 2(1− γµ)T

E∥x0 − x⋆∥2 + γ2E

∥∥∥∥∥∑
s<T

∇fvs(x⋆)

∥∥∥∥∥
2


+ γ3L
∑
t<T

(1− γµ)T−tE


∥∥∥∥∥∥
∑

t⩽s<T

∇fvs(x⋆)

∥∥∥∥∥∥
2
 .

Using Lemma D.1, we have for any t ⩽ T :

E


∥∥∥∥∥∥
∑

t⩽s<T

∇fvs(x⋆)

∥∥∥∥∥∥
2
 ⩽ CTτmixσ

2
⋆ ,

for C = 13. Hence,

E∥xT − x⋆∥2 ⩽ 2(1− γµ)T
(
E∥x0 − x⋆∥2 + γ2TCτmixσ

2
⋆

)
+ γ3L

∑
t<T

(1− γµ)T−t(T − t)Cτmixσ
2
⋆

⩽ 2(1− γµ)T ∥x0 − x⋆∥2 + 3γL

µ2
Cτmixσ

2
⋆ ,

using
∑

t<T (1− x)tt ⩽ 1/x2 and (1− z)xx ⩽ 1
eu ⩽ 1/(2u). Finally, for a stepsize choice of

γ = min

(
1

L
,

1

Tµ
ln

(
T
∥x0 − x⋆∥2
3γL
µ2 Cτmixσ2

⋆

))
,

we obtain:

E [∥xT − x⋆∥] ⩽ 2e−
µT
L ∥x0 − x⋆∥2 +O

(
Lτmixσ

2
⋆

µ3T

)
.

D.2. Proof of Proposition 5.9

Proof. Consider the graph G on the set of nodes V = {0, 1}, with probability transitions p01 = p10 = p and p00 = p11 =
1− p, for some small p ∈ (0, 1). The relaxation time τmix(1/4) of this graph scales as 1/p.

Consider now f0(x) =
1
2 (x − 1)2 and f1(x) =

1
2 (x + 1)2 for x ∈ R, so that x⋆ = 0. For (vt) a Markov chain with the

given transition probabilities, started at v0 following the uniform (stationary) distribution on V , let xt be generated with
MC-SGD: xt+1 = xt − γ∇fvt(xt) and x0 = 1, i.e.,

xT = (1− γ)T − γ
∑
t<T

(1− γ)T−t−1ζt ,
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where ζt ∈ {−1, 1} takes value 1 if vt = 0 and value −1 if vt = 0. We have:

E
[
(xT − x⋆)2

]
= (1− γ)2T + γ2

∑
s<t<T

(1− γ)2T−t−s−2E [ζsζt] .

We compute this second term, and show that it is non-negative for p ⩽ 1/2 and of order γ
4p , so that to reach a given

precision ε > 0, is required γ ⩽ 4pε and thus to make the first term small, T must verify T = Ω(1/(2pε)), concluding our
reasonning.

For s < t, we have E [ζsζt] = 2P (vt−s = v0|v0 ∼ π⋆) − 1/ Denoting zk = P (vk = v0|v0 ∼ π⋆), we have zk+1 =
pzk + (1− p)(1− zk) and z0 = 1, so that zk = 1

2 (1 + (1− 2p)k) for k ⩾ 0. This leads to:

γ2
∑

s<t<T

(1− γ)2T−t−s−2E [ζsζt] = γ2 (1− γ)(1− 2p)

1− (1− γ)(1− 2p)

×
(
1− (1− γ)2T

1− (1− γ)2
− (1− 2p)

(1− γ)T − (1− 2p)T

2p− γ
(1− γ)T

)
For ε→ 0, in order to have E

[
(xT − x⋆)2

]
⩽ ε, is required (1− γ)T ⩽ ε so that γT →∞. Under γT →∞, we have

γ2
∑

s<t<T

(1− γ)2T−t−s−2E [ζsζt] ∼
γ

4p
.

Finally, to reach precision ε, this quantity needs to be upper-bounded by ε(1 + o(1)), so that γ ⩽ 4pε−1(1 + o(1)) is
necessary. Plugging this in (1− γ)2T ⩽ ε yields T = Ω̃(pε−1), the desired result.

E. With local noise: proof of Theorem 5.11
The proof follows the exact same steps as the proof of Theorem 5.6.

Proof. First, note that, using Lemma 15 in Stich and Karimireddy (2021), we have:

E

∥∥∥∥∥∑
t<T

∇xFvt(x
⋆, ξt)

∥∥∥∥∥
2
 ⩽ 2E

∥∥∥∥∥∑
t<T

∇fvt(x⋆)

∥∥∥∥∥
2
+ 2Tσ2

local .

We then have the following lemma, proved exactly as in the previous section.

Lemma E.1. For any yt ∈ Rd and t ⩾ 0, denoting yt+1 = yt − γ∇xFvt(x
⋆, ξt), we have:

∥xt+1 − yt+1∥2 ⩽ (1− γµ)∥xt − yt∥2 + γL∥yt − x⋆∥2 .

This leads to:
∥xT − yT ∥2 ⩽ (1− γµ)T ∥x0 − y0∥2 + γL

∑
t<T

(1− γµ)T−t∥yt − x⋆∥2 ,

for
y0 = x⋆ + γ

∑
t<T

∇xFvt(x
⋆, ξt) , ys = x⋆ + γ

∑
s⩽t<T

∇xFvt(x
⋆, ξt) , s < T .

We thus have:

E∥xT − x⋆∥2 ⩽ 2(1− γµ)T

E∥x0 − x⋆∥2 + γ2E

∥∥∥∥∥∑
s<T

∇xFvs(x
⋆, ξs)

∥∥∥∥∥
2


+ γ3L
∑
t<T

(1− γµ)T−tE


∥∥∥∥∥∥
∑

t⩽s<T

∇xFvs(x
⋆, ξs)

∥∥∥∥∥∥
2
 .

To conclude, we use the first inequality of this proof, and Lemma D.1, and proceed as in the proof of Theorem 5.6 and
Corollary 5.8.

24



SGD under Markovian Sampling Schemes

F. MC-SAG: proof of Theorem 6.1
F.1. With perfect initialization: Theorem 6.1.1

We begin classically by proving a descent lemma. This lemma is deterministic, in the sense that not means E are present,
and it therefore does not use the Markovian properties of the Markov chain. MC-SAG uses biased gradients, even in the
case where vt are i.i.d., since the algorithm SAG (Schmidt et al., 2017) is inherently biased (making it unbiased leads to the
SAGA iterations (Defazio et al., 2014)).

Let Gt = h̄t+1 for t ⩾ 0, so that xt+1 = xt − γtGt. We recall that for v ∈ V and t ⩾ 0, pv(t) is the next time (strictly)
the chain hits node v, while dv(t) is either the last time the chain was at the state v (if that happened), or 0 in v has not yet
been visited.

Lemma F.1. Assume that f is L-smooth. Then, for any t ⩾ 0, we have:

f(xt+1)− f(xt) ⩽ −
γt
2
∥∇f(xt)∥2 −

γt
4
∥Gt∥2 +

γtL
2

2n

∑
v∈V

∥∥∥∥∥∥
t−1∑

s=dv(t)

γsGs

∥∥∥∥∥∥
2

.

Proof. For t ⩾ 0 and v ∈ V , let pv(t) = inf {s > t|vs = v} and dv(t) = sup {s ⩽ t|vs = v} be the next and the last
previous iterates for which vt = v (dv(t) = 0 by convention, if v has not yet been visited). Denote Ft = E [f(xt)− f(x⋆)].
We have, using smoothness:

f(xt+1) ⩽ f(xt)− γt⟨∇f(xt),Gt⟩+
γ2
tL

2
∥Gt∥2

Together with ⟨∇f(xt),Gt⟩ = 1
2 (∥∇f(xt)∥2 + ∥Gt∥2 − ∥∇f(xt)−Gt∥2), we obtain:

f(xt+1) ⩽ f(xt)−
γt
2
∥∇f(xt)∥2 + ∥Gt∥2 − ∥∇f(xt)−Gt∥2 +

γ2
tL

2
∥Gt∥2

⩽ f(xt)−
γt
2
∥∇f(xt)∥2 −

γt
4
∥Gt∥2 +

γt
2
∥∇f(xt)−Gt∥2 ,

as long as γt ⩽ 1/(2L). We thus need to upperbound the bias ∥∇f(xt)−Gt∥2. We have:

∥∇f(xt)−Gt∥2 =

∥∥∥∥∥ 1n ∑
v∈V
∇fv(xdv(t))−∇fv(xt)

∥∥∥∥∥
2

⩽
1

n

∑
v∈V

∥∥∇fv(xdv(t))−∇fv(xt)
∥∥2 .

Fix some v in V . We have
∥∥∇fv(xt)−∇fv(xdv(t))

∥∥2 ⩽ L2
∥∥∥∑t−1

s=dv(t)
γsGs

∥∥∥2, leading to:

f(xt+1)− f(xt) ⩽ −
γt
2
∥∇f(xt)∥2 −

γt
4
∥Gt∥2 +

γtL
2

2n

∑
v∈V

∥∥∥∥∥∥
t−1∑

s=dv(t)

γsGs

∥∥∥∥∥∥
2

.

We now proceed with the proof of Theorem 6.1.1.

Proof of Theorem 6.1.1. We begin with

f(xt+1)− f(xt) ⩽ −
γt
2
∥∇f(xt)∥2 −

γt
4
∥Gt∥2 +

γtL
2

2n

∑
v∈V

∥∥∥∥∥∥
t−1∑

s=dv(t)

γsGs

∥∥∥∥∥∥
2

,
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as a starting point. For v ∈ V ,

γt

∥∥∥∥∥∥
t−1∑

s=dv(t)

L2γsGs

∥∥∥∥∥∥
2

⩽
t−1∑

s=dv(t)

(t− dv(t))L
2γtγ

2
s∥Gs∥2

⩽
t−1∑

s=dv(t)

Lγ2
s∥Gs∥2 ,

since γt ⩽ 1/(L(t− dv(t))). Summing for t < T , we obtain:

∑
t<T

γt
2
∥∇f(xt)∥2 ⩽ F0 −

∑
t<T

γt
2
∥Gt∥2 +

∑
t<T

1

2n

∑
v∈V

t−1∑
s=dv(t)

Lγ2
s∥Gs∥2 .

Then,

∑
t<T

t−1∑
s=dv(t)

Lγ2
s∥Gs∥2 =

∑
s<T

∥Gs∥2Lγ2
s (pv(s)− s) .

For γs ⩽ 1/(2Lτhit), we have E
[
∥Gs∥2γ2

s (pv(s)− s)
]
⩽ 1

2E
[
∥Gs∥2γs

]
, so that:

∑
t<T

γt
2
∥∇f(xt)∥2 ⩽ F0 +

∑
t<T

(
−γt

2
∥Gt∥2 +Kt

)
,

where Kt = 1
4n

∑
v∈V ∥Gt∥2Lγ2

t (pv(t) − t) verifies E [Kt|Ft] ⩽ ∥Gt∥2γt/4 since γt ⩽ 1/(2τhit), where Ft is the
filtration up to time t:

E [Kt|Ft] = E

[
1

4n

∑
v∈V
∥Gt∥2Lγ2

t (pv(t)− t)|Ft

]

=
1

4n

∑
v∈V
∥Gt∥2Lγ2

t E [(pv(t)− t)|Ft]
(
Gt , γt are Ft-measurable

)
⩽

1

4n

∑
v∈V
∥Gt∥2Lγ2

t τhit
(
since E [(pv(t)− t)|Ft] = E [(pv(t)− t)|vt] ⩽ τhit

)
⩽

1

8
γt∥Gt∥2

(
since γt ⩽ 1/(2τhit)

)
.

Finally,

E
[
min
t<T
∥∇f(xt)∥2

]
⩽ E

[
2F0∑
t<T γt

]
+ E

∑t<T

(
−γt

2 ∥Gt∥2 +Kt

)
∑

t<T γt

 .

Using Lemma A.6 and the above bound on E [Kt|Ft], that last term is non-positive. Using Jensen inequality, we have:

E
[
min
t<T
∥∇f(xt)∥2

]
⩽

2F0

T 2

∑
t<T

E
[
γ−1
t

]
.

Since γ−1
t = 2L(τhit + supv∈V(t− dv(t))), we have

∑
t<T E

[
γ−1
t

]
⩽ 2LT (τhit + τcov) using Lemma A.5, concluding

the proof.
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F.2. With arbitrary initialization: proof of Theorem 6.1.2

We no longer assume that G0 = ∇f(x0) or that hv = ∇fv(x0): hv are arbitrary and G0 = 1
n

∑
v∈V hv. In that case, we

have the following descent lemma.

Lemma F.2. Assume that f is L-smooth. Let

τ̃cov = inf {t ⩾ 1 such that {v0, . . . , vt−1} = V} .

Then, for any t ⩾ 0, we have:

f(xt+1)− f(xt) ⩽ −
γt
2
∥∇f(xt)∥2 −

γt
4
∥Gt∥2 +

γtL
2

n

∑
v∈V

∥∥∥∥∥∥
t−1∑

s=dv(t)

γsGs

∥∥∥∥∥∥
2

+
γt1t<τ̃cov

n

∑
v∈V
∥∇fv(x0)− hv∥2 .

Proof. As in Lemma F.1, we have

f(xt+1) ⩽ f(xt)−
γt
2
∥∇f(xt)∥2 −

γt
4
∥Gt∥2 +

γt
2
∥∇f(xt)−Gt∥2 ,

as long as γt ⩽ 1/(2L). We thus again need to upperbound the bias ∥∇f(xt)−Gt∥2. For t ⩾ τ̃cov, we have Gt =
1
n

∑
v∈V ∇fv(xdv(t)), and so:

∥∇f(xt)−Gt∥2 ⩽
1

n

∑
v∈V

∥∥∇fv(xdv(t))−∇fv(xt)
∥∥2 ,

hence the result of Lemma F.1 holds for t ⩽ τ̃cov (and so does that of the Lemma we are proving). Then, for t ⩽ τ̃cov,
∇f(xt) −Gt =

1
n

∑
v∈V ∇fv(xt) − ht

v, where ht
v = hv if v hasn’t been visited yet, or ht

v = ∇fv(xdv(t)) otherwise.
Hence,

∥∇f(xt)−Gt∥2 ⩽
1

n

∑
v∈V

∥∥ht
v −∇fv(xt)

∥∥2
⩽

2

n

∑
v∈V

∥∥∇fv(xdv(t))−∇fv(xt)
∥∥2 + 2

n

∑
v∈V
∥∇fv(x0)− hv∥2

Since
∥∥∇fv(xt)−∇fv(xdv(t))

∥∥2 ⩽ L2
∥∥∥∑t−1

s=dv(t)
γsGs

∥∥∥2, we have:

f(xt+1)− f(xt) ⩽ −
γt
2
∥∇f(xt)∥2 −

γt
4
∥Gt∥2 +

γtL
2

n

∑
v∈V

∥∥∥∥∥∥
t−1∑

s=dv(t)

γsGs

∥∥∥∥∥∥
2

+
γt
n

∑
v∈V
∥∇fv(x0)− hv∥2 ,

leading to the desired result.

Proof of Theorem 6.1.2. Starting from

f(xt+1)− f(xt) ⩽ −
γt
2
∥∇f(xt)∥2 −

γt
4
∥Gt∥2 +

γtL
2

n

∑
v∈V

∥∥∥∥∥∥
t−1∑

s=dv(t)

γsGs

∥∥∥∥∥∥
2

+
γt1t<τ̃cov

n

∑
v∈V
∥∇fv(x0)− hv∥2 ,

and mimicking the proof with initialization, we obtain that for γ−1
t = 4L(τhit + supv∈V(t− dv(t))), we have

E
[
min
t<T
∥∇f(xt)∥2

]
⩽

2F0

T 2

∑
t<T

E
[
γ−1
t

]
+

2E [τ̃cov]

T

1

n

∑
v∈V
∥∇fv(x0)− hv∥2 ,

and we conclude the proof by noticing that E [τ̃cov] ⩽ τcov.
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G. Numerical illustration of our theory
Setting We place ourselves in the decentralized optimization setting on a graph G with local functions fv , and build two
toy problems. We compare our algorithms MC-SGD and MC-SAGA with Walkman (Mao et al., 2020) and decentralized
SGD (D-SGD in Figure 1) (Koloskova et al., 2020; Yu et al., 2019) with both randomized gossip communications and fixed
gossip matrix. We consider the non-convex loss function ℓ(x, a, b) = (σ(x⊤a)− b)2/2 where σ(t) = 1/(1 + exp(−t)) as
in Mei et al. (2018). For v ∈ V , we take fv(x) = ℓ(x, av, bv) for av and bv random variables. In Figure 1(a), we take a
connected random geometric graph of n = 50 nodes in [0, 1]2 with radius parameter ρ = 0.3 (nodes are connected if their
distance is less than ρ). We consider homogeneous data: av, bv are taken i.i.d., with av ∼ N (0, 1) and bv uniform in [0, 1].
In Figure 1(b), we take the cycle of n = 50 nodes and consider heterogeneous data: for two opposite nodes in the graph
(v = 0 and v = 25 e.g.), av are N (0, 1) and bv uniform in [0, 1] (and the functions are re-normalized), while they are taken
equal to 0 in the rest of the graph. In Figure 1(a), the graph is well connected and Assumption 5.1 is verified for a small
enough σ̄2, so that all algorithms perform comparatively well; MC-SGD because of the homogeneity, the gossip-based
ones and Walkman thanks to the connectivity. However, decreasing the connectivity and increasing data heterogeneity in a
pathological way, we obtain Figure 1(b): MC-SGD fails due to function-heterogeneity (σ̄2 too big), while the three others
are slowed down by their communication inefficiency, illustrating how depending only on τhit, MC-SAGA outperforms the
other algorithms, that rather depend on nτmix or nτ2mix.

(a) Geometric graph, homogeneous functions (b) Cycle graph, heterogeneous functions

Figure 1: Comparison of MC-SAGA and MC-SGD with existing algorithms. In abscissa are the total number of communi-
cations, and in ordinate f(x)− f(x⋆).
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