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Abstract

k-means clustering is an important problem in
machine learning and statistics. The k-means++
initialization algorithm has driven new accelera-
tion strategies and theoretical analysis for solving
the k-means clustering problem. The state-of-
the-art variant, called LocalSearch++, adds
extra local search steps upon k-means++ to
achieve constant approximation error in expec-
tation. In this paper, we propose a new variant
named LSDS++, which improves the sampling
efficiency of LocalSearch++ via a strategy
called dual sampling. By defining a new capture
graph based on the concept of coreset, we show
that the proposed LSDS++ is able to achieve the
same expected constant error with reduced com-
plexity. Experiments are conducted to justify the
benefit of LSDS++ in practice.

1. Introduction
The k-means clustering is an important problem in statis-
tics and machine learning, with numerous applications in
finance, web, networks analysis, etc. (Abbasi and Younis,
2007). Given a set P of data points in the Euclidean space
Rd such as user profiles and gene sequences, the goal of
the k-means algorithm is to group the n data points into
k disjoint clusters, such that points near each other should
belong to the same cluster. Typically, given a set of centers,
every data point p is assigned to the cluster whose center
is the closest among all centers to p. Denote the center set
as C (with |C| = k). Formally, the objective of k-means
clustering is to find C that minimizes the following cost:

cost(P,C) =
∑
p∈P

min
c∈C

d(p, c), p, c ∈ Rd, (1)
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where d(p, c) = ∥p − c∥2 is the squared l2 distance. The
number of centers, k, could be tens, hundreds or even mil-
lions depending on the industrial application.

1.1. Algorithms for k-means

In the past 50 years, continuous progress has been made to
solve the clustering problem in (1). One popular and widely
used approach is the Lloyd’s algorithm (Lloyd, 1982). With
a set of randomly initialized centers, the Lloyd’s algorithm
repeatedly assigns each data point to its nearest center and
updates the centers by taking the average of all points in the
cluster back and forth until convergence. From an informa-
tion theory viewpoint, this method implements the distortion
optimal quantization for multi-dimensional data. However,
one drawback of Lloyd’s algorithm is that the theoretical
guarantee on the final solution is hard to be established.
Moreover, the number of iterations required to converge can
be superpolynomial (Arthur and Vassilvitskii, 2006). As
an alternative approach, Kanungo et al. (2004) proposed a
local search algorithm. As presented in Algorithm 1, the al-
gorithm iteratively finds the swap between a center point in
the current center set and a point outside the center set that
minimizes the clustering cost. It is shown that local search
achieves an approximation factor of (9 + ϵ) in polynomial
time (i.e., output C such that cost(P,C) ≤ (9 + ϵ)optk,
where optk is the optimal k-means cost). However, the
strategy of finding the optimal swap between one center
and another data point in every iteration usually leads to
prohibitively high running time empirically. Other approxi-
mation algorithms that use local search include (Bandyapad-
hyay and Varadarajan, 2016; Cohen-Addad, 2018; Friggstad
et al., 2019). In general, these algorithms also have running
time that depends doubly exponentially on the dimension.

1.2. Center initialization for k-means

It is known that the Lloyd’s algorithm can be very sensitive
to the choice of the initial centers (Milligan, 1980). There-
fore, there have been many works on determining good
initial centers for k-means, among which the k-means++
seeding algorithm (Arthur and Vassilvitskii, 2007) (also
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Algorithm 1 One step of local search (Arya et al., 2004)
Input: dataset P , center set C

1: if ∃q ∈ C,∃p ∈ P \ C s.t.
cost(P,C \ {q} ∪ {p}) < cost(P,C) then

2: p′, q′ = argminp∈P,q∈C cost(P,C \ {q} ∪ {p})
3: C ← C \ {q′} ∪ {p′}
4: end if
5: return C

Algorithm 2 k-means++ (Arthur and Vassilvitskii, 2007)
Input: dataset P , number of centers k

1: Uniformly sample p ∈ P and set C = {p}
2: for i = 2 to k do
3: Sample p ∈ P with probability cost({p},C)∑

q∈P cost({q},C)

4: C ← C ∪ {p}
5: end for
6: return C

known as D2-sampling) is one simple but effective initial-
ization approach. As presented in Algorithm 2, it samples
k centers one by one in k iterations. The algorithm first
picks a center randomly from the dataset P . After having
picked the first (i− 1) centers, denoted by Ci−1, it picks a
point p ∈ P as the i-th center with probability proportional
to the smallest distance, minc∈Ci−1 d(p, c), which equals
to cost({p}, C). The final output centers are then used
as the initial center set for k-means. The running time of
k-means++ is O(nkd), and it has been shown that this sim-
ple sampling procedure gives an O(log k)-approximation
in expectation for any dataset (Arthur and Vassilvitskii,
2007). (Makarychev et al., 2020) improved the constant
in O(log k) of k-means++. Bahmani et al. (2012) con-
sidered parallelizing k-means++ to reduce the number of
passes required to obtain a good initialization center set.
Based on k-means++, Ackermann et al. (2012) proposed
StreamKM++ for data streams. Bachem et al. (2016) ap-
plied the Metropolis-Hastings algorithm to approximate the
k-means++ sampling.

Recently, Lattanzi and Sohler (2019) proposed a method
called LocalSearch++ which combines the local search
strategy with k-means++ to further improve the quality
of the initial centers found by k-means++. The algorithm
is summarized in Algorithm 3. After we get the centers
output by k-means++, LocalSearch++ runs some ad-
ditional local search steps. In each step, LocalSearch++
first samples a new point p ∈ P with probability propor-
tional to cost({p}, C) similar to k-means++. Then, a
center in C is replaced by the sampled p if and only if
it minimizes the cost after being swapped with p (among
all centers), and the cost after swap improves the current
cost. Note that this operation (line 2 of Algorithm 3) re-

Algorithm 3 One step of LocalSearch++ (Lattanzi and
Sohler, 2019)
Input: dataset P , center set C

1: Sample p ∈ P with probability cost({p},C)∑
q∈P cost({q},C)

2: q′ = argminq∈C cost(P,C \ {q} ∪ {p})
3: if cost(P,C \ {p′} ∪ {p}) < cost(P,C) then
4: C ← C \ {q′} ∪ {p}
5: end if
6: return C

quires searching over all points in the current center set C
to find the minima. Lattanzi and Sohler (2019) showed that
LocalSearch++ achieves a constant approximation in ex-
pectation with O(k log log k) iterations. Choo et al. (2020)
showed that with additional ϵk steps, the algorithm achieves
a constant approximation guarantee of O(1/ϵ3) with prob-
ability 1− exp(−Ω(k0.1)). In another direction, Fan et al.
(2022) applied metric embedding trees to the construction
of initial clustering centers which was also combined with
differential privacy (DP) (Dwork et al., 2006).

1.3. Our algorithm, results, and techniques

If we compare the heuristic of local search (Algorithm 1)
with LocalSearch++ (Algorithm 3), we see that lo-
cal search explores over all pairs of p ∈ P and q ∈ C
to find the optimal swap, while LocalSearch++ only
searches over q ∈ C, and samples the new candidate cen-
ter p in the same manner as in k-means++. As such, in
each LocalSearch++ step, we need to compute the dis-
tance for every point of each cluster to the other k − 1
centers, which requires O(ndk) time. Therefore, running
LocalSearch++ may still be expensive in time cost if
the number of centers k is relatively large, which is the
case for many practical problems. In this work, we develop
an algorithm which further reduces the time complexity
per iteration to the time to compute the distance for every
point of two clusters to other k − 1 centers, and also attains
constant approximation error in expectation after the same
O(k log log k) steps as required by LocalSearch++ to
achieve a constant error level. The proposed method is
called LSDS++ (“Local Search++ with Dual Sampling”).
Before we introduce LSDS++ step by step in Algorithm 4
and Algorithm 5, we first (informally) summarize the main
theoretical result of this paper as follows.

Theorem 1.1. Run LSDS++ for O(k log log k) steps to de-
rive the output centers C. It holds that E[cost(P,C)] =
O(optk) where optk is the optimal k-means cost. The ex-
pected running time of each iteration is O(dn).

In Theorem 1.1, compared with LocalSearch++, our
proposed LSDS++ achieves the same constant expected er-
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ror with considerably less computational cost per iteration
(reduced by a factor of k). This is the key advantage of
LSDS++. We provide numerical results to validate the effi-
ciency gain of LSDS++ in Section 4.

Dual sampling. The proposed LSDS++ algorithm is de-
signed based on the technique of dual sampling. The idea
is simple. Given that LocalSearch++ in each step sam-
ples the new candidate center p ∈ P in a probabilistic way
instead of by exhaustive search, one natural question is: can
we also sample the center q ∈ C, rather than looping over
all the possible centers to be swapped? It turns out that this
could be feasible, with careful design. Specifically, naive
uniform sampling of the center would not work, since it is
very likely that a swap will remove a “good” center. In our
proposed LSDS++, after we sample p ∈ P following the
distance-based rule of k-means++ and uniformly sample
a center q ∈ C, we compare the cost after swapping q and
p with the cost if we swap q′ and p, where q′ is the nearest
center to p in C (i.e., q′ = argminq∈C d(p, q)). We then
simply take the swap with the lower cost. In other words,
we tend to swap p with its nearest center in C, if this is
better than swapping a random center point. This way, when
picking the center to be swapped, we only need to evaluate
no more than two centers instead of all k centers, which
improves the efficiency per iteration by a factor of O(k). As
shown by Theorem 1.1, this dual sampling technique would
not affect the approximation error nor the required number
of iterations to achieve the constant error. Therefore, the
total complexity can be significantly improved.

Analysis roadmap. We will use the superscript “*” to de-
note the optimal/oracle solution. Our analysis leverages an
important concept called coreset (see Definition 2.4 for a
formal definition). Basically, a coreset R of an oracle cluster
c∗ is the set of points within a short distance to c∗. The two
key ideas in our analysis that lead to the same approxima-
tion guarantee as LocalSearch++ are: (i) replacing any
center point with a point in its coreset may only increase the
clustering cost by a constant factor, and (ii) the probability
that a sampled point p ∈ P belongs to some coreset (i.e.,
p ∈ R) is constant. Our analysis is then facilitated with the
concept of “capture graph”. In Lattanzi and Sohler (2019),
an oracle center c∗ is said to be captured by a current center
c if c = argminc′∈C d(c′, c∗). In our analysis, we define a
new capture graph where c∗ is captured by c if its coreset R
is a subset of cluster Pc. Now, suppose p is in the coreset of
c∗ (with constant probability). We show that with another
constant probability (depending on k), if c∗ is captured by
a center c ∈ C, and c captures no other oracle centers,
then swapping p with its nearest center would reduce the
cost by a factor of O(1 − 1

k ); otherwise, swapping p with
a randomly chosen center would also reduce the cost by
O(1− 1

k ). Therefore, in each step, after p ∈ P is sampled,

by comparing the swap with the nearest center q′ and with a
random center q and taking the better one, with a good prob-
ability we can still achieve the same rate of error reduction
as in LocalSearch++.

2. Preliminaries
We recap the notations and introduce more definitions. Let
P be the input point set, and C be a center set with k centers.
For each center ci ∈ C, we use P (ci) to denote the points
assigned to ci, and the cost of the center ci is defined as
cost(ci) =

∑
p∈P (ci)

d(ci, p), where d(ci, p) is the distance
measure between ci and p. Let cost(P,C) be the total cost
of P with respect to the center set C. Hence, we have
optk = cost(P,C∗) where C∗ is the optimal clustering
center set.

We now formally define the D2-sampling procedure which
was first proposed in k-means++ and also adopted in
LocalSearch++ and our proposed LSDS++.
Definition 2.1 (D2-sampling). Given a set C ⊆ P of can-
didate centers, a point p ∈ P is sampled with probability
Pr[p] = cost(p, C)/

∑
q∈P cost(q, C).

Definition 2.2 (Centroid). For an arbitrary set of points Q,
we denote their centroid by µQ = 1

|Q|
∑

q∈Q q. Note that
µQ may not be a point from Q.

The following folklore lemma describes an important prop-
erty of the cost function and the centroid. This is analogous
to the bias-variance decomposition in statistical learning
and to the parallel axis theorem in physics.

Lemma 2.3. Let Q ⊆ P be a set of points. For any point
c ∈ P (possibly not in Q),

cost(Q, c) = |Q| · d(µQ, c) + cost(Q,µQ).

2.1. Coresets and capture graph

Assume C∗ = {c∗1, ..., c∗k} is the unique center set of the
optimal k-means solution (tie broken). Let P ∗

1 , ..., P
∗
k be

the corresponding optimal clusters (partitions) of the data
points. We use C = {c1, ..., ck} to denote the current center
set (in each iteration) with corresponding clusters P1, ..., Pk.
When the indices are not relevant, for simplicity we will
drop the index and write, for example, c ∈ C.

Our analysis will make use of the following definition.
Definition 2.4 (Coreset). For a cluster P ∗

j with center c∗j , the
point set Rj = {p ∈ P ∗

j : d(p, c∗j ) ≤ cost(P ∗
j , c

∗
j ) · 2

|P∗
j |}

is called the coreset of P ∗
j .

The following lemma states a useful property that the cost
of any point in the coreset can be bounded by the optimal
cost within a constant factor.
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Lemma 2.5. For any j = 1, ..., k and c ∈ Rj , it holds that
cost(P ∗

j , c) ≤ 3cost(P ∗
j , c

∗
j ).

Proof. Based on Lemma 2.3, we have that cost(P ∗
j , c) =

|P ∗
j | · d(c, c∗j ) + cost(P ∗

j , c
∗
j ) ≤ 3cost(P ∗

j , c
∗
j ), where we

bound d(c, c∗j ) by Definition 2.4.

In the line of research on local search for k-means (e.g.,
Kanungo et al. (2004); Lattanzi and Sohler (2019)), the
capture graph is a standard tool for the error analysis. We
recap the definition below.

Definition 2.6 (Capture graph (Kanungo et al., 2004)). A
capture graph is a bipartite graph between C and C∗. We
say that c∗j ∈ C∗ is captured by a center ci ∈ C, if ci is the
nearest center to c∗j among all centers in C. If c∗j is captured
by ci, an edge exists between (c∗j , ci) in the capture graph.

In the above definition, we see that a center c ∈ C may
capture more than one optimal center in C∗, and any optimal
center c∗ ∈ C∗ must be captured by one point in C. In
this paper, our analysis is based on a new capture graph
leveraging the concept of coresets.

Definition 2.7 (Coreset capture graph). We say that c∗j is
captured by a center ci ∈ C, if the coreset Rj of P ∗

j is such
that Rj ⊆ Pi, where Pi is the cluster of ci. An edge is
added between (c∗j , ci) if c∗j is captured by ci.

Here, c∗j is captured by cj only when the coreset of c∗j is
a subset of Pj . Notably, in Definition 2.7, there may exist
some oracle centers c∗j that are not captured by any center
in C. We define subsets of matching and isolate candidate
centers based on the new capture graph defined above.

Definition 2.8 (H1 and H0 centers in new capture graph). In
the capture graph as in Definition 2.7, we divide the vertices
in C into three types such that C = H1 ∪H0 ∪H>1. Each
vertex in H1 has degree 1; each vertex in H0 has degree 0,
and each vertex in H>1 has degree larger than one.

2.2. Reassignment cost

In the analysis of local search, it is often useful to identify
the clusters whose removal will not significantly increase the
cost, which makes them good candidates to be swapped with
a newly sampled candidate center (Kanungo et al., 2004).
To this regard, the “reassignment cost” is a useful quantity
measuring the change in cost when removing a center point.
Without loss of generality, for indexing, we assume that
for h ∈ H1 we have that ch ∈ C captures c∗h, namely the
indices of the clusters with a one-to-one correspondence in
the capture graph are identical.

Definition 2.9 (Reassignment cost (Lattanzi and Sohler,
2019)). Consider the subset of centers H1 and H0 defined

in Definition 2.8. For each center c in H1, the reassignment
cost of c is defined as

reassign(P,C, c) = cost(P \ P ∗
h , C \ {c})
− cost(P \ P ∗

h , C).

For each center c in H0, the reassignment cost is defined as

reassign(P,C, c) = cost(P,C \ {c})− cost(P,C).

We derive the following result.

Lemma 2.10. For r ∈ H0 ∪H1, it holds that,

reassign(P,C, cr) ≤
21cost(Pr, C)

100
+ 72cost(Pr, C

∗).

Proof. Let C ′ = {c′1, c′2, ..., c′k} be a set of k centers with
each c′i ∈ (Ri \ Pr) if i ̸= r and c′r ∈ Rr. This is always
possible when r ∈ H1 ∪H0 based on Definition 2.8. We
only consider the case r ∈ H1 here, because the case for
r ∈ H0 is follows similarly.

The vertices in clusters other than Pr will still be assigned
to their current center. Every point p ∈ Pr ∩ P ∗

i (i ̸= r)
will be assigned to the center in C that captures the point
c′i. The distance between a point p ∈ Pr ∩Pi and the center
it is assigned to can be bounded by two parts: 1) the dis-
tance between p and qp, and the distance between qp = c′i
and p; 2) the distance between qp and the center (just re-
name it ci) who captures c′i in the capture graph. Then
by triangle inequality, we have cost(p, ci) ≤ cost(p, qp) +
cost(qp, ci). Moreover, based on Lemma 2.3, we have that
|cost(p, C)−cost(qp, C)| ≤ cost(p,C)

10 +11cost(p, C ′) and
|cost(qp, C)− cost(ci, C)| ≤ cost(qp,C)

10 +11cost(qp, C
′).

Summing these up with all p ∈ Pr \ P ′
r, we obtain

reassign(P,C, cr) ≤ 21cost(Pr,C)
100 + 24cost(Pr, C

′) ≤
21cost(Pr,C)

100 +24×3cost(Pr, C
∗) based on Lemma 2.5.

3. LSDS++ with Dual Sampling

Algorithm 4 Local Search for k-means++ via Dual Sam-
pling
Input: dataset P , number of iterations Z

1: C = k-means++ seeding(P, k)
2: for i = 1 to Z do
3: C = LSDS++(P,C)
4: end for
5: return C

In this section, we introduce and analyze the proposed
LSDS++ method. As presented in Algorithm 4, our algo-
rithm has similar general structure as LocalSearch++—
we first deploy k-means++ to get a initial center set, and
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sampled sampled

sampled

nearest

Figure 1. Illustration of local search (left), LocalSearch++ (middle) and the proposed LSDS++ (right), correspond to Algorithm 1, 3
and 5, respectively. Stars represent cluster centers in C, and circles are data points in P . In local search, we try the swaps between every
pair of p ∈ P and q ∈ C to find the optimal swap. In LocalSearch++, p is sampled by D2-sampling, and every swap with q ∈ C is
evaluated. In LSDS++, with a randomly sampled p ∈ P , we only evaluate two swaps of p: (i) with a randomly sampled q ∈ C and (ii)
with the nearest center in C.

Algorithm 5 One step of LSDS++
Input: dataset P , centers C

1: Sample p ∈ P with probability cost({p},C)∑
q∈P cost({q},C)

2: q′ := argminx∈C d(x, p)
3: Uniformly sample q ∈ C
4: if cost(P,C \ {q} ∪ {p}) > cost(P,C \ {q′} ∪ {p})

then
5: q = q′

6: end if
7: if cost(P,C \ {q} ∪ {p}) < cost(P,C) then
8: C ← C \ {q} ∪ {p}
9: end if

10: return C

then run Z additional steps of local search with dual sam-
pling. The one-step operations are summarized in Algo-
rithm 5. In each iteration, we first apply D2-sampling (Def-
inition 2.1) to sample a candidate point p ∈ P . Then, we
find the q′ ∈ C that is closest to p in C, and uniformly
randomly sample q ∈ C. We then evaluate the swaps be-
tween (p, q′) and (p, q), and keep the one with the smaller
cost. Finally, as long as the swap improves the current cost,
we trigger the swap operation (line 7 to line 9). LSDS++
avoids searching over all points in C when determining q,
which leads to improved computational cost. See Figure 1
for an intuitive illustration of the operations of local search,
LocalSearch++ and LSDS++.

The rest of this section will be devoted to the proof of Theo-
rem 1.1. The main component is to analyze the improvement
in the cost in every iteration, after which we can aggregate
the cost of multiple iterations to get the overall error guar-
antee. Our general proof structure follows that of Lattanzi
and Sohler (2019), but we need new definitions and bounds

to handle the new capture graph associated with the core-
sets. Note that the constants in our analysis are not optimal
and are possible to be further reduced. Our analysis con-
siders two cases in each LSDS++ iteration. In our analysis,
we assume cost(P,C) ≥ 2000optk; otherwise the current
solution C already achieves constant error as desired.

3.1. Case 1:
∑

h∈H1
cost(P ∗

h , C) ≥ 1
3cost(P,C)

In this case, we will show that with a constant probability
3

125 , we will sample p ∈ Rh for some h ∈ H1. In this case,
in each iteration of LSDS++, swapping p with its nearest
center q′ = argminq∈C d(p, q) would reduce the cost by at
least (1− 1

100k ).

We will need the following definition based on Lemma 2.5.

Definition 3.1 (Lattanzi and Sohler (2019)). A cluster index
h ∈ H1 (with center ch) is called good if it holds that

cost(P ∗
h , C)− 9cost(P ∗

h , c
∗
h)

− reassign(P,C, ch) ≥
cost(P,C)

100k
.

The left-hand side of Definition 3.1 represents the gain in
the cost of replacing ch by a point p ∈ Rh for h ∈ H1.

Next, we show that the cost of good clusters takes a large
portion in the total cost.

Lemma 3.2. If
∑

h∈H1
cost(P ∗

h , C) ≥ 1
3cost(P,C), we

have that

∑
h∈H1, h is good

cost(P ∗
h , C) >

87

400
cost(P,C).

5
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Proof. Based on Definition 3.1, we have∑
h∈H1, h is not good

cost(P ∗
h , C)

≤
∑
h∈H1

reassign(P,C, ch)

+ 3
∑
h∈H1

cost(P ∗
h , c

∗
h) +

cost(P,C)

100

≤
∑
h∈H1

72cost(Ph, C
∗) + 9optk + 22cost(P,C)/100

≤ 72optk + 9optk +
22cost(P,C)

100
,

where we apply Lemma 2.10. Therefore, we know that∑
h∈H1, h is not good cost(P ∗

h , C) ≤ 22cost(P,C)
100 + 81optk.

Since by assumption cost(P,C) ≥ 2000optk, we
have that

∑
h∈H1, h is good cost(P ∗

h , C) ≥ ( 13 −
22
100 −

81
2000 )cost(P,C) > 87cost(P,C)

400 .

Then we have the following lemma.

Lemma 3.3. If
∑

h∈H1
cost(P ∗

h , C) ≥ 1
3cost(P,C) ≥

2000
3 optk, with probability at least 24

1000 the new clustering
after swapping has cost at most (1− 1

100k )cost(P,C).

Proof. By Lemma 6 in (Lattanzi and Sohler, 2019), it holds
that cost(Rj , C) ≥ 1

9cost(P
∗
j , C) when cost(P ∗

j , C) ≥
9cost(P ∗

j , c
∗
j ). Hence,

∑
h∈H1,h is good

cost(Rh, C) >
87

400
· 1
9
cost(P,C)

≥ 24

1000
cost(P,C).

By Definition 2.1, we have at least 24
1000 probability to sam-

ple p ∈ Rh for some good cluster h. In this event, by
Definition 3.1, the swap reduces the cost by (1 − 1

100k ),
which proves the claim.

3.2. Case 2:
∑

h∈H1
cost(P ∗

h , C) < 1
3cost(P,C)

Denote X = {1, ..., k} \H1 = H0 ∪H>1. We only need
to consider |H0| ≥ 1 in this case; otherwise |H0| = 0 and
|X| = 0 since |X| ≤ 2|H0|. Then

∑
h∈H1

cost(P ∗
h , C) =

cost(P,C) which renders Case 2 invalid.

When |H0| ≥ 1, by the condition of Case 2, we know that∑
r∈X cost(P ∗

r , C) ≥ 2
3cost(P,C). We will show that

with probability at least |H0|
90k , each iteration of LSDS++

reduces the clustering cost by at least (1 − 1
200|H0| ) by

uniform random sampling.

Next, we define the good clusters in X as follows.

Definition 3.4. A cluster index i ∈ X is called good if
|H0,i| ≥ |H0|

10 where

H0,i = {h ∈ H0 : cost(P ∗
i , C)− reassign(P,C, ch)

−9cost(P ∗
i , c

∗
i ) ≥

cost(P,C)

200|H0|
}.

Analogue to Definition 3.1, the above definition estimates
the cost of removing ch and inserting a new cluster center
in Ri. Note that, Definition 3.4 is different from previous
work (Lattanzi and Sohler, 2019) in that here a good cluster
requires |H0,i| to be large enough. This is because when
picking q ∈ C, LSDS++ uses random sampling instead of
finding the exact minima. Therefore, we will need the good
clusters to contain a sufficient number of points so that they
can be sampled with good probability.

In the following, we argue that the sum of cost of good clus-
ters is large. This will be useful to show that the probability
of sampling such a cluster is high enough.

Lemma 3.5. If
∑

i∈X cost(P ∗
i , C) ≥ 2

3cost(P,C), we
have that ∑

i∈X, i is good

cost(P ∗
i , C) >

1

10
cost(P,C).

Proof. By Definition 3.4 and Lemma 2.10, since |X| ≤
2|H0|, we have∑
i∈X, i is not good

cost(P ∗
i , C)

≤ 2

9/10

∑
i∈H0

reassign(P,C, ci) + 9

k∑
i=1

cost(P ∗
i , c

∗
i )

+
2|H0|cost(P,C)

200|H0|

=
20

9

(
21

cost(P,C)

100
+ 72optk)

)
+ 9optk +

cost(P,C)

100

<
48cost(P,C)

100
+ 169optk.

Then we obtain∑
i∈X,i is not good

cost(P ∗
i , C) ≤ 48cost(P,C)/100+169optk.

As cost(P,C) ≥ 2000optk, we obtain∑
i∈X,i is good

cost(P ∗
i , C) ≥ (

2

3
− 48

100
− 169

2000
)cost(P ∗

i , C)

>
1

10
cost(P,C),

which finishes the proof.
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Lemma 3.6. If
∑

i∈X cost(P ∗
i , C) ≥ 2

3cost(P,C) ≥
4000
3 optk, with probability at least |H0|

90k , the
new clustering has cost at most cost(P,C) −
(cost(P ∗

i , C) − reassign(P,C, cl) − 9cost(P ∗
i , c

∗
i )) ≤

(1− 1
200|H0| )cost(P,C).

Proof. Similar to the reasoning for proving Lemma 3.3,
with probability at least 1

10
1
9
|H0|
k = |H0|

90k , we can sample
p ∈ Rh for some good h in H0. Then the result follows
from Definition 3.4.

3.3. Putting parts together

Finally, we combine pieces together and obtain the main
Theorem 1.1 which is restated in detail below.

Theorem 3.7. Let P ⊆ Rd be a set of points and C be
the output of Algorithm 4 with Z ≥ 20000k log log k steps.
Then we have E[cost(P,C)] = O(optk). Consider a vari-
ant method of Algorithm 4 where only the randomly selected
center is considered at each iteration, then the expected
running time of that is O(ndk log log k).

Proof. We first consider case two, under the condition that∑
h∈H1

cost(P ∗
h , C) < 1

3cost(P,C). Let cost0 denote the
cost of the solution after k-means++ in Algorithm 4.

First, we consider running Y = 10000k log log k iterations
that all satisfy Case 2. By Lemma 3.6, LSDS++ reduces the
cost by multiplicative (1− 1

200|H0| ) with probability |H0|
90k in

each iteration. Analytically, we assume that we additionally
increase the cost additively by 2000optk at the end of each
iteration. Let Yi (i = 1, 2, ..., k) be the number of iterations
that |H0| = i in Y steps. So

∑k
i=1 Yi = Y holds. Denote

the output after Y steps as CY . Then we have

E[cost(P,CY )]

=2000optk +
k∏

i=1

(
Yi∑
i=0

(
Yi

i

)
(

i

90k
)i(1− i

90k
)Yi−i

(1− 1

200i
)i
)

=2000optk + cost0

k∏
i=1

(1− 1

18000k
)Yi

=2000optk + cost0(1−
1

18000k
)18000k log log k

≤2000optk + cost0/ log k

=O(optk),

where we use the fact that E[cost0] = O(log k · optk) for
k-means++ by Arthur and Vassilvitskii (2007).

Now we consider Case 1. We assume independently running
Y = 100000k log log k steps that satisfy Case 1. With simi-

lar analysis, we can show that after Y ≥ 100000k log log k
steps, E[cost(P,CY )] = O(optk) also holds.

To combine the two cases together, notice that in Z =
20000k log log k iterations, one of Case 1 and Case 2 must
hold in more than 10000k log log k iterations, which re-
duces the cost to the constant error as required. Iterations in
the other case will not increase the cost, which proves the
overall constant approximation error.

Regarding the time complexity, we execute O(k log log k)
rounds of local search, and each step involves two stages
(sample p ∈ P and compute k-means costs). First, to sam-
ple p ∈ P , each step only takes O(dn) time by maintaining
the distance between every data point to the current center
set. In the local search step, we compute the cost of swap-
ping the new sample point with an old center q. For each
point in the cluster with center q, we need to compute its dis-
tance to all other centers. Since we uniformly sample a cen-
ter q ∈ C, on average the size of every cluster is O(nk ) each
step, hence the total expected time is O(ndk log log k).

The proposed LSDS++ achieves constant approximation er-
ror in expectation, in O(k log log k) steps. As a comparison,
LocalSearch++ in Lattanzi and Sohler (2019) requires
O(k log log k) steps to reach a constant error. However, our
algorithm is more efficient, especially when the number of
clusters k is large (which is common in industry).

4. Numerical Experiments
We provide clustering experiments on various public
datasets to demonstrate the practical benefits of the pro-
posed LSDS++ method. The main objective is to vali-
date that LSDS++ is able to attain the same error level of
LocalSearch++, with substantially improved efficiency.

4.1. Datasets

We conduct our experiments on five benchmark datasets:

• DNA (Hsu and Lin, 2002): a dataset with 2000 in-
stances of DNA sequences and 180 features. The
dataset is available at LIBSVM repository1.

• RNA (Uzilov et al., 2006): this dataset contains 59535
samples with 8 features. The dataset was used to study
the detection of non-coding RNAs (Uzilov et al., 2006).

• PHY: 50000 data points from particle physics with 78
features. The data were obtained from high-energy
collision experiments and used in KDD Cup 20042.

1https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets

2http://osmot.cs.cornell.edu/kddcup/
datasets.html
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• BIO: 145751 data samples with 74 features that measure
the match between a protein and a native sequence. This
dataset was also used in KDD Cup 2004.

• MNIST (LeCun et al., 1998): a hand-written digit
dataset with 60000 samples and 784 features.

In data pre-processing, on all datasets, each sample point is
normalized to have unit l2 norm.

4.2. Algorithms

The following center initialization algorithms are compared:

• k-means++ (Arthur and Vassilvitskii, 2007) : the clas-
sic random seeding approach (Algorithm 2).

• LocalSearch++ (Lattanzi and Sohler, 2019): we
first run k-means++, and then apply extra local search
steps with random sampling (Algorithm 3).

• LSDS++: Our proposed algorithm using the trick of
dual sampling (Algorithm 5).

In our experiments, following the setting in Lattanzi and
Sohler (2019), we first run k-means++ to obtain an initial
center set C0. Then, starting from C0, we run 500 steps of
LocalSearch++ and LSDS++, respectively. Moreover,
we also test the performance of running 20 standard local
search steps (Arya et al., 2004) starting from the initial cen-
ters found by the above algorithms, respectively, to justify
whether the improved initialization could indeed lead to
better clustering eventually. We test the number of clus-
ters k ∈ {3, 5, 10, 20, 30, 50}. All the presented results are
averaged over 10 independent runs.

4.3. Results

In Figure 2, we report the cost of the initial centers against
the number of iterations. Denote the “current” center set in
each iteration of the algorithm as Cf . We report the relative
cost ratio cost(P,Cf )/cost(P,C0), which represents the
improvement of the two refined algorithms upon the vanilla
k-means++. We present the results for k = 10 and k = 30,
and the conclusions for other k values are similar. As we
can see, the proposed LSDS++ achieves roughly the same
cost as that of LocalSearch++ with the same number of
steps, as stated by our theory.

Figure 3 plots the cost ratio versus wall-clock time. Recall
that the complexity of LocalSearch++ per iteration is
O(dnk2), while the complexity of the proposed LSDS++
per iteration is O(dnk) if the randomly picked center is
preferred. From the plots, we verify that LSDS++ is able
to achieve essentially the same cost as LocalSearch++,
but with significantly improved efficiency. We also observe
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Figure 2. The k-means cost ratio against the number of iterations.
We first run k-means++ to obtain centers C0. Then we run LS++
and LSDS++ starting from C0 for 500 iterations, respectively. The
curves are the corresponding cost(P,Cf )/cost(P,C0) where Cf

is the center set after each iteration.

that the gain in running time is more substantial when k
increases. For example, when k = 10, LSDS++ runs ≈ 5×
times faster than LocalSearch++, and with k = 30 the
improvement is more than ≈ 10×. This is consistent with
our result that LSDS++ saves a factor of k in complexity.
Our experiments demonstrate that LSDS++ can serve as an
accurate and highly efficient seeding (initialization) algo-
rithm for the k-means clustering in practice.
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Figure 3. The cost ratio of LocalSearch++ and LSDS++ over
the cost of k-means++ against the wall-clock running time.

In Table 1, we report the ratio of the cost after further run-
ning 20 local search steps upon initialization, over the cost
at k-means++ initialization. That is, for example, we first
run LSDS++ (same as in Figure 2), and then run 20 steps
of local search, and divide the cost by the cost of C0 where
C0 is the cost at k-means++ initialization. We observe
that: (i) the proposed LSDS++ achieves a similar final cost
as that of LocalSearch++; (ii) LSDS++ always attains
smaller clustering cost than running local search starting

Table 1. The relative cost after running extra 20 steps of local
search starting from the initial clusters found by k-means++, and
500 steps of LocalSearch++ and LSDS++, respectively. For
consistency, the cost is relative to the cost of the k-means++
initialization, i.e., C0 in Figure 2 and Figure 3.

k = 10 k = 30
LS++ LSDS++ KM++ LS++ LSDS++ KM++

dna 0.5506 0.5509 0.5519 0.5706 0.5706 0.5750
rna 0.5633 0.5541 0.6283 0.5680 0.5696 0.6620
phy 0.5954 0.5950 0.6674 0.5974 0.5968 0.6500
bio 0.5976 0.5975 0.6148 0.6322 0.6329 0.6434

mnist 0.5550 0.5545 0.5588 0.5646 0.5659 0.5703

from k-means++, and significantly so on RNA, PHY, and
BIO. These results justify that the proposed LSDS++ is able
to improve the final clustering quality when additional local
search steps are applied from the initial centers of LSDS++.

5. Conclusion
We propose LSDS++, an accurate and highly efficient initial-
ization algorithm for the k-means clustering problem. We
propose a “dual sampling” strategy in the local search step
which reduces the number of candidate swap centers each
step of LocalSearch++ by a factor of O(k), where k is
the number of clusters in k-means. By introducing coresets
and a new capture graph into our analysis, we prove that
the proposed LSDS++ achieves the same constant expected
approximation error as LocalSearch++. Numerical re-
sults are also provided, which verify that compared with
LocalSearch++, the proposed LSDS++ can attain the
same clustering cost with significantly reduced running time.
We expect LSDS++ to be adopted in practice as a highly
efficient large-scale clustering algorithm.
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