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Abstract

The simplex method, introduced by Dantzig more
than half a century ago, is still to date one of
the most efficient methods for solving large-scale
linear programming (LP) problems. While the
simplex method is known to have the finite termi-
nation property under mild assumptions, the num-
ber of iterations until optimality largely depends
on the choice of initial basis. Existing strategies
for selecting an advanced initial basis are mostly
rule-based. These rules usually require extensive
expert knowledge and empirical study to develop.
Yet, many of them fail to exhibit consistent im-
provement, even for LP problems that arise in a
single application scenario. In this paper, we pro-
pose a learning-based approach for initial basis
selection. We employ graph neural networks as a
building block and develop a model that attempts
to capture the relationship between LP problems
and their optimal bases. In addition, during the in-
ference phase, we supplement the learning-based
prediction with linear algebra tricks to ensure the
validity of the generated initial basis. We validate
the effectiveness of our proposed strategy by ex-
tensively testing it with state-of-the-art simplex
solvers, including the open-source solver HiGHS
and the commercial solver OptVerse. Through
these rigorous experiments, we demonstrate that
our strategy achieves substantial speedup and con-
sistently outperforms existing rule-based methods.
Furthermore, we extend the proposed approach
to generating restricted master problems for col-
umn generation methods and present encouraging
numerical results.
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1. Introduction
Linear programming (LP) has been a fundamental aspect
of various industrial domains for decades. A pioneering
method for solving LP problems is the simplex method,
which searches for an optimal solution by traversing the
vertices of the polyhedron defined by the linear constraints.
Ever since its introduction by Gass & Vinjamuri (2004)
more than half a century ago, much progress has been made
in improving the practical efficiency and stability of the sim-
plex method, including the revised simplex method (Dantzig
& Orchard-Hays, 1954), the Harris two-pass ratio test (Har-
ris, 1973), anti-degeneracy techniques (Ryan & Osborne,
1988; Gill et al., 1989), crash methods (Bixby, 1992), piv-
oting rules (Forrest & Goldfarb, 1992), and parallel dual
simplex (Huangfu & Hall, 2018), just to name a few. To
date, the simplex method is still considered to be one of
the most efficient methods for computing a highly accurate
LP solution and is the workhorse of most commercial LP
solvers.

It is known that the simplex method has finite termination as
long as proper anti-degeneracy technique is adopted (Gass
& Vinjamuri, 2004). Thus, the efficiency of the simplex
method is mostly determined by the number of iterations
it takes until termination. Although in the worst case, the
number of iterations needed can be exponential in the in-
put size (Klee & Minty, 1972), it is usually observed to be
polynomial in practice (Spielman & Teng, 2004). Moreover,
the initial basis of the simplex method has a considerable
impact on the number of iterations until termination. In par-
ticular, starting with a basis that is much closer to an optimal
one can often result in less number of iterations. Given this,
many works have proposed strategies for selecting advanced
initial bases for the simplex method; see, e.g., Bixby (1992),
Gould & Reid (1989), Junior & Lins (2005), Ploskas et al.
(2021), Galabova & Hall (2020). Most existing strategies
are rule-based. These rules are usually developed by care-
fully analyzing the structure of the problem at hand and
extensive empirical experience. Yet, most of them still fail
to exhibit consistent improvement over the canonical initial
basis.

In practice, it is very common that we need to solve a set of
LP problems which share substantial similarities. Indeed, in
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many applications, an abstract LP model is usually first de-
veloped, which descriptively specifies variables, constraints,
and objectives. Then, each LP problem is instantiated by
feeding data to the abstract model, where the data can be
obtained on the fly or sampled from an underlying distri-
bution. A manufacturer’s daily production planning and
an airport’s hourly flight scheduling are typical examples
of this scenario. As these LP problems are generated by
the same abstract model and correlated data, it is expected
that the optimal bases of the solved LP problems can be ex-
ploited for constructing advanced initial bases for the ones
to be solved. However, existing rule-based approaches treat
each LP problem separately and thus cannot take advantage
of the similarities across the LP problems. Therefore, it is
natural to ask if a learning-based approach can be developed
for selecting advanced initial bases so that the efficiency of
the simplex method can be enhanced when applied to a set
of correlated LP problems.

Several challenges are present towards a learning-based ini-
tial basis selection. First, while being correlated, the LP
problems are often of varying sizes. Thus the proposed
model must be capable of handling LP problems of different
dimensions. Second, for each LP problem, the number of all
potential bases is exponential in the problem size, resulting
in an exponentially large output space. Third, the selected
initial basis has to be valid in the sense that the correspond-
ing basis matrix is non-singular and the status of non-basic
variables are consistent with their bounds (Definition 4.1),
both of which further complicate the prediction task.

In this paper, we propose the first learning-based strategy for
initial basis selection in the simplex method. Based on the
fact that every LP problem can be equivalently represented
by a bipartite graph (Gasse et al., 2019), we employ a graph
neural network (GNN) as a building block in our model,
which allows us to handle problems of varying sizes. Our
model takes LP instances as input and outputs the status
of each variable, i.e., basic, non-basic at the upper bound,
or non-basic at the lower bound. We further equip our
model with a knowledge-based masking technique (Fan
et al., 2022) so that every variable’s predicted status is con-
sistent with its bound in the LP formulation. These allow
us to transform the original challenging task into a more
manageable classification task. Finally, in the inference
phase, we exploit the structure of the computational form
of LP problems and adopt a basis repair technique (Bixby
& Saltzman, 1994) to ensure that a non-singular basis is
selected. The selected basis is then used as the starting basis
of the simplex method.

We conduct extensive experiments on various LP data sets
with state-of-the-art LP solvers, including the open-source
solver HiGHS (Huangfu & Hall, 2018) and the commercial
solver OptVerse (Huawei, 2021). The computational results

show that starting the simplex method with the proposed
learning-based initial basis strategy can achieve substantial
improvement in both the number of iterations and end-to-
end computational time. It consistently outperforms existing
rule-based initial basis selection methods. Moreover, the
time for generating an initial basis using our strategy is
negligible as compared to the simplex solution time, making
it a practically valid approach for dealing with industrial-
level applications.

Furthermore, we extend the proposed learning framework
to generating an advanced restricted master problem for the
column generation (CG) method (Dantzig & Wolfe, 1960;
Gasse et al., 2019), which is an extension of the simplex
method for solving LP problems with a large ratio between
the number of variables and the number of constraints. The
computational results show that our approach can lead to
much fewer CG iterations and shorter running time than the
canonical selection of the restricted master problem.

2. Related Work
Classical initial-basis strategies In the literature, various
initial-basis strategies have been proposed for solving LP
problems faster. Logical basis (Chvatal, 1983; Bertsimas &
Tsitsiklis, 1997) is a simple and commonly used strategy,
which involves all slack variables as the initial basis. One
advantage of the logical basis is that the corresponding ma-
trix is the identity matrix, enabling efficient computation of
its inverse. This advantage makes it the default option for
many state-of-the-art solvers such as HiGHS (Huangfu &
Hall, 2018) and CPLEX (Gearhart et al., 2013). However,
this approach only works for problems without equality con-
straints and has to create artificial variables for the equality
constraints. In order to select as few artificial variables as
possible, the CPLEX crash algorithm is proposed by Bixby
(1992), which uses heuristics to quickly guess an initial
basis, prioritizing structural variables and creating a sparse,
well-conditioned basis with fewer artificial variables than
the logical basis. However, both approaches may produce
an initial basis far from optimal. Another approach is the
Idiot Crash algorithm (Galabova & Hall, 2020), which uti-
lizes the augmented Lagrangian method to find an initial
basis closer to an optimal one, though it generally has a
slow convergence speed. In contrast, our proposed approach
benefits from previous experience by learning a lightweight
model through historical data, providing a suitable initial
basis without additional solving costs, and achieving a near-
optimal basis with a negligible inference cost.

Graph neural network for optimization The use of
graph neural networks (GNNs) to assist optimization solvers
has received significant attention in recent years. Gasse et al.
(2019) first proposed a constraint-variable bipartite graph
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representation for mixed-integer LPs and a GNN model
for learning a strong branching policy to accelerate MIP
solvers. Following this framework, many researchers have
proposed various approaches to improve MIP or LP solvers
with GNNs (Ding et al., 2020; Gupta et al., 2022; Qu et al.,
2022; Li et al., 2022). Gupta et al. (2022) discovered a ”look-
back” property missing in the trained GNN and proposed
incorporating it into the training process, which resulted in
further speedup for MIP solvers. Qu et al. (2022) proposed
an improved reinforcement learning algorithm that builds
upon imitation learning (Gasse et al., 2019). Considering
that high-end GPUs may not be accessible to many prac-
titioners, Gupta et al. (2020) proposed a hybrid model for
branching in MIP inferencing on CPU and maintained com-
petitive speedup. Ding et al. (2020) proposed a tripartite
graph representation for MIP and used GNNs to predict solu-
tion values for binary variables. Li et al. (2022) reformulated
the LP and reordered the variables and constraints using a
GNN and a Pointer Network. More recently, Chen et al.
(2022) built a theoretical foundation for the representation
power of GNNs for LP, proving that given any LP, a GNN
can be constructed that maps from the LP to its feasibility,
boundedness, and an optimal solution. Despite the advance-
ments made in using GNNs to assist optimization solvers,
there is currently no work on initial basis selection for LP,
pushing it towards practicality. Our proposed approach aims
to fill this gap by providing a machine-learning-based initial
basis selection strategy for LP.

3. Notations
We use R = R ∪ {−∞} and R = R ∪ {+∞} to denote ex-
tended real domains. We use Im to denote the m-by-m iden-
tity matrix. Given a vector x ∈ Rn, a matrix A ∈ Rm×n and
a subset B ⊆ [n], we use xB ∈ R|B| to denote the subvector
of x that contains the entries of x inB and use AB ∈ Rm×|B|

to denote the submatrix of A that contains the columns of A
in B. We use ∆d to denote the d-dimensional simplex, i.e.,
∆d = {p ∈ Rd

+ |
∑d

i=1 pi = 1}. We denote by OneHot(d)
the set of d-dimensional binary vectors with exactly one
entry being non-zero. The softmax mapping is defined by
softmax(z)i = exp(zi)∑d

j=1 exp(zj)
,∀i ∈ [d]. The crossentropy

loss is defined by ℓCE(p, q) = −
∑d

i=1 qi log(pi).

4. Preliminaries on Linear Programs
We consider the following standard format of LP

min
x∈Rn,s∈Rm

cTx

s.t. Ax = s

ℓx ≤ x ≤ ux

ℓs ≤ s ≤ us,

(P)

Figure 1. Illustration of Simplex algorithm. It starts with initial
basis (B(0)

x ,B(0)
s ), and routinely pivots to a neighbouring basis

with improvement till it reaches an optimal basis (B∗
x,B∗

s ).

where A ∈ Rm×n is the constraint matrix with m ≤ n,
c ∈ Rn is the cost vector, x ∈ Rn is known as the deci-
sion variable, s ∈ Rm is known as the constraint variable,
ℓx ∈ Rn and ux ∈ Rn

are lower and upper bounds for the
decision variable x, and ℓs ∈ Rm and us ∈ Rm

are lower
and upper bounds for the constraint variable s. This formu-
lation agrees with the input formulation for many LP solvers
such as HiGHS (Huangfu & Hall, 2018), OptVerse (Huawei,
2021), CPLEX (Cplex, 2009) and Gurobi (Gurobi Optimiza-
tion, LLC, 2022).

Without loss of generality, we assume the following assump-
tion holds throughout the paper.

Assumption 4.1. The LP problem (P) is feasible and
bounded.

4.1. Basis and Basic Solution

Next, we formally introduce the concept of basis and basic
feasible solutions for LP problems.

Definition 4.1. Given two index sets Bx ⊂ [n] and Bs ⊆
[m], the tuple (Bx,Bs) is called a basis for the LP prob-
lem (P) if |Bx| + |Bs| = m and the matrix [ABx − ImBs

]
is non-singular. Let (Nx,Ns) = ([n] \ Bx, [m] \ Bs). A
tuple (xB, sB) ∈ Rn×Rm is called a basic solution for (P)
with respect to the basis (Bx,Bs) if AxB = sB and for any
i ∈ Nx and j ∈ Ns, we have

xB
i =


ℓxi if ux

i = +∞
ux
i if ℓxi = −∞

ℓxi or ux
i otherwise

and

sBj =


ℓsj if us

j = +∞
us
j if ℓsj = −∞

ℓsj or us
j otherwise.

Moreover, if ℓx ≤ xB ≤ ux and ℓs ≤ sB ≤ ux, then
(xB, sB) is called a basic feasible solution for (P).

4.2. Simplex Method

In this section, we briefly introduce the primal simplex
method for solving problem (P). Note that given a basis
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(Bx,Bs) and the values for (xB
Nx

, sBNs
), the remaining val-

ues in the basic primal solution (xB, sB) are uniquely deter-
mined, i.e.,

xB
Bx

sBBs

 = [ABx
− ImBs

]−1
(
ImNs

sBNs
−ANx

xB
Nx

)
.

The primal simplex method is initialized with a primal fea-
sible basis. If the basis is not dual feasible, then the pri-
mal simplex method will pick a dual infeasible index p to
enter the basis and a leaving index q ∈ Bx ∪ Bs such that
(Bx,Bs)\{q}∪{p} is still primal feasible. Note that adding
p into the basis will perturb the values (xB

Bx
, sBBs

), and q is
defined as the first index violating the primal constraint.

Similarly, the dual simplex method is initialized with a dual
feasible basis. In each iteration, it will find a leaving index q
that is not primal feasible and find an entering index p such
that the resulting basis is still dual feasible.

In summary, the simplex method is an algorithm that starts
with initial basis (B(0)x ,B(0)s ), from which we can obtain a
basic solution (x(0), s(0)). It then routinely visits candidate
bases and corresponding basic solutions till it encounters an
optimal basic feasible solution.

(B(0)x ,B(0)s )→ (x(0), s(0))→ (B(1)x ,B(1)s )→ (x(1), s(1)) . . .

This process is illustrated in Figure 1. We refer interested
readers to (Maros, 2002) for a more detailed description of
the simplex method.

Although the simplex method is one of the most widely
adopted algorithms for solving LP problems, the theoreti-
cal guarantee of its performance is actually weak. Klee &
Minty (1972) showed that the simplex method has expo-
nential time complexity in the worst case. Moreover, many
empirical results demonstrate that the performance of the
simplex method depends largely on the selection of the ini-
tial basis (Bixby, 1992; Huang et al., 2021; Sangngern &
Boonperm, 2020).

4.3. Column Generation Method

When the LP problem (P) has a huge number of columns,
i.e., n ≫ m, searching for entering and leaving variables
might be computationally intractable. Dantzig & Wolfe
(1960) and Gilmore & Gomory (1961) proposed the column
generation (CG) method as an extension of the simplex
method. The CG method starts with a subset F ⊆ [n] of
variables and then deals with the following restricted master

problem (RMP)

min
x∈R|F|,s∈Rm

cTFx

s.t. AFx = s

ℓxF ≤ x ≤ ux
F

ℓs ≤ s ≤ us.

(RMP)

Note that the initial subset F need to be carefully chosen
so that the (RMP) is feasible. Then the CG algorithm will
solve the (RMP) and use the corresponding optimal dual
solution to add columns from [n] \ F . Then the (RMP) will
be updated and solved again. The process is repeated until
an optimal solution is found.

5. GNN-based model for Initial Basis Selection
In this section, we step-by-step show how we are going to
learn a mapping from an LP instance to a valid basis. Gener-
ally speaking, our methodology can be divided into two ma-
jor steps: training and inference. More specifically, during
the training step (Section 5.1), we want to learn a mapping
f(θ; ·) such that given an LP instance (P ) with n variables
and m constraints, f(θ; (P )) = {px,i ∈ ∆3, ps,j ∈ ∆3 |
i ∈ [n], j ∈ [m]}, where θ is the learnable parameters in
f , and px,i, ps,j indicate the probability of the label of the
corresponding variable, i.e.,

px,i = [P(xi = ℓxi ) P(ℓxi < xi < ux
i ) P(xi = ux

i )]
T and

ps,j =
[
P(sj = ℓsj) P(ℓsj < sj < us

j) P(sj = us
j)
]T

.

(1)

During the inference step (Section 5.2), we first generate
a candidate basis (Bx,Bs) according to the probabilities
given by f(θ; (P )), i.e.,

(Bx,Bs) ∈

argmax
|Bx|+|Bs|=m

[ ∏
i∈Bx

P(ℓxi < xi < ux
i )

∏
j∈Bs

P(ℓsj < sj < us
j)

]
.

Then we adjust the basis to make it valid, i.e., the matrix
[ABx

− ImBs
] being non-singular (Definition 4.1).

5.1. Graph Representation and GNN Model formulation

The goal is to learn the mapping f(θ; ·). However,
what we have is a training set with K samples D ={
[(P k), (xk, sk)]

}K

k=1
. In k-th sample, (P k) is an LP prob-

lem with the same formulation as (P), and (xk, sk) is a
optimal basic feasible solution to (P k). In this section, we
will represent (P k) as a graph, construct the label from
(xk, sk), and instantiate f(θ; ·) as a GNN model.

Graph representation. Gasse et al. (2019) suggested rep-
resenting the LP problem as a weighted bipartite graph.
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Figure 2. Represent the LP problem as a weighted bipartite graph.
The graph topology is defined by the constraint matrix A. The
information in c, A, lx, lu, ls, and lu will be extracted to build the
node features (Appendix A).

As shown in Figure 2, a weighted bipartite graph G =
(V,W,E) consists of two disjoint vertex sets V and W , and
a collection E of weighted edges, where each edge connects
exactly one vertex in V and one vertex in W . When repre-
senting an LP as a weighted bipartite graph, each variable
vertex in V represents a decision variable xi, and each con-
straint vertex in W represents a constraint variable sj , and
the graph topology is defined by the constraint matrix A.
More specifically,

• The variable vertex set V contains n nodes
{v1, . . . , vn}. Each node vi ∈ Rp contains informa-
tion about decision variable xi. The composition of
node information vi is shown in Appendix A.

• The constraint vertex set W contains m nodes
{w1, . . . , wm}, Each node wj ∈ Rq contains infor-
mation about the constraint variable sj .

• The edge set is defined by E(vi,wj) = Aji for all
(i, j) ∈ [n]× [m].

Note that one big advantage of representing LP as a
weighted bipartite graph is permutation equivalence. It
refers to the equivalence of two LP problems when the deci-
sion variables, cost vector, bound vectors, and columns in
the constraint matrix are permutated in the same order.

Following this bipartite graph representation, for any prob-
lem instance (P ), we can uniquely transform it into a
weighted bipartite graph, i.e., (P )→ G = (V,W,E).

Label construction. As we introduced in Section 4.2,
a valid initial basis for the simplex method requires the
following information:

• A valid basis (Bx,Bs).
• For any i ∈ Nx, whether xB

i = ℓxi or xB
i = ux

i .
• For any j ∈ Ns, whether sBj = ℓsj or sBj = us

j .

For this purpose, given any optimal basic feasible solu-
tion (x, s), we transform it into n + m one-hot labels

Figure 3. Overall procedure of the inference step.

{yx,i, ys,j ∈ OneHot(3) | i ∈ [n], j ∈ [m]}. Specifically,

yx,i =


[1 0 0]T if xi = ℓxi
[0 1 0]T if ℓxi < xi < ux

i

[0 0 1]T if xi = ux
i

and

ys,j =


[1 0 0]T if sj = ℓsj
[0 1 0]T if ℓsj < sj < us

j

[0 0 1]T if sj = us
j .

(2)

Message-passing functions. We adopt the standard
message-passing framework for the graph neural net-
work (Scarselli et al., 2009). A graph neural network with
L message-passing steps will be learned. The learnable
message-passing functions are denoted as

fV
l (θVl ; ·) : RdV

l−1 × RdW
l−1 → RdV

l and

fW
l (θWl ; ·) : RdW

l−1 × RdV
l−1 → RdW

l for l ∈ [L],

where {θVl , θWl | l ∈ [L]} are the learnable parameters,
dV0 = p, dW0 = q and dVL = dWL = 3. The node embeddings
will be updated via these message-passing functions, i.e.,
for any i ∈ [n], j ∈ [m] and l ∈ [L],

vli = fV
l

(
θVl ; vl−1

i ,

m∑
j=1

E(vi,wj)w
l−1
j

)
and

wl
i = fW

l

(
θWl ;wl−1

i ,

n∑
i=1

E(vi,wj)v
l−1
i

)
,

(3)

where the 0-step embeddings v0i , w
0
j are the input features

vi, wj .

Knowledge-based masking. Then, after the L message
passing steps, we want to predict the label for each node
based on its current feature. Namely, we want to design
mappings vLi → px,i ∈ ∆3 and wL

j → ps,j ∈ ∆3, ∀i ∈
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[n], j ∈ [m], such that px,i, ps,j are the probabilities defined
in (1).

It is an important requirement that these resulting probabili-
ties satisfy the feasibility of non-basic entries. Formally, for
any variable xi, if ℓxi = −∞ or ux

i = +∞, then we want
the corresponding probability to be zero, i.e., P(xi = ℓxi ) =
0 or P(xi = ux

i ) = 0. A similar requirement exists for con-
straint variables. To satisfy the requirements, we adopt the
knowledge-based masking technique proposed by Fan et al.
(2022), where the key idea is to mask out the probability
entries based on the knowledge of the problem. More specif-
ically, we define px,i = softmax(vLi + hx,i) and ps,j =
softmax(wL

j + hs,j), where

hx,i =


[−∞ 0 0]T if ℓxi = −∞
[0 0 −∞]T if ux

i = +∞
[0 0 0]T otherwise

and

hs,j =


[−∞ 0 0]T if ℓsj = −∞
[0 0 −∞]T if us

j = +∞
[0 0 0]T otherwise.

Training Loss Finally, we define the loss function, where
we use the cross-entropy function to measure the mis-
match between the resulting probability and the ground
truth label for every decision and constraint variable. Let
θ = {θVl , θWl | 1 ≤ l ≤ L} denote the set of all learnable
parameters. The loss function is defined as

LD(θ) =
1

K

K∑
k=1

ℓ
(
θ; (P k), (xk, sk)

)
,

where

ℓ (θ; (P ) , (x, s)) =

[ n∑
i=1

α(yx,i) ℓCE(px,i, yx,i)

+

m∑
j=1

α(ys,j) ℓCE(ps,j , ys,j)

]
.

The probabilities {px,i, ps,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
comes from f(θ; (P )). Considering the basis label can
be imbalanced, e.g., only a few slacks are basic, weight
terms α(yx,i) and α(yx,i) are introduced into the train-
ing loss. These terms are the inverse frequency of cur-
rent label, i.e., α(yx,i) = 1/

∑
i′∈[n] 1{yx,i′ = yx,i} and

α(ys,j) = 1/
∑

j′∈[m] 1{ys,j′ = ys,j}. Here, 1{·} is the
indicator function.

5.2. Inference

In this section, we show how to infer a valid basis from
the probabilities predicted by the learned mapping f(θ; ·).
Given an LP instance (P ), recall that the predicted proba-
bilities from f(θ; (P )) are {px,i, ps,j | i ∈ [n], j ∈ [m]}.

Basis generation. First, we select basis as the indices
corresponding to the top-m predicted values for P(ℓxi <
xi < ux

i ) and P(ℓsj < sj < us
j), i.e.,

(Bx,Bs) ∈ argmax
|Bx|+|Bs|=m

∏
i∈Bx

px,i[2]
∏
j∈Bs

ps,j [2].

However, the chosen (Bx,Bs) may not be a valid basis, as
the matrix [ABx

− ImBs
] may be singular (Definition 4.1).

Basis adjustment. Next, we need to adjust (Bx,Bs) to
make it a valid basis. Our adjustment approach is inspired
by a basis repair procedure described in (Bixby & Saltzman,
1994). We try to factor the matrix [ABx

−ImBs
] as described

in Bixby (1992). Note that this factorization does not incur
additional computational complexity, as it has to be done
during the simplex method. During the factorization, if we
encounter a column whose pivot value is smaller than some
fixed tolerance, then we will remove this column by elim-
inating the corresponding index from (Bx,Bs). After the
factorization, if the basis is incomplete, i.e., |Bx|+|Bs| < m,
then we will fill it by adding the non-selected indices accord-
ing to the predicted probabilities. The factorization is then
attempted again until a complete and successfully factored
basis is produced.

Finally, we determine statuses for the non-basic entries ac-
cording to predicted probabilities of reaching the upper
bound or lower bound, i.e., for any i ∈ Nx and j ∈ Ns

xB
i =

{
ℓxi if px,i[1] ≥ px,i[3]

ux
i otherwise

and

sBj =

{
ℓsj if ps,j [1] ≥ ps,j [3]

us
j otherwise.

The overall procedure of the inference step is shown in
Figure 3.

6. Numerical Experiments
In this section, we want to evaluate the performance of
our proposed methodology as a warm-start strategy for the
simplex and column generation methods, as well as to in-
vestigate the impact of dataset diversity on the methodology
and the potential for model transferability. To accomplish
this, we conduct a series of experiments consisting of four
main parts. First, in Section 6.1, we test the performance
of the proposed methodology as a warm-start strategy for
the simplex method. Second, in Section 6.2, we repeat
this experiment but using the column generation method.
Third, in Section 6.3, we sought to determine the impact of
dataset diversity on the proposed methodology by training
the model on generated datasets with varying diversity and
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comparing the results. Finally, in Section 6.4, we evaluate
the potential for model transferability by training the model
on one dataset and then testing it on another dataset that
comes from a different source.

Datasets In this study, we evaluate the performance of
our proposed method on a diverse set of datasets, includ-
ing three publicly available datasets, two privately sourced
datasets, and one synthetic dataset. The publicly available
datasets include the Maritime Inventory Routing Problems
(MIRP) (Papageorgiou et al., 2014), the One-norm Support
Vector Machine Instances (LIBSVM) (Zhu et al., 2003; Ap-
plegate et al., 2021), and the 2-stage Stochastic Problems
(STOCH) (Castro & de la Lama-Zubirán, 2020). The pri-
vately sourced datasets are derived from large-scale supply
chain problems in two different industries, denoted as SC-1
and SC-2. The synthetic dataset (GEN) is generated using
the LP generator developed by Bowly et al. (2020). The
statistics of the datasets are presented in the appendix. To
ensure a fair evaluation, each dataset is split into training
and test sets in a 7:3 ratio.

Candidate Optimization Solvers We evaluate the perfor-
mance of the proposed methodology using two optimization
solvers: HiGHS (Huangfu & Hall, 2018), a state-of-the-art
open-source solver that offers both primal and dual simplex
methods, and an OptVerse solver (Huawei, 2021) that addi-
tionally incorporates the column generation algorithm. To
eliminate any potential impact from solver configurations,
the presolve option is turned off, and default settings are
used.

Implementation We implement our approach with
Python 3.7, PyTorch 1.8 and PyG framework (Fey &
Lenssen, 2019). The GNN model is trained on NVIDIA
V100. The evaluation is conducted on a system comprised
of 8 cores CPU (Intel Xeon E5-2690 v4) and 64 G of mem-
ory, utilizing Ubuntu 18.04 Docker containers for solver
execution. Our code is publicly available at Huawei AI
Gallery 1.

6.1. Initial-Basis strategy for the simplex algorithm

In this section, we evaluate the performance of the pro-
posed methodology as a warm-start strategy for the simplex
method. The proposed method is compared to two com-
monly used initial-basis strategies: 1). DEFAULT, in which
the initial basis contains all the slack variables; 2). CPLEX
Crash (CA) (Bixby, 1992), which employs a heuristic ap-
proach to construct a basis with improved triangularity and
a reduced number of artificial variables. Meanwhile, two

1https://developer.huaweicloud.com/
develop/aigallery/notebook/detail?id=
ce45dd10-44ce-43bb-89c8-1f3277f1132d

more recent rule-based basis-selection strategies are com-
pared based on OptVerse solver: 3). CA-MPC (Ploskas
et al., 2021), which constructs a sparse initial basis using
triangulation and fill-reducing techniques; 4). CA-ANG (Ju-
nior & Lins, 2005), which builds an initial basis heuristically
closer to the optimal vertex.

Both the primal and dual simplex methods were employed
in the evaluation. Due to the page limit, the results obtained
from the primal simplex method are presented in the ap-
pendix. This is also because the dual simplex algorithm is
more commonly employed in practical scenarios (Bertsimas
& Tsitsiklis, 1997; Vanderbei et al., 2020).

Performance evaluations using the dual simplex method
are presented in Table 1 and Table 2, which compares the
number of simplex iterations and total running time. The
running time includes both the time required to find the
initial basis and the time required to execute the simplex
method. The results are presented in the form of mean ± std

over the test set.

We would like to highlight the results in Table 1, the pro-
posed initial-basis strategy consistently outperforms the DE-
FAULT and the rule-based strategies (CA, CA-MPC, and
CA-ANG) in terms of both the number of simplex itera-
tions and total running time across all datasets. It is because
they are built upon heuristics and these heuristics have three
drawbacks: 1). CA and CA-MPC are designed to achieve
better numerical properties for the initial basis matrix, in-
stead of close to optimal. Consequently, only the several
starting iterations can be accelerated and the number of iter-
ations will not necessarily decrease. 2). CA-ANG wants to
find an initial basis that is close to the optimal basis, but it
only works when angular conjectures hold. Similarly, the
other rule-based methods are limited to specific problems
and structures. CA-CPLEX only works for problems with
equality constraints, CA-MPC prefers a constraint matrix
with more singleton columns. 3). They do not utilize past
solved LPs, and thus limit the capacity and applicability.

The acceleration observed in the results is attributed to two
aspects: 1). the inference time is negligible; 2). the pre-
dicted initial bases are close to optimal ones. To verify this
point, the inference time and the prediction performance
of the proposed approach are presented in Table 3. The
“Inference time (s)” column represents the additional time
required during the inference stage, including the time for
GNN inference and basis adjustment. As we can see from
the results, the inference cost of the proposed method is
insignificant, accounting for less than 10% of the total run-
ning time. The performance of the GNN model with respect
to optimal bases is also reported. We report the test accu-
racy, precision and recall. The test accuracy is defined as
the number of correctly predicted variables over the total
number of variables. The precision and recall are defined
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Iterations Time (s)
Dataset DEFAULT CA CA-MPC CA-ANG GNN DEFAULT CA CA-MPC CA-ANG GNN

LIBSVM 14.9K±9.5K 14.9K±9.5K 21.0K±4.8K 15.2K±1.1K 9.1K±3.1K 16.6±10.0 16.7±10.0 27.9±12.4 28.3±2.2 11.0±3.7

MIRP 40.3K±23.3K 34.8K±20.2K 36.7K±20.8K 39.6K±22.7K 25.9K±16.9K 22.1±23.3 21.4±22.5 18.6±16.9 21.6±20.9 15.4±15.7

STOCH 75.3K±4.3K 52.5K±4.8K 48.7K±5.2K 53.3K±1.7K 31.8K±14.3K 44.6±11.8 61.3±12.3 51.3±12.4 53.2±8.5 42.7±30.0

GEN 2.4K±225.0 2.4K±225.0 2.4K±225.0 2.4K±225.0 552.8±642.9 1.3±0.2 1.4±0.2 1.4±0.3 1.4±0.3 0.5±0.5

SC-1 272.3K±151.9K 158.9K±89.1K 266.9K±148.5K 269.2K±151.5K 26.6K±15.4K 77.9±68.4 85.8±80.3 86.1±79.5 100.1±94.0 22.8±23.5

SC-2 1.2M±170.7K 1.1M±172.2K 1.2M±163.5K 431.9K±99.0K 169.1K±34.3K 348.7±101.0 1.3K±698.2 382.8±102.3 338.7±181.5 87.3±25.4

Table 1. Performance comparison between the proposed and rule-based initial-basis strategy, with the dual simplex method and the
OptVerse solver.

Iterations Time (s)
Dataset DEFAULT CA GNN DEFAULT CA GNN

LIBSVM 9.0K±178.8 9.0K±64.2 5.2K±1.5K 7.4±0.2 7.5±0.1 4.6±1.2

MIRP 29.9K±17.0K 25.9K±14.5K 18.2K±12.3K 17.8±17.2 17.6±16.7 14.5±14.2

STOCH 343.2K±36.6K 261.4K±36.2K 165.1K±42.6K 718.7±112.5 553.9±102.9 251.6±66.7

GEN 2.2K±105.0 2.2K±103.4 80.4±186.1 1.3±0.1 1.3±0.1 0.2±0.2

SC-1 262.6K±147.0K 207.5K±111.0K 64.9K±36.5K 21.3±18.7 62.9±50.0 11.1±11.2

SC-2 1.2M±165.5K 1.1M±128.8K 214.3K±40.4K 194.4±58.9 336.6±103.6 65.0±25.1

Table 2. Evaluation of the performance of the initial-basis strategy
for the dual simplex method using the HiGHS solver.

Inference time (s) Prediction performance
Dataset GNN inference Basis adjustment Accuracy (%) Precision (%) Recall (%)

LIBSVM 0.1±8e-3 0.1±2e-3 87.1±4e-2 84.6±4e-2 87.7±2e-2

MIRP 0.1±5e-2 3e-3±2e-3 88.9±1.8 78.4±1.6 80.8±5.4

STOCH 2e-2±7e-3 4e-3±2e-3 81.7±1.9 81.3±1.9 81.3±1.9

GEN 2e-2±6e-3 0.1±2e-2 99.9±0.1 99.9±0.1 99.9±0.1

SC-1 0.1±4e-2 0.3±0.2 93.0±2.1 89.0±5.4 84.6±6.5

SC-2 0.3±0.1 0.3±0.1 90.4±0.8 90.8±0.7 78.4±2.0

Table 3. Test performance of the GNN prediction model.

similarly, with detailed formulas shown in the appendix A.
With test accuracy, precision, and recall metrics exceeding
81%, 78%, and 78%, respectively, across all datasets, it is
verified that our approach produces near-optimal bases.

6.2. Initial-RMP strategy for the column generation
algorithm

In this section, we evaluate the performance of the proposed
methodology as a warm-up strategy for the column gener-
ation (CG) method. As we introduced in Section 4.3, the
CG method starts with a restricted master problem (RMP)
which only contains a subset of the variables. Ideally, if the
predicted basis is optimal, then we can construct an RMP
and solve it in zero iteration. This motivates us to accelerate
the CG algorithm with GNN predicted basis.

The CG method necessitates that the initial RMP is feasible.
To meet this requirement, we first compute a basic solu-
tion corresponding to the GNN-predicted basis. However,
this basic solution may not be feasible. To circumvent this
issue, we construct an equivalent auxiliary LP by introduc-
ing artificial slack variables for the infeasible constraints.
This auxiliary LP then serves as the initial RMP for the CG
method.

We compare our initial-RMP strategy with the default strat-
egy (DEFAULT), which heuristically builds an initial feasi-
ble solution with many variables fixed at bounds, and then

Figure 4. Left: Test accuracy versus λ. Middle: Total running
time versus λ. Right: Simplex iterations versus λ.

constructs an initial RMP with the unfixed variables.

Performance evaluations using the CG method are presented
in Table 5, which compares the number of CG iterations
and total running time. As demonstrated by the results, the
proposed initial-RMP strategy consistently produces fewer
CG iterations and shorter running times than the DEFAULT
across all datasets.

6.3. The impact of dataset diversity

In this section, we aim to evaluate the performance of our
proposed approach on datasets with varying degrees of di-
versity. The efficacy of data-dependent machine learning
techniques for solving LP problems is contingent on the
similarity of the mapping from an LP instance to its op-
timal basis in a given dataset. To this end, we devise a
problem-generation strategy that allows for the controllable
manipulation of the diversity of the mapping.

Our problem-generation strategy is designed based on the
LP-generation technique developed by Bowly et al. (2020).
Constraint matrix A ∈ Rm×n is generated in the same
way, where the maximum numbers of nonzeros in rows and
columns will be less than thresholds τrow and τcolumn. Then
we select basic entries according to the number of nonzeros
in A and generate an optimal basic solution (x, s) through
the following steps:

• k = ⌊γm⌋;
• Choose k indices Bx ⊆ [n] according to probabilities
softmaxλ([nnz(A[:, i])]) without replacement; Here,
softmaxλ(z)i =

exp(zi/λ)∑d
j=1 exp(zj/λ)

,∀i ∈ [d].

• Choose m−k indices Bs ⊆ [m] according to probabil-
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Iteration Ratio=GNN Iterations / DEFAULT Iterations Time Ratio=GNN Time / DEFAULT Time

Source
Target

LIBSVM MIRP STOCH GEN SC-1 SC-2 LIBSVM MIRP STOCH GEN SC-1 SC-2

LIBSVM 0.8±0.3 1.0±0.1 0.8±3e-2 1.7±0.2 0.9±0.1 0.9±3e-2 0.8±0.2 1.1±0.2 2.1±0.4 1.8±0.3 1.8±0.5 2.5±0.4

MIRP 1.1±0.4 0.6±0.1 1.0±4e-2 1.4±0.9 1.0±3e-2 1.0±5e-3 1.1±0.4 0.7±0.1 1.0±0.1 3.5±6.1 1.2±0.1 1.2±0.2

STOCH 1.0±0.4 1.3±0.1 0.4±0.2 1.6±0.5 0.6±0.3 1.2±0.2 1.0±0.4 1.6±0.4 0.9±0.5 0.7±0.3 1.7±0.9 3.9±2.4

GEN 2.1±1.1 1.0±0.1 0.8±3e-2 0.2±0.3 1.2±0.1 1.3±0.1 2.0±1.0 1.1±0.3 2.1±0.3 0.1±0.1 3.1±1.0 7.4±4.3

SC-1 1.0±0.4 0.8±0.1 1.3±0.2 1.1±0.1 0.1±2e-2 0.1±2e-2 1.2±0.4 0.8±0.1 3.1±0.7 1.1±0.1 0.3±0.1 0.3±3e-2

SC-2 1.0±0.4 0.8±0.1 0.8±0.1 1.0 0.3±0.1 0.1±2e-2 1.0±0.3 1.0±0.1 1.2±0.1 1.0±0.1 0.6±0.3 0.3±4e-2

Table 4. Performance of models trained on a source dataset transferring to a target dataset. The entries show the Iteration/Time ratio
between utilizing the GNN model trained on a source dataset and adopting the DEFAULT strategy towards a target dataset. Bold entries
mean that on the corresponding target dataset (column-wise) the fastest iterations/time is achieved.

Iterations Time (s)
Dataset DEFAULT GNN DEFAULT GNN

LIBSVM 34.3K±45.1 17.6K±1.9K 24.9±0.2 19.0±2.7

MIRP 59.2K±46.0K 31.2K±25.9K 54.7±65.2 23.7±28.0

STOCH 99.3K±6.8K 33.3K±12.1K 29.7±10.2 23.3±19.0

GEN 4.2K±2.4K 95.7±120.9 1.4±0.5 0.5±0.3

SC-1 345.2K±194.0K 68.1K±41.4K 64.8±56.3 31.7±35.0

SC-2 1.6M±238.6K 384.1K±92.7K 721.6±299.4 463.5±586.1

Table 5. Evaluation of the performance of the initial-RMP strategy
for the column generation method using the OptVerse solver.

ities softmaxλ([nnz(A[j, :])]) without replacement;
• Randomly fill in remaining values for (x, s).

Finally, following the same way, c and b are computed using
complementary slackness, and LPs are generated.

In our LP-generating strategy, the scalar λ controls the simi-
larity between the mapping from an LP instance to an op-
timal basis. When λ = 1 the softmaxλ coincides with
softmax, when λ→∞ the softmaxλ tends to uniform dis-
tribution, and when λ→ 0 the softmaxλ approximates one-
hot distribution. To conclude, as λ increases, the generated
dataset becomes more diverse.

The evaluation results are presented in Figure 4, where
we test the performance of GNN models with a varying
number of layers. The left figure illustrates the relationship
between test accuracy and the diversity of the dataset (λ).
As depicted in the left figure, the test accuracy decreases
as the diversity of the dataset increases, indicating that the
diversity of the instances has a significant impact on the
GNN prediction. The middle and right figures demonstrate
the effect of dataset diversity on our initial-basis strategy for
the simplex method. The results show that both the running
time and the number of simplex iterations increase as the
diversity of the dataset increases, which is consistent with
the findings in the left figure, as the predicted bases are
farther from the optimal ones.

6.4. Cross-dataset evaluation

In this section, we evaluate the transferability of our pro-
posed approach. The motivation for this evaluation is that,
in practice, datasets may originate from different sources,
such as airplane scheduling and product planning. It is un-
known whether our approach could produce a general model

transferable to various sources.

To test this, we train the GNN model on one dataset and
then test it on another, with the two datasets having distinct
sources. The results are presented in Table 4. It is observed
that most models (except the one trained on SC-2) perform
best on their corresponding test sets. The model trained
on SC-1 performs well on the SC-2 test set, which may be
because SC-1 and SC-2 have the same source (supply chain
demand). For the remaining models, their performance on
test sets from other sources is poor, as they perform similarly
to the DEFAULT initial-basis strategy.

In summary, the numerical results suggest that our proposed
approach does not possess good model transferability. This
may be attributed to the different problem structures of LPs
from different sources, such as the block structures in the
constraint matrix and the topology of the corresponding
simplex polyhedron.

7. Conclusion and Future Directions
In this paper, by employing the graph neural network, we
develop a model aiming to learn the relationship between LP
problems and their optimal bases. We show that our model
leads to warm-start strategies for both simplex and column
generation methods. Extensive numerical experiments with
different optimization solvers all show that our proposed
warm-start strategies outperform existing ones.

Moreover, we believe our model can assist the LP solvers
besides providing warm-start strategies. For example, it
may help to design smart pivoting strategies in the simplex
method. Alternatively, the predicted basis information may
be utilized in the interior-point method as a preconditioner
for the augmented system (Schork & Gondzio, 2020).
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A. Implementation details
The information in c, A, lx, lu, ls, lu will be extracted to build the node features for constraints and variables. The features
for each constraint and variable node are vectors in R8. Denote by Ai: and A:j respectively the i-th row and j-th column in
constraint matrix A. Denote by ⟨·, ·⟩ the cosine similarity between two vectors. The meaning for each feature dimension is
shown in Tab. 6. To ensure numerical stability, a tag dimension is added. If the lower/upper bound does not exist, the tag
dimension will be marked as -1/+1.

Feature index Constraint node j Variable node i

1 ⟨Aj:, c⟩ cj
2 nnz(Aj:)/n nnz(A:i)/m
3 ⟨Aj:, l

x⟩ ⟨ls, A:i⟩
4 ⟨Aj:, u

x⟩ ⟨lu, A:i⟩

5

{
lsj if lsj ̸= −∞
0 else

{
lxi if lxi ̸= −∞
0 else

6

{
0 if lsj ̸= −∞
−1 else

{
0 if lxi ̸= −∞
−1 else

7

{
us
j if us

j ̸=∞
0 else

{
ux
i if ux

i ̸=∞
0 else

8

{
0 if us

j ̸=∞
1 else

{
0 if ux

i ̸=∞
1 else

Table 6. Feature for each constraint node j and variable node i

For the benchmark datasets, we follow the default setup (Papageorgiou et al., 2014; Applegate et al., 2021; Castro & de la
Lama-Zubirán, 2020; Bowly et al., 2020) and only customize such that LPs comes from a shared source because we are
considering the scenario where a series of similar LP problems are to be solved. In LIBSVM, the source is set to Cod-RNA
dataset. The 488,565 data points are split into train and test set by the ratio 1:1. The train and test LPs are constructed using
randomly selected 20K data points respectively from the train and test set. In MIPR, Group-1 LPs are selected without any
modification. In STOCH, to enrich the LPs, we generate the 2-stage stochastic supply chain problems by setting the number
of first-stage variables ranging from 75 to 85. In GEN, the diversity parameter λ defined in Section 6.3 is set to 10. Table. 7
shows the dataset statistics.

For the model architecture, we adopt the GNN proposed by Morris et al. (2019) and customize the graph convolution
operation. To efficiently handle the large-scale sparse constraint-variable bipartite graph, one graph convolution layer is
implemented as two sparse matrix multiplication respectively for message passing from constraint to variable node and back.
By default, 3 layers lightweight GNN is used for SC-1 and SC-2 datasets, and 5 layers GNN is used for other datasets. The
size of the hidden layers is 128 and the dropout ratio is 0.1. Let m represent the number of constraints, n the number of
variables, and d the average degree of the bipartite graph. Taking message-passing as the basic operation, the complexity of
a single LP is given by O(d(m+ n)). This is because computing the representation of each node involves its neighbors, and
the sum of all nodes is equal to the number of edges. In practice, constraint matrices tend to be sparse, which means that
the average degree is typically small. As a result, the complexity scales roughly linearly with the problem size, making

Dataset #LPs m=#constraints n=#variables density #(basic variables)/n (%) #(basic slacks)/m (%)

LIBSVM 100 20.0K 20.0K 5e-4±2e-19 31.3±2e-3 68.7±2e-3

MIRP 28 28.2K±25.2K 28.7K±25.0K 2e-4±1e-4 40.0±3.1 58.6±4.3

STOCH 100 52.3K±1.9K 107.0K±3.8K 5e-5 48.9±5e-4 0.0±2e-4

GEN 100 1.0K 1.0K 0.1±1e-3 60 40
SC-1 525 312.9K±177.4K 659.1K±386.4K 3e-5±2e-4 38.8±4.5 20.1±4.6

SC-2 190 1.4M±199.1K 2.9M±450.6K 2e-6±3e-7 36.7±1.5 22.6±1.4

Table 7. The statistics of datasets.
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Figure 5. The convergence plots for training accuracy and loss

Iterations Time (s)
Dataset Simplex GNN CA Simplex GNN CA

LIBSVM 20.2K±2.4K 19.5K±3.1K 20.2K±2.4K 18.2±2.8 18.1±2.7 18.5±2.8

STOCH 56.2K±30.1K 15.4K±9.5K 19.3K±8.4K 44.7±36.1 8.3±7.0 9.1±7.3

MIRP 36.3K±26.9K 24.1K±18.4K 32.8K±22.9K 24.5±26.3 15.7±16.9 20.4±21.7

SC-1 359.6K±210.4K 34.9K±23.1K 211.2K±126.1K 173.4±205.1 34.8±65.2 142.7±164.6

SC-2 1.8M±275.9K 393.5K±72.1K 1.2M±184.9K 1.4K±627.7 324.5±133.1 937.2±449.0

Table 8. Performance evaluation with primal simplex algorithm in the commercial solver

our approach highly scalable. Considering the graphs in SC-2 can have more than 2M nodes and 10M edges, even 1 graph
per batch requires more 32G memory. Thus, we adopt Neighbourhood Sampling (Hamilton et al., 2017) when #edges is
more than 10M. We do not tune hyper-parameter for training GNN and just adopt the commonly used one, like the Adam
optimizer with initial learning rate 1e-3 and weight decay 1e-4. The learning rate decays by 0.1 every 200 epochs and the
total training epoch is 800. The model is trained on Nvidia V100 with 32 G memory. The training time is less than 1 hour
on GEN, LIBSVM, STOCH, and MIRP, around 4 hours on SC-1, and 8 hours on SC-2. The convergence plots including
training accuracy and loss are shown in Figure 5.

The reported metrics for our task are different from that in the traditional machine learning community because the basis
generation step in our approach ensures that exactly m entries are predicted as basic. Thus, given one LP, if we calculate on
m+ n entries, then the precision and recall will be equal (and also equal to accuracy when m = n). These metrics will
not be ideal measurements for model performance. Only with both good precision and recall, we can say that the model is
high-performance. However, with original metrics, we will fail to measure the model’s performance when labels inside
variables or constraints are imbalanced.

Denote by
{
ŷ
(k)
x,i

}n

i=1
and

{
ŷ
(k)
s,j

}m

j=1
the predicted statuses of variables and constraints for k-th testing LP, and by

{
y
(k)
x,i

}n

i=1

and
{
y
(k)
s,j

}m

j=1
the corresponding ground-truth labels. Denote our reported metric as M̃ and the original metric in ML

community as M , where M can be the accuracy, macro-precision, or macro-recall metrics. M̃ extends M in the following
way:

M̃ =
1

2K

K∑
k=1

[
M

({
ŷ
(k)
x,i

}n

i=1
,
{
y
(k)
x,i

}n

i=1

)
+M

({
ŷ
(k)
s,j

}m

j=1
,
{
ŷ
(k)
s,j

}m

j=1

)]
.
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Iterations Time (s)
Dataset Simplex GNN CA Simplex GNN CA

GEN 3.9K±661.8 279.6±444.2 3.9K±661.8 1.8±0.5 0.2±0.3 1.9±0.5

LIBSVM 9.1K±726.2 6.1K±794.1 9.1K±726.2 6.0±0.6 3.7±0.6 6.0±0.6

STOCH 332.5K±39.6K 314.8K±68.5K 318.5K±25.9K 635.7±169.4 558.5±70.1 581.3±101.2

MIRP 148.2K±120.0K 116.2K±91.1K 131.6K±111.1K 111.4±127.1 82.1±87.0 98.1±112.9

SC-1 387.4K±199.5K 100.8K±86.2K 213.6K±106.6K 1.6K±1.5K 258.8±613.7 593.5±598.9

SC-2 1.5M±231.2K 146.2K±27.2K 1.7M±313.2K 17.9K±4.6K 2.0K±651.5 23.2K±7.5K

Table 9. Performance evaluation for primal simplex algorithm in HiGHS solver

Figure 6. Speedup v.s. the weight of GNN prediction on Mirp, STOCH, SC-1, and SC-2 dataset.

B. Performance evaluation with Primal Simplex Algorithm
Table 8-9 shows the performance of our method with the Primal Simplex Algorithm. In Table 9, the primal simplex algorithm
on HiGHS spends around 4 hours solving 1 LP in SC-2. It will be time-consuming to solve all LPs from scratch. Thus,
we use the dual simplex algorithm to obtain the GT label, train a GNN model and predict the basis for the primal simplex
algorithm. The results reported in row ‘SC-2’ of Table 9 are all tested on 10 randomly selected LPs in the test set. With our
proposed strategy, the solving time on SC-2 is reduced to around 0.5 hours, which is an acceptable time in practice. Overall,
our proposed approach consistently reduces the iteration and time on all datasets for primal simplex method.

C. Combine CPLEX Crash and GNN predicted basis
CPLEX Crash (CA) constructs a basis with better numerical properties. It is composed of 3 steps. 1). Add the slacks for all
one-side inequality constraints to the basis. 2). Sort the variables according to heuristic penalties. 3). Visit each variable by
order and select the variables that maintain triangularity of [ABx

− ImBs
]. In this section, we will enhance the heuristic step

2) through GNN prediction.

Denote by q ∈ Rn the penalty (Bixby, 1992) for the variables. A variable is heuristically more free and of higher priority if
its penalty is smaller. Denote by p = [P(lx1 < x1 < ux

1), · · · ,P(lxn < xn < ux
n)] the probability of variables being basic

given by GNN prediction. Since the penalty q and negative probability −p is of different scale, z-score normalization is
applied to two vectors. The variable will be selected according to a new penalty q′ = λ×zscore(−p)+(1−λ)×zscore(q),
where λ is the weight for GNN prediction.

Figure 6 shows the speedup v.s. the weight of GNN prediction. Speedup on iterations is defined as
Iterations of DEFAULT - Iterations of X

Iterations of DEFAULT , where X can be CA or GNN. The speedup on time is defined similarly. Since GEN and
LIBSVM have no equality constraint and no artificial variables, CA plays no role in them. Thus, we skip these datasets.
Figure 6 shows only the curves on Mirp, STOCH, SC-1, and SC-2. The advantage of step 3) in CPLEX Crash is that
[ABx

− ImBs
] will be close to triangular, and thus requires almost no factorization and accelerating the initial several

iterations. However, a basis with good numerical properties is not necessarily closer to optimal, and thus the enhanced
CPLEX Crash (blue line) is still inferior to just using GNN prediction (orange line).

On all datasets, the enhanced CPLEX Crash (λ > 1) is better than the original CPLEX Crash (λ = 1). This verifies that
GNN predictions are better than CPLEX Crash’s heuristic. However, integrating GNN prediction into CPLEX Crash is
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always inferior to purely relying on GNN prediction. This is because step 1) and 3) in CPLEX crash can be incorrect and
the initial basis get far away from optimal basis.

D. Pseduo Code

Algorithm 1 Smart Initial Basis Selection Algorithm for Linear Programs
Training Stage: Given the historical LPs, train a basis prediction model.
Input: Past solved LPs set D =

{
[(P k), (xk, sk)]

}K

k=1
. Here, (P k) is the k-th problems and (xk, sk) is its optimal

solution.
Output: A GNN model f(θ; ·).
// Constructed trainset
for [(P k), (xk, sk)] ∈ D do

// Construct graph representation from past solved LP
1. Given past solved (P k), extract the LP data, including cost vector c, bounds vectors lx, lu, ls, lu, and constraint
matrix A.
2. From LP data, construct constraint nodes features {wj}mj=1 and variable nodes features {vi}ni=1. The edge E(wj ,vi)

is connected if Aji ̸= 0 and weighted by Aji.
// Construct labels
3. Given (xk, ss), transform it into one-hot labels {yx,i, ys,j ∈ OneHot(3) | i ∈ [n], j ∈ [m]}.

end for
Train f(θ; ·) with constructed trainset: θ∗ ← argminθLD(θ)
return f(θ; ·)

Inference Stage: Given a testing LP, predict an initial basis for it.
Input: Testing LP (P test)
Output: Predicted basis (B′x,B′s)
// Basis generation
Model inference and obtain basis status probability {px,i, ps,j | i ∈ [n], j ∈ [m]}.
Select top-m likely entries into basis Bx,Bs according to P(ℓxi < xi < ux

i ) and P(ℓsj < sj < us
j).

// Basis adjustment
Adjust the basis to make the corresponding basis matrix non-singular. Determine statuses for the non-basic entries.
return (B′x,B′s)

function Define GNN model f
(
θ; {vi}ni=1, {wj}mj=1

)
1. Initialize the messages by nodes features: ∀i ∈ [n], v0i ← vi and ∀j ∈ [m], w0

j ← wj .
2. Conduct L steps message passing with learnable message-passing functions fV

l and fW
l :

for l = 1, . . . , L do

vli = fV
l

(
θVl ; vl−1

i ,
∑m

j=1 E(vi,wj)w
l−1
j

)
and wl

i = fW
l

(
θWl ;wl−1

i ,
∑n

i=1 E(vi,wj)v
l−1
i

)
.

end for
// Knowledge masking: produce probability satisfying the feasibility of non-basic entries
3. px,i = softmax(vLi + hx,i) and ps,j = softmax(wL

j + hs,j), where hx,i and hs,j are the large penalty for
unreachable bounds.
return {px,i, ps,j | i ∈ [n], j ∈ [m]}

end function
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