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Abstract
The growing body of research shows how to re-
place classical partial differential equation (PDE)
integrators with neural networks. The popular
strategy is to generate the input-output pairs with
a PDE solver, train the neural network in the re-
gression setting, and use the trained model as a
cheap surrogate for the solver. The bottleneck in
this scheme is the number of expensive queries of
a PDE solver needed to generate the dataset. To
alleviate the problem, we propose a computation-
ally cheap augmentation strategy based on general
covariance and simple random coordinate trans-
formations. Our approach relies on the fact that
physical laws are independent of the coordinate
choice, so the change in the coordinate system
preserves the type of a parametric PDE and only
changes PDE’s data (e.g., initial conditions, dif-
fusion coefficient). For tried neural networks and
partial differential equations, proposed augmenta-
tion improves test error by 23% on average. The
worst observed result is a 17% increase in test
error for multilayer perceptron, and the best case
is a 80% decrease for dilated residual network.

1. Introduction
Machine learning is increasingly used to solve partial dif-
ferential equations (PDEs). The especially fruitful idea is
to learn a computationally cheap but sufficiently accurate
surrogate for the classical solver (Hennigh, 2017), (Li et al.,
2020), (Tripura & Chakraborty, 2022), (Lu et al., 2021a),
(Stachenfeld et al., 2021). The most reliable training strat-
egy is to generate input-output pairs with a classical solver
and fit a neural network of choice with a standard L2 loss
(regression setting).
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An alternative we do not consider here is to resort to a
so-called physics-informed setting when the loss is a L2

norm of PDE residual evaluated at certain points (Wang
et al., 2021), (Li et al., 2021). This way, one avoids data
generation by a classical solver. Arguably, it is currently
recognized that the whole process is inefficient (Lu et al.,
2021b), (Karnakov et al., 2022).

In the regression setting the size of the generated dataset is
usually limited owing to the restrictions on the computation
budget. Deep learning is data-hungry, so ways to cheaply
increase the number of data points available for training
are highly desirable. Numerous augmentation techniques
serve this purpose in classical machine learning (Shorten &
Khoshgoftaar, 2019), (Wen et al., 2020). For scientific ma-
chine learning, literature on augmentation is scarce (Brand-
stetter et al., 2022), (Li et al., 2022a). In this note, we
contribute a new way to augment datasets for neural PDE
solvers.

The central idea behind our approach is the principle of
general covariance. General covariance states that phys-
ical phenomena do not depend on the choice of a coordi-
nate system (Post, 1997), (Emam, 2021). Mathematically,
the covariance means the physical fields are geometric ob-
jects (tensors) with particular transformation laws under
the change of coordinates (Eglit et al., 1996), (Liseikin,
2017). In exceptional cases, these transformation laws leave
governing equations invariant (symmetry transformation),
but in most cases, it is only the form of the equations that
persists. More specifically, for parametric partial differen-
tial equations, suitably chosen coordinate transformation
induces the change of problem data (e.g., permeability field,
convection coefficients, source term, initial or boundary con-
ditions, e.t.c.). We use this fact to build a computationally
cheap and broadly applicable augmentation strategy based
on simple random coordinate transformations. To evalu-
ate the efficiency of our approach, we perform empirical
tests on the two-way wave, convection-diffusion, and sta-
tionary diffusion equations using several variants of Fourier
Neural Operator (FNO) (Li et al., 2020), Deep Operator Net-
work (DeepONet) (Lu et al., 2021a), Multilayer Perceptron
(MLP) (Haykin, 1994), Dilated Residual Network (DilRes-
Net) (Yu & Koltun, 2015), (Stachenfeld et al., 2021) and
U-Net (Ronneberger et al., 2015). Both for one-dimensional
and two-dimensional PDEs proposed augmentation tech-
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nique improves test error by 23% on average and up to 80%
in the most favorable cases.

Contributions:

1. Easily extendable, architecture-agnostic augmentation
procedure based on general covariance.

2. Cheap algebraic random grids in Rn based on cumula-
tive distribution function and transfinite interpolation.

3. Comprehensive set of experiments showing that aug-
mentation helps to improve test error for different ar-
chitectures and parametric families of PDEs.

Code and datasets are available on https://github.
com/VLSF/augmentation.

2. Basic augmentation example
Before dwelling upon technical details, we provide a simple
example of our approach for a parametric boundary-value
problem

d

dx

(
a(x)

d

dx
u(x)

)
= f(x),

x ∈ [0, 1], u(0) = u(1) = 0.

(1)

Suppose that a and f are chosen reasonably, so the unique
solution exists.1 The usual way to approximate this solution
is to use finite-element discretization

u(x) =

N∑
i=1

ϕi(x)ui, (2)

where ϕi(x) are piecewise linear functions such that
ϕi(xj) = δij for xj = j/(N + 1), j = 1, . . . , N , i.e.,
the hat functions. After that, the differential equation
(1) in a weak form is equivalent to N × N linear sys-
tem, and the solution is straightforward. The obtained
solution is known not only on the uniform grid G =
{j/(N + 1), j = 0, . . . , N + 1} but everywhere in the do-
main thanks to the closed-form representation (2).

Using described procedure one can generate a dataset with
features Fi = (ai(G), fi(G)) and targets Ti = (ui(G)),
i = 1, . . . , Nsamples. As a rule, features, ai and fi in our
case, are samples from some distribution (Kovachki et al.,
2021) or typical inputs needed for a particular application,
e.g., (Pathak et al., 2022).

Our main observation is that when the PDE is known, it
is possible to extract more information from each obtained

1The formal statement on existence is available in (Evans,
2010), but it is largely irrelevant to our discussion.

solution using coordinate transformation. Suppose y(ξ) is
analytic strictly monotonic function from [0, 1] to [0, 1] such
that y(0) = 0, y(1) = 1. We use x ≡ y(ξ) as coordinate
transformation and rewrite (1) in coordinates ξ as follows

dξ

dy

d

dξ

(
a(y(ξ))

dξ

dy

d

dξ
u(y(ξ))

)
= f(y(ξ)),

ξ ∈ [0, 1], u(y(0)) = a, u(y(1)) = b.

(3)

As we see, transformed equation (3) has the same paramet-
ric form as the original one (1). As a consequence, if a triple
of functions a(x), u(x), f(x) solve (1), the triple of mod-
ified functions a(y(x))dxdy , u(y(x)), f(y(x))

dy
dx also solve

the same equation (1), where we rename variable ξ in (3)
to x. So we can generate novel solutions from the old ones
using smooth coordinate transformations and interpolation.

To complete a description of the augmentation, we need to
explain how to generate smooth coordinate transformations.
Since any strictly monotonic positive function that maps
[0, 1] constitutes a valid coordinate transformation, we pro-
pose to use cumulative distribution functions with strictly
positive probability density. It is easy to come up with many
parametric families of probability densities. For example,
we can use trigonometric series and define

p(x) = 1 +

N∑
k=1

(ck cos(2πkx) + dk sin(2πkx))

c0
,

c0 =

N∑
k=1

(|ck|+ |dk|) + β, β > 0.

(4)

After integration, we obtain a cumulative distribution func-
tion that serves as a coordinate transformation

y(x) = x+

N∑
k=1

(ck sin(2πkx) + dk(1− cos(2πkx)))

2πkc0
.

(5)
The whole augmentation procedure for elliptic equation (1)
can be compactly written as

a(x), u(x), f(x)
solve (1)

−→ a(y(x))
/dy
dx
, u(y(x)), f(y(x))

dy

dx
y(x) from (5)

.

(6)
Figure 1 illustrates the proposed approach for elliptic equa-
tion (1) and a particular set of transformations (5).

To summarize, our augmentation approach consists of three
stages:

1. Generate a sufficiently smooth coordinate transforma-
tion y(ξ).

2. Interpolate features and targets on discrete grid
y(ξj), ξj = j/(N + 1), j = 0, . . . , N + 1.
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Figure 1. Example of data augmentation for elliptic equation (1). The first column on the left contains features and target that solves (1).
All other columns are obtained from the first one with transformation (6). Coordinate transformations are generated according to (5) with
parameters N = 3, β = 1 and coefficients ck, dk, k = 1, 2, 3 sampled from standard normal distribution.

3. Adjust interpolated features and targets according to
the transformations law for PDE evaluated in new co-
ordinates y(ξ).

This procedure can be applied for as many coordinate trans-
formations y(ξ) as needed and requires only cheap interpo-
lation, so the overall cost is O(N) for each sample, where
N is the number of grid points.

In the Section 3, we show how to generalize results illus-
trated here for other partial differential equations and higher
dimensions.

3. Augmentation by General Covariance
In Section 2, we explained that two principal components of
the proposed augmentation approach are grid generation and
transformation law for PDE in question. Here we show how
to extend results from Section 2 to a more general setting.

Everywhere in this section, Einstein’s summation notation
is used, e.g., aαbα ≡

∑
α aαb

α.

3.1. How to construct coordinate transformations in the
general case

We define coordinate transformations in D ≥ 1 as one-to-
one analytic mapping

x(ξ) : [0, 1]D −→ [0, 1]D (7)

In Section 2, we outlined a particular scheme to construct
families of coordinate transformations in D = 1. The gen-
eral algorithm is as follows

1. Select a family of basis functions ϕj(ξ) defined on
[0, 1] that are easy to integrate (e.g., the indefinite inte-
gral is known).

2. Find suitable shift and scale for a series
s
(∑

j ϕj(ξ)cj

)
+ c0 to be a valid probability

density function p(ξ) for all cj .

3. Use cumulative distribution function (indefinite inte-
gral of p(ξ)) as a coordinate transformation.

When D = 1 mapping is available, it is possible to lift it to
D > 1 by transfinite interpolation (Gordon & Hall, 1973).
For example, for D = 2 the transformation becomes

x1(ξ1, ξ2) = y1(ξ
1)(1− ξ2) + y2(ξ

1)ξ2,

x2(ξ1, ξ2) = y3(ξ
2)(1− ξ1) + y4(ξ

2)ξ1,
(8)

where yi, i = 1, . . . , 4 are D = 1 mappings, e.g., given in
(5). The extension of (8) to higher dimensions is straightfor-
ward.

Note that (8) has a “low-rank” structure that decreases the
diversity of possible grids. The issue can be alleviated
with Hermite transfinite interpolation or with more gen-
eral blending functions (Liseikin, 2017). Other more com-
putationally involved remedies are variational and elliptic
(Laplace-Beltrami) grid generators (Steinberg & Roache,
1986), (Spekreijse, 1995).

3.2. Linear PDEs under coordinate transformations

Here we remind how the most widely used differential oper-
ators change under the transformation (7).

The results we present in this section are standard (Liseikin,
2017), (Eglit et al., 1996), (Simmonds, 1994). For conve-
nience, the proofs are also available in Appendix A.

For convenience, we define the Jacobi matrix, and its deter-
minant

Jiα ≡ ∂xi

∂ξα
, J ≡ detJ . (9)
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Note that for the mapping (5) determinant J vanishes
nowhere in the domain due to the strict monotonicity of
the mapping.

It is not hard to show that for arbitrary space-dependent
fields cj , ϕ, akj , k, j ∈ 1, . . . , D, the following transforma-
tion laws hold

cj
∂ϕ

∂xj
= cj

∂ξα

∂xj
∂ϕ

∂ξα
,

akj
∂2ϕ

∂xj∂xk
= akj

∂ξβ

∂xj
∂ξγ

∂xk
∂2ϕ

∂ξβ∂ξγ
+ akj

∂2ξγ

∂xk∂xj
∂ϕ

∂ξγ
,

∂

∂xα
(cαϕ) =

1

J

∂

∂ξk

(
Jcα

∂ξk

∂xα
ϕ

)
,

∂

∂xk

(
akj

∂ϕ

∂xj

)
=

1

J

∂

∂ξk

(
J

(
aαj

∂ξk

∂xα
∂ξβ

∂xj

)
∂ϕ

∂ξβ

)
.

(10)

Results (10) allow deriving transformation laws for many
practically-relevant PDEs. We are interested in the follow-
ing ones:

1. Stationary diffusion equation

∂

∂xk

(
akj(x)

∂

∂xj
u(x)

)
= f(x)

x ∈ Γ ≡ [0, 1]D, u(x)|x∈∂Γ = 0,

(11)

where ∂Γ is a boundary of the unit hypercube Γ, and
x ∈ RD.

2. Convection-diffusion equation

∂

∂t
ϕ(x, t)+

∂

∂xi
(
vi(x)ϕ(x, t)

)
=

∂

∂xk

(
akj(x)

∂

∂xj
ϕ(x, t)

)
,

x ∈ Γ ≡ [0,1]D, ϕ(x, t)|x∈∂Γ = 0, ϕ(x, 0) = f(x).

(12)

3. Two-way wave equation

∂2ρ(x, t)

∂t2
+ vi(x)

∂ρ(x, t)

∂xi
= cij(x)

∂2ρ(x, t)

∂xi∂xj

+ e(x)ρ(x, t),

x ∈ Γ ≡ [0, 1]D, ρ(x, t )|x∈∂Γ = 0, ρ(x, 0) = f(x).

(13)

For all of the equations above, the transformed form eas-
ily follows from (10). However, for wave and convection-
diffusion equations, additional steps are required to ensure
that the transformed equation has the same parametric form
as the original one. Table 1 contains the results for selected
PDEs.

Results summarized in Table 1 along with the coordinate
transformations described in Section 3.1 are sufficient to
perform general covariance augmentation for equations (11),
(12), (13).

3.3. Navier-Stokes equation

To show that our scheme applies to nonlinear PDEs and
more general boundary conditions, we consider lid-driven
cavity flow of incompressible fluid with deformed cavities.
The system of equations in the physical space reads

∂vi

∂t
=

∂

∂xk

(
−vkvi − p+ ν

∂vi

∂xk

)
,
∂vk

∂xk
= 0,

p(t, x)|x∈L = 0,
∂p(t, x)

∂xi
ni
∣∣∣∣
x∈Γ

= 0,

v1(t, x)
∣∣
x∈L

= 1, v2(t, x)
∣∣
x∈C

= v1(t, x)
∣∣
x∈Γ

= 0,

(14)

where x belong to the interior of the curve C(x1, x2) =
L(x1, x2) ∪ Γ(x1, x2), L(x1, x2) represents the lid and
Γ(x1, x2) — the rest of the cavity’s boundary, t ∈ [0, T ].

For Equation (14) we explicitly specify the form of cavity
xi(ξ1, ξ2), i = 1, 2 using curvilinear coordinates ξ1, ξ2 ∈
[0, 1]

2 (see Section 4 for the description of the cavities used).
When solution at t = T is obtained, the only parameter of
the PDE is the geometry itself which is fully specified by
xi(ξ1, ξ2), i = 1, 2.

In these circumstances general covariance augmentation
simplifies. Namely, we use random coordinate transfor-
mations Equation (8) to form additional mapping ξi(ξ̃i)
and reinterpolate obtained solution vi(ξ1, ξ2, T ) on the grid
ξ̃i, i = 1, 2.

Although transformation low of the equation Navier-Stokes
equation Equation (14) is not directly used for augmentation,
we still need it to obtain a solution in the computational
domain ξi, i = 1, 2 (see Appendix E for details).

In Section 4, we show the empirical performance of the
proposed augmentation scheme for both linear and nonlinear
PDEs.

4. Experiments
Here we present an empirical evaluation of augmentation by
general covariance. For that purpose, we design several ex-
periments in D = 1 and D = 2. We start with a description
of the shared experiments’ setup.
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Table 1. Transformation of PDEs parameters under the change of coordinates x → x(ξ).

Equation Fields Transformed fields

Stationary diffusion (11)
u(x) u(x(ξ))

akβ(x) Jaαj(x(ξ)) ∂ξk

∂xα
∂ξβ

∂xj

f(x) Jf(x(ξ))

Convection-diffusion (12)

ϕ(x, t) Jϕ(x(ξ), t)

akβ(x) aαj(x(ξ)) ∂ξk

∂xα
∂ξβ

∂xj

vi(x) vk(x(ξ)) ∂ξi

∂xk + aαj(x(ξ)) ∂ξk

∂xα
∂ξβ

∂xj
∂ξγ

∂xρ
∂2xρ

∂ξγ∂ξβ

f(x) Jf(x(ξ))

Wave (13)

ρ(x, t) ρ(x(ξ), t)

cγβ(x) ckj(x(ξ)) ∂ξ
γ

∂xk
∂ξβ

∂xj

vα(x) vi(x(ξ))∂ξ
α

∂xi − ckj(x(ξ)) ∂2ξα

∂xk∂xj

f(x) f(x(ξ))
e(x) e(x(ξ))

4.1. Setup

4.1.1. NEURAL NETWORKS

As a rule, neural PDE solvers are either Neural Operators
or classical architectures used for image processing.2 Since
our approach is architecture-agnostic, we include results for
both types of neural networks.

On the side of neural operators, we include orig-
inal versions of DeepONet (Lu et al., 2021a) and
FNO (Li et al., 2020), implemented in https:
//github.com/lu-group/deeponet-fno and
https://github.com/neural-operator/
fourier_neural_operator, respectively. Besides,
for the D = 1 case, we also implemented an FNO-like
operator dubbed rFNO with FFT replaced by pure real
transform based on a complete trigonometric family and
trapezoidal rule. In addition, forD = 2 we also use Spectral
Neural Operator described in (Fanaskov & Oseledets, 2022).
Roughly speaking, the architecture has the same structure
as FNO but with Discrete Cosine Transform in place of
FFT.

Classical machine-learning architectures include DilResNet
(Yu & Koltun, 2015), (Stachenfeld et al., 2021), U-Net
(Ronneberger et al., 2015), and MLP (Haykin, 1994).

A detailed description of neural networks is available in
Appendix C.

2There are also hybrid methods (e.g., (Bar-Sinai et al., 2019)),
but we do not consider them here.

4.1.2. PARTIAL DIFFERENTIAL EQUATIONS AND
DATASETS

We evaluate augmentation on stationary diffusion (11),
convection-diffusion (12), and wave (13) equations.

To produce PDE data, for linear PDEs, we sampled all
needed functions from random trigonometric series

f(x) =

N−1∑
k=0

(ck cos(2πkx) + sk sin(2πkx)) , (15)

with ck sampled from the standard normal distribution and
scaled/shifted appropriately to ensure needed boundary con-
ditions or make f(x) uniformly positive. For D = 2,
the procedure is the same, but a direct product of one-
dimensional bases is used.

Afterward, equations with randomly generated data are dis-
cretized either with finite-difference or finite-element meth-
ods.

For D = 1, we generated one dataset per equation and
an additional dataset for the wave equation. Results for
the extra wave dataset are available in Appendix D. For
D = 2, we produced two datasets per equation that differ
by complexity (more rough targets or more diverse feature-
target pairs).

Also, for the purposes explained later, we use two distinct
elliptic datasets in D = 2. In the first one, named “Elliptic
alpha”, diffusion coefficients aiβ form a symmetric positive
definite matrix for each point of the domain. In the second
one, named “Elliptic beta”, the matrix aiβ is the identity
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matrix multiplied by a single uniformly positive diffusion
coefficient.

For Navier-Stokes equation Equation (14) we generate cav-
ities defined with a transfinite interpolation Equation (8)
from randomly generated boundary curves

x1(ξ1, 0) = ξ1, x1(ξ1, 1) = ξ1,

x2(0, ξ2) = ξ2, x2(1, ξ2) = ξ2, x2(ξ1, 1) = 1,

x1(0, ξ2) =

m∑
i=1

sin(πξ2(k + 1)ck
/
(10(k + 1)2),

x1(1, ξ2) = 1 + ξ2(1− ξ2)α/2,

x2(ξ1, 0) =

m∑
i=1

sin(πξ1(k + 1)dk
/
(10(k + 1)2),

(16)

where dk, ck, α are sampled from standard normal distri-
bution and ξ1, ξ2 ∈ [0, 1]2. We also use T = 10−4 and
ν = 10−2.

More details on the dataset generation process are avail-
able in Appendix D. Links to the datasets are avail-
able in the repository https://github.com/VLSF/
augmentation.

4.1.3. COORDINATE TRANSFORMATIONS

To generate coordinate transformation for D = 1, we use
a cumulative distribution function constructed from unnor-
malize probability density

p(x) = β +

N∑
i=1

(ci cos(2nπx+ pi)) , (17)

where ci and pi are samples from the standard normal dis-
tribution, and N = 5, β = 1.

For D = 2 we use four D = 1 coordinate transformations
constructed with (5), where coefficients i = 1, . . . , 5 are
from standards normal distribution, c0 = 1, N = 6, and
β = 10−5. To obtain D = 2 mappings from the four
unidimensional, we apply transformation using transfinite
interpolation (8).

4.1.4. METRICS

As a main measure of performance, we use average relative
L2 test error

Etest =
1

N

N∑
i=1

∥N (fi)− ti∥2
∥ti∥2

, (18)

where N is a neural network, fi and ti are features and
targets from the test set.

To evaluate the impact of augmentation, we consider the
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Figure 2. Sensitivity to grid distortion for DilResNet and FNO
with and without augmentation. The distortion here refers to the
maximal difference between the unperturbed x and perturbed x(ξ)
grids averaged over 1000 grids used to augment dataset.

relative gain

g =

(
1− Eaug

test

Etest

)
× 100%, (19)

where Eaug
test , and Etest > 0 are relative errors of neural net-

work trained with and without augmentation respectively.
Since Eaug

test = (1− g)Etest, the larger g the better.

4.2. Sensitivity to grid distortions

Before training of augmented dataset, it is instructive to
evaluate the network trained without augmentation on the
augmented train set. This way, we can estimate the degree
of equivariance current neural networks have.

More specifically, for this experiment, we take a dataset
for stationary-diffusion equation (11) (Elliptic alpha), and
train DilResNet and FNO. After that, we generate a set of
augmented datasets using increasingly distorted grids and
evaluate neural networks on them. Results are reported in
Figure 2.

Table 2. Relative gain for averaging with respect to equations and
networks. Augmentation factor m means that additional mNtrain

augmented samples are appended to the training dataset.

m\Ntrain 500 1000 1500 2000

1 11% 18% 21% 21%
2 16% 25% 27% 31%
3 15% 23% 28% 28%
4 19% 25% 28% 30%
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As we can see, if distortion is comparable with 10−2, which
is a spacing of the original grid, the neural network can
handle the modified dataset quite well. However, the further
distortion increase leads to substantial performance deterio-
ration. So for distortion of about 10 original grid spacing,
the trained network is unusable. Networks trained with
augmentation retain good relative error even on distorted
grids.

Interestingly, FNO can handle distortion slightly better —
four-fold increase against seven-fold for DilResNet. Quali-
tatively, FNO starts with 4% and ends with 18%, whereas
DilResNet starts with 10% and ends with 70%

We stress that for equations other than elliptic the equivari-
ance is not observed (see results in Table 6). Besides, for
the elliptic equation, equivariance is confirmed only for the
specific distortions of the grid. It is not obvious that the
same result holds for other grid transformations, so we do
not claim that we achieved general covariance.

4.3. Statistical study for D = 1 problems

Given that neural networks fail to produce correct predic-
tions for augmented dataset, the next natural step is to in-
troduce augmented samples on the training stage. Here we
describe relevant experiments for D = 1 datasets.

In this section we use m to denote augmentation factor. If
original train set consists ofNtrain points, after augmentation
with factorm the modified train set has (1+m)Ntrain points.

For each equation we consider the following parameters:
Ntrain = 500, 1000, 1500, 2000; Ntest = 1000; augmenta-
tion factor m = 1, 2, 3, 4. For each set of parameters we
perform five runs with different seeds controlling network
initialization and random grids generated for the augmenta-
tion. In Appendix F one can find relative test errors averaged
with respect to these five runs. Here we present only aggre-
gated results.

First, Table 3 contain results averaged with respect to sizes
of train set and augmentation factors. We can see that gain
is positive on average for all networks and equations. Note,
however, that we observe negative gain, i.e., the augmen-
tation fail to improve test error. This occurres mainly for
weak models such as DeepONet and MLP that are othen
fail to achieve reasonable test error.

Table 3. Relative gain for averaging wrt different training scenar-
ios.

DeepONet FNO DilResNet rFNO MLP

elliptic 16% 22% 28% 19% 8%
conv-dif 32% 36% 22% 24% 28%
wave 14% 36% 22% 18% 16%

Second, Table 2 contain gains averaged over equations and
networks. Generally, we observe that augmentation is more
helpful for larger datasets. Our best current explanation is
that our augmentation procedure is poorly-calibrated, i.e.,
the augmented data is completely out of distribution. If this
is the case, the increase of the train set may improve the
overlap between the train data distribution and augmented
data distribution.

4.4. Augmentation for D = 2 problems

We report results for a single run for two-dimensional prob-
lems in Table 4.

One can see that, augmentation reduces relative test error
for all cases when the network can generalize. It also helps
DeepONet to reach test errors smaller than one for the El-
liptic alpha and Elliptic beta datasets.

The most intriguing part are the results for the stationary
diffusion equation. As we explained before, in D = 2 we
consider two datasets for the elliptic equation: Elliptic alpha
and Elliptic beta. Elliptic alpha has a complete set of distinct
diffusion coefficients that form a symmetric positive definite
matrix.

Contrary to that, Elliptic beta has a single positive diffusion
coefficient, so the diffusion matrix aij in (11) is propor-
tional to the diagonal matrix. On the other hand, after the
augmentation, i.e., for the transformed equation, the Ellip-
tic beta train set has nonzero off-diagonal contributions to
the diffusion matrix (see Table 1). At the same time, we
still have a diffusion matrix proportional to the diagonal
for the test set. Despite this discrepancy, augmentation still
improves the test error.

This result suggests that it can be beneficial to embed a
given family of equations into a larger parametric family
and perform augmentation for that extended set.

For the Navier-Stokes equation, we can also see that aug-
mentation improves test error for both components of speed
v1, v2. This provides evidence that the method is applicable
without difficulties to complex geometries. We also tried to
train DeepONet, but failed to obtain relative errors compa-
rable to other networks, additional results are available in
Appendix F.

5. Related research
We know of two articles directly related to the augmentation
techniques for neural PDE solvers (Brandstetter et al., 2022),
(Li et al., 2022a).

The article (Li et al., 2022a) is secondary since it is only a
minor extension of (Brandstetter et al., 2022). We do not
discuss it further.
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simple datasets complex datasets

Equation Model ×
√

g ×
√

g

Convection-diffusion

FNO 0.067 0.048 28% 0.510 0.418 18%
DeepONet 0.675 0.567 16% — —
DilResNet 0.023 0.010 56% 0.312 0.225 28%
MLP 0.094 0.050 49% 0.566 0.496 12%
U-Net 0.069 0.031 55% 0.419 0.364 13%
SNO 0.086 0.066 23% 0.416 0.373 10%

Elliptic alpha

FNO 0.066 0.036 46% 0.306 0.207 32%
DeepONet — 0.826 — —
DilResNet 0.105 0.021 80% 0.160 0.133 17%
MLP 0.088 0.053 40% 0.322 0.253 21%
U-Net 0.093 0.070 25% 0.386 0.194 50%
SNO 0.082 0.050 39% 0.251 0.209 17%

Elliptic beta

FNO 0.034 0.021 38% 0.181 0.126 30%
DeepONet — 0.832 — 0.946
DilResNet 0.099 0.022 78% 0.089 0.062 30%
MLP 0.069 0.035 50% 0.238 0.138 42%
U-Net 0.070 0.067 4% 0.170 0.143 16%
SNO 0.068 0.038 44% 0.187 0.144 23%

Wave

FNO 0.200 0.159 21% 0.650 0.628 3%
DeepONet — — — —
DilResNet 0.053 0.048 9% 0.43 0.38 12%
MLP 0.313 0.295 6% — 0.99
U-Net — — 0.57 0.52 9%
SNO 0.37 0.37 0% — —

v1 v2

Navier-Stokes

FNO 0.005 0.003 40% 0.022 0.010 55%
UNet 0.019 0.09 53% 0.069 0.037 46%
DilResNet 0.021 0.015 29% 0.073 0.045 38%
MLP 0.082 0.066 38% 0.082 0.066 20%
SNO 0.004 0.003 25% 0.013 0.008 38%

Table 4. Relative test errors and gain for D = 2 datasets. Symbols
√

and × mark results with and without augmentation respectively. We
put — when network fails to reach test error below 1.0.

In (Brandstetter et al., 2022), authors consider Lie point
symmetries. Namely, to perform augmentation, they use
smooth transformations that preserve a solution set of PDE
(map a given solution to the other one) and form a group
with a structure of the continuous manifold (Lie group).
As the authors explain, Lie point symmetries, in a certain
sense, provide an exhaustive set of possible transformations
suitable for augmentation. Given that, it is appropriate to
highlight what distinguishes our research from (Brandstetter
et al., 2022).

In (Brandstetter et al., 2022) symmetries of a fixed PDE
are used. In place of that, we consider mappings that
leave us within a particular family of PDEs. Such trans-
formations are more abundant, easier to find, and more

suitable for physical systems with spatiotemporal depen-
dencies, e.g., Maxwell equations in macroscopic media
(Jackson, 1975), wave propagation in non-homogeneous
media (Brekhovskikh, 1980), and fluid flow through porous
media (Alt & Di Benedetto, 1985), e.t.c. In particular, the
local distortion of coordinates is a safe choice for a large set
of PDEs because of the general covariance principle (Post,
1997).

Among other contributions indirectly related to our ap-
proach, we can mention articles on deep learning for PDE
that deal with complex geometries (Gao et al., 2021), (Li
et al., 2022b). The end of this line of research is to general-
ize physics-informed neural networks and neural operators
from rectangular to more general domains. These works
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also contain particular equations in a transformed form, but
for an entirely different reason.

Similar coordinate transformations are abundant in classical
scientific computing (Liseikin, 2017), (Knupp & Steinberg,
1994). On the one hand, the grid defines the geometry
of the domain. On the other hand, the grid is refined (h-
refinement (Li & Bettess, 1997), (Baker, 1997)) or trans-
ported (r-refinement (Baker, 1997)) to improve accuracy
(e.g., equidistribution principle (Chen, 1994)). One can im-
plement both approaches using partial differential equations
(elliptic and hyperbolic equations) or analytic mappings (al-
gebraic methods (Smith, 1982), (Gordon & Hall, 1973)).
In the present research, we gravitate toward the latter be-
cause it is computationally cheap, and derivatives are readily
available.

From the broader perspective, the entire subfield of geo-
metric machine learning (Bronstein et al., 2021) deals with
related issues. Typically, the quest is to design a neural
network for which the invariance or equivariance holds for
a chosen set of transformations. The most relevant works
of this sort are (Cheng et al., 2019), (Weiler et al., 2021),
(Wang et al., 2020). In the first two articles, the authors de-
velop gauge-invariant convolutions (general covariance), but
PDEs are not in question, and the generalization to neural
operators is not yet available. In the third article, the authors
design neural networks that respect selected symmetries of
the Navier-Stokes equation.

We want to point out that invariance and equivariance prin-
ciples are often of no use for PDE problems. First, trans-
formations of the physical fields can fail to be covariant
or contravariant, as shown by the example of convection-
diffusion equation Table 1. Second, the symmetries are
often not apparent when PDE in question has spatial de-
pendence or is defined in complex geometry. For example,
lid-driven cavity flow Equation (14) breaks all symmetries
of the Navier-Stokes equation listed in (Wang et al., 2020).

6. Conclusion and further research
We demonstrated how to construct augmentation based on
general covariance. The essence of the approach is the
observation that it is possible to use change of coordinates to
produce novel solutions from the old ones. This is possible
because physical phenomena do not depend on the choice
of coordinates, so in the new coordinate system, the type
of the equation persists, but parameters change. These new
parameters along with the solution in new coordinate system
can be used as additional train samples.

The proposed augmentation systematically improves test
error for all considered architectures. Besides that, it is
architecture-agnostic and generalizes well on other equa-
tions, especially defined in complex geometries suitable for

body-fitted meshes.

A lot of improvements to the proposed approach are possible.
The list below sums up a few possibilities:

1. More complex structured grids. As we showed in the
Navier-Stokes example, it is straightforward to extend
our approach to situations where there is an intermedi-
ate mapping from the physical domain to the computa-
tional domain. The considered example is elementary,
so it is desirable to test augmentation on more chal-
lenging problems. It is also interesting to consider
our augmentation approach with the architectures that
already contain mapping as part of the network, e.g.,
(Gao et al., 2021), (Li et al., 2022b).

2. Adaptive augmentation. In the present research, we
generate random grids to perform augmentation. It
should be more advantageous to actively select grids
based on the neural network performance.

3. Unstructured grids. Our approach, as described here,
is, in principle, applicable to the unstructured grids.
The main problem is that it is not obvious how to
construct a mapping and generate a deformed grid
such that it is still acceptable from the computational
perspective.

4. Covariant neural operators. It would be interesting to
adapt or generalize results from (Weiler et al., 2021),
(Wang et al., 2020) to construct covariant neural op-
erators. Less ambitious, it is possible to improve the
training protocols for neural networks using the Jacobi
matrix and determinant as input features. This way,
one escapes the need to introduce higher derivatives in
transformed equations Table 1.

5. Transformations between parametric families. A very
interesting feature that we observe is that augmentation
still helps even when it is performed for a larger para-
metric family of equations than needed. One possible
extension is to dispense with coordinate covariance
and consider more general transformations that map
one family of PDEs to another family.

6. Time-dependent coordinate transformations. We only
consider spatial transformations. It is possible to use
time-dependent transformations. For example, one
can construct a grid, that is deformed at t = 0 and
approaches its non-deformed state when t increases.
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A. Coordinate transformations
In this appendix we collect standard material related to coordinate transformations and transformation laws for differential
operators.

The material of this section is available in many sources (Liseikin, 2017), (Eglit et al., 1996), (Simmonds, 1994) and
presented here merely for convenience of the reader.

Everywhere in this section the Einstein’s summation notation is used, e.g., aαbα ≡
∑

α aαb
α, and as coordinate transforma-

tions we consider (7).

A.1. Some relations for the first and the second derivatives

In this section we explain several identities we find useful for expressing equations in the covariant form. The main problem
is that when we have a mapping x(ξ) (defined below) given in some explicit form and have no closed-form expression for
the inverse mapping, it is inconvenient to use derivatives with respect to x. Since such derivatives appear in plenitude in
PDEs after coordinate transformation, our chief goal is to find relations that allows us to rewrite them using derivatives with
respect to ξ.

We use Jacobi’s formula for differentiable matrix-valued function A(t) without a proof:

d

dt
detA(t) = detA(t) tr

(
A−1(t)

dA(t)

dt

)
. (20)

The short note (Golberg, 1972) contains a concise derivation.

We start with the relation between first derivatives

∂xi

∂ξα
∂ξα

∂xj
= δij =

{
1, i = j;

0, i ̸= j,
(21)

which follows from chain rule applied to the function x(ξ(x)) = x:

δij =
∂xi

∂xj
=
∂xi(ξ1(x1, . . . , xD), . . . , ξD(x1, . . . , xD))

∂xj
=
∂xi

∂ξα
∂ξα

∂xj
. (22)

It is also convenient to rewrite identity Equation (21) in a matrix form

Jiα ≡ ∂xi

∂ξα
, JJ−1 = I, (23)

where J is Jacobi matrix and I is the identity matrix.

Next identity we consider is the equation for the derivative of J = detJ , i.e., the determinant of Jacobi matrix:

∂

∂ξk
J = J

∂ξm

∂xi
∂2xi

∂ξm∂ξk
. (24)

The equation immediately follows from Jacobi’s equation (20) and the definition of inverse (21), (23) for Jacobi matrix.

Another relation useful in derivations reads

∂2ξα

∂xi∂xj
= −∂ξ

γ

∂xi
∂ξθ

∂xj
∂ξα

∂xk
∂2xk

∂ξγ∂ξθ
. (25)

To prove the relation, we find a derivative of (21) as follows

0 =
∂

∂xk

(
∂xi

∂ξα
∂ξα

∂xj

)
=

∂

∂xk

(
∂xi

∂ξα

)
∂ξα

∂xj
+
∂xi

∂ξα
∂2ξα

∂xj∂xk
=
∂ξβ

∂xk
∂2xi

∂ξα∂ξβ
∂ξα

∂xj
+
∂xi

∂ξα
∂2ξα

∂xj∂xk
, (26)

and multiply by the inverse Jacobi matrix.
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The last identity we need reads
1

J

∂

∂ξj

(
J
∂ξj

∂xi

)
= 0. (27)

To prove (27) we apply (24) (Jacobi formula) and obtain

1

J

∂

∂ξα

(
J
∂ξα

∂xj

)
=
∂ξβ

∂xk
∂2xk

∂ξα∂ξβ
∂ξα

∂xj
+

∂

∂ξα
∂ξα

∂xj
=
∂ξβ

∂xk
∂2xk

∂ξα∂ξβ
∂ξα

∂xj
+
∂xk

∂ξα
∂2ξα

∂xj∂xk
. (28)

The last expression is zero since it is a particular form of more general identity (26) with i = k.

A.2. Selected differential operators under coordinate transformation

Using results from Appendix A.1 we derive transformation laws for particular differential operators.

Two equations for the first derivative

cj
∂ϕ

∂xj
= cj

∂ξα

∂xj
∂ϕ

∂ξα
(29)

and for the second

akj
∂2ϕ

∂xj∂xk
= akj

∂ξβ

∂xj
∂

∂ξβ

(
∂ξγ

∂xk
∂ϕ

∂ξγ

)
= akj

∂ξβ

∂xj
∂ξγ

∂xk
∂2ϕ

∂ξβ∂ξγ
+ akj

∂2ξγ

∂xk∂xj
∂ϕ

∂ξγ
(30)

follow simply from the chain rule. To apply these equations when only a mapping x(ξ) is known one needs to use relations
(21) and (25) for (30).

Conservative forms of the equations above read

∂

∂xα
(cαϕ) =

1

J

∂

∂ξk

(
Jcα

∂ξk

∂xα
ϕ

)
(31)

and
∂

∂xk

(
akj

∂ϕ

∂xj

)
=

1

J

∂

∂ξk

(
J

(
aαj

∂ξk

∂xα
∂ξβ

∂xj

)
∂ϕ

∂ξβ

)
(32)

respectively.

Equation (31) is straightforward to confirm using (27). Indeed,

1

J

∂

∂ξk

(
Jcα

∂ξk

∂xα
ϕ

)
=

1

J

∂

∂ξk

(
J
∂ξk

∂xα

)
cαϕ︸ ︷︷ ︸

=0

+
∂ξk

∂xα
ϕ
∂cα

∂ξk
+
∂ξk

∂xα
cα

∂ϕ

∂ξk
=

∂

∂xα
(cαϕ) . (33)

Equation (32) is easier to derive from the analogous result for the divergence of a vectors field

∂

∂xk
fk(x) =

1

J

∂

∂ξj

(
Jf i(x(ξ))

∂ξj

∂xi

)
. (34)

Equation (34) itself trivially follows from (27).

Having (34) we derive (32) as follows

∂

∂xk

(
akj

∂ϕ

∂xj

)
=

1

J

∂

∂ξk

(
Jaαj

∂ϕ

∂xj
∂ξk

∂xα

)
=

1

J

∂

∂ξk

(
J

(
aαj

∂ξk

∂xα
∂ξβ

∂xj

)
∂ϕ

∂ξβ

)
. (35)

A.3. Selected PDEs under coordinate transformation

Results from Appendix A.2 allows to derive transformed form of a large set of equations. We confine our attention to
stationary diffusion (11), convection-diffusion (12) and wave equations (13).
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We start with the derivation of the transformation law for (11). According to (32), after the transformation (7) equation
becomes

∂

∂ξk

(
J

(
aαj(x(ξ))

∂ξk

∂xα
∂ξβ

∂xj

)
∂u(x(ξ))

∂ξβ

)
= Jf(x(ξ)), (36)

with the same boundary conditions. So, it is exactly the same parametric equation as (11) but with different parameters.

Next, we consider the convection-diffusion equation (12). Using again (32) and (31) we obtain a transformed form

∂

∂t
ϕ(x(ξ), t) +

1

J

∂

∂ξi

(
Jvk(x(ξ))

∂ξi

∂xk
ϕ(x(ξ), t)

)
=

1

J

∂

∂ξk

(
J

(
aαj(x(ξ))

∂ξk

∂xα
∂ξβ

∂xj

)
∂ϕ(x(ξ), t)

∂ξβ

)
. (37)

This time we can see that (37) does not have the same parametric form as (12). To resolve the problem we define a new field
ψ(ξ, t) ≡ Jϕ(x(ξ), t). Multiplying both sides of Equation (37) by J we observe that left hand side has a desired parametric
form. For the right hand side we proceed as follows

∂

∂ξk

(
Jaαj(x(ξ))

∂ξk

∂xα
∂ξβ

∂xj
∂

∂ξβ

(
ψ(x(ξ), t)

J

))
=

∂

∂ξk

(
aαj(x(ξ))

∂ξk

∂xα
∂ξβ

∂xj
∂ψ(x(ξ), t)

∂ξβ

)
− ∂

∂ξk

(
aαj(x(ξ))

∂ξk

∂xα
∂ξβ

∂xj
∂ξγ

∂xρ
∂2xρ

∂ξγ∂ξβ
ψ(x(ξ))

)
,

(38)

where we used (24). As we can see the right hand side of (37) introduces additional contribution to the convection term, and
with this contribution the final equation has the same parametric form as the original convection-diffusion equation (12).

In the case of two-way wave equation (13) we apply (29) and (30) to obtain

∂2ρ(x(ξ), t)

∂t2
+ vi(x(ξ))

∂ξα

∂xi
∂ρ(x(ξ), t)

∂ξα
= ckj(x(ξ))

∂ξβ

∂xj
∂ξγ

∂xk
∂2ρ(x(ξ), t)

∂ξβ∂ξγ
+ ckj(x(ξ))

∂2ξγ

∂xk∂xj
∂ρ(x(ξ), t)

∂ξγ

+ e(x(ξ)ρ(x(ξ).

(39)

All transformation laws we derived can be found in Table 1.

B. Coordinate derivatives for transfinite interpolation
For the case of transfinite interpolation Equation (8), Jacobi matrix and higher order derivatives slightly simplify. Here we
provide explicit expressions for the D = 2 case:

1. Jacobi matrix

Jij =
∂xi

∂ξj
=

(
y

′

1(ξ
1)(1− ξ2) + y

′

2(ξ
1)ξ2 y2(ξ

1)− y1(ξ
1)

y4(ξ
2)− y3(ξ

2) (1− ξ1)y
′

3(ξ
2) + ξ1y

′

4(ξ
2)

)
. (40)

2. Inverse Jacobi matrix

(
J−1

)
ij
=
∂ξi

∂xj
=

1

J

(
(1− ξ1)y

′

3(ξ
2) + ξ1y

′

4(ξ
2) y1(ξ

1)− y2(ξ
1)

y3(ξ
2)− y4(ξ

2) y
′

1(ξ
1)(1− ξ2) + y

′

2(ξ
1)ξ2

)
, J = detJ . (41)

3. Second derivatives

∂2x1

∂ξi∂ξj
=

(
y

′′

1 (ξ
1)(1− ξ2) + y

′′

2 (ξ
1)ξ2 P

′

2(ξ
1)− P

′

1(ξ
1)

P
′

2(ξ
1)− P

′

1(ξ
1) 0

)
,

∂2x2

∂ξi∂ξj
=

(
0 P

′

4(ξ
2)− P

′

3(ξ
2)

P
′

4(ξ
2)− P

′

3(ξ
2) (1− ξ1)y

′′

3 (ξ
2) + ξ1y

′′

4 (ξ
2)

)
.

(42)
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C. Architectures and training details
In this section, we provide extended comments on the architectures used and collect in Table 5 the description of the
optimization process.

C.1. rFNO

rFNO is a variant of FNO (Li et al., 2020) with two differences.

First, FFT is replaced with projection on the set of trigonometric functions

TN ≡ {1, cos (2πx) , sin (2πx) , cos (2π2x) , sin (2π2x) , . . . , cos (2πNx) , sin (2πNx)} . (43)

That is, for the input function f(x), the function after transform reads

ck =

∫ 1

0

dxϕk(x)f(x), ϕk ∈ TN , (44)

where the integral is approximated using the trapezoidal rule.

The inverse transform is computed simply as a sum

g(x) =
∑
k

ckϕk(x), ϕk ∈ TN . (45)

Second, between the transformations, FNO (Li et al., 2020) uses a diagonal tensor, so the resulting matrix performs
convolution (see (Rippel et al., 2015)). In our case we apply a series of convolutions Nconv without activations.

In all 1D experiments, we keep N = 8 modes. Use Nconv = 4 convolutions with kernel size 3 in the Fourier space (43). The
encoder lifts the input to the space with Nfeatures = 64 features. The number of Fourier layers is 4. We use ReLU activation
functions.

C.2. MLP

Since we process functions sampled on the grid, we use MLP that applies a linear operator to each dimension and feature
space separately, i.e., if we have a tensor tijk as an input, the linear (affine transform) layer transforms it as follows

t̃abc = σ

∑
ijk

AaiBbjCcktijk + eabc

 , (46)

where A, B, C are parameters of linear transform and e is bias and σ is the activation function.

Table 5. Training details: ν — learning rate, ν decay / epoch — weight decay per epoch, Nepoch — number of epoch used for training,
Nbatch — batch size, Nparams — number of network parameters.
† in DeepONet, inverse time function means ν = ν/(1 + 0.5 · steps/g), where g = ⌊epoch/5⌋
‡ 1000 epochs were used for D = 2 datasets.

Network ν ν decay / epoch weight decay Nepoch Nbatch Nparams

D = 1 D = 2

FNO 10−3 — 10−4 500 200 549× 103 236× 104

DeepONet 10−3 — inverse time† 2× 104 full train set 150× 103 816× 104

rFNO 10−3 0.5
/
100 10−2 500 30 215× 103 —

MLP 10−3 0.5
/
100 10−2 500‡ 30 63× 103 113× 103

DilResNet 10−3 0.5
/
100 10−2 500 30 87× 103 261× 103

U-Net 10−3 0.5
/
100 10−2 500 30 — 263× 103

SNO 10−3 0.5
/
100 10−2 500 30 — 115× 103
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We use in total 4 such layers both in D = 1 and D = 2, and with the same number of spatial points as input has, and the
number of features increased to 64. Again, ReLU activation functions were used.

C.3. DilResNet

The dilated residual network follows the publication (Stachenfeld et al., 2021). We use 4 blocks and 32 features, each block
consists of convolutions with strides [1, 2, 4, 8, 4, 2, 1] each with kernel size 3. After each block, we put a skip connection.
As before, ReLU activation functions were used.

C.4. U-Net

The usual form of U-Net was used (Ronneberger et al., 2015).

U-Net induces the series of grids (levels) each having roughly ×2 fewer points, and the number of features doubles. We
used 3 convolutions on each level before max pooling, transposed convolution for upsampling, and 3 convolutions for each
level after the upsampling. In total we have 4 layers and start with 10 features. Again, ReLU activation functions were used.

C.5. DeepONet

DeepONet (Lu et al., 2019) consists of two sub-networks, one for encoding the input function v at a fixed number of sensors
xi, i = 1, . . . ,m (branch net), and the other for encoding the locations ξ for the output functions (trunk net). The output of
the network can be expressed as

G(v)(ξ) =
p∑

k=1

bk(v)tk(ξ) + b0, (47)

where b0 is the bias, {bk}pk=1 are the outputs of the branch net, and {tk}pk=1 are the outputs of the trunk net.

For the D = 1 problem, both branch net and trunk net are fully connected neural networks(FNNs). For branch net, we use 4
layers with Nfeatures = 128 features; for trunk net, we use 3 layers with Nfeatures = 128 features. Additionally, we utilized
tanh as the activation function, and Glorot normal initializer to initialize the weights of DeepONet.

For the D = 2 problem, the trunk net is fully connected neural networks(FNNs) with 3 layers, Nfeatures = 128 features each.
For the branch net, we utilized 2 convolutional layers with Nfeatures = 64 features and Nfeatures = 128 features respectively,
then we had a flatten layer and two fully connected layers with Nfeatures = 128 features. Additionally, we utilized ReLU as
the activation function, and Glorot normal initializer to initialize the weights of DeepONet.

C.6. FNO

The original form of FNO was proposed in (Li et al., 2020). This network consists of encoder, several Fourier layers and
decoder. The (l + 1)-th Fourier layer can be expressed as

zl+1 = σ
(
F−1 (Rl · F (zl)) + conv(zl)Wl

+ bl
)
, (48)

where Rl,Wl are the weight matrices, σ is the activation function, bl is the bias, and F is the Fast Fourier transform, F−1 is
the inverse, and conv stands for convolution with kernel size 1.

For the D = 1 problem, the number of Fourier layers is 4. Each layer had Nfeatures = 64 features and N = 16 modes.
Additionally, we utilized GELU as the activation function. In addition, we had a linear encoder and decoder implemented as
fully connected layers. The encoder was a single layer that lifts the input function to the space with 64 features. The decoder
had two fully connected layers that change the number of features to 64, then to 128, and finally to 1, which is the target
number of features for all datasets used.

For the D = 2 problem, the same number of FNO layers was used. Each layer had Nfeatures = 32 features and N = 12
modes. The encoder lifted the input function to the space with 32 features. The decoder consisted of two fully connected
layers, that firstly increased number of features to 128 and then reduced them to the target number of features. Also, we
used GELU activation functions.
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C.7. SNO

SNO follows the design of FNO with two notable differences. First, Discrete Cosine Transform replaces FFT. As explained
in (Fanaskov & Oseledets, 2022), this corresponds to the approximate recovery of coefficient in the Chebyshev series, should
the input function is sampled on the Chebyshev grid. Second, after DCT, we use three convolutions with kernel size 3 as
a linear kernel. The number of features used in the processor is 32, number of modes left after truncation is 16. In total,
network contains 4 layers with the integral operator, ReLU nonlinearities in-between them, linear encoder, and decoder.

D. Datasets
In this section, we provide more details on the dataset generation process. Datasets can be downloaded from https:
//disk.yandex.ru/d/ArC6jT3TZcKncw.

D.1. D = 1

To generate input data for D = 1 PDEs we use two families of trigonometric functions

fN (x) =
N∑

k=0

ck cos(2πkx+ pk) (49)

and

gN (x) =

N∑
k=0

ck sin(π(k + 1)x). (50)

Functions gN (x) with ck from standard normal distribution were used to generate initial conditions for wave and convection-
diffusion equations.

Functions fN (x) were used for two purposes. First, we generated positive diffusion coefficients taking pk, ck, k > 0
from standard normal distribution and fixing p0 = 0, c0 =

∑
k>1 |ck| + ϵ with ϵ = 10−2. Second, we used them with

pk, ck, k ≥ 0 taken from standard normal distribution to generate convection coefficient v(x) for the convection-diffusion
problem and right-hand side f(x) for the elliptic problem.

The list of generated datasets is as follows:

1. Elliptic (11)

The right-hand side was generated using (50) with N = 3 coefficients, for diffusion coefficient we use (49) with N = 5.
We perform discretization with standard FEM method with hat functions on the uniform grid with 100 points.

2. Convection-diffusion (12)

Convection coefficient was generated using (49) with N = 5 coefficients, for diffusion coefficient we use (49) with
N = 5, initial conditions were generated using (50) with N = 10. After generation diffusion and convection
coefficients are multiplied by s = 0.01. Spatial discretization is the same as for the Elliptic dataset, for the time-
marching Crank-Nicolson scheme was used, final t = 1.0, 200 points were used along t.

3. Wave(5) (13)

All functions were sampled with N = 5 modes. For initial conditions, we used (50), and for source terms, diffusion,
and convection coefficients we used (49) multiplied by s = 0.1. To make the diffusion coefficient positive we squared
(49). For all functions, we used an additional factor for 1/k2 for coefficient k to obtain smooth functions. Along the
spacial dimension, we use 100 points and the standard second-order finite-difference discretization, along temporal
1000 points. As a marching scheme, we used leapfrog and take t = 1.0 as a final time.

4. Wave(10) (13)

The same as previous but with N = 10 for all sampled functions.
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D.2. D = 2

In this case, we use a single family of random functions

f(x) = R

(
M∑

m=−M

M∑
n=−M

e2πi(mx+ny)cmn

)
, (51)

where R is a real part and cmn = xmn + iymn where both xmn and ymn are samples from standard normal distribution.

The elliptic part of differential operators requires a uniformly positive definite matrix. To enforce this condition we generate
Cholesky decomposition of diffusion coefficient A as follows

A = I + LLT , (52)

where each non-negative element of upper-triangular matrix L is an independently generated function (51).

The list of generated datasets is as follows:

1. Elliptic alpha (11) Diffusion coefficients were generated in the form of Cholesky decomposition (52). The right-hand
side was generated using (51). For the simple dataset coefficients in (51) were multiplied by a factor s = 0.1 for the
complex dataset by the factor s = 0.5. For both simple and complex datasets we used M = 5 in (51). Bilinear FEM
discretization on the rectangular grid with 100× 100 points was used for discretization.

2. Elliptic beta (11) For this dataset the matrix A is diagonal. We generated everything the same way as for the previous
datasets, and afterward, drop non-diagonal elements of A and replace A22 with A11.

3. Convection-diffusion (12) The diffusion coefficients were generated the same way as for the Elliptic alpha dataset.
Initial conditions and convection coefficients are taken from (51). For each function, M = 5 is used. For the complex
dataset, we rescale coefficients by a factor s = 0.5 and take t = 1e− 2. For the simple dataset, these parameters are
s = 0.1, t = 1e− 2. As in the D = 1 case Crank-Nicolson time-marching scheme is used. Spatial discretization is the
same as for the Elliptic alpha dataset, 100 points along a temporal dimension are used.

4. Wave (13) All random functions were generated the same way as for the convection-diffusion equation. The source
term is not used for D = 2. For the complex dataset, we have s = 0.2, t = 1, and for the simple, we put s = 0.2,
t = 1e− 1.

E. Details on the solution method for lid-driven cavity flow
To integrate the equation we use the Chorin projection method that works in three steps:

1. Advance speed neglecting pressure term

ui − vi(n)

∆t
=

∂

∂xk

(
−vk(n)v

i
(n) + ν

∂vi(n)

∂xk

)
(53)

2. Solve the Poisson equation to obtain pressure correction term

∂

∂xk
∂p

∂xk
=
∂uk

∂xk
, p(x, 1) = 0,

∂p(x, 0)

∂y
=
∂p(0, y)

∂x
=
∂p(1, y)

∂x
= 0. (54)

3. Correct speed to restore incompressibility

vi(n+1) = ui − ∂p

∂xi
(55)

Since the problem is defined on a deformed mesh, we need to rewrite the Chorin projection method in the curvilinear
coordinates.
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Under the coordinate transformations, the equation for pressure changes to

∂

∂ξi

(
Jδαβ

∂ξi

∂xα
∂ξj

∂xβ
∂p

∂ξj

)
=

∂

∂ξj
(
ujJ

)
, uj =

∂ξj

∂xα
uα,

p
(
ξ1, 1

)
= 1,

(
∂p

∂ξ1
∂ξ1

∂x2
+

∂p

∂ξ2
∂ξ2

∂x2

)
ξ2=0

= 0,(
∂p

∂ξ1
∂ξ1

∂x1
+

∂p

∂ξ2
∂ξ2

∂x1

)
ξ1=0

= 0,

(
∂p

∂ξ1
∂ξ1

∂x1
+

∂p

∂ξ2
∂ξ2

∂x1

)
ξ1=1

= 0.

(56)

The equation for speed update is a vector conservation law

∂Aij

∂xj
= F i, (57)

with the following transformation rule (see (Liseikin, 2017), Section 2.4.2)

∂

∂ξj

(
JA

ij
)
+

∂2xl

∂ξk∂ξj
∂ξi

∂xl
A

kj
= F

i
, A

kj
=
∂ξk

∂xα
∂ξj

∂xβ
Aαβ , F

j
=
∂ξj

∂xα
Fα. (58)

It is straightforward to apply general equation Equation (58) to a particular case

ui − vi(n)

∆t
=

∂

∂xk

(
−vk(n)v

i
(n) + ν

∂vi(n)

∂xk

)
. (59)

The only problematic term is
∂vi(n)

∂xk
−→ ∂ξi

∂xα
∂ξk

∂xβ

∂vα(n)

∂xβ
=

∂ξi

∂xα
∂ξk

∂xβ
∂ξρ

∂xβ

∂vα(n)

∂ξρ
. (60)

To evaluate this term, we need to switch from vα to vα which is a simple task since the Jacobi matrix is available.

F. Supplementray results
Here we present additional data on the experiments described in Section 4.

Table 7, Table 8, Table 9, Table 10 contain results on D = 1 experiments.

In Table 6, one can find data with sensitivity to coordinate transforms.

Results for DeepONet training on Navier-Stokes dataset are in Table 11.

Table 6. Sensitivity to grid distortion for DilResNet and FNO with
√

and without × augmentation. The distortion here refers to the
maximal difference between the unperturbed x and perturbed x(ξ) grids averaged over 1000 grids used to augment dataset.

Elliptic alpha Convection-diffusion Wave

∆ DilResNet FNO DilResNet FNO DilResNet FNO
×

√
×

√
×

√
×

√
×

√
×

√

0.006 10% 2% 4% 1% 2% 1% 2% 1% 2% 2% 5% 2%
0.040 14% 2% 7% 2% 15% 2% 15% 4% 17% 4% 28% 9%
0.099 42% 3% 15% 5% — 25% — 26% — 18% — 34%
0.119 70% 4% 18% 6% — 58% — 54% — 44% — 69%
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Table 7. Average test errors ± standard deviation for elliptic equation in one dimension. Factor m in columns corresponds to the number
of extra samples m×Ntrain added to the dataset with augmentation or resampling.

Model Ntrain\m 1 2 3 4

DeepONet

augmentation

500 0.573± 0.145 0.419± 0.032 0.415± 0.038 0.427± 0.041
1000 0.489± 0.071 0.415± 0.033 0.383± 0.022 0.373± 0.013
1500 0.461± 0.041 0.398± 0.019 0.399± 0.075 0.465± 0.101
2000 0.417± 0.023 0.385± 0.025 0.383± 0.023 0.375± 0.024

resampling

500 0.633± 0.066 0.492± 0.042 0.445± 0.026 0.388± 0.017
1000 0.597± 0.07 0.536± 0.072 0.441± 0.023 0.705± 0.606
1500 0.646± 0.092 0.505± 0.031 0.46± 0.039 0.415± 0.011
2000 0.624± 0.072 0.504± 0.04 0.428± 0.026 0.452± 0.078

FNO

augmentation

500 0.125± 0.014 0.063± 0.003 0.047± 0.002 0.039± 0.002
1000 0.09± 0.006 0.052± 0.002 0.04± 0.002 0.032± 0.001
1500 0.074± 0.004 0.043± 0.003 0.035± 0.002 0.028± 0.001
2000 0.064± 0.004 0.04± 0.002 0.032± 0.002 0.026± 0.001

resampling

500 0.12± 0.001 0.068± 0.004 0.053± 0.002 0.043± 0.002
1000 0.106± 0.004 0.063± 0.001 0.049± 0.002 0.04± 0.001
1500 0.102± 0.005 0.061± 0.003 0.049± 0.002 0.041± 0.003
2000 0.098± 0.004 0.063± 0.004 0.048± 0.003 0.04± 0.001

rFNO

augmentation

500 0.146± 0.004 0.121± 0.004 0.106± 0.004 0.099± 0.003
1000 0.103± 0.002 0.087± 0.004 0.08± 0.004 0.076± 0.002
1500 0.082± 0.002 0.074± 0.002 0.07± 0.003 0.064± 0.001
2000 0.073± 0.001 0.065± 0.002 0.061± 0.001 0.056± 0.001

resampling

500 0.17± 0.005 0.154± 0.003 0.148± 0.006 0.148± 0.004
1000 0.111± 0.002 0.111± 0.002 0.107± 0.002 0.105± 0.004
1500 0.089± 0.002 0.087± 0.003 0.086± 0.002 0.084± 0.002
2000 0.078± 0.002 0.076± 0.003 0.074± 0.002 0.075± 0.002

DilResNet

augmentation

500 0.374± 0.037 0.304± 0.033 0.243± 0.031 0.214± 0.026
1000 0.208± 0.005 0.172± 0.013 0.145± 0.004 0.141± 0.015
1500 0.179± 0.013 0.143± 0.006 0.119± 0.009 0.114± 0.01
2000 0.13± 0.009 0.118± 0.009 0.104± 0.008 0.095± 0.007

resampling

500 0.485± 0.044 0.48± 0.087 0.41± 0.063 0.425± 0.052
1000 0.255± 0.009 0.255± 0.027 0.218± 0.011 0.226± 0.021
1500 0.185± 0.024 0.17± 0.014 0.171± 0.008 0.17± 0.015
2000 0.15± 0.014 0.141± 0.011 0.143± 0.008 0.14± 0.005

MLP

augmentation

500 0.346± 0.031 0.337± 0.031 0.261± 0.041 0.262± 0.043
1000 0.268± 0.042 0.181± 0.03 0.162± 0.026 0.126± 0.016
1500 0.23± 0.049 0.145± 0.017 0.13± 0.007 0.105± 0.009
2000 0.155± 0.028 0.109± 0.007 0.09± 0.005 0.089± 0.012

resampling

500 0.342± 0.023 0.377± 0.011 0.332± 0.066 0.286± 0.053
1000 0.309± 0.048 0.301± 0.105 0.239± 0.096 0.184± 0.043
1500 0.211± 0.03 0.133± 0.026 0.111± 0.007 0.111± 0.018
2000 0.151± 0.038 0.099± 0.013 0.096± 0.012 0.089± 0.006
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Table 8. Average test errors ± standard deviation for convection-diffusion equation in one dimension. Factor m in columns corresponds
to the number of extra samples m×Ntrain added to the dataset with augmentation or resampling.

Model Ntrain\m 1 2 3 4

DeepONet

augmentation

500 0.8± 0.013 0.619± 0.012 0.522± 0.022 0.449± 0.018
1000 0.716± 0.013 0.536± 0.004 0.469± 0.013 0.401± 0.02
1500 0.646± 0.02 0.477± 0.009 0.407± 0.01 0.327± 0.02
2000 0.607± 0.019 0.46± 0.014 0.386± 0.015 0.312± 0.019

resampling

500 0.92± 0.034 0.771± 0.02 0.671± 0.025 0.619± 0.024
1000 0.915± 0.017 0.769± 0.016 0.665± 0.017 0.612± 0.022
1500 0.926± 0.041 0.772± 0.017 0.676± 0.011 0.619± 0.02
2000 0.92± 0.041 0.768± 0.031 0.672± 0.019 0.623± 0.03

FNO

augmentation

500 0.464± 0.008 0.366± 0.023 0.235± 0.039 0.117± 0.026
1000 0.472± 0.011 0.324± 0.033 0.137± 0.036 0.072± 0.007
1500 0.438± 0.043 0.229± 0.085 0.101± 0.017 0.059± 0.005
2000 0.426± 0.036 0.212± 0.057 0.081± 0.016 0.05± 0.008

resampling

500 0.499± 0.01 0.426± 0.016 0.315± 0.027 0.157± 0.031
1000 0.529± 0.009 0.442± 0.026 0.258± 0.04 0.133± 0.028
1500 0.553± 0.013 0.434± 0.03 0.264± 0.051 0.124± 0.017
2000 0.543± 0.009 0.444± 0.02 0.233± 0.033 0.125± 0.013

rFNO

augmentation

500 0.524± 0.008 0.49± 0.007 0.436± 0.039 0.402± 0.049
1000 0.176± 0.005 0.157± 0.037 0.124± 0.006 0.115± 0.007
1500 0.108± 0.003 0.097± 0.004 0.088± 0.004 0.082± 0.004
2000 0.083± 0.005 0.071± 0.002 0.068± 0.002 0.067± 0.004

resampling

500 0.536± 0.007 0.513± 0.006 0.507± 0.007 0.485± 0.019
1000 0.265± 0.057 0.258± 0.04 0.219± 0.013 0.194± 0.02
1500 0.137± 0.008 0.124± 0.009 0.119± 0.005 0.115± 0.007
2000 0.102± 0.004 0.094± 0.003 0.09± 0.003 0.09± 0.002

DilResNet

augmentation

500 0.133± 0.014 0.109± 0.006 0.1± 0.006 0.091± 0.008
1000 0.07± 0.004 0.058± 0.002 0.048± 0.004 0.044± 0.002
1500 0.047± 0.004 0.041± 0.002 0.037± 0.002 0.033± 0.003
2000 0.038± 0.003 0.032± 0.001 0.029± 0.001 0.026± 0.002

resampling

500 0.155± 0.006 0.172± 0.026 0.144± 0.008 0.144± 0.014
1000 0.075± 0.002 0.072± 0.005 0.067± 0.003 0.068± 0.007
1500 0.052± 0.002 0.05± 0.003 0.047± 0.003 0.047± 0.001
2000 0.041± 0.002 0.038± 0.002 0.036± 0.002 0.037± 0.001

MLP

augmentation

500 0.425± 0.03 0.439± 0.011 0.439± 0.031 0.423± 0.015
1000 0.306± 0.049 0.301± 0.045 0.291± 0.086 0.266± 0.055
1500 0.26± 0.059 0.175± 0.058 0.125± 0.013 0.115± 0.032
2000 0.105± 0.008 0.101± 0.015 0.071± 0.005 0.074± 0.014

resampling

500 0.464± 0.018 0.507± 0.037 0.5± 0.014 0.482± 0.012
1000 0.381± 0.034 0.361± 0.086 0.379± 0.047 0.328± 0.061
1500 0.306± 0.056 0.299± 0.064 0.2± 0.074 0.231± 0.039
2000 0.19± 0.052 0.183± 0.091 0.135± 0.023 0.114± 0.015
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General Covariance Data Augmentation

Table 9. Average test errors ± standard deviation for wave equation (10 modes) in one dimension. Factor m in columns corresponds to
the number of extra samples m×Ntrain added to the dataset with augmentation or resampling.

Model Ntrain\m 1 2 3 4

DeepONet

augmentation

500 0.275± 0.009 0.215± 0.004 0.181± 0.005 0.171± 0.005
1000 0.259± 0.004 0.207± 0.005 0.175± 0.004 0.163± 0.004
1500 0.255± 0.001 0.202± 0.003 0.174± 0.007 0.162± 0.006
2000 0.244± 0.003 0.197± 0.005 0.172± 0.003 0.164± 0.006

resampling

500 0.322± 0.014 0.241± 0.004 0.198± 0.003 0.18± 0.006
1000 0.319± 0.009 0.25± 0.021 0.196± 0.005 0.179± 0.005
1500 0.314± 0.011 0.237± 0.005 0.212± 0.029 0.18± 0.007
2000 0.321± 0.008 0.237± 0.005 0.197± 0.005 0.18± 0.006

FNO

augmentation

500 0.135± 0.003 0.088± 0.002 0.068± 0.002 0.057± 0.001
1000 0.123± 0.003 0.082± 0.003 0.062± 0.001 0.049± 0.001
1500 0.119± 0.004 0.076± 0.002 0.058± 0.001 0.045± 0.001
2000 0.108± 0.002 0.072± 0.002 0.052± 0.001 0.042± 0.001

resampling

500 0.208± 0.008 0.14± 0.007 0.108± 0.004 0.091± 0.003
1000 0.178± 0.004 0.124± 0.004 0.096± 0.004 0.078± 0.005
1500 0.168± 0.003 0.118± 0.005 0.09± 0.004 0.074± 0.003
2000 0.163± 0.003 0.114± 0.003 0.087± 0.003 0.07± 0.002

rFNO

augmentation

500 0.19± 0.003 0.179± 0.002 0.172± 0.003 0.166± 0.003
1000 0.147± 0.002 0.137± 0.002 0.131± 0.002 0.127± 0.003
1500 0.127± 0.003 0.117± 0.004 0.112± 0.002 0.108± 0.002
2000 0.111± 0.001 0.103± 0.001 0.098± 0.002 0.094± 0.002

resampling

500 0.213± 0.004 0.212± 0.003 0.21± 0.002 0.207± 0.005
1000 0.168± 0.005 0.168± 0.002 0.164± 0.003 0.163± 0.002
1500 0.144± 0.004 0.141± 0.001 0.142± 0.003 0.143± 0.003
2000 0.129± 0.003 0.127± 0.003 0.126± 0.002 0.126± 0.002

DilResNet

augmentation

500 0.157± 0.009 0.133± 0.007 0.128± 0.006 0.121± 0.005
1000 0.109± 0.006 0.092± 0.003 0.086± 0.007 0.084± 0.005
1500 0.084± 0.006 0.076± 0.003 0.072± 0.004 0.066± 0.005
2000 0.076± 0.007 0.063± 0.004 0.058± 0.004 0.056± 0.005

resampling

500 0.173± 0.008 0.174± 0.007 0.175± 0.012 0.182± 0.013
1000 0.121± 0.007 0.119± 0.011 0.118± 0.009 0.126± 0.014
1500 0.098± 0.006 0.095± 0.006 0.098± 0.007 0.093± 0.011
2000 0.082± 0.005 0.08± 0.002 0.08± 0.005 0.079± 0.003

MLP

augmentation

500 0.349± 0.038 0.331± 0.041 0.304± 0.041 0.294± 0.015
1000 0.231± 0.022 0.198± 0.021 0.178± 0.015 0.187± 0.033
1500 0.186± 0.013 0.145± 0.009 0.137± 0.007 0.134± 0.013
2000 0.151± 0.012 0.131± 0.01 0.115± 0.012 0.099± 0.006

resampling

500 0.376± 0.072 0.349± 0.044 0.341± 0.033 0.334± 0.052
1000 0.236± 0.01 0.225± 0.015 0.236± 0.036 0.233± 0.017
1500 0.188± 0.005 0.192± 0.012 0.178± 0.009 0.193± 0.01
2000 0.152± 0.007 0.159± 0.004 0.158± 0.001 0.17± 0.014
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Table 10. Average test errors ± standard deviation for wave equation (5 modes) in one dimension. Factor m in columns corresponds to
the number of extra samples m×Ntrain added to the dataset with augmentation or resampling.

Model Ntrain\m 1 2 3 4

DeepONet

augmentation

500 0.262± 0.005 0.178± 0.004 0.152± 0.003 0.147± 0.011
1000 0.247± 0.011 0.169± 0.006 0.158± 0.013 0.141± 0.008
1500 0.237± 0.006 0.161± 0.008 0.143± 0.006 0.134± 0.004
2000 0.228± 0.005 0.162± 0.004 0.147± 0.01 0.138± 0.005

resampling

500 0.306± 0.008 0.196± 0.004 0.157± 0.005 0.145± 0.008
1000 0.31± 0.004 0.195± 0.004 0.159± 0.006 0.148± 0.008
1500 0.308± 0.011 0.197± 0.004 0.172± 0.015 0.144± 0.006
2000 0.303± 0.006 0.197± 0.007 0.16± 0.007 0.142± 0.005

FNO

augmentation

500 0.088± 0.002 0.057± 0.002 0.042± 0.002 0.034± 0.001
1000 0.083± 0.003 0.051± 0.002 0.038± 0.001 0.031± 0.001
1500 0.078± 0.002 0.048± 0.001 0.036± 0.001 0.029± 0.001
2000 0.074± 0.0 0.045± 0.001 0.033± 0.001 0.027± 0.001

resampling

500 0.18± 0.012 0.104± 0.009 0.073± 0.005 0.058± 0.002
1000 0.138± 0.007 0.081± 0.004 0.057± 0.003 0.047± 0.002
1500 0.12± 0.004 0.071± 0.003 0.052± 0.002 0.041± 0.002
2000 0.109± 0.004 0.065± 0.003 0.047± 0.001 0.039± 0.001

rFNO

augmentation

500 0.16± 0.003 0.145± 0.003 0.138± 0.002 0.136± 0.002
1000 0.11± 0.003 0.102± 0.002 0.098± 0.002 0.094± 0.002
1500 0.092± 0.002 0.085± 0.002 0.08± 0.001 0.077± 0.002
2000 0.078± 0.002 0.072± 0.001 0.069± 0.001 0.065± 0.001

resampling

500 0.176± 0.004 0.175± 0.004 0.174± 0.002 0.173± 0.002
1000 0.125± 0.005 0.126± 0.001 0.122± 0.002 0.123± 0.002
1500 0.104± 0.003 0.101± 0.002 0.1± 0.001 0.1± 0.001
2000 0.089± 0.001 0.087± 0.001 0.087± 0.002 0.087± 0.002

DilResNet

augmentation

500 0.132± 0.012 0.113± 0.01 0.116± 0.014 0.105± 0.009
1000 0.093± 0.008 0.091± 0.009 0.068± 0.005 0.068± 0.003
1500 0.077± 0.008 0.066± 0.009 0.061± 0.006 0.055± 0.006
2000 0.061± 0.007 0.053± 0.004 0.05± 0.003 0.055± 0.004

resampling

500 0.169± 0.019 0.174± 0.013 0.147± 0.009 0.155± 0.009
1000 0.098± 0.007 0.105± 0.01 0.112± 0.008 0.11± 0.009
1500 0.09± 0.011 0.082± 0.005 0.076± 0.003 0.079± 0.005
2000 0.065± 0.003 0.07± 0.006 0.068± 0.006 0.066± 0.006

MLP

augmentation

500 0.395± 0.09 0.277± 0.013 0.286± 0.016 0.243± 0.015
1000 0.259± 0.049 0.169± 0.025 0.144± 0.022 0.131± 0.017
1500 0.172± 0.02 0.138± 0.034 0.098± 0.009 0.085± 0.005
2000 0.112± 0.014 0.084± 0.007 0.076± 0.005 0.069± 0.007

resampling

500 0.358± 0.051 0.387± 0.053 0.383± 0.057 0.401± 0.054
1000 0.288± 0.122 0.224± 0.018 0.202± 0.029 0.233± 0.049
1500 0.178± 0.011 0.155± 0.015 0.14± 0.031 0.136± 0.011
2000 0.148± 0.032 0.119± 0.018 0.103± 0.01 0.111± 0.013
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General Covariance Data Augmentation

Table 11. Relative errors for DeepONet, Navier-Stokes dataset,
√

marks training run with augmentation and × — without augmentation.

v1 v2

model Etrain Etest Etrain Etest

×
√

×
√

×
√

×
√

DeepONet 0.074 0.063 0.162 0.163 0.212 0.232 0.368 0.395
POD-DeepONet 0.622 0.622 0.589 0.589 0.349 0.358 0.414 0.419
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