
SurCo: Learning Linear SURrogates
for COmbinatorial Nonlinear Optimization Problems

Aaron Ferber 1 Taoan Huang 1 Daochen Zha 2

Martin Schubert 3 Benoit Steiner 4 Bistra Dilkina 1 Yuandong Tian 3

Abstract
Optimization problems with nonlinear cost func-
tions and combinatorial constraints appear in
many real-world applications but remain chal-
lenging to solve efficiently compared to their lin-
ear counterparts. To bridge this gap, we propose
SurCo that learns linear Surrogate costs which
can be used in existing Combinatorial solvers to
output good solutions to the original nonlinear
combinatorial optimization problem. The surro-
gate costs are learned end-to-end with nonlinear
loss by differentiating through the linear surrogate
solver, combining the flexibility of gradient-based
methods with the structure of linear combinato-
rial optimization. We propose three SurCo vari-
ants: SurCo − zero for individual nonlinear
problems, SurCo−prior for problem distribu-
tions, and SurCo−hybrid to combine both dis-
tribution and problem-specific information. We
give theoretical intuition motivating SurCo, and
evaluate it empirically. Experiments show that
SurCo finds better solutions faster than state-
of-the-art and domain expert approaches in real-
world optimization problems such as embedding
table sharding, inverse photonic design, and non-
linear route planning.

1. Introduction
Combinatorial optimization problems with linear objec-
tive functions such as mixed integer linear programming
(MILP) (Wolsey, 2007), and occasionally linear program-

Work done during Aaron and Taoan’s internship in Meta AI.
Project page at https://sites.google.com/usc.edu/
surco/ 1Center for AI in Society, University of Southern Califor-
nia 2Rice University 3Meta AI, FAIR 4Anthropic. Correspondence
to: Aaron Ferber <aferber@usc.edu>, Yuandong Tian <yuan-
dong@meta.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

ming (LP) (Chvatal et al., 1983), have been extensively
studied in operations research (OR). The resulting high-
performance solvers like Gurobi (Gurobi Optimization,
LLC, 2022) can solve industrial-scale optimization prob-
lems with tens of thousands of variables in a few minutes.

However, even with perfect solvers, one issue remains: the
cost functions f(x) in many practical problems are nonlin-
ear, and the highly-optimized solvers mainly handle linear
or convex formulations while real-world problems have less
constrained objectives. For example, in embedding table
sharding (Zha et al., 2022a) one needs to distribute embed-
ding tables to multiple GPUs for the deployment of recom-
mendation systems. Due to the batching behaviors within a
single GPU and communication cost among different GPUs,
the overall latency (cost function) in this application de-
pends on interactions of multiple tables and thus can be
highly nonlinear (Zha et al., 2022a).

To obtain useful solutions to real-world problems, one may
choose to directly optimize the nonlinear cost, which can
be the black-box output of a simulator (Gosavi et al., 2015;
Ye et al., 2019), or the output of a cost estimator learned
by machine learning techniques (e.g., deep models) from
offline data (Steiner et al., 2021; Koziel et al., 2021; Wang
et al., 2021b; Cozad et al., 2014). However, many of these
direct optimization approaches either rely on human-defined
heuristics (e.g., greedy (Korte & Hausmann, 1978; Reingold
& Tarjan, 1981; Wolsey, 1982), local improvement (Voß
et al., 2012; Li et al., 2021)), or resort to general nonlin-
ear optimization techniques like gradient descent (Ruder,
2016), reinforcement learning (Mazyavkina et al., 2021),
or evolutionary algorithms (Simon, 2013). While these ap-
proaches can work in certain settings, they may lead to
a slow optimization process, in particular when the cost
function is expensive to evaluate, and they often ignore the
combinatorial nature of most real-world applications.

In this work, we propose a systematic framework SurCo
that leverages existing efficient combinatorial solvers to find
solutions to nonlinear combinatorial optimization problems
arising in real-world scenarios. When only one nonlinear
differentiable cost f(x) needs to be minimized, we propose
SurCo-zero that optimizes a linear surrogate cost ĉ so

1

https://sites.google.com/usc.edu/surco/
https://sites.google.com/usc.edu/surco/

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

Figure 1: Overview of our proposed framework SurCo.

that the surrogate optimizer (SO) minx∈Ω ĉ⊤x outputs a
solution that is expected to be optimal w.r.t. the original
nonlinear cost f(x). Due to its linear nature, SO can be
solved efficiently with existing solvers, and the surrogate
cost ĉ can be optimized in an end-to-end manner by back-
propagating through the solver via methods proposed in
previous work (Pogančić et al., 2019; Niepert et al., 2021;
Berthet et al., 2020).

Thus, SurCo is a general-purpose method for solving com-
binatorial nonlinear optimization. Off-the-shelf nonlinear
optimizers are often not directly applicable to these prob-
lem domains and often require domain-specific solution
methodologies to give high-quality solutions in a reasonable
amount of time, and solution prediction methods fail to give
combinatorially feasible solutions without problem-specific
intervention. Here, learning a linear surrogate problem en-
sures that the surrogate solver is practically efficient, yields
gradient information for offline training, and generates solu-
tions that are combinatorially feasible.

When solving a family of nonlinear differentiable functions
f(x;y) parameterized by instance description y, the sur-
rogate coefficients ĉ(y;θ) are learned on a set of optimiza-
tion instances (called the training set {yi}), by optimizing
the parameters θ. For an unseen held-out instance y′, we
propose SurCo-prior that directly optimizes linear SO:
x̂∗(y′) := argminx∈Ω(y′) ĉ

⊤(y′;θ)x to get the solution,
avoiding optimizing the cost f(x;y′) from scratch. Based
on the solution predicted by SurCo-prior, we also pro-
pose SurCo-hybrid that fine-tunes the surrogate costs
ĉ with SurCo-zero to leverage both domain knowledge
synthesized offline and information about the specific in-
stance. We provide a comprehensive description of SurCo
in Section 3.

We evaluate SurCo in three settings: embedding table
sharding (Zha et al., 2022a), photonic inverse design (Schu-
bert et al., 2022), and nonlinear route planning (Fan et al.,
2005). In the on-the-fly setting, SurCo-zero achieves
higher quality solutions in comparable or less runtime,
thanks to the help of an efficient combinatorial solver. in
SurCo-prior, our method obtains better solutions in held-
out problems compared to other methods that require train-
ing (e.g., reinforcement learning).

Symbol Description
y Parametric description of a specific instance.
x A solution to an instance.

f(x;y) The nonlinear objective (w.r.t x) for an instance y.
Ω(y) The feasible region of an instance y.
x̂∗(y) The optimal SO solution to an instance y.
c(y) The surrogate coefficients for instance y.

Table 1: Notations used in this work.

We compare SurCo at a high level with related work inte-
grating learning and optimization at the end of our paper.
We additionally present theoretical intuition that helps moti-
vate why training a model to predict surrogate linear coeffi-
cients may exhibit better sample complexity than previous
approaches that directly predict the optimal solution (Li
et al., 2018; Ban & Rudin, 2019).

2. Problem Specification
Our goal is to solve the following nonlinear optimization
problem describe by y:

min
x

f(x;y) s.t. x ∈ Ω(y) (1)

where x ∈ Rn are the n variables to be optimized, f(x;y)
is the nonlinear differentiable cost function to be minimized,
Ω(y) is the feasible region, typically specified by linear
(in)equalities and integer constraints, and y ∈ Y are the
problem instance parameters drawn from a distribution D
over Y . For example, in the traveling salesman problem, y
can be the distance matrix among cities.

Differentiable cost function. The nonlinear cost function
f(x;y) can either be given analytically, or the result of a
simulator made differentiable via finite differencing (e.g.,
JAX (Bradbury et al., 2018)). If the cost function f(x;y) is
not differentiable as in one of our experimental settings, we
can use a cost model that is learned from an offline dataset,
often generated via sampling multiple feasible solutions
within Ω(y), and recording their costs. In this work, we
assume the following property of f(x;y):

Assumption 2.1 (Differentiable cost function). During opti-
mization, the cost function f(x;y) and its partial derivative
∂f/∂x are accessible.

2

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

Learning a good nonlinear cost model f is non-trivial for
practical applications (e.g., AlphaFold (Jumper et al., 2021),
Density Functional Theory (Nagai et al., 2020), cost model
for embedding tables (Zha et al., 2022a)) and is beyond the
scope of this work.

Evaluation Metric. We mainly focus on two aspects: the
solution quality evaluated by f(x̂;y), and the number of
queries of f during optimization to achieve the solution x̂.
For both, smaller measurements are favorable, i.e., fewer
query of f to get solutions closer to global optimum.

When f(x;y) is linear w.r.t x, and the feasible region Ω(y)
can be encoded using mixed integer programs or other math-
ematical programs, the problem can be solved efficiently
using existing scalable optimization solvers. When f(x;y)
is nonlinear, we propose SurCo that learns a surrogate lin-
ear objective function, which allow us to leverage these
existing scalable optimization solvers, and which results in
a solution that has high quality with respect to the original
hard-to-encode objective function f(x;y).

3. SurCo: Learning Linear Surrogates
3.1. SurCo-zero: on-the-fly optimization

We start from the simplest case in which we focus on a single
instance with f(x) = f(x;y) and Ω = Ω(y). SurCo-
zero aims to optimize the following objective:

(SurCo-zero) : min
c

Lzero(c) := f(gΩ(c)) (2)

where the surrogate optimizer gΩ : Rn 7→ Rn is the output
of certain combinatorial solvers with linear cost weight
c ∈ Rn and feasible region Ω ⊆ Rn. For example, gΩ can
be the following:

gΩ(c) := argmin
x

c⊤x s.t. x ∈ Ω := {Ax ≤ b,x ∈ Zn}
(3)

which is the output of a MILP solver. Thanks to previ-
ous works (Ferber et al., 2020; Pogančić et al., 2019), we
can efficiently compute the partial derivative ∂gΩ(c)/∂c.
Intuitively, this means that gΩ(c) can be backpropagated
through. Since f is also differentiable with respect to the
solution it is evaluating, we thus can optimize Eqn. 2 in an
end-to-end manner using any gradient-based optimizer:

c(t+ 1) = c(t)− α
∂gΩ

∂c

∂f

∂x
, (4)

where α is the learning rate. The procedure starts from a ran-
domly initialized c(0) and converges at a local optimal so-
lution of c. While Eqn. 2 is still nonlinear optimization and
there is no guarantee about the quality of the final solution c,
we argue that optimizing Eqn. 2 is better than optimizing the
original nonlinear cost minx∈Ω f(x). Furthermore, while
we cannot guarantee optimality, we guarantee feasibility by
leveraging a linear combinatorial solver.

Intuitively, instead of optimizing directly over the solution
space x, we optimize over the space of surrogate costs c,
and delegate the combinatorial feasibility requirements of
the nonlinear problem to SoTA combinatorial solvers. Com-
pared to naive approaches that directly optimize f(x) via
general optimization techniques, our method readily handles
complex constraints of the feasible regions, and thus makes
the optimization procedure easier. Furthermore, it also helps
escape from local minima, thanks to the embedded search
component of existing combinatorial solvers (e.g., branch-
and-bound (Land & Doig, 2010) in MILP solvers). As we
see in the experiments, this is particularly important when
the problem becomes large-scale with more local optima.
This approach works well when we are optimizing individ-
ual instances and may not have access to offline training
data or the training time is cost-prohibitive.

Limitation. Note that due to linear surrogate, our approach
will always return a vertex in the feasible region, while the
solution to the original nonlinear objective may be in the
interior. We leave this limitation for future work. In many
real-world settings, such as in the three domains we tested,
the solutions are indeed on the vertices of feasible regions.

3.2. SurCo-prior: offline surrogate training

We now consider a more general case where we have N
optimization instances, each parameterized by an instance
description yi, i = 1 . . . N , and we want to find their so-
lutions to a collection of nonlinear loss functions f(x;yi)
simultaneously. Here we write Dtrain := {yi}Ni=1 as the
training set. A naive approach is just to apply SurCo-
zero N times, which leads to N independent surrogate
costs {ci}Ni=1. However, this approach does not consider
two important characteristics. First, it fails to leverage pos-
sible relationship between the instance descriptor yi and
its associated surrogate cost ci, since every surrogate cost
is independently estimated. Second, it fails to learn any
useful knowledge from the N instances after optimization.
As a result, for an unseen instance, the entire optimization
process needs to be conducted again, which is slow. This
motivates us to add a surrogate cost model ĉ(y;θ) into the
optimization as a regularizer:

(SurCo-prior-λ) : min
θ,{ci}

Lprior(θ, {ci};λ)

:=

N∑
i=1

f(gΩ(yi)(ci);yi) + λ∥ci − ĉ(yi;θ))∥2 (5)

The regressor model ĉ(y;θ) directly predicts the surrogate
cost from the instance description. The form of the regressor
can be a neural network, in which θ is its parameters. Note
that when λ = 0, it reduces to N independent optimizations,
while when λ > 0, the surrogate costs {ci} interact with
each other. With the regressor, we distill knowledge gained

3

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

Methods Applicable to Objective can be Training Set Generalize to Built-in handling of
nonlinear objective free form unseen instances combinatorial constraints

Gradient Descent Yes Yes N/A No No
Evolutionary Algorithm Yes Yes N/A No No

Nonlinear combinatorial solvers Yes No N/A No Yes
Learning direct mapping Yes Yes {yi,x

∗
i } Yes No

Predict-then-optimize Limited No {yi,x
∗
i } Yes Yes

SurCo (proposed) Yes Yes {yi} Yes Yes

Table 2: Conceptual comparison of optimizers (both traditional and ML-guided). Our approach (SurCo) can handle nonlinear objective
without a predefined analytical form, does not require pre-computed optimal solutions in its training set, can handle combinatorial
constraints (via commercial solvers it incorporates), and can generalize to unseen instances.

from the optimization procedure into θ, which can be used
for an unseen instance y′. Indeed, we use the learned regres-
sor model to predict the surrogate cost c′ = ĉ(y′;θ), and
directly solve the surrogate optimization (SO):

x̂∗(y′) = arg min
x∈Ω(y)

ĉ⊤(y′;θ)x (6)

A special case is when λ → +∞, we directly learn the
network parameters θ instead of individual surrogate costs:

(SurCo-prior) : min
θ
Lprior(θ)

:=

N∑
i=1

f(gΩ(yi)(ĉ(yi;θ));yi) (7)

This approach is useful when the goal is to find high-quality
solutions for unseen instances of a problem distribution
when the upfront cost of offline training is acceptable but
the cost of optimizing on-the-fly is prohibitive. Here, we
require access to a distribution of training optimization prob-
lems, but at test time only require the feasible region and
not the nonlinear objective. Different from predict-then-
optimize (Elmachtoub & Grigas, 2022a; Ferber et al., 2020)
or ML optimizers (Ban & Rudin, 2019), we do not require
the optimal solution {x∗

i }Ni=1 as part of the training set.

3.3. SurCo-hybrid: fine-tuning a predicted surrogate

Naturally, we consider SurCo-hybrid, a hybrid approach
which initializes the coefficients of SurCo-zero with
the coefficients predicted from SurCo-prior which was
trained on offline data. This allows SurCo-hybrid to
start out optimization from an initial prediction that has
good performance for the distribution at large but which
is then fine-tuned for the specific instance. Formally, we
initialize c(0) = ĉ(yi;θ) and then continue optimizing c
based on the update from SurCo-zero. This approach is
geared towards optimizing the nonlinear objective using a
high-quality initial prediction that is based on the problem
distribution and then fine-tuning the objective coefficients
based on the specific problem instance at test time. Here,
high performance comes at the runtime cost of both hav-
ing to train offline on a problem distribution as well as
performing fine-tuning steps on-the-fly. However, this ad-
ditional cost is often worthwhile when the main goal is to

find the best possible solutions by leveraging synthesized
domain knowledge in combination with individual problem
instances as arises in chip design (Mirhoseini et al., 2021)
and compiler optimization (Zhou et al., 2020).

4. Is Predicting Surrogate Cost better than
Predicting Solution? A Theoretical Analysis

One of the key ingredient of our proposed methods (SurCo-
prior and SurCo-hybrid) is to learn a model to predict
surrogate cost c from instance description y, which is in
contrast with previous solution regression approaches that
directly learn a mapping from problem description y to the
solution x∗(y) (Ban & Rudin, 2019). A natural question
arise: which one is better?

In this section, we give theoretical intuition to compare
the two approaches using a simple 1-nearest-neighbor (1-
NN) solution regressor (Fix, 1985). We first relate the
number of samples needed to learn any mapping to its
Lipschitz constant L, and then show that for the direct
mapping y 7→ x∗(y), L can be very large. Therefore,
there exist fundamental difficulties to learn such a mapping.
When this happens, we can still find surrogate cost mapping
y 7→ c∗(y) with finite L that leads to the optimal solution
x∗(y) of the original nonlinear problems.

4.1. Lipschitz constant and sample complexity

Formally, consider fitting any mapping ϕ : Rd ⊇ Y 7→ Rm

with a dataset C := {yi,ϕi}. Here Y is a compact region
with finite volume vol(Y). The Lipschitz constant L is the
smallest number so that ∥ϕ(y1)−ϕ(y2)∥2 ≤ L∥y1−y2∥2
holds for any y1,y2 ∈ Y . The following theorem shows
that if the dataset covers the space Y , we could achieve high
accuracy prediction: ∥ϕ(y)− ϕ̂(y)∥2 ≤ ϵ for any y ∈ Y .

Definition 4.1 (δ-cover). A dataset C := {(yi,ϕi)}Ni=1 δ-
covers the space Y , if for any y ∈ Y , there exists at least
one yi so that ∥y − yi∥2 ≤ δ.

Lemma 4.2 (Sufficient condition of prediction with
ϵ-accuracy). If the dataset C can (ϵ/L)-cover Y , then for
any y ∈ Y , a 1-nearest-neighbor regressor ϕ̂ leads to
∥ϕ̂(y)− ϕ(y)∥2 ≤ ϵ.

4

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

Lemma 4.3 (Lower bound of sample complexity for
ϵ/L-cover). To achieve ϵ/L-cover of Y , the size of the
dataset set N ≥ N0(ϵ) :=

vol(Y)
vol0

(
L
ϵ

)d
, where vol0 is the

volume of unit ball in d-dimension.

Please find all proofs in the Appendix. While we do not
rule out a more advanced regressor than 1-nearest-neighbor
that could lead to better sample complexity, the lemmas
demonstrate that the Lipschitz constant L plays an important
role in sample complexity.

4.2. Difference between Cost and Solution Regression

In the following we will show that in certain cases, the
direct prediction y 7→ x∗(y) could have an infinitely large
Lipschitz constant L. To show this, let us consider a general
mapping ϕ : Rd ⊇ Y 7→ Rm. Let ϕ(Y) be the image of
Y under mapping ϕ and κ(Y) be the number of connected
components for region Y .

Theorem 4.4 (A case of infinite Lipschitz constant). If the
minimal distance dmin for different connected components
of ϕ(Y) is strictly positive, and κ(ϕ(Y)) > κ(Y), then the
Lipschitz constant of the mapping ϕ is infinite.

Note that this theorem applies to a wide variety of combi-
natorial optimization problems. For example, when Y is
a connected region and the optimization problem can be
formulated as an integer programming, the optimal solution
set x∗(Y) := {x∗(y) : y ∈ Y } is a discrete set of integral
vertices, so the theorem applies. Combined with analysis in
Sec. 4.1, we know the mapping y 7→ x∗(y) is hard to learn
even with a lot of samples.

We can see this more clearly with a concrete example in
2D space. Let the 1D instance description y ∈ [0, π/2],
and the feasible region is a convex hull of 3 vertices
{(0, 0), (0, 1), (1, 0)}. The nonlinear objective is simply
f(x; y) := (x1 cos(y)+x2 sin(y))

2, in which x = (x1, x2)
is the 2D solution vector. The direct mapping y → x∗

maps a continuous region of instance descriptions (i.e.,
y ∈ [0, π/2]) into 2 disjoint regions points (x∗ = (0, 1)
and x∗ = (1, 0)), and thus according to Theorem 4.4, its
Lipschitz constant must be infinite. In contrast, there ex-
ists a surrogate cost mapping c(y) = [cos(y), sin(y)]⊤, and
the mapping y → c has finite Lipschitz constant (actually
L ≤ 1) and can be learned easily.

5. Empirical Evaluation
We evaluate the variants of SurCo on three settings, embed-
ding table sharding, inverse photonic design, and nonlinear
route planning, with the first two being real-world industrial
settings. Each setting consists of a family of problem in-
stances with varying feasible region and nonlinear objective
function. Additionally, both table sharding and inverse pho-

tonic design lack analytical formulations of the objective
function which prevents them from being used by many off-
the-shelf nonlinear solvers like SCIP (Achterberg, 2009).

5.1. Embedding Table Sharding

The task of sharding embedding tables arises in the deploy-
ment of large-scale neural network models which operate
over both sparse and dense inputs (e.g., in recommenda-
tion systems (Zha et al., 2022a;b; 2023; Sethi et al., 2022)).
Given T embedding tables and D homogeneous devices,
the goal is to distribute the tables among the devices such
that no device’s memory limit is exceeded, while the tables
are processed efficiently. Formally, let xt,d be the binary
variable indicating whether table t is assigned to device d,
and x := {xt,d} ∈ {0, 1}TD be the collection of the vari-
ables. The optimization problem is minx∈Ω f(x;y) where
Ω(y) := {x : ∀t,

∑
t xt,d = 1,∀d,

∑
t mtxt,d ≤M}.

Here the problem description y includes table memory us-
age {mt}, and capacity M of each device.

∑
d xt,d = 1

means each table t should be assigned to exactly one device,
and

∑
d mtxt,d ≤ M means the memory consumption at

each device d should not exceed its capacity. The nonlinear
cost function f(x;y) is the latency, i.e., the runtime of the
longest-running device. Due to shared computation (e.g.,
batching) among the group of assigned tables, and communi-
cation costs across devices, the objective is highly nonlinear.
f(x;y) is well-approximated by a sharding plan runtime
estimator proposed by Dreamshard (Zha et al., 2022b). Note
that here, the runtime is approximated by a differentiable
function since the real world deployment runtime isn’t dif-
ferentiable.

SurCo learns to predict T ×D surrogate cost ĉt,d, one for
each potential table-device assignment. During training, the
gradients through the combinatorial solver ∂g/∂c are com-
puted via CVXPYLayers (Agrawal et al., 2019a), and the
integrality constraints are relaxed. In practice, we obtained
mostly integral solutions in that only one table on any given
device was fractional. At test time, we solve for the integer
solution using SCIP (Achterberg, 2009), a branch and bound
MILP solver.

Settings. We evaluate SurCo on the public Deep Learning
Recommendation Model (DLRM) dataset (Naumov et al.,
2019). We consider 6 settings placing 10, 20, 30, 40, 50,
and 60 tables on 4 devices, with a 5GB memory limit on
GPU devices and 100 instances each (50 train, 50 test).

Baselines. For impromptu baselines, Greedy allocates
tables to devices based on predicted latency increase f ,
and the domain-expert algorithm Domain-Heuristic
balances the aggregate dimension (Zha et al., 2022b). For
SurCo-prior, we use Dreamshard, the SoTA embedding
table sharding algorithm using offline RL.

5

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

DLRM-10 DLRM-20 DLRM-30 DLRM-40 DLRM-50 DLRM-60
Setting

0

10

20

30

40

50

So
lu

tio
n

Lo
ss

 (L
at

en
cy

)

Table Sharding Solution Loss (Latency)

Domain Heuristic
Greedy
SurCo-zero
DreamShard
SurCo-prior
SurCo-hybrid

DLRM-10 DLRM-20 DLRM-30 DLRM-40 DLRM-50 DLRM-60
Setting

0.0

0.5

1.0

1.5

2.0

2.5

D
ep

lo
ym

en
t R

un
tim

e
(s

)

Table Sharding Deployment Runtime (s)

Figure 2: Table placement plan latency (left) and solver runtime (right). We evaluate SurCo against Dreamshard (Zha et al., 2022b), a
SoTA offline RL sharding tool, a domain-heuristic of assigning tables based on dimension, and a greedy heuristic based on the estimated
runtime increase. Striped approaches require pre-training.

Figure 3: Left The solution loss (% of failed instances when the design loss is not 0), and right test time solver runtime in log scale.
For both, lower is better. We compare against the Pass-Through gradient approach proposed in (Schubert et al., 2022). We observe
that SurCo-prior achieves similar success rates to the previous approach Pass-Through with a substantially improved runtime.
Additionally, SurCo-zero runs comparably or faster, while finding more valid solutions than Pass-Through. SurCo-hybrid
obtains valid solutions most often and is faster than SurCo-zero at the expense of pretraining. Striped approaches use pretraining.

Results. Fig. 2, SurCo-zero finds lower latency shard-
ing plans than the baselines, while it takes slightly longer
than Domain-Heuristic and DreamShard due to tak-
ing optimization steps rather than building a solution from a
heuristic feature or reinforcement learned policy. SurCo-
prior obtains lower latency solutions in about the same
time as DreamShard with a slight runtime increase from
SCIP. Lastly, SurCo-hybrid obtains the best solutions
and has runtime comparable to SurCo-zero. In smaller
instances (T ≤ 40), SurCo-prior finds better solutions
than its impromptu counterpart, SurCo-zero, likely by
escaping local optima by training on a variety of examples.
For larger instances with more tables available for place-
ment, SurCo-zero performs better by optimizing for the
test instances as opposed to SurCo-prior which only
uses training data. Using SurCo-hybrid, we obtain the
best solutions but incur the upfront pretraining cost and the
deployment-time optimization cost.

5.2. Inverse Photonic Design

Photonic devices play an essential role in high-speed com-
munication (Marpaung et al., 2019), quantum computing
(Arrazola et al., 2021), and machine learning hardware accel-
eration (Wetzstein et al., 2020). The photonic components
can be encoded as a binary 2D grid, with each cell being
filled or void. There are constraints on which binary pat-
terns are physically manufacturable: only those that can
be drawn by a physical brush instrument with a specific
cross shape can be manufactured. It remains challenging
to find manufacturable designs that satisfy design specifi-
cations like splitting beams of light. An example solution
developed by SurCo is shown in Figure 5b: coming from
the top, beams are routed to the left or right, depending on
wavelength. The solution is also manufacturable: a 3-by-3
brush cross can fit in all filled and void space. Given the
design, existing work (Hughes et al., 2019) enables differ-
entiation of the design misspecification cost, evaluated as
how far off the transmission intensity of the wavelengths
are from the desired output locations, with zero design loss
meaning that the specification is satisfied. Researchers also

6

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

Mode Converter Waveguide Bend Beam SplitterWavelength Multiplexer

Wavelength1 1270nm Wavelength2 1290nm

Figure 4: Inverse photonic design settings from the ceviche challenges (Schubert et al., 2022) along with SurCo-zero solution designs
and wavelength intensities. Light is fed in on the left and is routed at desired intensities to the output by designing the intermediate region.
In the Wavelength Multiplexer setting, two wavelengths of interest are visualized as they are routed to different locations.

develop the Ceviche Challenges (Schubert et al., 2022) a
standard benchmark of inverse photonic design problems.
Formally, a feasible design is a rectangle of pixels which
are either filled or void where both the filled and void pixels
can be expressed as a unions of the brush shape. Please
see (Schubert et al., 2022) for an in depth description of the
nonlinear objective and feasible region.

Settings. We compare our approaches against the
Pass-Through method (Schubert et al., 2022) on ran-
domly generated instances of the four types of problems in
(Schubert et al., 2022): Waveguide Bend, Mode Converter,
Wavelengths Division Multiplexer, and Beam Splitter. We
generate 50 instances in each setting (25 training/25 test),
randomly sampling the location of input and output waveg-
uides, or “pipes” where we are taking in light and desire
light to output. We fix the wavelengths themselves and so
the problem description y contains an image description of
the problem instance, where each pixel is either “fixed” or
“designable”. Further generation details are in the appendix.
We evaluated several algorithms described in the appendix,
such as genetic algorithms and derivative-free optimization,
which failed to find physically feasible solutions. We con-
sider two wavelengths (1270nm/1290nm), and optimize at a
resolution of 40nm, visualizing the test results in Fig. 3.

Results. Fig. 3, SurCo-zero consistently finds as many
or more valid devices compared to the Pass-Through
baseline (Schubert et al., 2022). Additionally, since the
on-the-fly solvers stop when they either find a valid so-
lution, or reach a maximum of 200 steps, the runtime of
SurCo-zero is slightly lower than the Pass-Through
baseline. SurCo-prior obtains similar success rates as
Pass-Through while taking two orders of magnitude
less time as it does not require expensive impromptu opti-
mization, making SurCo-prior a promising approach for
large-scale settings or when solving many slightly-varied
instances. Lastly, SurCo-hybrid performs best in terms
of solution loss, finding valid solutions more often than the
other approaches. It also takes less runtime than the other
on-the-fly approaches since it is able to reach valid solutions
faster, although it still requires optimization on-the-fly so it

takes longer than SurCo-prior. We visualize impromptu
solver convergence in Fig. 5a where SurCo-zero has
smoother and faster convergence than Pass-Through.

5.3. Nonlinear Route Planning

Nonlinear route planning can arise where one wants to max-
imize the probability of arrival before a set time in graphs
with random edges (Fan et al., 2005; Nikolova et al., 2006;
Lim et al., 2013). These problems occur in risk-aware set-
tings such as emergency services operators who need to
maximize the probability of arriving before a critical time,
or where driver reward is determined by deadlines.

Given a graph G with edge lengths coming from a ran-
dom distribution, a pair of source and destination nodes s, t,
and a time limit T that we would like to arrive before, we
select a feasible s− t path Ps,t that maximizes the probabil-
ity of arriving before the deadline P [length(Ps,t) ≤ T].
If we assume that edge times are distributed according
to a random normal distribution te ∼ N (µe, σ

2
e), then

we could write the objective as maximizing f(x; y) =

Φ
(
(T −

∑
e∈Ps,t

µe)/
√∑

e∈Ps,t
σ2
e

)
, with Φ being the

cumulative distribution function of a standard Gaussian dis-
tribution, with the feasible region Ω(y) being the set of
s− t paths in the graph from origin to destination. Explic-
itly, the problem parameters y are the graph G, source and
destination nodes s, t, time limit T , and the edge weight
distributions specified by the edge means and variances
µe, σ

2
e . We only consider the zero-shot setting without train-

ing examples since we need to solve the problem on-the-fly.
SurCo trains surrogate edge costs ĉe and finds the shortest
path using Bellman-Ford (Bellman, 1958), and differentiate
using blackbox differentiation (Pogančić et al., 2019).

Settings. We run on a 5x5 grid graph with 25 draws of edge
parameters µe ∼ U(0.1, 1) and σ2

e ∼ U(0.1, 0.3)∗(1−µe),
with U(a, b) being the uniform random distribution between
a and b. We have deadline settings based on the length of the
least expected time path (LET) which is simply the shortest
path using µe as weights. We use loose, normal, and tight
deadlines of 1.1 LET, 1 LET, and 0.9 LET respectively. The

7

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

0 25 50 75 100 125 150 175 200

Step

0.0

0.2

0.4

0.6

0.8

1.0

D
es

ig
n

M
is

sp
ec

ifi
ca

ti
on

Inverse Photonics Loss Convergence

Method
Pass-Through

SurCo-zero

SurCo-hybrid

(a) Loss Convergence

Device Design

(b) Device

Ez magnitude
first wavelength

Ez magnitude
second wavelength

(c) Wave Mangitude

Figure 5: Inverse photonic design convergence example (Schubert et al., 2022). In (a), SurCo-zero smoothly lowers the loss while the
pass-through baseline converges noisily. Also, SurCo-hybrid quickly fine-tunes an already high-quality solution. (b) visualizes the
SurCo-zero solution and (c) visualizes the two wavelengths of interest which are successfully routed from the top to the bottom.

𝜇!, 𝜎! 𝜇!, 𝜎! 𝜇!, 𝜎!

Figure 6: Nonlinear route planning visualization. The goal is
to route from the top left to bottom right corner, with the edge
weights being normally distributed. The goal is to maximize the
probability of arriving before a set deadline.

source and destination are oppose corners of the grid graph.

Results. Fig. 7, we compare SurCo-zero against a
domain-specific approach that minimizes a linear combina-
tion of mean and variance (Nikolova et al., 2006), and SCIP
(Achterberg, 2009). In this setting, we focus on the zero-
shot performance of SurCo, comparing it against two other
zero-shot approaches. Furthermore, here we are able to
encode the objective analytically into SCIP whereas the ob-
jectives of the other settings do not have readily-encodeable
formulations, relying on neural networks or physical simu-
lation. Since SurCo-zero and the domain approach take
much less than 1 second, we use SCIP-1s and find that SCIP
cannot find feasible solutions at that time scale. SCIP-30min
demonstrates how well a general-purpose method can do
given enough time, with SCIP timing out on all instances.
We also find that SurCo-zero is able to obtain compara-
ble solutions to SCIP-30min. Furthermore, SurCo-zero
consistently outperforms the domain heuristic, finding paths
that reach the deadline with 4.5%, 6.5%, 8.5% times higher
success rates in loose, normal, and tight deadlines. Finally,

Loose Deadline Normal Deadline Tight Deadline
Setting

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

O
n

Ti
m

e
Pr

ob
ab

ili
ty

Stochastic Shortest Path Solution Quality
Method

Domain Heuristic
SCIP-1s
SurCo-zero
SCIP-30min

Figure 7: Comparison of nonlinear route planning probability of
arriving on time. We compare against a domain heuristic (Nikolova
et al., 2006) and SCIP (Achterberg, 2009). SurCo-zero outper-
forms the domain heuristic, and is similar to SCIP using less time.
SCIP-1s fails to find feasible solutions.

we found only 2 instances where the domain heuristic beat
SurCo-zero.

6. Related Work
Differentiable Optimization OptNet (Amos & Kolter,
2017) proposed implicitly differentiating through KKT con-
ditions, a set of linear equations that determine the optimal
solution. Followup work differentiated through linear pro-
grams (Wilder et al., 2019a), submodular optimization prob-
lems (Djolonga & Krause, 2017; Wilder et al., 2019a), cone
programs (Agrawal et al., 2019a;b), MaxSAT (Wang et al.,
2019), Mixed Integer Linear Programming (Ferber et al.,
2020; Mandi et al., 2020), Integer Linear Programming
(Mandi et al., 2020), dynamic programming (Demirovic
et al., 2020), blackbox discrete linear optimizers (Pogančić
et al., 2019; Rolı́nek et al., 2020a;b), maximum likelihood
estimation (Niepert et al., 2021), kmeans clustering (Wilder

8

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

et al., 2019b), knapsack (Guler et al., 2022; Demirović et al.,
2019), the cross-entropy method (Amos & Yarats, 2020),
Nonlinear Least Squares (Pineda et al., 2022), SVM training
(Lee et al., 2019), and combining LP variables (Wang et al.,
2020a). SurCo can leverage these differentiable surrogates
for different problem domains.

Task Based Learning Task-based learning solves distribu-
tions of linear or quadratic optimization problems with the
true objective hidden at test time but available for training
(Elmachtoub & Grigas, 2022b; Donti et al., 2017; El Bal-
ghiti et al., 2019; Liu & Grigas, 2021; Hu et al., 2022).
(Donti et al., 2021) predicts and corrects solutions for con-
tinuous nonlinear optimization. Bayesian optimization (BO)
(Shahriari et al., 2016), optimizes blackbox functions by
approximating the objective with a learned model that can
be optimized over. Recent work optimizes individual in-
stances over discrete spaces like hypercubes (Baptista &
Poloczek, 2018), graphs (Deshwal et al., 2021), and MILP
(Papalexopoulos et al., 2022). Data reuse from previous
runs is proposed to optimize multiple correlated instances
(Swersky et al., 2013; Feurer et al., 2018). However, the
surrogate Gaussian Process (GP) models are memory and
time intensive in high-dimensional settings. Recent work
has addressed GP scalability via gradient updates (Ament &
Gomes, 2022); however, it is unclear whether GP can scale
in conjunction with combinatorial solvers. Machine learn-
ing is also used to guide combinatorial algorithms. Several
approaches produce combinatorial solutions (Zhang & Diet-
terich, 1995; Khalil et al., 2017; Kool et al., 2018; Nazari
et al., 2018; Zha et al., 2022a;b). Here, approaches are
limited to simple feasible regions by iteratively building
solutions for problems like routing, assignment, or covering.
However, these approaches fail to handle more complex
constraints. Other approaches set parameters that improve
solver runtime (Khalil et al., 2016; Bengio et al., 2021).
Similarly, a neural diving approach has been proposed for
finding fast MILP solutions (Nair et al., 2020). This ap-
proach requires iteratively solving a subproblem which in
the nonlinear setting may still be hard to solve or even en-
code.

Learning Latent Space for Optimization We learn la-
tent linear objectives to optimize nonlinear functions while
other approaches learn latent embeddings for faster solving.
FastMap (Faloutsos & Lin, 1995) learns latent object embed-
dings for efficient search, and variants of FastMap are used
in graph optimization and shortest path (Cohen et al., 2018;
Hu et al., 2022; Li et al., 2019). (Wang et al., 2020b; 2021a;
Yang et al., 2021; Zhao et al., 2022) use Monte Carlo Tree
Search to perform single and multi-objective optimization
by learning to split the search space.

Mixed Integer Nonlinear Programming (MINLP)
SurCo-zero operates as a MINLP solver, optimizing non-
linear and nonconvex objectives over discrete linear feasible
regions. Specialized solvers handle some MINLP variants
(Burer & Letchford, 2012; Belotti et al., 2013); however,
scalability in nonconvex settings usually requires problem-
specific techniques like piecewise linear approximation, ob-
jective convexification, or exploiting special structure.

7. Conclusion
We introduced SurCo, a method for learning linear surro-
gates for combinatorial nonlinear optimization problems.
SurCo learns linear objective coefficients for a surrogate
solver which results in solutions that minimize the nonlinear
loss via gradient descent. At its core, SurCo differentiates
through the surrogate solver which maps the predicted co-
efficients to a combinatorially feasible solution, combining
the flexibility of gradient-based optimization with the struc-
ture of combinatorial solvers. Our theoretical intuition for
SurCo poses promising directions for future work in prov-
ing convergence guarantees or generalization bounds. Addi-
tionally, improvements of SurCo may enable scalable solv-
ing for settings in stochastic optimization, game theory, com-
binatorial reinforcement learning, and more. We presented
three variants of SurCo, SurCo-zero which optimizes
individual instances, SurCo-prior which trains a coeffi-
cient prediction model offline, and SurCo-hybrid which
fine-tunes the coefficients predicted by SurCo-prior on
individual test instances. While SurCo’s performance is
somewhat limited to binary problems due to the lack of in-
terior integer points, we find that many real-world domains
operate on binary decision variables. We evaluated variants
of SurCo against the state-of-the-art approaches on three
domains, with two used in industry, obtaining better solu-
tion quality for similar or better runtime in the embedding
table sharding domain, quickly identifying viable photonic
devices, and finding successful routes in stochastic path plan-
ning. Overall, SurCo trains linear surrogate coefficients to
point the solver towards high-quality solutions, becoming
a general-purpose method that aims to tackle a broad class
of combinatorial problems with nonlinear objectives when
off-the-shelf solvers fail.

Acknowledgements.
This paper reports on research done while Aaron Ferber,
Taoan Huang, and Daochen Zha were interns at Meta AI
(FAIR). The research at the University of Southern Cali-
fornia was supported by the National Science Foundation
(NSF) under grant number 2112533. We also thank the
anonymous reviewers for helpful feedback.

9

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

References
Achterberg, T. Scip: solving constraint integer programs.

Mathematical Programming Computation, 1(1):1–41,
2009.

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S.,
and Kolter, J. Z. Differentiable convex optimization lay-
ers. Advances in neural information processing systems,
32, 2019a.

Agrawal, A., Barratt, S., Boyd, S., Busseti, E., and Moursi,
W. M. Differentiating through a cone program. J. Appl.
Numer. Optim, 1(2):107–115, 2019b.

Ament, S. E. and Gomes, C. P. Scalable first-order bayesian
optimization via structured automatic differentiation. In
International Conference on Machine Learning, pp. 500–
516. PMLR, 2022.

Amos, B. and Kolter, J. Z. Optnet: Differentiable opti-
mization as a layer in neural networks. In International
Conference on Machine Learning, pp. 136–145. PMLR,
2017.

Amos, B. and Yarats, D. The differentiable cross-entropy
method. In International Conference on Machine Learn-
ing, pp. 291–302. PMLR, 2020.

Arrazola, J. M., Bergholm, V., Brádler, K., Bromley, T. R.,
Collins, M. J., Dhand, I., Fumagalli, A., Gerrits, T., Gous-
sev, A., Helt, L. G., et al. Quantum circuits with many
photons on a programmable nanophotonic chip. Nature,
591(7848):54–60, 2021.

Ban, G.-Y. and Rudin, C. The big data newsvendor: Practi-
cal insights from machine learning. Operations Research,
67(1):90–108, 2019.

Baptista, R. and Poloczek, M. Bayesian optimization of
combinatorial structures. In International Conference on
Machine Learning, pp. 462–471. PMLR, 2018.

Bellman, R. On a routing problem. Quarterly of applied
mathematics, 16(1):87–90, 1958.

Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke,
J., and Mahajan, A. Mixed-integer nonlinear optimization.
Acta Numerica, 22:1–131, 2013.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-
P., and Bach, F. Learning with differentiable pertubed
optimizers. Advances in neural information processing
systems, 33:9508–9519, 2020.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Burer, S. and Letchford, A. N. Non-convex mixed-integer
nonlinear programming: A survey. Surveys in Operations
Research and Management Science, 17(2):97–106, 2012.

Chvatal, V., Chvatal, V., et al. Linear programming. Macmil-
lan, 1983.

Cohen, L., Uras, T., Jahangiri, S., Arunasalam, A., Koenig,
S., and Kumar, T. S. The fastmap algorithm for shortest
path computations. In IJCAI, 2018.

Cozad, A., Sahinidis, N. V., and Miller, D. C. Learning sur-
rogate models for simulation-based optimization. AIChE
Journal, 60(6):2211–2227, 2014.

Demirović, E., J Stuckey, P., Bailey, J., Chan, J., Leckie, C.,
Ramamohanarao, K., and Guns, T. Predict+ optimise with
ranking objectives: Exhaustively learning linear functions.
In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, pp. 1078–1085. International
Joint Conferences on Artificial Intelligence, 2019.

Demirovic, E., J Stuckey, P., Guns, T., Bailey, J., Leckie,
C., Ramamohanarao, K., and Chan, J. Dynamic pro-
gramming for predict+ optimise. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pp.
1444–1451. AAAI Press, 2020.

Deshwal, A., Belakaria, S., and Doppa, J. R. Mercer fea-
tures for efficient combinatorial bayesian optimization.
Proceedings of the AAAI Conference on Artificial Intel-
ligence, 35(8):7210–7218, May 2021. doi: 10.1609/
aaai.v35i8.16886. URL https://ojs.aaai.org/
index.php/AAAI/article/view/16886.

Djolonga, J. and Krause, A. Differentiable learning of
submodular models. Advances in Neural Information
Processing Systems, 30, 2017.

Donti, P., Amos, B., and Kolter, J. Z. Task-based end-to-end
model learning in stochastic optimization. Advances in
neural information processing systems, 30, 2017.

Donti, P. L., Rolnick, D., and Kolter, J. Z. DC3: A learn-
ing method for optimization with hard constraints. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=V1ZHVxJ6dSS.

10

http://github.com/google/jax
https://ojs.aaai.org/index.php/AAAI/article/view/16886
https://ojs.aaai.org/index.php/AAAI/article/view/16886
https://openreview.net/forum?id=V1ZHVxJ6dSS
https://openreview.net/forum?id=V1ZHVxJ6dSS

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

El Balghiti, O., Elmachtoub, A. N., Grigas, P., and Tewari,
A. Generalization bounds in the predict-then-optimize
framework. Advances in neural information processing
systems, 32, 2019.

Elmachtoub, A. N. and Grigas, P. Smart “predict, then
optimize”. Management Science, 68(1):9–26, 2022a.

Elmachtoub, A. N. and Grigas, P. Smart “predict, then
optimize”. Management Science, 68(1):9–26, 2022b.

Faloutsos, C. and Lin, K.-I. Fastmap: A fast algorithm
for indexing, data-mining and visualization of traditional
and multimedia datasets. In Proceedings of the 1995
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’95, pp. 163–174, New York,
NY, USA, 1995. Association for Computing Machinery.
ISBN 0897917316. doi: 10.1145/223784.223812. URL
https://doi.org/10.1145/223784.223812.

Fan, Y., Kalaba, R. E., and Moore, J. E. Arriving on time.
Journal of Optimization Theory and Applications, 127:
497–513, 2005.

Ferber, A., Wilder, B., Dilkina, B., and Tambe, M. Mipaal:
Mixed integer program as a layer. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34,
pp. 1504–1511, 2020.

Feurer, M., Letham, B., and Bakshy, E. Scalable meta-
learning for bayesian optimization. stat, 1050(6), 2018.

Fix, E. Discriminatory analysis: nonparametric discrimina-
tion, consistency properties, volume 1. USAF school of
Aviation Medicine, 1985.

Gad, A. F. Pygad: An intuitive genetic algorithm python
library, 2021.

Gosavi, A. et al. Simulation-based optimization. Springer,
2015.

Guler, A. U., Demirović, E., Chan, J., Bailey, J., Leckie, C.,
and Stuckey, P. J. A divide and conquer algorithm for
predict+ optimize with non-convex problems. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 3749–3757, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2022. URL https://www.gurobi.com.

Hu, Y., Kallus, N., and Mao, X. Fast rates for contextual
linear optimization. Management Science, 2022.

Hughes, T. W., Williamson, I. A., Minkov, M., and Fan,
S. Forward-mode differentiation of maxwell’s equations.
ACS Photonics, 6(11):3010–3016, 2019.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589,
2021.

Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., and Dilk-
ina, B. Learning to branch in mixed integer programming.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 30, 2016.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. Advances in neural information processing sys-
tems, 30, 2017.

Kool, W., van Hoof, H., and Welling, M. Attention, learn to
solve routing problems! In International Conference on
Learning Representations, 2018.

Korte, B. and Hausmann, D. An analysis of the greedy
heuristic for independence systems. In Annals of Discrete
Mathematics, volume 2, pp. 65–74. Elsevier, 1978.

Koziel, S., Çalık, N., Mahouti, P., and Belen, M. A. Accu-
rate modeling of antenna structures by means of domain
confinement and pyramidal deep neural networks. IEEE
Transactions on Antennas and Propagation, 70(3):2174–
2188, 2021.

Land, A. H. and Doig, A. G. An automatic method for
solving discrete programming problems. In 50 Years of
Integer Programming 1958-2008, pp. 105–132. Springer,
2010.

Lee, K., Maji, S., Ravichandran, A., and Soatto, S. Meta-
learning with differentiable convex optimization. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 10657–10665, 2019.

Li, J., Felner, A., Koenig, S., and Kumar, T. S. Using
fastmap to solve graph problems in a euclidean space. In
Proceedings of the international conference on automated
planning and scheduling, volume 29, pp. 273–278, 2019.

Li, S., Yan, Z., and Wu, C. Learning to delegate for large-
scale vehicle routing. Advances in Neural Information
Processing Systems, 34:26198–26211, 2021.

Li, Z., Chen, Q., and Koltun, V. Combinatorial optimization
with graph convolutional networks and guided tree search.
Advances in neural information processing systems, 31,
2018.

Lim, S., Sommer, C., Nikolova, E., and Rus, D. Practi-
cal route planning under delay uncertainty: Stochastic
shortest path queries. In Robotics: Science and Systems,
volume 8, pp. 249–256. United States, 2013.

11

https://doi.org/10.1145/223784.223812
https://www.gurobi.com

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

Liu, H. and Grigas, P. Risk bounds and calibration for a
smart predict-then-optimize method. Advances in Neural
Information Processing Systems, 34:22083–22094, 2021.

Liuzzi, G., Lucidi, S., and Rinaldi, F. Derivative-free meth-
ods for mixed-integer constrained optimization problems.
Journal of Optimization Theory and Applications, 164(3):
933–965, 2015.

Mandi, J., Stuckey, P. J., Guns, T., et al. Smart predict-and-
optimize for hard combinatorial optimization problems.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 34, pp. 1603–1610, 2020.

Marpaung, D., Yao, J., and Capmany, J. Integrated mi-
crowave photonics. Nature photonics, 13(2):80–90, 2019.

Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev,
E. Reinforcement learning for combinatorial optimiza-
tion: A survey. Computers & Operations Research, 134:
105400, 2021.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W.,
Songhori, E., Wang, S., Lee, Y.-J., Johnson, E., Pathak,
O., Nazi, A., et al. A graph placement methodology for
fast chip design. Nature, 594(7862):207–212, 2021.

Nagai, R., Akashi, R., and Sugino, O. Completing density
functional theory by machine learning hidden messages
from molecules. npj Computational Materials, 6(1):1–8,
2020.

Nair, V., Bartunov, S., Gimeno, F., Von Glehn, I., Li-
chocki, P., Lobov, I., O’Donoghue, B., Sonnerat, N.,
Tjandraatmadja, C., Wang, P., et al. Solving mixed in-
teger programs using neural networks. arXiv preprint
arXiv:2012.13349, 2020.

Naumov, M., Mudigere, D., Shi, H. M., Huang, J., Sun-
daraman, N., Park, J., Wang, X., Gupta, U., Wu, C.,
Azzolini, A. G., Dzhulgakov, D., Mallevich, A., Cher-
niavskii, I., Lu, Y., Krishnamoorthi, R., Yu, A., Kon-
dratenko, V., Pereira, S., Chen, X., Chen, W., Rao, V.,
Jia, B., Xiong, L., and Smelyanskiy, M. Deep learning
recommendation model for personalization and recom-
mendation systems. CoRR, abs/1906.00091, 2019. URL
https://arxiv.org/abs/1906.00091.

Nazari, M., Oroojlooy, A., Snyder, L., and Takác, M. Rein-
forcement learning for solving the vehicle routing prob-
lem. Advances in neural information processing systems,
31, 2018.

Niepert, M., Minervini, P., and Franceschi, L. Implicit
mle: backpropagating through discrete exponential family
distributions. Advances in Neural Information Processing
Systems, 34:14567–14579, 2021.

Nikolova, E., Kelner, J. A., Brand, M., and Mitzenmacher,
M. Stochastic shortest paths via quasi-convex maximiza-
tion. In European Symposium on Algorithms, pp. 552–
563. Springer, 2006.

Papalexopoulos, T. P., Tjandraatmadja, C., Anderson, R.,
Vielma, J. P., and Belanger, D. Constrained discrete
black-box optimization using mixed-integer program-
ming. In Chaudhuri, K., Jegelka, S., Song, L., Szepes-
vari, C., Niu, G., and Sabato, S. (eds.), Proceedings of
the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learn-
ing Research, pp. 17295–17322. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/papalexopoulos22a.html.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Pineda, L., Fan, T., Monge, M., Venkataraman, S., Sodhi, P.,
Chen, R. T., Ortiz, J., DeTone, D., Wang, A., Anderson,
S., et al. Theseus: A library for differentiable nonlinear
optimization. Advances in Neural Information Processing
Systems, 35:3801–3818, 2022.

Pogančić, M. V., Paulus, A., Musil, V., Martius, G., and
Rolinek, M. Differentiation of blackbox combinatorial
solvers. In International Conference on Learning Repre-
sentations, 2019.

Rapin, J. and Teytaud, O. Nevergrad - A gradient-
free optimization platform. https://GitHub.com/
FacebookResearch/Nevergrad, 2018.

Reingold, E. M. and Tarjan, R. E. On a greedy heuristic for
complete matching. SIAM Journal on Computing, 10(4):
676–681, 1981.

Rolı́nek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis,
C., and Martius, G. Optimizing rank-based metrics with
blackbox differentiation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 7620–7630, 2020a.

Rolı́nek, M., Swoboda, P., Zietlow, D., Paulus, A., Musil,
V., and Martius, G. Deep graph matching via blackbox
differentiation of combinatorial solvers. In European
Conference on Computer Vision, pp. 407–424. Springer,
2020b.

12

https://arxiv.org/abs/1906.00091
https://proceedings.mlr.press/v162/papalexopoulos22a.html
https://proceedings.mlr.press/v162/papalexopoulos22a.html
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

Ruder, S. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747, 2016.

Schubert, M. F., Cheung, A. K. C., Williamson, I. A. D.,
Spyra, A., and Alexander, D. H. Inverse design of
photonic devices with strict foundry fabrication con-
straints. ACS Photonics, 9(7):2327–2336, 2022. doi:
10.1021/acsphotonics.2c00313.

Sethi, G., Acun, B., Agarwal, N., Kozyrakis, C., Trippel, C.,
and Wu, C.-J. Recshard: statistical feature-based memory
optimization for industry-scale neural recommendation.
In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, pp. 344–358, 2022.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
de Freitas, N. Taking the human out of the loop: A review
of bayesian optimization. Proceedings of the IEEE, 104
(1):148–175, 2016. doi: 10.1109/JPROC.2015.2494218.

Simon, D. Evolutionary optimization algorithms. John
Wiley & Sons, 2013.

Steiner, B., Cummins, C., He, H., and Leather,
H. Value learning for throughput optimization
of deep learning workloads. In Smola, A., Di-
makis, A., and Stoica, I. (eds.), Proceedings of
Machine Learning and Systems, volume 3, pp.
323–334, 2021. URL https://proceedings.
mlsys.org/paper/2021/file/
73278a4a86960eeb576a8fd4c9ec6997-Paper.
pdf.

Swersky, K., Snoek, J., and Adams, R. P. Multi-
task bayesian optimization. In Burges, C., Bottou,
L., Welling, M., Ghahramani, Z., and Weinberger,
K. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 26. Curran Associates,
Inc., 2013. URL https://proceedings.
neurips.cc/paper/2013/file/
f33ba15effa5c10e873bf3842afb46a6-Paper.
pdf.

Van Rossum, G. and Drake, F. L. Python 3 Reference
Manual. CreateSpace, Scotts Valley, CA, 2009. ISBN
1441412697.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Voß, S., Martello, S., Osman, I. H., and Roucairol, C.
Meta-heuristics: Advances and trends in local search
paradigms for optimization. Springer Science & Busi-
ness Media, 2012.

Wang, K., Wilder, B., Perrault, A., and Tambe, M. Auto-
matically learning compact quality-aware surrogates for
optimization problems. Advances in Neural Information
Processing Systems, 33:9586–9596, 2020a.

Wang, L., Fonseca, R., and Tian, Y. Learning search space
partition for black-box optimization using monte carlo
tree search. Advances in Neural Information Processing
Systems, 33:19511–19522, 2020b.

Wang, L., Xie, S., Li, T., Fonseca, R., and Tian, Y. Sample-
efficient neural architecture search by learning actions for
monte carlo tree search. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021a.

Wang, P.-W., Donti, P., Wilder, B., and Kolter, Z. Satnet:
Bridging deep learning and logical reasoning using a
differentiable satisfiability solver. In International Con-
ference on Machine Learning, pp. 6545–6554. PMLR,
2019.

Wang, X., Liu, Y., Zhao, J., Liu, C., Liu, J., and Yan, J.
Surrogate model enabled deep reinforcement learning for
hybrid energy community operation. Applied Energy,
289:116722, 2021b.

Wetzstein, G., Ozcan, A., Gigan, S., Fan, S., Englund, D.,
Soljačić, M., Denz, C., Miller, D. A., and Psaltis, D.
Inference in artificial intelligence with deep optics and
photonics. Nature, 588(7836):39–47, 2020.

Wilder, B., Dilkina, B., and Tambe, M. Melding the data-
decisions pipeline: Decision-focused learning for combi-
natorial optimization. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pp. 1658–1665,
2019a.

Wilder, B., Ewing, E., Dilkina, B., and Tambe, M. End to
end learning and optimization on graphs. Advances in
Neural Information Processing Systems, 32, 2019b.

Wolsey, L. A. An analysis of the greedy algorithm for the
submodular set covering problem. Combinatorica, 2(4):
385–393, 1982.

Wolsey, L. A. Mixed integer programming. Wiley Encyclo-
pedia of Computer Science and Engineering, pp. 1–10,
2007.

Yang, K., Zhang, T., Cummins, C., Cui, B., Steiner, B.,
Wang, L., Gonzalez, J. E., Klein, D., and Tian, Y. Learn-
ing space partitions for path planning. Advances in Neural
Information Processing Systems, 34:378–391, 2021.

Ye, Y., Zhang, X., and Sun, J. Automated vehicle’s behav-
ior decision making using deep reinforcement learning
and high-fidelity simulation environment. Transportation
Research Part C: Emerging Technologies, 107:155–170,
2019.

13

https://proceedings.mlsys.org/paper/2021/file/73278a4a86960eeb576a8fd4c9ec6997-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/73278a4a86960eeb576a8fd4c9ec6997-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/73278a4a86960eeb576a8fd4c9ec6997-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/73278a4a86960eeb576a8fd4c9ec6997-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

Zha, D., Feng, L., Bhushanam, B., Choudhary, D., Nie,
J., Tian, Y., Chae, J., Ma, Y., Kejariwal, A., and Hu,
X. Autoshard: Automated embedding table sharding for
recommender systems. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 4461–4471, 2022a.

Zha, D., Feng, L., Tan, Q., Liu, Z., Lai, K.-H., Bhargav, B.,
Tian, Y., Kejariwal, A., and Hu, X. Dreamshard: Gen-
eralizable embedding table placement for recommender
systems. In Advances in Neural Information Processing
Systems, 2022b.

Zha, D., Feng, L., Luo, L., Bhushanam, B., Liu, Z., Hu,
Y., Nie, J., Huang, Y., Tian, Y., Kejariwal, A., et al. Pre-
train and search: Efficient embedding table sharding with
pre-trained neural cost models. In Sixth Conference on
Machine Learning and Systems, 2023.

Zhang, W. and Dietterich, T. G. A reinforcement learning
approach to job-shop scheduling. In IJCAI, volume 95,
pp. 1114–1120. Citeseer, 1995.

Zhao, Y., Wang, L., Yang, K., Zhang, T., Guo, T., and Tian,
Y. Multi-objective optimization by learning space parti-
tion. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/
forum?id=FlwzVjfMryn.

Zhou, Y., Roy, S., Abdolrashidi, A., Wong, D., Ma, P.,
Xu, Q., Liu, H., Phothilimtha, P., Wang, S., Goldie, A.,
et al. Transferable graph optimizers for ml compilers.
Advances in Neural Information Processing Systems, 33:
13844–13855, 2020.

14

https://openreview.net/forum?id=FlwzVjfMryn
https://openreview.net/forum?id=FlwzVjfMryn

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

A. Proofs
Lemma A.1 (Sufficient condition of prediction with ϵ-accuracy). If the dataset C can (ϵ/L)-cover Y , then for any y ∈ Y , a
1-nearest-neighbor regressor ϕ̂ leads to ∥ϕ̂(y)− ϕ(y)∥2 ≤ ϵ.

Proof. Since the dataset is a ϵ/L-cover, for any y ∈ Y , there exists at least one yi so that ∥y − yi∥2 ≤ ϵ/L. Let ynn be the
nearest neighbor of y, and we have:

∥y − ynn∥2 ≤ ∥y − yi∥2 ≤ ϵ/L (8)

From the Lipschitz condition and the definition of 1-nearest-neighbor classifier (ϕ̂(y) = ϕ(ynn)), we know that

∥ϕ(y)− ϕ̂(y)∥2 = ∥ϕ(y)− ϕ(ynn)∥2 ≤ L∥y − ynn∥2 ≤ ϵ (9)

Lemma A.2 (Lower bound of sample complexity for ϵ/L-cover). To achieve ϵ/L-cover of Y , the size of the dataset set
N ≥ N0(ϵ) :=

vol(Y)
vol0

(
L
ϵ

)d
, where vol0 is the volume of unit ball in d-dimension.

Proof. We prove by contradiction. If N < N0(ϵ), then for each training sample (yi,ϕi), we create a ball Bi := B (yi, ϵ/L).
Since

vol

(
N⋃
i=1

Bi ∩ Y

)
≤ vol

(
N⋃
i=1

Bi

)
≤

N∑
i=1

vol(Bi) = Nvol0

(ϵ

L

)d
< vol(Y) (10)

Therefore, there exists at least one y ∈ Y so that y /∈ Bi for any 1 ≤ i ≤ N . This means that y is not ϵ/L-covered.

Theorem 4.4 (A case of infinite Lipschitz constant). If the minimal distance dmin for different connected components of
ϕ(Y) is strictly positive, and κ(ϕ(Y)) > κ(Y), then the Lipschitz constant of the mapping ϕ is infinite.

Proof. Let R1, R2, . . . , RK be the K = κ(ϕ(Y)) connected components of ϕ(Y), and Y1, Y2, . . . , YJ be the J = κ(Y)
connected components of Y . From the condition, we know that mink ̸=k′ dist(Rk, Rk′) = dmin > 0.

We have Rk ∩ Rk′ = ∅ for k ̸= k′. Each Rk has a pre-image Sk := ϕ−1(Rk) ⊆ Y . These pre-images {Sk}Kk=1 form a
partition of Y since

• Sk ∩ Sk′ = ∅ for k ̸= k′ since any y ∈ Y cannot be mapped to more than one connected components;

•
⋃K

k=1 Sk =
⋃K

k=1 ϕ
−1(Rk) = ϕ−1

(⋃K
k=1 Rk

)
= ϕ−1(ϕ(S)) = S.

Since K = κ(ϕ(Y)) > κ(Y), by pigeonhole principle, there exists one Yj that contains at least part of the two pre-images
Sk and Sk′ with k ̸= k′. This means that

Sk ∩ Yj ̸= ∅, Sk′ ∩ Yj ̸= ∅ (11)

Then we pick y ∈ Sk ∩ Yj and y′ ∈ Sk′ ∩ Yj . Since y,y′ ∈ Yj and Yj is a connected component, there exists a continuous
path γ : [0, 1] 7→ Yj so that γ(0) = y and γ(1) = y′. Therefore, we have ϕ(γ(0)) ∈ Rk and ϕ(γ(1)) ∈ Rk′ . Let
t0 := sup{t : t ∈ [0, 1],ϕ(γ(t)) ∈ Rk}, then 0 ≤ t0 < 1. For any sufficiently small ϵ > 0, we have:

• By the definition of sup, we know there exists t0 − ϵ ≤ t′ ≤ t0 so that ϕ(γ(t′)) ∈ Rk.

• Picking t′′ = t0 + ϵ < 1, then ϕ(γ(t′′)) ∈ Rk′′ with some k′′ ̸= k.

On the other hand, by continuity of the curve γ, there exists a constant C(t0) so that ∥γ(t′)− γ(t′′)∥2 ≤ C(t0)∥t′− t′′∥2 ≤
2C(t0)ϵ. Then we have

L = max
y,y′∈Y

∥ϕ(y)− ϕ(y′)∥2
∥y − y′∥2

≥ ∥ϕ(γ(t
′))− ϕ(γ(t′′))∥2

∥γ(t′)− γ(t′′)∥2
≥ dmin

2C(t0)ϵ
→ +∞ (12)

15

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

Task Randomization
mode converter randomize the right and left waveguide width
bend setting randomize the waveguide width and length
beam splitter randomize the waveguide separation, width and length
wavelength division multiplexer randomize the input and output waveguide locations

Table 3: Task randomization of 4 different tasks in inverse photonic design.

B. Experiment Details
B.1. Setups

Experiments are performed on a cluster of identical machines, each with 4 Nvidia A100 GPUs and 32 CPU cores, with 1T
of RAM and 40GB of GPU memory. Additionally, we perform all operations in Python (Van Rossum & Drake, 2009) using
Pytorch (Paszke et al., 2019). For embedding table placement, the nonlinear cost estimator is trained for 200 iterations and the
offline-trained models of Dreamshard and SurCo-prior are trained against the pretrained cost estimator for 200 iterations.
The DLRM Dataset (Naumov et al., 2019) is available at https://github.com/facebookresearch/dlrm_
datasets, and the dreamshard (Zha et al., 2022b) code is available at https://github.com/daochenzha/
dreamshard. Additional details on dreamshard’s model architecture and features can be obtained in the paper and
codebase. Training time for the networks used in SurCo-prior and SurCo-hybrid are on average 8 hours for the
inverse photonic design settings and 6, 21, 39, 44, 50, 63 minutes for DLRM 10, 20, 30, 40, 50, 60 settings respectively.

B.2. Network Architectures

B.2.1. EMBEDDING TABLE SHARDING

The table features are the same used in (Zha et al., 2022b), and sinusoidal positional encoding (Vaswani et al., 2017) is
used as device features so that the learning model is able to break symmetries between the different tables and effectively
group them onto homogeneous devices. The table and device features are concatenated and then fed into Dreamshard’s
initial fully-connected table encoding module to obtain scalar predictions ĉt,d for each desired objective coefficient. The
architecture is trained with the Adam optimizer with learning rate 0.0005. Here, we use the dreamshard backbone to predict
coefficients for each table-device pair. We add more output dimensions to the dreamshard backbone, ensuring that we output
the desired number of coefficients.

B.2.2. INVERSE PHOTONIC DESIGN

Network architectures. The input design specification (a 2D image) is passed through a 3 layer convolutional neural
network with ReLU activations and a final layer composed of filtering with the known brush shape. Then a tanh activation is
used to obtain surrogate coefficients ĉ, one component for each binary input variable. The architecture is trained with the
Adam optimizer with learning rate 0.001.

This is motivated by previous work (Schubert et al., 2022) that also uses the fixed brush shape filter and tanh operation to
transform the latent parameters into a continuous solution that is projected onto the space of physically feasible solutions.

In each setting, optimization is done on a binary grid of different sizes to meet fabrication constraints, namely that a 3 by 3
cross must fit inside each fixed and void location. In the beam splitter the design is an 80× 60 grid, in mode converter it is a
40× 40 grid, in waveguide bend it is a 40× 40 grid, in wavelength division multiplexer it is an 80× 80 grid.

Previous work formulated the projection as finding a discrete solution that minimized the dot product of the input continuous
solution and proposed discrete solution. The authors then updated the continuous solution by computing gradients of the
loss with respect to the discrete solution and using pass-through gradients to update the continuous solution. By comparison,
our approach treats the projection as an optimization problem and updates the objective coefficients so that the resulting
projected solution moves in the direction of the desired gradient.

To compute the gradient of this blackbox projection solver, we leverage the approach suggested by (Pogančić et al., 2019)
which calls the solver twice, once with the original coefficients, and again with coefficients that are perturbed in the direction
of the incoming solution gradient as being an “improved solution”. The gradient with respect to the input coefficients are

16

https://github.com/facebookresearch/dlrm_datasets
https://github.com/facebookresearch/dlrm_datasets
https://github.com/daochenzha/dreamshard
https://github.com/daochenzha/dreamshard

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

then the difference between the “improved solution” and the solution for the current objective coefficients.

C. Pseudocode
Here is the pseudocode for the different variants of our algorithm. Each of these leverage a differentiable optimization solver
to differentiate through the surrogate optimization problem.

Algorithm 1 SurCo-zero

Input: feasible region Ω, data y, objective f
c← init surrogate coefs(y)
while not converged do
x← argminx∈Ω(y) c

⊤x
loss← f(x;y)
c←grad update(c,∇closs)

end while
Return x

Algorithm 2 SurCo-prior Training

Input: feasible region Ω, data Dtrain = {yi}Ni=1, objective f
θ ← init surrogate model()
while not converged do

Sample batch B = {yi}ki ∼ Dtrain

for y ∈ B do
ĉ← ĉ(y; θ)
x← argminx∈Ω(y) c

⊤x
loss += f(x;y)

end for
θ ←grad update(θ,∇θloss)

end while
Return θ

Algorithm 3 SurCo-prior Deployment

1: Input: feasible region Ω, data Dtrain = {yi}Ni=1, objective f , test instance ytest
2: θ ← train SurCo-prior(Ω,Dtrain, f)
3: c← ĉ(y; θ)
4: x← argminx∈Ω(y) c

⊤x
5: Return x

Algorithm 4 SurCo-hybrid

1: Input: feasible region Ω, data Dtrain = {yi}Ni=1, objective f , test instance ytest
2: θ ← train SurCo-prior(Ω,Dtrain, f)
3: c← ĉ(y; θ)
4: while not converged do
5: x← argminx∈Ω(y) c

⊤x
6: loss← f(x;y)
7: c←grad update(c,∇closs)
8: end while
9: Return x

17

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

D. Additional Failed Baselines
SOGA - Single Objective Genetic Algorithm Using PyGAD (Gad, 2021), we attempted several approaches for both table
sharding and inverse photonics settings. While we were able to obtain feasible table sharding solutions, they underperformed
the greedy baseline by 20%. Additionally, they were unable to find physically feasible inverse photonics solutions. We
varied between random, swap, inversion, and scramble mutations and used all parent selection methods but were unable to
find viable solutions.

DFL - A Derivative-Free Library We could not easily integrate DFLGEN (Liuzzi et al., 2015) into our pipelines since it
operates in fortran and we needed to specify the feasible region with python in the ceviche challenges. DFLINT works in
python but took more than 24 hours to run on individual instances which reached a timeout limit. We found that the much
longer runtime made this inapplicable for the domains of interest.

Nevergrad We enforced integrality in Nevergrad (Rapin & Teytaud, 2018) using choice variables which selected between
0 and 1. This approach was unable to find feasible solutions for inverse photonics in less than 10 hours. For table sharding
we obtained solutions by using a choice variable for each table, selecting one of the available devices. This approach was
not able to outperform the greedy baseline and took longer time so it was strictly dominated by the greedy approach.

Solution Prediction We made several attempts at training solution predictors for each of our domains. We label each
problem instance with the best-known solution obtained (including those obtained via SurCo). Note that predicting feasible
solutions to combinatorial optimization problems is nontrivial for general settings.

We evaluate solution prediction architectures in each setting. The models here match the architecture of SurCo-prior but
the output is fed through a sigmoid transformation to get predictions in [0,1]. In nonlinear shortest path we use a GCN
architecture and predict [0,1] whether edges are in the shortest s-t path. Not surprisingly, we found that predicting solutions to
combinatorial problems is a nontrivial problem, further motivating the use of SurCo which ensures combinatorial feasibility
of the generated solution.

Note that the solutions predicted by the networks may not be binary (and thus not feasible). We then round the individual
decision variables to get binary predictions. Empirically, we found that our predictions are very close to binary, indicating
that rounding is more a numerical exactness operation than an algorithmic decision, with the largest distance from any
original to rounded value being 0.0008 for inverse photonics, 0.0001 for nonlinear shortest path, and 0.0007 for the
assignment problem of table sharding.

We evaluate the results on unseen test instances in Table 4 and find that these solution prediction approaches don’t yield
combinatorially feasible solutions. We present machin learning performance in the table below to verify that the predictive
models perform “well” in terms of standard machine learning evaluation even though they fail to generate feasible solutions.

Setting Decision Variable Accuracy Average Solution Accuracy Solution Feasibility Rate

Inverse Photonics - Sigmoid 87% 0% 0%
Nonlinear Shortest Path - Sigmoid 95% 0% 0%

Table Sharding - Sigmoid 92% 0% 0%
Table Sharding - Softmax 88% 0% 0%

Table Sharding - Softmax + Iterative 70% 0% 100%

Table 4: Solution prediction results, most methods give infeasible solutions.

Setting % Latency Increase vs Domain Heuristic (worst baseline)

DLRM-10 6%
DLRM-20 5%
DLRM-30 9%
DLRM-40 7%
DLRM-50 3%
DLRM-60 11%

Table 5: Comparison of only feasible solution prediction method against worst baseline.

We also iterate on table sharding to produce two more domain-specific approaches. We evaluate a model variant which
assigns each table into one of the 4 devices using softmax, which empirically fails to yield feasible solutions that meet

18

SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

device memory limits for any of our instances. We further develop a method called Softmax + Iterative which iteratively
assigns the most likely table-device assignment as long as the device has enough memory to hold the device. Luckily,
this Softmax + Iterative method empirically yields feasible solutions in this setting but we note that this approach is not
guaranteed to terminate in feasible solutions, unlike SurCo. To see why Softmax + Iterative does not necessarily guarantee
feasible termination, consider assigning 3 tables (2 small and 1 large) to 2 devices each with memory limit of 2, the small
tables have memory 1 and the large table has memory 2. If the model’s highest assignment probability is on the small tables
being evenly distributed across devices, the algorithm will first assign the small tables to devices 1 and 2 but stall because it
is unable to assign the large table since neither device has enough remaining capacity. We present results for this Softmax +
Iterative approach compared to our domain heuristic which is the worst performing baseline in Table 5.

For each setting, we evaluate the three metrics:

• Decision Variable Accuracy Average, is the average percent of variables which are correctly predicted.

• The solution accuracy, is the rate of predicting the full solution correctly (all decision variables predicted correctly).

• The solution feasibility rate, is the percent of instances for which the predicted solution satisfies the constraints.

19

