
Scaling Laws for Multilingual Neural Machine Translation

Patrick Fernandes 1 2 3 Behrooz Ghorbani 1 Xavier Garcia 1 Markus Freitag 1 Orhan Firat 1

Abstract
In this work, we provide a large-scale empirical
study of the scaling properties of multilingual
neural machine translation models. We examine
how increases in the model size affect the model
performance and investigate the role of the train-
ing mixture composition on the scaling behavior.
We find that changing the weightings of the
individual language pairs in the training mixture
only affect the multiplicative factor of the scaling
law. In particular, we observe that multilingual
models trained using different mixing rates all
exhibit the same scaling exponent. Through a
novel joint scaling law formulation, we compute
the effective number of parameters allocated
to each language pair and examine the role of
language similarity in the scaling behavior of
our models. We find little evidence that language
similarity has any impact. In contrast, the
direction of the multilinguality plays a significant
role, with models translating from multiple
languages into English having a larger number of
effective parameters per task than their reversed
counterparts. Finally, we leverage our observa-
tions to predict the performance of multilingual
models trained with any language weighting at
any scale, significantly reducing efforts required
for language balancing in large multilingual
models. Our findings apply to both in-domain
and out-of-domain test sets and to multiple
evaluation metrics, such as ChrF and BLEURT.

1. Introduction
Over the past few years, scaling has emerged as a popular
and effective way to improve the performance of neural
networks (Brown et al., 2020; Chowdhery et al., 2022;
Lepikhin et al., 2020). Given the costs associated with
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training large neural models, much work has gone into
understanding their scaling properties and predicting the
evolution of their performance with scale through scaling
laws. Such scaling laws have been instrumental in guiding
the model development efforts across a variety of domains
such as computer vision (Zhai et al., 2022), language
modeling (Kaplan et al., 2020; Hoffmann et al., 2022), and
neural machine translation (Ghorbani et al., 2022).

Despite these impressive developments, most of the scal-
ing laws studies available in the literature only focus on
single-task, single-language models. On the contrary, cur-
rent massive neural models are often trained to solve more
than one task across one or more modalities & languages
(Chowdhery et al., 2022; Sanh et al., 2022; Reed et al.,
2022). This disconnect from the current research frontier
limits the applicability of scaling laws in guiding model
development decisions. In particular, currently available
scaling laws studies are unable to inform the decision pro-
cess on balancing the different tasks effectively at training
time. Without such guidance, practitioners often have to
rely on cumbersome and costly approaches such as approx-
imate grid search to inform their decision-making; such
approaches quickly become infeasible as the problem scale
grows.

In this paper, we take the initial step towards developing
a quantitative understanding of the scaling behavior for
multitask models. We choose multilingual neural machine
translation (MNMT) as the setup for this initial study. This
choice is motivated by several reasons: (1) MNMT has been
framed and studied as a multi-task optimization problem
extensively in the past (Dong et al., 2015; Luong et al.,
2015; Arivazhagan et al., 2019b; Wang et al., 2021); (2)
It provides a popular setup with mature benchmarks and
substantial literature on scaling (Lepikhin et al., 2020; Costa-
jussà et al., 2022; Bapna et al., 2022; Huang et al., 2019);
(3) Moreover, recent results on scaling laws for single-task
MT models provide a natural starting point for our study
(Ghorbani et al., 2022; Bansal et al., 2022; Gordon et al.,
2021; Zhang et al., 2022). (4) Finally, recent findings on the
optimization dynamics of MNMT models greatly simplify
our study by removing the need to examine the role of the
optimization algorithm in our results (Xin et al., 2022).

For our analysis, we train over 200 MNMT models (ranging
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from 20M to 1B non-embedding parameters) and system-
atically examine their scaling behaviors. We focus our in-
vestigation on the data-rich, compute-rich regime where
we have access to vast amounts of training data for all the
language pairs (i.e. tasks)1 and the models are trained to
near convergence. Here, the main bottleneck in the model
performance is the lack of model capacity. We establish the
following observations:

• For each fixed training mixture, the evolution of the test
cross-entropy loss for the ith language pair (Li) with
model size (N ) follows a scaling law that resembles
the scaling behavior of single-language-pair models:

Li(N ;p) ≈ βp,iN
−αp,i + L(p,i)

∞ . (1)

Here, p is a vector of probabilities that determines the
weight of each language pair in the training mixture.
Furthermore, we find that changes in the language
pair weightings only affect the multiplicative factor β;
the scaling exponent α and the irreducible loss L∞
are unaffected by these changes. As such, our results
suggest that scaling multilingual models improves the
loss at rates that are independent of the weights of the
individual language pairs in the training mixture.

• We leverage these findings to propose a scaling law that
jointly predicts the performance for all language pairs
and weightings considered, and use it to examine how
the model splits its capacity in between the language
pairs by computing the effective number of param-
eters allocated to each language pair (Section 3.3).

• We examine the popular belief that training multilin-
gual models on similar languages is more effective
than training models in unrelated languages. Surpris-
ingly, for the high-resource language pairs considered,
we do not observe any significant differences in the
scaling behavior of models trained to translate from
English into related languages (En→{De, Fr}) and
models trained in unrelated languages (En→{De, Zh}).
In contrast, we observe that models trained to translate
from multiple languages into English (XX→En)
benefit much more from multitasking compared to
those trained on translation out of English (En→XX).

• By approximating the capacity splitting behavior of
multilingual models, in Section 3.4, we provide a
scaling law that predicts the full task performance
trade-off frontier as a function of the model size N
(See Figure 7). In Section 3.4, we describe how such
predictions can be leveraged for efficiently guiding task
balancing when training large multilingual models.

1Using machine translation terminology, all language pairs are
high-resource.

2. Background
2.1. Neural Scaling Laws

Recent research suggests that the performance of large neu-
ral models is well-predicted by a smooth function of the
fundamental problem parameters: the model size N 2, the
size of the training data D, and the amount of compute used
for training C (Hestness et al., 2017; Rosenfeld et al., 2019;
Kaplan et al., 2020; Hernandez et al., 2021). The most
relevant of these studies to ours is Ghorbani et al. (2022)
where the authors study the effects of increasing the model
size for single-task NMT models in the data-rich (D → ∞),
compute-rich (C → ∞) regime. In this setting, the authors
show that the following bivariate law describes the scaling
behavior of encoder-decoder Transformers

L(Ne, Nd) = βN−αe
e N−αd

d + L∞. (2)

Here, Ne and Nd correspond to the number of parame-
ters in the encoder and decoder respectively and L∞ cor-
responds to the irreducible loss associated with the task.
{β, αe, αd, L∞} are the parameters of the scaling law that
need to be empirically estimated from the data.

In addition, (Ghorbani et al., 2022) examine the question
of optimally allocating parameters between the encoder
and the decoder. They show that in order to attain the
optimal scaling behavior, one needs to proportionally scale
the encoder and the decoder together. Under such scaling
scheme, Equation 2 simplifies to

L(N) = βN−α + L∞, (3)

which is similar to the scaling behavior observed in other
domains such as computer vision (Zhai et al., 2022) and
autoregressive generative models (Henighan et al., 2020).

Based on these results, to achieve the optimal scaling be-
havior, we adopt the proportional encoder-decoder scaling
scheme for our experiments. A detailed overview of the size
and architecture of our models is presented in Appendix A.

2.2. Multitask Optimization

Multilingual NMT is commonly framed and studied as a
multitask optimization problem (Dong et al., 2015; Luong
et al., 2015; Arivazhagan et al., 2019b; Wang et al., 2021).

We focus our investigation on the supervised learning setup
where the model parameters θ ∈ RN are trained on K
different tasks simultaneously. In multilingual MT, each
task corresponds to translation for a different language pair.
We denote the loss associated with task i with Li(θ).

Multitask models are often trained by minimizing a convex

2Following the literature conventions, we only consider the
non-embedding layers when computing N .
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Figure 1. Cartoon representation of the performance trade-off fron-
tier for a hypothetical model.

combination of the per-task losses:

θ̂(w) = argmin

K∑
i=1

wiLi(θ) ; w > 0,

K∑
i=0

wi = 1 (4)

Here, w is a fixed vector of the task weights, determined
apriori by the practitioner to emphasize her preferences on
the balancing of the tasks. This so-called scalarization
approach is highly popular in the community due to its ef-
fectiveness and simplicity.3 In fact, despite this simplicity,
recent results on multitask optimization suggest that scalar-
ization achieves performances on par or better than bespoke
optimizers designed specifically for multitask models (Xin
et al., 2022; Kurin et al., 2022).

In current large text models, such explicit scalarization is
rare. Instead, scalarization is often implemented implicitly,
by sampling observations from each task proportionally
to that task’s weight. Proportional sampling produces (in
expectation) the same overall loss function as explicit scalar-
ization but with much less engineering complexity.

Xin et al. (2022) demonstrate that there exists a smooth,
well-defined performance trade-off frontier for multitask
models in the data rich regime. This frontier represents
the performance trade-off the model is able to achieve in
between the tasks as a function of the task weights (see
Figure 1 for a cartoon representation). Naturally, finding
an accurate characterization of the performance trade-off
frontier is key in finding a systematic solution to the task
balancing issue.

3. Effects of Scale in Multilingual MT
3.1. Experimental Setup

We use the pre-LN encoder-decoder Transformer architec-
ture in our models (Xiong et al., 2020; Vaswani et al., 2017).
We train models of up to 8 sizes, approximately ranging

3See (Boyd & Vandenberghe, 2004) for more a detailed discus-
sion of scalarization.

from 20M to 1B (non-embedding) parameters. When scal-
ing encoder-decoder Transformers, to achieve the optimal
scaling behavior, we scale the encoder and the decoder
proportionally by increasing the model dimension and the
number of layers in tandem. See Appendix A for details.

For our experiments, we train two cohorts of models:
En→XX and XX→En. For En→XX cohort, we train mul-
tilingual model for translation from English to {German
(De), Chinese (Zh)} and {German (De), French (Fr)}. For
XX→En cohort, we present results for {De, Zh}→En.

We use the implicit scalarization approach to train our mod-
els; each observation in the training batch is chosen from
the first language pair with probability p and the second
language pair with probability 1− p. For our experiments,
we choose p from the set

p ∈ {0, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 1}. (5)

For En→XX models, to avoid confusing the model, we
prepend a language token to the source sentence specifying
the target language (e.g. <2de>). The models are trained
with per-token cross-entropy loss and Adafactor optimizer
(Shazeer & Stern, 2018), using a fixed batch size of 500K
tokens and inverse square root learning rate schedule. To
mirror the compute-rich regime as closely as possible, we
trained our models to near convergence. In practice, this
translates to training our smaller models (< 500M parame-
ters) for 500K gradient steps and larger models for 1M steps.

To place our models in the data-rich regime, we use a mas-
sive in-house web-crawled dataset for training our models.
We filter this data using an online data selection procedure
(Wang et al., 2018) and high-quality web-domain reference
sets, extracting 600M sentences for each language pair in the
En→XX direction and 1.2B sentences for the XX→En lan-
guage pairs. We tokenize this corpus by using a pretrained
multilingual SentencePiece (Kudo, 2018) vocabulary, with
a size of 128K sub-words.

We measure the performance of models on both in-domain
and out-of-domain test sets. For the in-domain test set,
we extract 2000 sentences from the same in-house datasets
used to create the training (ensuring no overlap). For out-
of-domain, we use newstest2019 (Barrault et al., 2019),
consisting of 2000 sentence-pairs extracted from aligned
news documents.

3.2. Results & Analysis

Understanding Multilingual Scaling We start our analy-
sis by independently examining the model scaling behavior
for each individual language pair weighting p in (5). For
each choice of p, we fit a scaling law of the form

Li(N ; p) = βp,iN
−αp,i + L(p,i)

∞ (6)

3



Scaling Laws for Multilingual Neural Machine Translation

0.0 0.2 0.4 0.6 0.8 1.0
# Parameters (non-embeddings) 1e9

0.8

1.0

1.2

1.4
Te

st
 C

ro
ss

-E
nt

ro
py

English German (R2 = 99.98, |L L| = 0.006)
powerlaws
empirical
held-out

0.0 0.2 0.4 0.6 0.8 1.0
# Parameters (non-embeddings) 1e9

0.8

1.0

1.2

1.4

1.6

English Chinese (R2 = 99.97, |L L| = 0.008)
powerlaws
empirical
held-out

ZH
only

50/50

DE
only

Figure 2. The evolution of the in-domain test cross-entropy loss with model size for En→{De, Zh} models, as well as the fitted scaling
laws. These scaling laws are fitted separately for each language pair weighting. The color represents the weighting of the languages.
The scaling laws are able to capture close to 100% of the variation in the data for both language pairs. Note that we don’t show the
zero-shot behavior.
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Figure 3. Log-log plot of the evolution of the (in-domain) test cross-entropy loss as we scale. We subtract a constant L(i)
∞ , jointly fitted

for all the weightings (Equation 7). All lines are nearly parallel, suggesting that the scaling exponent is unchanged for all p.

to the empirical (test) performance of models resulting from
that language pair weighting.

Figure 2 presents our findings for En→{De, Zh} models.
Each point on the graph corresponds to the empirical test-
cross entropy performance of a model at the end of the
training.4 We observe that our per-weighting laws are able
to capture the scaling behavior of our multilingual models on
both language pairs. As expected, when the weight for one
of the languages is decreased, the performance of the models
on that language decreases for all scales. Our results suggest
that the benefits of the increased model size for MNMT
models are well-described by a power-law. See Appendix B
for similar results for other language pair combinations.

Figure 4 shows the fitted scaling law coefficients for differ-
ent values of p. The shaded area marks the one standard

4For low probability language pairs, we apply a convergence
correction procedure to make up for slow convergence. See Ap-
pendix G for more details.

deviation uncertainty interval of our estimates.5 Interest-
ingly, we find that, across all values of p, both the scaling
exponent (α) and the irreducible loss (L∞) seem to be rela-
tively unchanged. In particular, all of our estimated α and
L∞ parameters are within two standard deviations of each
other. In contrast, the multiplicative factor β seems to be
highly sensitive to the choice of p.

Figure 3 visually confirms the assertion that for our models
αp and L∞ are effectively constant. Here, we have sub-
tracted a fixed constant L(i)

∞ from all the Figure 4 curves
corresponding to the language pair i. We then plot results
on log-log axes. As the figure suggests, the lines are all near
parallel, suggesting that the scaling exponent is unchanged
for all p. In practical terms this means that, for example,

5We gauge the uncertainty in the coefficients by measuring the
fluctuations in our estimates when our empirical datapoints are
perturbed by ϵ

i.i.d∼ N (0, σ2). We choose a conservative σ of 1%
of the observed empirical loss for each data point.
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the standard deviation. The dashed lines represent the value of jointly fitted coefficients from Equation 7.
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Figure 5. The joint scaling law of Equation 7 closely captures the scaling behavior of En→{De, Zh} models. Test loss here is evaluated
on in-domain test sets. See Appendix C for similar observations on En→{De, Fr} and {De, Zh}→En models.

doubling the capacity of a multilingual model will reduce its
loss by the same 1

2α factor, no matter how the training mix-
ture looks like. This also means that single-language-pair
scaling laws can be used to gauge the benefits of scaling
multilingual models.

Jointly Modeling Multilingual Scaling Based on the
findings above, we make the assumption that the scaling
exponents and the irreducible losses are independent of the
language pair weights, and propose a joint scaling law of
the form

Li(N ; p) ≈ βp,iN
−αi + L(i)

∞ . (7)

Figure 5 shows the fit of this joint scaling law for En→{De,
Zh} models evaluated on the in-domain test sets. Note that
here, we fit a total of 10 parameters for each language pair –
8 for βp,i’s and two for αi and L

(i)
∞ . In contrast, in Figure

2, we used 24 overall parameters to capture the scaling
behavior for each language pair. Despite this significant
decrease in the number of total fitted parameters, we observe

that our joint laws are able to almost completely capture
the scaling behavior. We observe a similar phenomenon
for out-of-domain test sets and other language pairs (see
Appendix C), further suggesting that the joint law accurately
describes the scaling behavior of MNMT models.

3.3. Effective Network Capacity for Multilingual Models

We leverage our joint scaling law to examine how MNMT
models split their capacity in between the different language
pairs. We start by defining the notion of the effective num-
ber of parameters:

Definition. Consider a multilingual model in which a lan-
guage pair i has been trained with weight p. We define the
effective number of parameters allocated to i, N (i,p)

eff , to be
equal to the number of parameters necessary for a single-
language-pair model solely trained on i to reach the same
(test loss) performance as the multilingual model.

Mathematically, N (i,p)
eff can be written as the solution of the
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Figure 6. The effective fraction of parameters allocated to each language pair as estimated by our joint scaling laws. Gray dashed lines
correspond to the fitted f̂i described in Equation 12. Left: Comparison of the capacity splitting behavior of En→{De, Zh} models for
in-domain and out-of-domain test sets. We observe minimal differences between the two. Center: Comparison of the capacity splitting
behavior for En→{De, Zh} and En→{De, Fr} models. We don’t observe any changes in the interaction between the language pairs based
on language similarity. Right: Comparison of the capacity splitting behavior for translation to and from English. XX→En models exhibit
more synergy among the language pairs.

equation

Li(N ; p) = Li(N
(i,p)
eff ; 1). (8)

A simple derivation yields that 6

N
(i,p)
eff =

(
β1,i

βp,i

) 1
αi

N. (9)

Crucially, our calculations suggest that the fraction of pa-
rameters allocated to language pair i, which we denote by
fi(p), is independent of the model size:

fi(p) ≡ N
(i,p)
eff /N =

(
β1,i

βp,i

) 1
αi

. (10)

This observation yields a fundamental, scale-independent
quantity that can be leveraged for understanding the interac-
tions between the different language pairs in the model.

Figure 6 shows the empirically estimated effective parameter
ratios for our models. Several observations are in order:

Consistency Across Domains: In Figure 6 (left), we com-
pare the capacity splitting behavior of the models on in-
domain and out-of-domain (newstest19) test sets. Even
though the scaling laws coefficients for in-domain and out-
of-domain test sets differ, we observe that the capacity split-
ting behavior is mostly unchanged with different test sets.
These findings hint at some measure of universality across
test domains on how MNMT models divide their capacity
and share their parameters.

Consistency Across Languages Pairs: In Figure 6 (center),
we compare the capacity splitting behavior of En→{De,

6See Appendix D for details.

Zh} and En→{De, Fr} models. The conventional wisdom
in the MT literature suggests that the tasks in En→{De, Fr}
should exhibit a more positive interaction with each other
compared to En→{De, Zh}. This is often justified by the
intuition that representations are more aligned in related
languages and more aligned representations will encourage
parameter sharing (Dabre et al., 2017). Surprisingly, our
results suggest that the interaction dynamics in En→{De,
Fr} and En→{De, Zh} models are not significantly different.
In both settings, we observe a relatively neutral multilingual
behavior – the performance of an MNMT model of size
N trained on language pair i with (sampling) weight p is
essentially similar to a single-language-pair model of size
pN . In other words, there is minimal synergy among the
languages in both setups.

En→XX vs XX→En: In Figure 6 (right), we compare the
interaction between the language pairs when translating out
of English vs when translating into English.

In stark contrast to the En→XX setting, when translating
into English, we observe significant positive synergy among
the language pairs. This observation aligns well with
recent results in the literature showing multilingual models
achieving SOTA performance for translation to English
(Chowdhery et al., 2022; Lepikhin et al., 2020). It is unclear
if this synergy arises as a specificity of having English
as the target language or because multilingual encoding
is intrinsically more amenable to parameter sharing than
multilingual decoding. Understanding the exact dynamics
giving rise to such positive interaction between the language
pairs is an exciting open question.

Benefits for Massive Multilingual Models: While we
observed minimal synergy between En→XX languages
pairs, and therefor minimal gains in absolute effective
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Figure 7. Approximate joint scaling laws described by equations (11) and (12) almost perfectly capture the language pair interactions
across all scales. Left: The fitted approximation f̂ described in Equation 12. Right: The predicted performance trade-off frontier (dashed
lines) as well as the empirically observed trade-off values.

capacity, if we look at relative effective capacity, we can
see considerable benefits in using multilingual models for
language pairs with small weight. For example, a model
trained for En→{De, Zh} with 5% weight on German has
an effective capacity of more than 3× a model trained with
5% capacity of this model for only German. These relative
gains are even more evident when there is positive task
synergy, such as for XX→En, where models train with 5%
weight have more than 6× gain in (effective) parameters.
This hints that, if these findings generalize beyond the
two-task setup7, then training large multilingual models
for training mixtures with a large number of small weight
language pairs is significantly more memory efficient than
training separate small models for each language pair.

3.4. Guiding Language Balancing

As discussed earlier, one of the areas where multilingual
scaling laws can be most impactful is in guiding language
balancing/weighting when training large multilingual mod-
els, an open problem that has been studied extensively (Ari-
vazhagan et al., 2019a; Wang et al., 2020). However, in
its current form, our (joint) scaling law can only be use
to decide between weightings that were used for fitting it
and cannot be used to predict performance on new, unseen
weightings, as βp,i needs to be estimated empirically.

To extend to unseen language pair weightings, we instead
focus on estimating fi(·). Given access to fi(p), accurate
prediction of Li(N) for any weighting can be achieved by
using the single-language-pair scaling law:

Li(N ; p) = β1,i

(
f̂i(p)N

)−αi
+ L(i)

∞ . (11)

As observed in Section 3.3, fi(p) has a number of desirable

7see Appendix H for preliminary experiments on models
trained on more than two language pairs.

properties that makes it easy to estimate: (i) it is invariant
to test set and languages, (ii) it is smooth and generally
well-behaved. As such, one can achieve an accurate approx-
imation of f with just a few data points.

We utilize this methodology to estimate the full task per-
formance trade-off frontier for En→{De, Zh} models. For
estimating fi(·), we fit an approximate joint scaling law of
the form Equation 11, where f̂i(·) is parameterized as

f̂i(p) = p+ c1p
c2(1− p)c3 (12)

with c1, c2, c3 being fitted coefficients. Figure 7 demon-
strates our results; our procedure is able to almost perfectly
capture the full task performance frontier across a variety
of model scales. With access to such accurate predictions
of the performance frontier, a practitioner can precisely de-
termine how to weigh the individual language pairs during
training based on her preferences and target model size.

We should note that the choice of function class to fit fi(·) is
highly dependent on the practitioner’s computational budget.
In our case, we prioritized accuracy and used a flexible
function class of the form (12) for fitting. Such flexibility
comes with the cost of needing to compute more empirical
values to reliably estimate f(·). In the scenarios with more
limited computational budget, we have observed that even
rudimentary linear approximations of f are able to provide
accurate representations of the performance frontier. See
Appendix E for examples.

Translation Quality Finally, we note that in the MT liter-
ature, quality is often measured via metrics such as BLEU
(Papineni et al., 2002), ChrF (Popović, 2015) and BLEURT
(Sellam et al., 2020) as opposed to cross-entropy, since the
latter doesn’t account for the problem of decoding transla-
tions from the models and is sometimes found to not corre-
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Figure 8. The generation quality behavior of our models as measured by ChrF. Left: We observe consistent positive correlations between
ChrF and cross-entropy loss. Right: Our scaling laws can be used to generate accurate performance trade-off frontiers for ChrF.

late with human preferences (Koehn & Knowles, 2017). As
such, MT practitioners might be concerned regarding the
applicability of these results for practical applications. To
ensure that our findings also apply to the quality of transla-
tions, we decode translations from our trained models using
beam search (Graves, 2012) and evaluate how their quality
changes as we scale the models, using ChrF and BLEURT.

Figure 8 (left) shows cross-entropy and ChrF scores for the
En→De language pair of our En→{De, Fr} models, evalu-
ated on the in-domain test set. We find that this automatic
metric has an almost-linear relationship with cross-entropy,
hinting that our observations also generalize from cross-
entropy to generation quality. Figure 8 (right) also shows
the predicted ChrF performance trade-off frontier obtained
by fitting our joint scaling law (Equation 7) to the ChrF
performance on the in-domain test set (parametrizing the ef-
fective parameter fraction function as in Equation 12). Our
procedure is able to capture this trade-off frontier almost
as well as the cross-entropy frontier. Similar findings for
the BLEURT metric on out-of-distribution test sets can be
found in Appendix F.

4. Conclusions & Future Work
Current state-of-the-art large neural models are moving to-
wards using as much data from as many domains, modalities
and languages as possible to unlock exciting new capabil-
ities. Unfortunately, a clear understanding of the behavior
of such multitask models at scale is missing. This in turn
slows down the model development process since practi-
tioners have to resort to trial and error for balancing their
tasks in their models. In this paper, we attempted to take an
initial step towards alleviating this problem by performing a
large-scale study of the properties of multilingual models.

In particular, we attempted to study this problem from the
lens of multilingual machine translation. We showed that,
for each language pair and language pair weighting, a power-

law describes the evolution of the model test performance
as a function of the model size. We examined the depen-
dence of the scaling law parameters on the language pair
weights and demonstrated that the scaling exponent and the
irreducible loss are independent of the weightings. Using
these observations, we provided a novel joint scaling law
that succinctly captures the scaling behavior across different
model sizes and weightings and used it to define the notion
of effective fraction of parameters assigned to a language
pair (fi(·)). We showed that this quantity robustly captures
the language pair interactions and is surprisingly invariant
to the similarity of the languages. In the end, we sketched a
procedure to use fi to estimate the task performance trade-
off frontier for all model scales.

Future Work In this paper, we studied the scaling behav-
ior of multilingual translation models. Examining whether
the conclusions of our work apply to multi-task setups be-
yond translation is a promising research direction. Most
of our conceptual framework and experimental setup can
easily be reused for this since there is little difference in
the mathematical formulation of the optimization problem
and it is likely that similar observations regarding the lack
of transfer in data-rich scenarios will be found, as multilin-
guality can be considered an easier subset of the broader
multitask learning challenge.

Furthermore, to keep our investigation tractable, we focused
most of our experiments on the two-language-pairs scenario.
However, we believe the presented results should be eas-
ily extendable to models trained with more languages (see
Appendix H). We leave such extensions to future work.

Finally, to simplify the model scaling behavior, we focused
our analysis on the data-rich setup. However, in many appli-
cations, at least some of the tasks are mid- or low-resource.
Extending these results to such scenarios is an interesting
future direction.
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A. Model Sizes and Hyperparameters

Enc. Layers Dec. Layers Emb. Dim # Heads Head Dim MLP dim Vocab Size # Parameters Corrected # Parameters

2 2 512 8 64 2048 128k 149,953,024 18,881,024
3 3 768 12 64 3072 128k 260,322,816 63,714,816
6 6 768 12 64 3072 128k 324,035,328 127,427,328
9 9 768 12 64 3072 128k 387,747,840 191,139,840
9 9 1024 16 64 4096 128k 601,931,776 339,787,776

12 12 1024 16 64 4096 128k 715,193,344 453,049,344
12 12 1280 16 80 5120 128k 1,035,876,864 707,869,184
12 12 1536 16 96 6144 128k 1,412,528,128 1,019,312,128

B. Individual Scaling Laws Fits
B.1. Out-of-Domain
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Figure 9. The evolution with model size of the cross-entropy loss on the newstest19 test set for En→{De, Fr} models, as well as the fitted
scaling laws. The color represents the weighting of the languages. Note that we don’t show the zero-shot behavior.

B.2. English→German, French

B.3. German, Chinese→English
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Figure 10. Coefficient values, for scaling laws fitted on newstest2019, for German (left) and French (right) as a function of the language
weight, with the shaded region representing the standard deviation. The dashed lines represent the value of jointly fitted coefficients from
Equation 7
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the standard deviation. The dashed lines represent the value of jointly fitted coefficients from Equation 7
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Figure 13. The evolution of the (in-domain) test cross-entropy loss with model size for {De, Zh}→En models, as well as the fitted scaling
laws. The color represents the weighting of the languages. Note that we don’t show the zero-shot behavior.

0.2 0.4 0.6 0.8 1.0
Language Weight (p)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fi
tte

d 
Co

ef
fic

ie
nt

 V
al

ue
s

German English

0.2 0.4 0.6 0.8 1.0
Language Weight (p)

0.4

0.6

0.8

1.0

Chinese English

Figure 14. Coefficient values for German (left) and French (right) into English as a function of the language weight. The dashed lines
represent the value of jointly fitted coefficients from Equation 7.We omit uncertainty estimates since less model capacities were used to fit
the scaling laws, and therefor these estimates would be unreliable.
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C. Joint Scaling Law Fits
C.1. Out-of-Domain
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Figure 15. The joint scaling law (Equation 7) fitted to models trained for En→{De, Zh} models. Test loss here is evaluated on the
newstest2019 test set.

C.2. English→{German, French}
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Figure 16. The joint scaling law (Equation 7) fitted to models trained for En→{De, Fr} models. Test loss here is evaluated on in-domain
test sets.

C.3. {German, Chinese}→English
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Figure 17. The joint scaling law (Equation 7) fitted to models trained for {De, Zh}→En models. Test loss here is evaluated on in-domain
test sets.
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D. Derivation of the Effective Number of Parameters

Li(N ; p) = βp,iN
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E. Other Approximations to the Effective Parameter Ratio
We use a linear approximation of the form

f̂i(p) = c1(p− 1) + 1. (13)
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Figure 18. Approximate joint scaling laws described by equations (11) and (13) is able to capture the task interactions across all scales
well, even with single fitted coefficient for ratio function. Left: The fitted approximation f̂ described in Equation 12. Right: The predicted
performance trade-off frontier (dashed lines) as well as the empirically observed trade-off values.
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F. Translation Quality
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Figure 19. (left) shows cross-entropy and BLEURT scores for the En→De language pair of our En→{De, Fr} models, evaluated on the
newstest19 test set. We find that this automatic metric has an almost-linear relationship with cross-entropy, hinting that our observations
also generalize from cross-entropy to generation quality. Figure 8 (right) also shows the predicted BLEURT performance trade-off frontier
obtained by fitting our joint scaling law (Equation 7) to the BLEURT performance on the newstest19 test set (parametrizing the effective
parameter fraction function as in Equation 12).

G. Convergence Correction
Due to implicit scalarization, models trained with very little task weight (< 0.1) will see less than a full epoch of that task’s
data, even when trained with 1M steps. I our experiments we saw that this was causing problems in the fit the scaling laws
due to an undertraining of our largest models.

To mitigate this problem without training these models for a prohibitively large number of steps, we apply recent findings in
learning curve (Hutter, 2021) to estimate the performance of largest models trained with p ≤ 0.05 task weight at convergence,
by fitting a power-law to the performance evolution as training progresses, and predicting the performance of these models
at 2.5M steps. This only affect two models per scenario considered.

H. Extension to more than two languages/tasks
As an early effort to understand if our findings apply to more than two tasks, we trained various model sizes for to translate
into three languages (EEn→{De, Fr, Zh}), and compared the predictions using the scaling laws for models trained on two
language pairs (En→{De, Zh} and En→{De, Fr}).

Figure Figure 20 shows the results. Overall we find that (combination of) the joint scaling laws fitted on models trained on
two language pairs predict well the performance of models trained for three language pairs, showing that the invariances
found in previous sections generalize to settings with more than two tasks. These results also hint that computation of
effective parameters counts for multi-task models with many tasks can be simplified and made more tractable by training
models with much smaller subset of tasks.
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Figure 20. The evolution of the (in-domain) test cross-entropy loss with model size for En→{De, Fr, Zh} models, as well as the fitted
scaling laws fitted for En→{De, Zh} (left and middle) and En→{De, Fr} (right). The color represents the weighting of the languages.
Note that we don’t show the zero-shot behavior.
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