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Abstract

In some medical imaging tasks and other settings
where only small parts of the image are informa-
tive for the classification task, traditional CNNs
can sometimes struggle to generalise. Manually
annotated Regions of Interest (ROI) are often used
to isolate the most informative parts of the image.
However, these are expensive to collect and may
vary significantly across annotators. To overcome
these issues, we propose a framework that em-
ploys saliency maps to obtain soft spatial atten-
tion masks that modulate the image features at
different scales. We refer to our method as Adver-
sarial Counterfactual Attention (ACAT). ACAT
increases the baseline classification accuracy of
lesions in brain CT scans from 71.39% to 72.55%
and of COVID-19 related findings in lung CT
scans from 67.71% to 70.84% and exceeds the
performance of competing methods. We investi-
gate the best way to generate the saliency maps
employed in our architecture and propose a way
to obtain them from adversarially generated coun-
terfactual images. They are able to isolate the
area of interest in brain and lung CT scans with-
out using any manual annotations. In the task of
localising the lesion location out of 6 possible re-
gions, they obtain a score of 65.05% on brain CT
scans, improving the score of 61.29% obtained
with the best competing method.
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1. Introduction
In computer vision classification problems, it is often as-
sumed that an object that represents a class occupies a large
part of an image. However, in other image domains, such
as medical imaging or histopathology, only a small frac-
tion of the image contains information that is relevant for
the classification task (Kimeswenger et al., 2019). With
object-centric images, using wider contextual information
(e.g. planes fly in the sky) and global features can aid the
classification decision. In medical images, variations in
parts of the image away from the local pathology are often
normal, and using any apparent signal from such regions
is usually spurious and unhelpful in building robust classi-
fiers. Convolutional Neural Networks (CNNs) (Krizhevsky
et al., 2012; He et al., 2016; Szegedy et al., 2017; Huang
et al., 2017a) can struggle to generalise well in such settings,
especially when training cannot be performed on a very
large amount of data (Pawlowski et al., 2019). This is at
least partly because the convolutional structure necessitates
some additional ‘noisy’ statistical response to filters away
from the informative ‘signal’ regions. Because the ‘signal’
response region is small, and the noise region is potentially
large, this can result in low signal to noise in convolutional
networks, impacting performance.

To help localisation of the most informative parts of the
image in medical imaging applications, Region Of Interest
(ROI) annotations are often collected (Cheng et al., 2011;
Papanastasopoulos et al., 2020). However, these annotations
require expert knowledge, are expensive to collect, and
opinions on ROI of a particular case may vary significantly
across annotators (Grünberg et al., 2017; Fontanella et al.,
2020).

Alternatively, attention systems could be applied to locate
the critical regions and aid classification. Previous work has
explored the application of attention mechanisms over im-
age features, either aiming to capture the spatial relationship
between features (Bell et al., 2016; Newell et al., 2016; San-
toro et al., 2017), the channel relationship (Hu et al., 2018)
or both (Woo et al., 2018; Wang et al., 2017). Other authors
employed self-attention to model non-local properties of
images (Wang et al., 2018; Zhang et al., 2019). However,
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Figure 1. Architecture of the framework proposed for 3D volumes. The slices of each volume are first processed separately and then
combined by applying an attention module over the slices. For each volume we also consider as input the corresponding saliency map.
From the saliency branch, we obtain soft spatial attention masks that are used to modulate the image features. The salient attention
modules capture information at different scales of the network and are combined through an attention fusion layer to better inform the
final classification.

in our experiments, attention methods applied on the image
features failed to improve the baseline accuracy in brain
and lung CT scans classification. Other authors employed
saliency maps to promote the isolation of the most informa-
tive regions during training of a classification network. They
sometimes employed target ground-truth maps to generate
these saliency maps (Murabito et al., 2018). Moreover, by
fusing salient information with the image branch at a single
point of the network (Murabito et al., 2018; Flores et al.,
2019; Figueroa-Flores et al., 2020), these approaches may
miss important data. Indeed, when the signal is low, key in-
formation could be captured by local features at a particular
stage of the network, but not by features at a different scale.
For this reason, in our architecture, as shown in Figure 1,
we employ the saliency maps to obtain soft spatial attention
masks that modulate the image features at different stages of
the network and also combine the attention masks through
an attention fusion layer. This architecture allows to capture
information at different scales and to better inform the final
decision of the network. Moreover, it makes the model more
robust to perturbations of the inputs by reducing the variance
of the pre-activations of the network (cfr. Section 4.6).

Finally, we investigate the best technique to generate the
saliency maps that are needed for our architecture and we
find that the use of counterfactual images, acquired with
a technique similar to adversarial attacks (Huang et al.,
2017b), is able to highlight useful information about a par-
ticular patient’s case. In particular, for generating counter-
factual examples, we employ an autoencoder and a trained
classifier to find the minimal movement in latent space that
shifts the input image towards the target class, according to

the output of the classifier.

The main contributions of this paper are the following: 1)
we propose ACAT, a framework that employs saliency maps
as attention mechanisms at different scales and show that it
makes the network more robust to input perturbations and
improves the baseline classification accuracy in two medical
imaging tasks (from 71.39% to 72.55% on brain CT scans
and from 67.71% to 70.84% in lung CT scans) and exceeds
the performance of competing methods, 2) we show how
ACAT can also be used to evaluate saliency generation meth-
ods, 3) we investigate how different methods to generate
saliency maps are able to isolate small areas of interest in
large images and to better accomplish the task we introduce
a method to generate counterfactual examples, from which
we obtain saliency maps that outperform competing meth-
ods in localising the lesion location out of 6 possible regions
in brain CT scans (achieving a score of 65.05% vs. 61.29%
obtained with the best competing method)

2. Related Work
An overview of the methods used to generate saliency maps
and counterfactual examples can be found in (Guidotti,
2022) and (Linardatos et al., 2020) respectively. Here, we
briefly summarise some of the approaches most commonly
used in medical imaging.

Saliency maps Saliency maps are a tool often employed by
researchers for post-hoc interpretability of neural networks.
They help to interpret CNN predictions by highlighting pix-
els that are important for model predictions. Simonyan
et al. (2013) compute the gradient of the score of the class
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of interest with respect to the input image. The Guided
Backpropagation method (Springenberg et al., 2014) only
backpropagates positive gradients, while the Integrated Gra-
dient method (Sundararajan et al., 2017) integrates gradients
between the input image and a baseline black image. In
SmoothGrad (Smilkov et al., 2017), the authors propose
to smooth the gradients through a Gaussian kernel. Grad-
CAM (Selvaraju et al., 2017) builds on the Class Activation
Mapping (CAM) (Zhou et al., 2016) approach and uses the
gradients of the score of a certain class with respect to the
feature activations of the last convolutional layer to calculate
the importance of the spatial locations.

Counterfactuals for visual explanation Methods that gen-
erate saliency maps using the gradients of the predictions
of a neural network have some limitations. Some of these
methods have been shown to be independent of the model
parameters and the training data (Adebayo et al., 2018; Arun
et al., 2021) and not reliable in detecting the key regions in
medical imaging (Eitel et al., 2019; Arun et al., 2021). For
this reason, alternative methods based on the generation of
counterfactuals for visual explanation have been developed.
They are usually based on a mapping that is learned be-
tween images of multiple classes to highlight the areas more
relevant for the class of each image. The map is modeled
as a CNN and is trained using a Wasserstein GAN (Baum-
gartner et al., 2018) or a Conditional GAN (Singla et al.,
2021). Most close to our proposed approach to generate
counterfactuals, is the latent shift method by Cohen et al.
(2021). An autoencoder and classifier are trained separately
to reconstruct and classify images respectively. Then, the
input images are perturbed to create λ-shifted versions of
the original image that increase or decrease the probability
of a class of interest according to the output of the classifier.

Saliency maps to improve classification and object detec-
tion Previous work has tried to incorporate saliency maps
to improve classification or object detection performance in
neural networks. Ren et al. (2013) used saliency maps to
weigh features. Murabito et al. (2018) introduced SalClass-
Net, a framework consisting of two CNNs jointly trained
to compute saliency maps from input images and using the
learned saliency maps together with the RGB images for
classification tasks. In particular, the saliency map generated
by the first CNN is concatenated with the input image across
the channel dimension and fed to the second network that is
trained on a classification task. Flores et al. (2019) proposed
to use a network with two branches: one to process the input
image and the other to process the corresponding saliency
map, which is pre-computed and given as input. The two
branches are fused through a modulation layer which per-
forms an element-wise product between saliency and image
features. They observe that the gradients which are back-
propagated are concentrated on the regions which have high
attention. In (Figueroa-Flores et al., 2020) the authors use

the same modulation layer, but replace the saliency branch
that was trained with pre-computed saliency images with
a branch that is used to learn the saliency maps, given the
RGB image as input.

Adversarial examples and adversarial training Machine
learning models have been shown to be vulnerable to adver-
sarial examples (Papernot et al., 2016). These are created
by adding perturbations to the inputs to fool a learned clas-
sifier. They resemble the original data but are misclassified
by the classifier (Szegedy et al., 2013; Goodfellow et al.,
2014). Approaches proposed for the generation of adver-
sarial examples include gradient methods (Kurakin et al.,
2018; Moosavi-Dezfooli et al., 2016) and generative meth-
ods (Zhao et al., 2017). In Qi et al. (2021), the authors
propose an adversarial attack method to produce adversarial
perturbations on medical images employing a loss deviation
term and a loss stabilization term. In general, adversarial
examples and counterfactual explanations can be created
with similar methods. Adversarial training, in which each
minibatch of training data is augmented with adversarial
examples, promotes adversarial robustness in classifiers
(Madry et al., 2017). Tsipras et al. (2018) observe that gra-
dients for adversarially trained networks are well aligned
with perceptually relevant features. However, adversarial
training usually also decreases the accuracy of the classifier
(Raghunathan et al., 2019; Etmann et al., 2019).

3. Methods
We wish to automatically generate and make use of RoI
information in the absence of hand-labelled annotations. In
order to do so, we employ saliency maps that are given as in-
put and processed by the saliency branch of our architecture
(see Figure 1). The saliency features are used to produce at-
tention masks that modulate the image features. The salient
attention modules capture information at different scales of
the network and are combined through an attention fusion
layer to better inform the final classification. In Figure 2,
we show the saliency map and the attention masks obtained
with a trained network on a brain scan. As we can observe,
the saliency map is sparse and covers broad areas of the scan.
On the other hand, the attention masks progressively refine
the RoI emphasised by the original saliency map, better
highlighting the area of interest.

3.1. Saliency Based Attention

We learn to process saliency maps into multiple levels of
attention modules to learn better local features and improve
the classification accuracy. We do so through a saliency
branch, which has attention modules that learn how to han-
dle the salient information coming into the system and use
it to obtain soft spatial attention masks that modulate the
image features. In particular, with reference to Figure 1, we
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(a) Image (b) Saliency map (c) Attention mask Se
s (d) Attention mask Sm

s (e) Attention mask Sl
s

Figure 2. Image with lesion indicated by the red arrow (a) and pixels in the 95th percentile of the saliency map (b) and spatial attention
masks obtained after early (c), middle (d) and late (e) convolutional layers. The attention masks progressively tweak the original saliency
map focusing more precisely on the area of interest.

consider a network with two branches, one for the original
input images and the other for the corresponding saliency
maps, which are pre-computed and fixed during training
of the network. Given Si ∈ RC×H×W features of the
saliency branch at layer i, we first pool the features over
the channel dimension to obtain Si

p ∈ R1×H×W . Both
average or max-pooling can be applied. However, in pre-
liminary experiments we found max-pooling to obtain a
slightly better performance. A convolution with 3 × 3 fil-
ters is applied on Si

p, followed by a sigmoid activation, to
obtain soft spatial attention masks based on salient features
Si
s ∈ R1×H×W . Finally, the features of the image branch

at layer i: F i ∈ RC×H×W are softly modulated by Si
s in

the following way:

F i
o = F i ⊙ Si

s (1)

where ⊙ is the Hadamard product, in which the spatial at-
tention values are broadcasted along the channel dimension,
and F i

o are the modulated features for the i − th layer of
the image branch. We also introduce skip connections be-
tween F i and F i

o to prevent gradient degradation and distill
information from the attention features, while also giving
the network the ability to bypass spurious signal coming
from the attention mask.Therefore, the output of the image
branch at layer i, is given by: Gi = F i + F i

o

The attention mask not only modulates the image features
during a forward pass of the network, but can also cancel
noisy signal coming from the image features during back-
propagation. Indeed, if we compute the gradient of Gi with
respect to the image parameters θ, we obtain:

∂Gi(θ; η)

∂θ
=

∂[F i(θ) + F i(θ)⊙ Si
s(η)]

∂θ

=
∂F i(θ)

∂θ
(Si

s(η) + 1)

(2)

where η are the saliency parameters.

3.1.1. FUSION OF ATTENTION MASKS

Previous work attempting to exploit saliency maps in classi-
fication tasks, has fused salient information with the image
branch at a single point of the network, either directly con-
catenting attribution maps with the input images (Murabito
et al., 2018) or after a few layers of pre-processing (Flores
et al., 2019; Figueroa-Flores et al., 2020). On the other
hand, we position our salient attention modules at different
stages of the network, in order to capture information at
different scales. This is particularly important in low signal-
to-noise tasks, where the key information could be captured
by local features at a particular stage of the network, but
not by features at a different scale. For this reason, we use
three attention modules, after early, middle and late layers
of the network. Given Se

s , Sm
s and Sl

s the corresponding
spatial attention masks, we also reduce their height and
width to H ′ and W ′ through average pooling, obtaining
Se
s,p, Sm

s,p and Sl
s,p respectively. Then, we concatenate them

along the channel dimension, obtaining Ss,p ∈ R3×H′×W ′
.

An attention fusion layer Lf takes Ss,p as input and gen-
erates a fused spatial mask Sf ∈ R1×H′×W ′

by weighting
the three attention masks depending on their relative im-
portance. This final attention mask is applied before the
fully-connected classification layers, so that if critical infor-
mation was captured in early layers of the network, it can
better inform the final decision of the network. In practice,
Lf is implemented as a 1 × 1 convolution. In Section 4.5
we perform ablation studies to evaluate the contribution of
each component of our network and demonstrate that all
the components described are required to achieve the best
results.
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(f) Image (g) Ours (h) Latent shift (i) Gradient (j) Grad-CAM

Figure 3. (a) Ischaemic stroke lesion appears darker than normal brain. Sample saliency maps averaged over slices obtained with our
approach (b), the latent shift method (c), the Gradient method (d) and Grad-Cam (e).

3.2. Generation of Saliency Maps

In order to detect regions of interest in medical images, we
generate counterfactual examples for each datum and use
the difference with the original image to generate a saliency
map highlighting important information. In particular, given
a dataset D = (xi; i = 1, 2, . . . , ND) of size ND consisting
of input images xi, along with corresponding class labels
T = (yi; i = 1, 2, . . . , ND), counterfactual explanations
describe the change that has to be applied to an input for
the decision of a black-box model to flip. Let f be a neural
network that outputs a probability distribution over classes,
and let ŷi be the class designated maximum probability by
f . A counterfactual explanation displays how xi should be
modified in order to be classified by the network as belong-
ing to a different class of interest ȳi (counterfactual class).
In order to generate saliency maps, we can consider the dif-
ference between the original image and the counterfactual
image of the opposite class. For example, to compute the
saliency map of a brain scan with a stroke lesion, we could
generate a counterfactual example that is classified by f
as not having a stroke lesion. In this way, we are able to
visualise the pixels with the biggest variation between the
two samples, which are the most important for the classi-
fication outcome. However, when using saliency maps to
improve the classification capability of our network, at test
time we don’t have access to class labels. For this reason, to
compute saliency maps in a class-agnostic way, we consider
the counterfactual examples of both classes (positive and
negative) and then compute the absolute difference between
the original image and each counterfactual image to get two

attribution maps. These are then normalised in [0, 1] and
averaged to obtain the final saliency map that can be used
in the classification pipeline.

As discussed, gradient-based counterfactual changes to im-
age pixels can just produce adversarial attacks. We alleviate
this by targeting gradients of a latent autoencoder. There-
fore, in addition to the network f , trained to classify im-
ages in D, we exploit an autoencoder, trained to reconstruct
the same inputs. xj ∈ D can be mapped to latent space
through the encoder E: E(xj) = zj . This can then be
mapped back to image space via decoder D: x′j = D(zj).
Suppose without loss of generality that the counterfactual
example we are interested in belongs to a single target
class. The neural network can be applied to this decoder
space, we denote the output of f(D(zj)) as a normalised
probability vector d(zj) = (d1(z

j), . . . , dk(z
j)) ∈ RK ,

where K is the number of classes. Suppose that f(xj)
outputs maximum probability for class l and we want to
shift the prediction of f towards a desired class m, with
l,m ∈ N : l,m ∈ [1,K]. To do so, we can take gradient
steps in the latent space of the autoencoder from initial po-
sition zj to shift the class distribution towards the desired
target vector t = (t1, . . . , tk) ∈ RK , where ti = 1i=m,
for i = 1, . . . ,K . In order to do so, we would like to
minimise the cross-entropy loss between the output of our
model, given D(zj) as input, and the target vector. I.e. we
target

L(d(zj), t) = −
K∑

k=1

tk log(dk(z
j)). (3)
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Table 1. Test accuracy by infarct size. Our framework, ACAT, improves the performance of competing methods in the detection of scans
with no infarct lesion, small and medium lesions (size 1-2)

No Lesion IS-1 IS-2 IS-3 IS-4
Baseline 81.41% 23.66% 54.16% 72.09% 87.74%

SalClassNet 76.71% 29.24% 54.48% 64.95% 82.71%
SMIC 79.24% 25.55% 54.82% 65.71% 88.36%
HSM 80.37% 27.28% 53.86% 71.60% 89.10%
SpAtt 82.56% 21.33% 51.58% 67.86% 86.77%
SeAtt 83.49% 27.03% 52.05% 65.54% 84.42%
ViT 76.79% 11.67% 41.04% 53.12% 61.54%

ACAT (Ours) 84.30% 30.23% 55.02% 68.67% 84.93%

Moreover, we aim to keep the counterfactual image as close
as possible to the original image in latent space, so that the
transformation only captures changes that are relevant for
the class shift. Otherwise, simply optimising Eq. (3) could
lead to substantial changes in the image that compromise
its individual characteristics. Therefore, we also include,
as part of the objective, the L1 norm between the latent
spaces of the original image xj and the counterfactual image:
||z − E(xj)||L1 . Putting things together, we wish to find
the minimum of the function:

g(z) = L(d(z), t) + α||z − E(xj)||L1
(4)

where α is a hyperparameter that was set to 100 in our
experiments. We can minimise this function by running
gradient descent for a fixed number of steps (20 in our
experiments). Then, for the minimizer of Eq. (4), denoted
by z′, the counterfactual example is given by D(z′).

By defining an optimisation procedure over the latent space
that progressively optimises the target classification prob-
ability of the reconstructed image, we are able to explain
the predictions of the classifier and obtain adequate coun-
terfactuals. A bound on the distance between original and
counterfactual images in latent space is also important to
keep the generated samples within the data manifold.

4. Experiments
4.1. Data

We performed our experiments on two datasets: IST-3
(Sandercock et al., 2011) and MosMed (Morozov et al.,
2020). Both datasets were divided into training, validation
and test sets with a 70-15-15 split and three runs with differ-
ent random seeds were performed. More details about the
data are provided in Appendix A.

4.2. Experimental Setup

The baseline model for the classification of stroke lesions
in CT scans of the brain employs the same base multi-task

learning (MTL) architecture of Fontanella et al. (a), while
for classification of lung CT scans, we employed a ResNet-
50 architecture (with 4 convolutional blocks). Further de-
tails about the architectures are provided in Appendix B.
In our framework, the attention branches follow the same
architecture of the baseline architectures (removing the clas-
sification layers). In the MTL model, the attention layers are
added after the first, third and fifth convolutional layer. For
the ResNet architecture, attention modules are added after
each one of the first three convolutional blocks. The atten-
tion fusion layer is always placed after the last convolutional
layer of each architecture. Moreover, instead of averaging
the slices of each scan, in our framework we consider an
attention mask over slices. This is obtained from image
features by considering an MLP with one hidden layer. The
hidden layer is followed by a leaky ReLU activation and
dropout with p = 0.1. After the output layer of the MLP, we
apply a sigmoid function to get the attention mask. Further
training details are provided in Appendix C.

4.3. Classification Results

We compare the proposed framework with competing meth-
ods incorporating saliency maps into the classification
pipeline, methods employing attention from the input image
features, a vision transformer and the baseline model trained
without saliency maps on the classification of brain and lung
CT scans. In the former case, the possible classes are: no
lesion, lesion in the left half of the brain, lesion in the right
half of the brain or lesion in both sides. In the latter case, we
perform binary classification between scans with or with-
out COVID-19 related findings. In methods where saliency
maps are needed, for a fair comparison of the different ar-
chitectures, we always compute them with our approach. In
particular, we compare our method with saliency-modulated
image classification (SMIC) (Flores et al., 2019), SalClass-
Net (Murabito et al., 2018), hallucination of saliency maps
(HSM) (Figueroa-Flores et al., 2020), spatial attention from
the image features (SpAtt), self-attention (SeAtt) and the
vision transformer (ViT) (Dosovitskiy et al., 2020). Imple-
mentation details are provided in Appendix E.
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As we can observe in Table 2, our approach improves the av-
erage classification accuracy of the baseline from 71.39% to
72.55% on IST-3 and from 67.71% to 70.84% on MosMed.
Our framework is also the best performing in both cases.
SMIC performs slightly worse than the baseline on IST-
3 (with 70.85% accuracy) and better on MosMed (with
69.27% accuracy). HSM is close to the baseline results
on IST-3 but worse than the baseline on MosMed, while
SalClassNet is worse than the baseline on both tasks. The
methods incorporating attention from the image features
have also similar or worse performance than the baseline,
highlighting how the use of attention from the saliency maps
is key for the method to work. ViT obtains the worse per-
formance on IST3, confirming the results from previous
work that vision transformers often require a very large
amount of training data to learn good visual representations
(Neyshabur, 2020) and are often outperformed by CNNs on
medical imaging tasks (Matsoukas et al., 2021). While it
is easier to detect large stroke lesions, these can also be de-
tected easily by humans. For this reason, we aim to test the
capabilities of these models to flag scans with very subtle
lesions. In order to do so, we evaluate their classification
accuracy by infarct size (IS). As we can observe in Table 1
our approach obtains the best classification performance
on the scans with no infarct lesion, as well as small and
medium lesions (size 1-2). This confirms how our saliency
based attention mechanism promotes the learning of local
features that better detect subtle areas of interest.

4.4. Evaluation of Saliency Maps

We evaluate quantitatively how the saliency maps generated
with our approach described in Section 3.2, the latent shift
method (Cohen et al., 2021), the gradient method (Simonyan
et al., 2013) and Grad-CAM (Selvaraju et al., 2017) are able
to detect the areas related to the stroke lesion. The maps
were created employing the baseline model and positive
scans which were not used during training. In particular,
we generated negative counterfactuals with our approach

Table 2. Average test accuracy over 3 runs on the classification
of brain (IST-3) and lung (MosMed) CT scans. Our framework,
ACAT, outperforms competing methods that employ saliency maps
to aid classification and other alternative methods.

IST-3 MosMed
Baseline 71.39% (0.23) 67.71% (3.48)
SMIC 70.85% (0.63) 69.27% (1.13)

SalClassNet 69.43% (1.81) 62.50% (2.66)
HSM 71.38% (0.94) 67.71% (1.86)
SpAtt 70.96% (0.10) 66.67% (2.98)
SeAtt 71.23% (0.10) 67.71% (1.70)
ViT 57.87% (0.87) 66.67% (2.98)

ACAT (Ours) 72.55% (0.82) 70.84% (1.53)

and the latent shift method and computed the difference
between the original image and the generated images to
obtain the saliency maps. Grad-CAM is applied using the
last convolutional layer of the network. The lesion loca-
tion, which is used for evaluation, but is not known to the
network, is one of the 6 classes: MCA left, MCA right,
ACA left, ACA right, PCA left, PCA right. The attribu-
tion maps are evaluated as in Zhang et al. (2018), with the
formula: S = Hits

Hits+Misses . A hit is counted if the pixel
with the greatest value in each CT scan lies in the correct
region, a miss is counted otherwise. The saliency maps gen-
erated with our approach obtain the highest average score of
65.05% (with 2.03 standard error), improving the scores of
58.39% (2.00) and 61.29% (2.06) obtained with the latent
shift and the gradient methods respectively. Grad-CAM has
the worst score, with 11.67% (1.28). Sample saliency maps
are showed in Figure 3 with a red color map. The red arrows
indicate the lesion regions, which appear as a ‘shaded’ area
in the scans.

Furthermore, ACAT improves the lesion detection capabil-
ities of saliency maps further. Indeed, if we re-compute
the saliency maps with our approach and using ACAT as
classifier to generate the counterfactuals, we obtain a score
of 68.55% (1.94), without using the class labels. In fact, the
saliency maps are generated by averaging the absolute dif-
ferences between the original image and the counterfactual
examples of both classes (positive and negative).

4.5. Ablation Studies

On IST-3, we compare the performance of ACAT when
saliency maps obtained with different approaches are em-
ployed. When using saliency maps obtained with our ap-
proach we obtain the highest accuracy of 72.55% (0.72).
The relative ranking of the saliency generation approaches
is the same that was obtained with the evaluation of
saliency maps with the score presented in Section 4.4,
with the gradient method obtaining 72.16% (0.88) accu-
racy, the latent shift method 72.04% (1.07) and Grad-CAM
69.42% (1.19).

On MosMed, we ablate the components of our architecture.
In the proposed approach, attention masks are obtained from
the saliency branch at three different stages of the network
(early, middle and late) and finally an attention fusion layer
weighs the three masks and is applied before the classi-
fication layers. Therefore, we progressively removed the
fusion layer, the late attention mask and the middle attention
mask to test the contribution of each component. While
the classification accuracy of the full ACAT architecture
was 70.84%(1.53), by removing the attention fusion layer
it decreased to 69.79%(2.78). Moreover, by also removing
the late attention layer it further decreased to 68.75%(1.48),
reaching 68.23%(0.85) when the middle attention layer was
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(f) Image with mask (g) Ours (h) Latent shift (i) Gradient (j) Grad-CAM

Figure 4. Input image with masks depicting regions of interests (a) and saliency maps averaged over slices obtained with our approach (b),
the latent shift method(c), the Gradient method (d) and Grad-Cam (e)

eliminated as well.

4.6. ACAT Makes the Network more Robust to Input
Perturbations

We investigate the mechanism through which ACAT helps
the improvement of prediction performance. Consider a
neural network with M layers. Given ϕ activation func-
tion: Xm+1 = ϕ(Zm+1),with m ∈ [1,M ] and Zm+1 =
WmXm + Bm pre-activations, Wm and Bm being the
weight and bias matrices respectively. We compare the
mean variances of the pre-activations of IST-3 test samples
in each layer for the baseline model and ACAT trained from
scratch. As we can observe in Table 3, ACAT significantly
reduces the pre-activation variances σ2,m of the baseline
model. As a consequence, perturbations of the inputs will
have a smaller effect on the output of the classifier, increas-
ing its robustness and smoothing the optimisation landscape
(Ghorbani et al., 2019; Littwin & Wolf, 2018; Santurkar
et al., 2018). In fact, if we add random noise sampled from
a standard Gaussian distribution to the inputs, the mitigating
effect of ACAT on the pre-activations variance is even more
pronounced, as displayed in Table 3.

4.7. ACAT is not Random Regularisation

We employed dropout to test if the improvements obtained
with ACAT are only due to regularization effects that can be
replicated by dropping random parts of the image features.
In particular, we employed dropout with different values
of p on the image features at the same layers where the
attention masks are applied in ACAT. The accuracy obtained
was lower than in the baseline models. In particular, we
obtained 68.71%, 68.36% average accuracy on IST-3 for

Table 3. Variances of the pre-activations of the 7 layers of the
baseline model and of ACAT for original and noised input images.
ACAT makes the model more robust by decreasing these variances

Original inputs Noised inputs
Baseline ACAT Baseline ACAT

σ2,1 0.017 0.035 0.36 0.39
σ2,2 17.68 0.03 33.92 0.97
σ2,3 7.22 0.09 10.14 2.62
σ2,4 0.97 0.04 17.04 2.46
σ2,5 1.91 0.15 336.04 15.28
σ2,6 3.05 0.05 5958.12 11.64
σ2,7 0.23 0.17 831.92 77.98

p = 0.2, 0.6 respectively (vs 71.39% of the baseline) and
53.13%, 58.86% accuracy on MosMed for the same values
of p (vs 67.71% of the baseline). The results suggests that
spatial attention masks obtained from salient features in
ACAT are informative and the results obtained with ACAT
cannot be replicated by random dropping of features.

5. Conclusion
In this work, we proposed a method to employ saliency
maps to improve classification accuracy in two medical
imaging tasks (IST-3 and MosMed) by obtaining soft atten-
tion masks from salient features at different scales. These
attention masks modulate the image features and can cancel
noisy signal coming from them. They are also weighted
by an attention fusion layer in order to better inform the
classification outcome. We investigated the best approach to
generate saliency maps that capture small areas of interest
in low signal-to-noise samples and we presented a way to
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obtain them from adversarially generated counterfactual im-
ages. A possible limitation of our approach is that a baseline
model is needed to compute the attribution masks that are
later employed during the training of our framework. How-
ever, we believe that this approach could still fit in a normal
research pipeline, as simple models are often implemented
as a starting point and for comparison with newly designed
approaches. While our approach has been tested on brain
and lung CT scans, we believe that it can generalise to many
other tasks and we leave further testing for future work.
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A. Data
IST-3 or the Third International Stroke Trial is a randomised-controlled trial that collected brain imaging (predominantly
CT scans) from 3035 patients with stroke symptoms at two time points, immediately after hospital presentation and 24-48
hours later. Among other things, radiologists registered the presence or absence of early ischemic signs. For positive scans,
they also coded the lesion location. For pre-processing, we followed Fontanella et al. (b). In our experiments, we only
employed the labels for the following classes: no lesion, lesion in the left side, lesion in the right side, lesion in both sides
of the brain. 46.31% of the scans we considered are negative and the remaining are positive. In particular, 28.80% have
left lesion, 24.03% right lesion and 0.86% lesion in both sides of the brain. The information related to the more specific
location of the lesion was only employed to test the score of the saliency maps presented in Section 3.2 and never used at
training time. Further information about the trial protocol, data collection and the data use agreement can be found at the
following url: IST-3 information.

MosMed contains anonymised lung CT scans showing signs of viral pneumonia or without such findings, collected from
1110 patients. In particular, 40.4% of the images we conisdered are positive and 59.6% are negative. In a small subset of
the scans, experts from the Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the
Moscow Health Care Department have annotated the regions of interest with a binary mask. However, in our experiments
we didn’t employ these masks. Further information about the dataset can be found in Morozov et al. (2020).

B. Architectures
The MTL model classifies whether a brain scan has a lesion (is positive) or not. If the scan is positive, it also predicts the
side of the lesion (left, right or both). In order to do so, a MTL CNN with 7 convolutional layers and two classification
heads is employed. In the first stage, the CNN considers only half scans (left or right) and processes one slice of each scan
at a time. Then, the extracted features from each side are concatenated and averaged across the slices of each scan, before
reaching the two classification heads. The classification accuracy is computed considering whether the final classification
output identifies the correct class out of the four possible or not. In the ResNet-50 architecture used for the classification of
lung CT scans, we still process one slice at a time and average the slices before the classification layer. In particular, we
performed a binary classification task between scans with with moderate to severe COVID-19 related findings (CT-2, CT-3,
CT-4) and scans without such findings (CT-0). The autoencoder used to reconstruct images has 3 ResNet convolutional
blocks both in the encoder and in the decoder parts, with 3× 3 filters and no bottleneck.

C. Training Details
The baseline models were trained for 200 epochs and then employed, together with an autoencoder trained to reconstruct the
images, to obtain the saliency maps that are needed for our framework. Our framework and the competing methods were
fine-tuned for 100 epochs, starting from the weights of the baseline models. The training procedure of ACAT is summarised
in Algorithm 1.

In the case of IST-3 data, we uniformly sampled 11 slices from each scan and resized each slice to 400× 500, while for
MosMed data we sampled 11 slices per scan and then resized each slice to 128× 128. All the networks were trained using 8
NVIDIA GeForce RTX 2080 GPUs. For each model, we performed three runs with different dataset splits and initialisations,
in order to report average accuracy and standard error. Code to reproduce the experiments can be accessed at at the following
url: ACAT GitHub repository.

Algorithm 1 ACAT training
Data: D = (xi; i = 1, 2, . . . , ND)
Train baseline classification network f and autoencoder D(E) on D
Given E(xj) = zj , minimise: g(z) = L(d(z), t) + α||z − E(xj)||L1

Decode the obtained latent vector to compute the counterfactual D(z′)
Obtain saliency maps Sj from positive and negative counterfactuals
Train ACAT on D using xj and Sj as input
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Table 4. Average test accuracy (and standard error) over 3 runs on the classification of brain (IST-3) when limited training data is available
50 scans 100 scans 200 scans 300 scans 500 scans

Baseline 34.84% (1.10) 33.26% (2.83) 40.45% (2.88) 42.68% (1.66) 63.42% (3.10)
SMIC 37.85% (1.43) 40.77% (2.34) 40.82% (0.58) 47.19% (0.79) 61.84% (0.68)

SalClassNet 35.21% (0.31) 33.70% (0.30) 42.30% (0.99) 45.66% (2.68) 63.92% (2.11)
HSM 32.18% (1.07) 38.93% (1.02) 46.72% (4.16) 47.49% (2.89) 64.36% (1.98)
SpAtt 36.71% (1.05) 34.40% (2.32) 40.43% (0.55) 41.67% (2.54) 62.82% (4.42)
SeAtt 33.70% (0.80) 37.74% (3.30) 38.19% (1.30) 42.30% (0.99) 60.43% (1.89)
ViT 35.68% (0.90) 35.60% (0.90) 36.50% (0.55) 38.01% (1.23) 47.36% (0.65)

ACAT (Ours) 39.81% (1.06) 39.08% (2.37) 46.93% (1.68) 49.55% (2.69) 63.80% (2.74)

D. Limited Data
We study how the performance of the different methods on IST-3 is affected by varying amounts of training data. In Table 4,
we present the average accuracy obtained when 50, 100, 200, 300 or 500 scans are available at training time. SMIC and
HSM obtain the best performance when 100 and 500 scans are available respectively, while ACAT when 50, 200 or 300
images are available.

E. Competing Methods for Saliency-aided Classification
In the saliency-modulated image classification (SMIC) (Flores et al., 2019), the branch that is used to pre-process the
saliency maps has two convolutional layers. For the other implementation details, we follow Flores et al. (2019). For
SalClassNet (Murabito et al., 2018), we tried to follow the original implementation by using the saliency maps generated
with our approach as targets for the saliency branch, since we don’t have the ground-truth saliency maps available, but this
led to poor results. For this reason, rather than generating the saliency maps with the saliency branch, we compute them with
our approach. Then, as in Murabito et al. (2018) we concatenate them with the input images along the channel dimension.
For the hallucination of saliency maps (HSM) approach, following Figueroa-Flores et al. (2020), the saliency detector has
four convolutional layers. In SpAtt we consider a network with only one branch and compute the soft spatial attention
masks directly from the image features, at the same stage of the network where saliency attention masks are computed in
our framework. SeAtt employes self-attention modules from Zhang et al. (2019), which are placed after the third and fifth
convolutional layer in the MTL architecture and after the third and fourth convolutional block in the ResNet-50. For the
Vision Transformer (ViT) we employed 6 transformer blocks with 16 heads in the multi-head attention layer and patch sizes
of 50 and 16 for IST-3 and MosMed data respectively.

F. Failure Modes of Competing Methods for the Generation of Counterfactuals
Following the same notation as before, given an input image xk, with latent space zk = E(xk), Cohen et al. (2021) propose a
method to generate counterfactuals by creating perturbations of the latent space in the following way: zkλ = zk+λ∂f(D(zk))

∂zk ,
where λ is a sample-specific hyperparameter that needs to be found by grid search. These representations can be used to
create λ-shifted versions of the original image: xk

λ = D
(
zkλ

)
. For positive values of λ, the new image xk

λ will produce a
higher prediction, while for negative values of λ, it will produce a lower prediction. Depending on the landscape of the
loss, the latent shift approach may be unsuitable to reach areas close to a local minimum and fail to correctly generate
counterfactuals. The reason is that this method can be interpreted as a one-step gradient-based approach, trying to minimise
the loss of f(D(zk)) with respect to the target probability for the class of interest, with one single step of size λ in latent
space. To solve this issue, we propose an optimisation procedure employing small progressive shifts in latent space, rather
than a single step of size λ from the input image. In this way, the probability of the class of interest converges smoothly to
the target value. Below we show examples of the failure modes of the latent shift method, where the probability of the class
of interest does not converge to the target value, that are fixed by our progressive optimisation. Another issue of the latent
shift method is that it doesn’t introduce a bound on the distance between original and counterfactual images. Therefore, the
generated samples are not always kept on the data manifold and may differ considerably from the original image. To solve
this issue, we add a regularisation term that, limiting the move in latent space, ensures that the changes that we observe can
be attributed to the class shift and the image doesn’t lose important characteristics.
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(a) (b)

(c) Latent shift (d) Ours

Figure 5. Probability of lesion obtained with one step-gradient updates in the latent space (Cohen et al., 2021) for different values of the
step size λ for two samples ((a) and (c)) and with gradient descent minimising Eq. (4) ((b) and (d))

(f) h = −10 (g) h = −3 (h) h = −1 (i) h = −0.1 (j) h = −0.01

Figure 6. In the top panel are shown the probability of lesion obtained with progressive gradient updates in the latent space, with the
step size value fixed to -10 (a), -3 (b), -1 (c), -0.1 (d), -0.01 (e) and no bound on the latent move. In the bottom panel are displayed the
counterfactual examples obtained at the gradient step where p is minimal
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(a) Image (b) Counterfactual (c) Change

Figure 7. Counterfactual example with p = 0.08 generated with our approach (b) and regions of change (c), with respect to the original
image (a), highlighted with a red color map. The regions of change have a good overlap with the area of the lesion indicated in red in (a).

We observed that in several cases, when generating counterfactual examples, the latent shift method is not able to achieve
low values for the probability of the class of interest p. We consider two examples of positive brain scans, for which we
attempt to generate counterfactuals with low probability of lesion according to the classifer f , starting from a probability
close to 1 . We apply one-step gradient updates as in Cohen et al. (2021), starting with the step size value λ = 1e− 5 and
multiplying λ by two at each successive attempt. In Figure 5(a) and (c), we show the probability of lesion as a function of λ
for these two samples. We can observe that the minimum value obtained for p is 0.51 for the first sample and 0.46 for the
second one. On the other hand, by following our approach and minimising Eq. (4) by gradient descent, with target class ‘no
lesion’, p reaches a value lower than 0.2 with 20 gradient updates in both cases and then converges to 0 (Figure 5(b) and (d)).
In these runs we employed a step size of 1. However, different step sizes yield similar results for the probability functions.

For the first sample, we also test a method where we perform small progressive updates of size h in latent space, but without
a bound on the distance between original and counterfactual images. P of the resulting images is shown in Figure 6 for
values of h in {−10,−3,−1,−0.1,−0.01}. With h = −10, h = −3 and partially with h = −1, we are able to reach low
values of p , but the probability function has an unstable behaviour and later starts increasing, rather then converging to 0.
With the other values of h, we are never able to achieve low values of p. The graphs are shown in the top panel of Figure 6.
The counterfactual images obtained at the gradient update steps where p is minimal in these optimisation runs, are showed
in the bottom panel of the same Figure. In all cases, the images largely differ from the original brain scan, displayed in
Figure 7(a) and are not semantically meaningful. On the other hand, with our approach we are able to obtain a credible
counterfactual, displayed in Figure 7(b) , together with its regions of change with respect to the original image 7(c). We can
observe that the regions of change largely overlap with the area of the lesion highlighted in red in Figure 7(a), suggesting
that the counterfactuals generated with our approach are semantically meaningful.

G. Further Evaluation of Saliency Maps
In Section 4.4 we observed how the saliency maps generated with Grad-CAM obtain a poor score. We test if more recent
improvements of the method can have a significant impact on the score obtained. In particular, we considered Grad-CAM++
(Chattopadhay et al., 2018) and Score-CAM (Wang et al., 2020). The former, in order to provide a measure of the importance
of each pixel in a feature map for the classification decision, introduces pixel-wise weighting of the gradients of the output
with respect to a particular spatial position in the final convolutional layer. On the other hand, the latter removes the
dependence on gradients by obtaining the weights of each activation map through a forward passing score for the target class.
We observed that Grad-CAM++ very marginally improves the performance of Grad-CAM (from 11.67% (1.28) to 11.78%
(0.46)), while Score-CAM obtains the worst score with 9.90% (0.78). Finally, we also tested the Integrated Gradient method
(Sundararajan et al., 2017), in which the gradients are integrated between the input image and a baseline image, achieving a
score of 37.52%(4.11). These methods obtain scores that are considerably lower than the ones of adversarial approaches.
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H. IoU and Dice Score of Saliency Maps
We compared the proposed method against competing saliency generation approaches, including the latent shift method and
progressive gradient descent updates but with no reconstruction loss or limitation of the move in the latent space (NoRec).
In particular, we considered 50 test samples in the MosMed dataset for which annotation masks are available and evaluated
the IoU score (Jaccard Index) and the Dice coefficient (F1 score). Following Cohen et al. (2021) and Viviano et al. (2019),
we binarized the saliency maps by setting the pixels in the top p percentile to 1, where p is chosen dynamically depending
on the number of pixels in the ground truth it is being compared to. The results are shown in Table 5. Out of the methods
considered, our approach achieves both the best IoU and Dice coefficient (0.5203 and 0.5372 respectively). NoRec slightly
improves the scores obtained with the latent shift method.

Table 5. Dice coefficient and IoU score computed on 50 test scans on MosMed to compare different saliency generation approaches. Our
approach achieved the best score in both evaluation metrics

IoU Dice
Gradient 0.5022 (0.0005) 0.5071 (0.0009)

Grad-CAM 0.4998 (0.0003) 0.5024 (0.0006)
Latent shift 0.5116 (0.0005) 0.5241 (0.001)

NoRec 0.5138 (0.0022) 0.5260 (0.0008)
Ours 0.5203 (0.001) 0.5372 (0.0012)

I. Sensitivity and Specificity
We performed additional experiments on MosMed, evaluating competing methods with different ways of generating saliency
maps. In particular, we considered SMIC, SalClassNet and HSM with saliency maps generated with the latent shift and
gradient methods. The results are summarised in Table 6. We have also computed sensitivity and specificity for the other
methods considered in the paper, which are displayed in Table 7. Comparing the two tables, we can observe that SMIC with
gradient saliency maps matches the accuracy of SMIC with adversarially generated saliency maps and obtains a worse result
with latent shift saliency maps. SalClassNet and HSM obtain an improvement in accuracy with latent shift saliency map, but
still don’t match the performance of ACAT. In terms of sensitivity and specificity, the results are more mixed and suffer
from generally large error intervals. This is not only caused by the relatively small data size, but also by the fact that in the
different runs, in addition to selecting different initialisations, we also select different data splits. From the second table,
we can observe that ACAT obtains the best accuracy and specificity, while HSM has the best sensitivity. This tendency to
trade-off sensitivity for specificity means that our approach should be preferred in applications where it is important to limit
the number of false positives. On the other hand, when the main focus is on limiting false negatives, other approaches could
be preferred, such as HSM.

To provide some statistics of the results, we consider the six runs that were performed for each method (three runs for each
of the two datasets). Remember that both the initialisation and the dataset split are different in each experiment. 4/6 times
ACAT obtains the best accuracy, while the baseline and HSM both achieve the best performance 1/6 times each.

Table 6. Performance of competing method when employing saliency maps obtained with different approaches
Accuracy Sensitivity Specificity

SMIC – latent shift 68.79% (1.13) 59.26% (5.54) 76.31% (3.28)
SMIC – gradient 69.27% (1.86) 56.41% (6.87) 78.07% (1.90)

SalClassNet – latent shift 66.67% (2.37) 69.23% (3.14) 64.91% (1.89)
SalClassNet – gradient 59.82% (1.06) 57.69% (1.81) 61.40% (1.43)

HSM – latent shift 69.79% (0.42) 61.54% (3.63) 75.44% (2.58)
HSM – gradient 64.06% (3.21) 55.13% (4.56) 70.18% (3.12)
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Table 7. Sensitivity and specificity on MosMed
Accuracy Sensitivity Specificity

Baseline 67.71% (3.48) 73.08% (8.31) 64.03% (11.53)
SMIC 69.27% (1.13) 58.97% (3.77) 76.32% (2.48)

SalClassNet 62.50% (2.66) 52.56% (7.33) 69.30% (3.12)
HSM 67.71% (1.86) 82.05% (2.77) 57.89% (4.96)
SpAtt 66.67% (2.98) 53.85% (7.90) 75.44% (1.43)
SeAtt 67.71% (1.70) 55.13% (9.30) 76.32% (3.72)
ViT 66.67% (2.98) 60.26% (2.77) 71.05% (3.28)

ACAT (Ours) 70.84% (1.53) 55.13% (7.33) 81.58% (5.41)

J. Societal Impact
Several countries are experiencing a lack of radiologists (Dall, 2018) compared to the amount of patients that need care.
This can lead to several undesirable consequences, such as delays in diagnosis and subsequent treatment. Machine learning
tools that automate some clinically relevant tasks and provide assistance to doctors, can lower the workload of physicians
and improve the standard of care. However, many of these are black-box models and require ROI masks, which have to be
annotated by specialists, to be trained. On the other hand, our framework can be trained without ROI annotations, while
still being able to localise the most informative parts of the images. Moreover, the creation of saliency maps is an integral
part of our pipeline. By explaning the inner workings of a neural network, saliency maps can increase trust in the model’s
predictions and support the decisions of clinicians.
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