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Abstract

We consider the problem of decentralized multi-
agent reinforcement learning in Markov games. A
key question is whether there are algorithms that,
when run independently by all agents, lead to no-
regret for each player, analogous to celebrated results
for no-regret learning in normal-form games. While
recent work has shown that such algorithms exist for
restricted settings (e.g., when regret is defined with
respect to deviations to Markov policies), the ques-
tion of whether independent no-regret learning can
be achieved in the standard Markov game framework
was open. We provide a decisive negative resolution
to this problem, both from a computational and
statistical perspective. We show that:

1. Under the assumption that PPAD-hard prob-
lems cannot be solved in polynomial time, there
is no polynomial-time algorithm that attains no-
regret in general-sum Markov games when ex-
ecuted independently by all players, even when
the game is known to the algorithm designer
and the number of players is a small constant.

2. When the game is unknown, no algorithm,
efficient or otherwise, can achieve no-regret
without observing exponentially many
episodes in the number of players.

These results are proven via lower bounds for a sim-
pler problem we refer to as SPARSECCE, in which
the goal is to compute a coarse correlated equilibrium
that is “sparse” in the sense that it can be represented
as a mixture of a small number of product policies.
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1. Introduction
The framework of multi-agent reinforcement learning (MARL),
which describes settings in which multiple agents interact in
a dynamic environment, has played a key role in recent break-
throughs in artificial intelligence, including the development of
agents that approach or surpass human performance in games
such as Go (Silver et al., 2016), Poker (Brown & Sandholm,
2018), Stratego (Perolat et al., 2022), and Diplomacy (Kramár
et al., 2022; Bakhtin et al., 2022). MARL also shows promise
for real-world multi-agent systems, including autonomous
driving (Shalev-Shwartz et al., 2016), and cybersecurity
(Malialis & Kudenko, 2015), and economic policy (Zheng
et al., 2022). These applications, where reliability is critical,
necessitate the development of algorithms that are practical and
efficient, yet provide strong formal guarantees and robustness.

Multi-agent reinforcement learning is typically studied using the
framework of Markov games (also known as stochastic games)
(Shapley, 1953). In a Markov game, agents interact over a finite
number of steps: at each step, each agent observes the state
of the environment, takes an action, and observes a reward
which depends on the current state as well as the other agents’
actions. Then the environment transitions to a new state as a
function of the current state and the actions taken. An episode
consists of a finite number of such steps, and agents interact
over the course of multiple episodes, progressively learning new
information about their environment. Markov games generalize
the well-known model of Markov Decision Processes (MDPs)
(Puterman, 1994), which describe the special case in which
there is a single agent acting in a dynamic environment, and we
wish to find a policy that maximizes its reward. By contrast,
for Markov games, we typically aim to find a distribution over
agents’ policies which constitutes some type of equilibrium.

1.1. Decentralized learning

In this paper, we focus on the problem of decentralized (or,
independent) learning in Markov games. In decentralized
MARL, each agent in the Markov game behaves independently,
optimizing their policy myopically while treating the effects of
the other agents as exogenous. Agents observe local informa-
tion (in particular, their own actions and rewards), but do not
observe the actions of the other agents directly. Decentralized
learning enjoys a number of desirable properties, including
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scalability, versatility, and practicality. The central question
we consider is whether there exist decentralized learning
algorithms which, when employed by all agents in a Markov
game, lead them to play near-equilibrium strategies over time.

Decentralized equilibrium computation in MARL is not well
understood theoretically, and algorithms with provable guar-
antees are scarce. To motivate the challenges and most salient
issues, it will be helpful to contrast with the simpler problem
of decentralized learning in normal-form games, which may be
interpreted as Markov games with a single state. Much of the
modern work on decentralized learning in normal-form games
centers on no-regret learning, where agents select actions
independently using online learning algorithms (Cesa-Bianchi
& Lugosi, 2006) designed to minimize their regret (that is, the
gap between realized payoffs and the payoff of the best fixed
action in hindsight). In particular, a foundational result is that
if each agent employs a no-regret learning strategy, then the
average of the agents’ joint action distributions approaches a
coarse correlated equilibrium (CCE) for the normal-form game
(Cesa-Bianchi & Lugosi, 2006; Hannan, 1957; Blackwell,
1956). CCE is a natural relaxation of the foundational concept
of Nash equilibrium, which has the downside of being
intractable to compute. On the other hand, there are many
efficient algorithms that can achieve vanishing regret in a
normal-form game, even when opponents select their actions in
an arbitrary, potentially adaptive fashion, and thus converge to a
CCE (Vovk, 1990; Littlestone & Warmuth, 1994; Cesa-Bianchi
et al., 1997; Hart & Mas-Colell, 2000; Syrgkanis et al., 2015).

This simple connection between no-regret learning and
decentralized convergence to equilibria has been influential in
game theory, leading to numerous lines of research including
fast rates of convergence to equilibria (Syrgkanis et al., 2015;
Chen & Peng, 2020; Daskalakis et al., 2021; Anagnostides
et al., 2022), price of anarchy bounds for smooth games
(Roughgarden, 2015), and lower bounds on query and com-
munication complexity for equilibrium computation (Fearnley
et al., 2013; Rubinstein, 2016; Babichenko & Rubinstein,
2017). Empirically, no-regret algorithms such as regret
matching (Hart & Mas-Colell, 2000) and Hedge (Vovk, 1990;
Littlestone & Warmuth, 1994; Cesa-Bianchi et al., 1997) have
been used to compute equilibria that can achieve state-of-the-art
performance in application domains such as Poker (Brown
& Sandholm, 2018) and Diplomacy (Bakhtin et al., 2022).
Motivated by these successes, we ask whether an analogous
theory can be developed for Markov games. In particular:

Are there efficient algorithms
for no-regret learning in Markov games?

Challenges for no-regret learning. In spite of active research
effort and many promising pieces of progress (Jin et al., 2021;
Song et al., 2022; Mao & Basar, 2021; Daskalakis et al., 2022;
Erez et al., 2022), no-regret learning guarantees for Markov
games have been elusive. A barrier faced by naive algorithms

is that it is intractable to ensure no-regret against an arbitrary
adversary, both computationally (Bai et al., 2020; Abbasi Yad-
kori et al., 2013) and statistically (Liu et al., 2022; Kwon et al.,
2021; Foster et al., 2022). Fortunately, many of the implications
of no-regret learning (in particular, convergence to equilibria)
do not require the algorithm to have sublinear regret against an
arbitrary adversary, but rather only against other agents who are
running the same algorithm independently. This observation
has been influential in normal-form games, where the line of
work on fast rates of convergence to equilibrium (Syrgkanis
et al., 2015; Chen & Peng, 2020; Daskalakis et al., 2021; Anag-
nostides et al., 2022) holds only in this more restrictive setting.
This motivates the following relaxation to our central question.

Problem 1.1. Is there an efficient algorithm that, when
adopted by all agents in a Markov game and run independently,
leads to sublinear regret for each individual agent?

Attempts to address Problem 1.1. Two recent lines of research
have made progress toward addressing Problem 1.1 and related
questions. In one direction, several recent papers have provided
algorithms, including V-learning (Jin et al., 2021; Song
et al., 2022; Mao & Basar, 2021) and SPoCMAR (Daskalakis
et al., 2022), that do not achieve no-regret, but can nevertheless
compute and then sample from a coarse correlated equilibrium
in a Markov game in a (mostly) decentralized fashion, with
the caveat that they require a shared source of random bits as a
mechanism to coordinate. Notably, V-learning depends only
mildly on the shared randomness: agents first play policies in
a fully independent fashion (i.e., without shared randomness)
according to a simple learning algorithm for T episodes, and
use shared random bits only once learning finishes as part of a
post-processing procedure to extract a CCE policy. A question
left open by these works, is whether the sequence of policies
played by the V-learning algorithm in the initial independent
phase can itself guarantee each agent sublinear regret.

Most closely related to our work, Erez et al. (2022) recently
showed that Problem 1.1 can be solved positively for a restricted
setting in which regret for each agent is defined as the maximum
gain in value they can achieve by deviating to a fixed Markov
policy. Markov policies are those whose choice of action de-
pends only on the current state as opposed to the entire history
of interaction. This notion of deviation is restrictive because in
general, even when the opponent plays a sequence of Markov
policies, the best response will be non-Markov. In challeng-
ing settings that abound in practice, it is standard to consider
non-Markov policies (Leibo et al., 2021; Agapiou et al., 2022),
since they often achieve higher value than Markov policies; we
provide a simple example in Proposition B.1. Thus, while a
regret guarantee with respect to the class of Markov policies
(as in (Erez et al., 2022)) is certainly interesting, it may be too
weak in general, and it is of great interest to understand whether
Problem 1.1 can be answered positively in the general setting.1

1We remark that the V-learning and SPoCMAR algorithms
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We refer the reader to Appendix B.2 for further discussion.

1.2. Our contributions

We resolve Problem 1.1 in the negative, from both a
computational and statistical perspective.

Computational hardness. We provide two computational
lower bounds (Theorems 1.2 and 1.3) which show that under
standard complexity-theoretic assumptions, there is no efficient
algorithm that runs for a polynomial number of episodes and
guarantees each agent non-trivial (“sublinear”) regret when
used in tandem by all agents. Both results hold even if the
Markov game is explicitly known to the algorithm designer;
Theorem 1.3 is stronger and more general, but applies only to
3-player games, while Theorem 1.2 applies to 2-player games,
but only for agents restricted to playing Markovian policies.

To state our first result, Theorem 1.2, we define a product
Markov policy to be a joint policy in which players choose
their actions independently according to Markov policies
(see Sections 2 and 3 for formal definitions). Note that if all
players use independent no-regret algorithms to choose Markov
policies at each episode, then their joint play at each round is
described by a product Markov policy, since any randomness
in each player’s policy must be generated independently.
Theorem 1.2 (Informal version of Corollary 3.3). If PPAD‰P,
then there is no polynomial-time algorithm that, given the
description of a 2-player Markov game, outputs a sequence
of joint product Markov policies which guarantees each agent
sublinear regret.

Theorem 1.2 provides a decisive negative resolution to Problem
1.1 under the assumption that PPAD‰P,2 which is standard in
the theory of computational complexity (Papadimitriou, 1994).3

Beyond simply ruling out the existence of fully decentralized
no-regret algorithms, it rules out existence of centralized algo-
rithms that compute a sequence of product policies for which
each agent has sublinear regret, even if such a sequence does not
arise naturally as the result of agents independently following
some learning algorithm. Salient implications include:

• Theorem 1.2 provides a separation between Markov
games and normal-form games, since standard no-regret
algorithms for normal-form games i) run in polynomial

mentioned above do learn equilibria that are robust to deviations to
non-Markov policies, though they do not address Problem 1.1 since
they do not have sublinear regret.

2Technically, the class we are denoting by P, namely of total
search problems that have a deterministic polynomial-time algorithm,
is sometimes denoted by FP, as it is a search problem. We ignore
this distinction.

3PPAD is the most well-studied complexity class in algorithmic
game theory, and is widely believed to not admit polynomial time
algorithms. Notably, the problem of computing a Nash equilibrium
for normal-form games with two or more players is PPAD-complete
(Daskalakis et al., 2009; Chen et al., 2006; Rubinstein, 2018).

time and ii) produce sequences of joint product policies
that guarantee each agent sublinear regret. Notably,
no-regret learning for normal-form games is efficient
whenever the number of agents is polynomial, whereas
Theorem 1.2 rules out polynomial-time algorithms for
as few as two agents.

• A question left open by the work of Jin et al. (2021); Song
et al. (2022); Mao & Basar (2021) was whether the se-
quence of policies played by the V-learning algorithm
during its independent learning phase can guarantee each
agent sublinear regret. Since V-learning plays product
Markov policies during the independent phase and is com-
putationally efficient, Theorem 1.2 implies that these poli-
cies do not enjoy sublinear regret (assuming PPAD‰P).

Our second result, Theorem 1.3, extends the guarantee of
Theorem 1.2 to the more general setting in which agents
can select arbitrary, potentially non-Markovian policies at
each episode. This comes at the cost of only providing
hardness for 3-player games as opposed to 2-player games, as
well as relying on the slightly stronger complexity-theoretic
assumption that PPADĘRP.4

Theorem 1.3 (Informal version of Corollary 4.4). If
PPADĘRP, then there is no polynomial-time algorithm that,
given the description of a 3-player Markov game, outputs a
sequence of joint product general policies (i.e., potentially
non-Markov) which guarantees each agent sublinear regret.

Statistical hardness. Theorems 1.2 and 1.3 rely on the widely-
believed complexity theoretic assumption that PPAD-complete
problems cannot be solved in (randomized) polynomial time.
Such a restriction is inherent if we assume that the game is
known to the algorithm designer. To avoid complexity-theoretic
assumptions, we consider a setting in which the Markov game
is unknown to the algorithm designer, and algorithms must
learn about the game by executing policies (“querying”) and
observing the resulting sequences of states, actions, and rewards.
Our final result, Theorem 1.4, shows unconditionally that, for
m-player Markov games whose parameters are unknown, any
algorithm computing a no-regret sequence as in Theorem 1.3
requires a number of queries that is exponential inm.

Theorem 1.4 (Informal version of Theorem 5.2). Given
query access to a m-player Markov game, no algorithm that
makes fewer than 2Ωpmq queries can output a sequence of joint
product policies which guarantees each agent sublinear regret.

Similar to our computational lower bounds, Theorem 1.4
goes far beyond decentralized algorithms, and rules out even
centralized algorithms that compute a no-regret sequence by
jointly controlling all players. The result provides another

4We use RP to denote the class of total search problems for which
there exists a polynomial-time randomized algorithm which outputs
a solution with probability at least 2{3, and otherwise outputs “fail”.
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separation between Markov games and normal-form games,
since standard no-regret algorithms for normal-form games
can achieve sublinear regret using polypmq queries for anym.
The 2Ωpmq scaling in the lower bound, which does not rule out
query-efficient algorithms whenm is constant, is to be expected
for an unconditional result: If the game has only polynomially
many parameters (which is the case for constantm), one can
estimate all of the parameters using standard techniques (Jin
et al., 2020), then directly find a no-regret sequence.

Proof techniques: the SPARSECCE problem. Our proofs
proceed via establishing lower bounds for a computational
problem we refer to as SPARSECCE. In the SPARSECCE
problem, the aim is to compute a CCE that can be represented
as the mixture of a small number of product policies. See
Sections 3 and 4 for detailed proof overview.

Organization. Section 2 presents preliminaries, Sections 3
and 4 provide our computational lower bounds, and Section 5
presents our unconditional lower bounds for multi-player
games.

Notation. For nPN, we write rns :“t1,2,...,nu. For a finite set
T , ∆pT q denotes the space of distributions on T . For an ele-
ment tPT , ItP∆pT q denotes the delta distribution that places
probability mass 1 on t. We adopt standard big-oh notation, and
write f “ rOpgq to denote that f “Opg ¨maxt1,polylogpgquq,
with Ωp¨q and rΩp¨q defined analogously.

2. Preliminaries
This section contains preliminaries necessary to present our
main results. We first introduce the Markov game framework
(Section 2.1), then provide a brief review of normal-form games
(Section 2.3), and finally introduce the concepts of coarse
correlated equilibria and regret minimization (Section 2.4).

2.1. Markov games

We consider general-sum Markov games in a finite-horizon,
episodic framework. FormPN, anm-player Markov game G
consists of a tuple G“pS,H,pAiqiPrms,P,pRiqiPrms,µq, where:

• S denotes a finite state space andH PN denotes a finite
time horizon. We write S :“|S|.

• For iP rms, Ai denotes a finite action space for agent i.
We let A :“

śm
i“1Ai denote the joint action space and

A´i :“
ś

i1‰iAi1 . We denote joint actions in bold, e.g.,
a“pa1,...,amqPA. We writeAi :“|Ai| andA :“|A|.

• P “ pP1, ... , PHq is the transition kernel, with each
Ph :SˆAÑ∆pSq denoting the kernel for step hPrHs.
In particular, Phps1|s,aq is the probability of transitioning
to s1 from the state s at step h when agents play a.

• For i P rms and h P rHs, Ri,h : SˆAÑr´1{H,1{Hs

is the reward function for agent i:5 the reward agent i
receives in state s at step h if agents play a isRi,hps,aq.6

• µP∆pSq denotes the initial state distribution.

An episode in the Markov game proceeds as follows: the
initial state s1 is drawn from the initial state distribution
µ. Then, for each h ď H, given state sh, each agent i
plays action ai,h P Ai, and given the joint action profile
ah “ pa1,h, ... , am,hq, each agent i receives reward of
ri,h “ Ri,hpsh,ahq and the state of the system transitions
to sh`1 „ Php¨|sh,ahq. We denote the tuple of agents’
rewards at each step h by rh “ pr1,h,...,rm,hq, and refer to
the resulting sequence τH :“ps1,a1,r1q,...,psH,aH,rHq as a
trajectory. For hPrHs, we define the prefix of the trajectory
via τh :“ps1,a1,r1q,...,psh,ah,rhq.

We use the following notation: for some quantity x (e.g., action,
reward, etc.) indexed by agents, i.e., x“px1,...,xmq, and an
agent i P rms, we write x´i “ px1,...,xi´1,xi`1,...,xmq to
denote the tuple consisting of all xi1 for i1‰i.

2.2. Policies and value functions

We now introduce the notion of policies and value functions
for Markov games. Policies are mappings from states (or
sequences of states) to actions for the agents. We consider
several different types of policies, which play a crucial role
in distinguishing the types of equilibria that are tractable and
those that are intractable to compute efficiently.

Markov policies. A randomized Markov policy for agent i is
a sequence σi“pσi,1,...,σi,Hq, where σi,h :SÑ∆pAiq. We
denote the space of randomized Markov policies for agent i
by Πmarkov

i . We write Πmarkov :“Πmarkov
1 ˆ¨¨¨ˆΠmarkov

m to
denote the space of product Markov policies, which are joint
policies in which each agent i independently follows a policy
in Πmarkov

i . In particular, a policy σPΠmarkov is specified by
a collection σ“ pσ1,...,σHq, where σh : SÑ∆pA1qˆ¨¨¨ˆ

∆pAmq. We additionally define Πmarkov
´i :“

ś

i1‰iΠ
markov
i1 ,

and for a policy σ PΠmarkov, write σ´i to denote the collec-
tion of mappings σ´i“pσ´i,1,...,σ´i,Hq, where σ´i,h :SÑ
ś

i1‰i∆pAi1q denotes the tuple of all but player i’s policies.

When the Markov game G is clear from context, for a policy
σ P Πmarkov we let Pσr¨s denote the law of the trajectory τ
when players select actions via ah „ σpshq, and let Eσr¨s
denote the corresponding expectation.

General (non-Markov) policies. In addition to Markov poli-
cies, we will consider general history-dependent (or, non-

5We assume that rewards lie in r´1{H,1{Hs for notational
convenience, as this ensures that the cumulative reward for each
episode lies in r´1,1s. This assumption is not important to our results.

6We restrict our attention to Markov games in which the rewards
at each step are a deterministic function of the state and action profile.
Since our goal is to prove lower bounds, this is without loss.
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Markov) policies, which select actions based on the en-
tire sequence of states and actions observed up the cur-
rent step. To streamline notation, for i P rms, let τi,h “
ps1,ai,1,ri,1,...,sh,ai,h,ri,hq denote the history of agent i’s
states, actions, and reward up to step h. Let Hi,h“pSˆAiˆ
r0,1sqh denote the space of all possible histories of agent i up
to step h. For iPrms, a randomized general (i.e., non-Markov)
policy of agent i is a collection of mappings σi“pσi,1,...,σi,Hq
where σi,h :Hi,h´1ˆSÑ∆pAiq is a mapping that takes the
history observed by agent i up to step h´1 and the current
state and outputs a distribution over actions for agent i.

We denote by Πgen,rnd
i the space of random-

ized general policies of agent i, and further write
Πgen,rnd :“ Πgen,rnd

1 ˆ ¨¨¨ ˆ Πgen,rnd
m to denote the

space of product general policies; note that Πmarkov
i ĂΠgen,rnd

i

and Πmarkov ĂΠgen,rnd. In particular, a policy σ PΠgen,rnd

is specicfied by a collection pσi,hqiPrms,hPrHs, where
σi,h : Hi,h´1ˆSÑ∆pAiq. When agents play according to
a general policy σPΠgen,rnd, at each step h, each agent, given
the current state sh and their history τi,h´1PHi,h´1, chooses
to play an action ai,h„ σi,hpτi,h´1,shq, independently from
all other agents. For a policy σ PΠgen,rnd, we let Pσr¨s and
Eσr¨s denote the law and expectation operator for the trajectory
τ when players select actions via ah„σpτh´1,shq, and write
σ´i to denote the collection of policies of all agents but i, i.e.,
σ´i“pσj,hqhPrHs,jPrmsztiu.

We will also consider distributions over product randomized
general policies, namely elements of ∆pΠgen,rndq.7 We will
refer to elements of ∆pΠgen,rndq as distributional policies. To
play a distributional policy P P∆pΠgen,rndq, agents draw a
randomized policy σ„P (so that σPΠgen,rnd) and then play σ.

Value functions. For a general policy σ P Πgen,rnd,
we define the value function for agent i P rms as
V σi :“ Eσ

”

řH
h“1Ri,hpsh,ahq |s1„µ

ı

; this represents
the expected reward that agent i receives when each agent
chooses their actions via ai,h „ σhpτi,h´1, shq. For a
distributional policy P P∆pΠgen,rndq, we extend this notation
by defining V Pi :“Eσ„P rV σi s.

2.3. Normal-form games

To motivate the solution concepts we consider for Markov
games, let us first revisit the notion of normal-form games,
which may be interpreted as Markov games with a single
state. For m, n P N, an m-player n-action normal-form
game G is specified by a tuple of m reward tensors
M1,...,Mm P r0,1s

nˆ¨¨¨ˆn, where each tensor is of order m
(i.e., has nm entries). We will writeG“pM1,...,Mmq. We as-
sume for simplicity that each player has the same number n of
actions, and identify each player’s action space with rns. Then

7When T is not a finite set, we take ∆pT q to be the set of Radon
probability measures over T equipped with the Borel σ-algebra.

an an action profile is specified by aPrnsm; if each player acts
according to a, then the reward for player iPrms is given by
pMiqaPr0,1s. Our hardness results will use the standard notion
of Nash equilibrium in normal-form games. We define them-
player pn,εq-NASH problem to be the problem of computing an
ε-approximate Nash equilibrium of a givenm-player n-action
normal-form game. (See Definition C.2 for a formal definition
of ε-Nash equilibrium.) A celebrated result is that Nash
equilibria are PPAD-hard to approximate, i.e., the 2-player
pn,n´cq-NASH problem is PPAD-hard for any constant cą0
(Daskalakis et al., 2009; Chen et al., 2006). We refer the reader
to Section C.2 for further background on these concepts.

2.4. Markov games: Equilibria and no-regret

We now turn our focus back to Markov games, and introduce
the main solution concepts we consider, as well as the notion
of no-regret. Since computing Nash equilibria is intractable
even for normal-form games, much of the work on efficient
equilibrium computation has focused on alternative notions
of equilibrium, notably coarse correlated equilibria.

For a distributional policy P P∆pΠgen,rndq and a randomized
policy σ1iPΠgen,rnd

i of player i, we let σ1iˆP´iP∆pΠgen,rndq

denote the distributional policy which is given by the distri-
bution of pσ1i,σ´iqPΠgen,rnd for σ„P (and σ´i denotes the
marginal of σ on all players but i). For σPΠgen,rnd, we write
σ1iˆσ´i to denote the policy given by pσ1i,σ´iqPΠgen,rnd. Let
us fix a Markov game G, which in particular determines the
players’ value functions V σi .

Definition 2.1 (Coarse correlated equilibrium). For ε ą 0,
a distributional policy P P ∆pΠgen,rndq is defined to be an
ε-coarse correlated equilibrium (CCE) if for each i P rms, it
holds that maxσ1iPΠ

gen,rnd
i

V
σ1iˆP´i

i ´V Pi ďε.

Coarse correlated equilibria can be computed efficiently
for both normal-form games and Markov games, and are
fundamentally connected to the notion of no-regret and
independent learning, which we now introduce.

Regret. For a policy σPΠgen,rnd, we denote the distributional
policy which puts all its mass on σ by Iσ P∆pΠgen,rndq. Thus
1
T

řT
t“1Iσptq P∆pΠgen,rndq denotes the distributional policy

which randomizes uniformly over the σptq. We define regret
as follows.

Definition 2.2 (Regret). Consider a sequence of policies
σp1q,...,σpTq PΠgen,rnd. For iPrms, the regret of agent i with
respect to this sequence is defined as:

Regi,T pσ
p1q,...,σpTqq“ max

σiPΠ
gen,rnd
i

T
ÿ

t“1

V
σiˆσ

ptq
´i

i ´V σ
ptq

i . (1)

It is immediate from the above definitions that a sequence of
policies σp1q,...,σpTqPΠgen,rnd satisfies Regi,tpσ

p1q,...,σpTqqď
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ε ¨T if and only if the distributional policy σ :“ 1
T

řT
t“1Iσptq

is an ε-CCE (stated formally in Fact C.1 in the appendix).

No-regret learning. A standard approach to decentralized
equilibrium computation, which exploits Fact C.1, is to
select σp1q, ... , σpTq P Πgen,rnd using independent no-regret
learning algorithms. A no-regret learning algorithm for player
i selects σptqi P Πgen,rnd

i based on the realized trajectories
τ p1qi,H,...,τ

pt´1q

i,H PHi,H that player i observes over the course of
play,8 but with no knowledge of σptq´i, so as to ensure that no-
regret is achieved: Regi,T pσ

p1q,...,σpTqqďε¨T . If each player
i uses their own, independent no-regret learning algorithm, this
approach yields product policies σptq“σptq1 ˆ¨¨¨ˆσ

ptq
m , and the

uniform average of the σptq yields a CCE as long as all of the
players can keep their regret small.9

For the special case of normal-form games, there are several
efficient algorithms, which—when run independently—ensure
that each player’s regret after T episodes is bounded above by
Op
?
Tq (that is ε“Op1{

?
Tq), even when the other players’

actions are chosen adversarially.

3. Lower bound for Markovian algorithms
In this section we prove Theorem 1.2 (restated formally below
as Theorem 3.2), establishing that in two-player Markov games,
there is no computationally efficient algorithm that computes a
sequence σp1q,...,σpTq of product Markov policies so that each
player has small regret under this sequence. This section serves
as a warm-up for our results in Section 4, which remove the
assumption that σp1q,...,σpTq are Markovian.

3.1. SPARSEMARKOVCCE and computational model

As discussed in the introduction, our lower bounds for no-regret
learning are a consequence of lower bounds for the SPAR-
SECCE problem. In what follows, we formalize this problem
(specifically, the Markovian variant, which we refer to as
SPARSEMARKOVCCE), as well as our computational model.

Description length for Markov games (constantm). Given
a Markov game G, we let βpGq denote the maximum number
of bits needed to describe any of the rewards Ri,hps,aq or
transition probabilities Phps1|s, aq in binary.10 We define
|G| :“maxtS,maxiPrmsAi,H,βpGqu. The interpretation of
|G| depends on the number of players m: If m is a constant
(as will be the case in the current section and Section 4), then

8An alternative model allows for player i to have knowledge of
the previous joint policies σp1q,...,σpt´1q, when selecting σptqi .

9In Appendix B, we discuss the implications of relaxing the
stipulation that σptq be product policies (for example, by allowing the
use of shared randomness, as in V-learning). In short, allowing σptq

to be non-product essentially trivializes the problem.
10We emphasize that βpGq is defined as the maximum number of

bits required by any particular ps,aq pair, not the total number of bits
required for all ps,aq pairs.

|G| should be interpreted as the description length of the game
G, up to polynomial factors. In particular, for constantm, the
game G can be described using |G|Op1q bits. In Section 5, we
discuss the interpretation of |G| whenm is large.

The SPARSEMARKOVCCE problem. From Fact C.1, we
know that the problem of computing a sequence σp1q,...,σpTq of
joint product Markov policies for which each player has at most
ε¨T regret is equivalent to computing a sequence σp1q,...,σpTq

for which the uniform mixture forms an ε-approximate CCE.
We define pT,εq-SPARSEMARKOVCCE as the computational
problem of computing such a CCE directly.
Definition 3.1 (SPARSEMARKOVCCE problem). For
an m-player Markov game G and parameters T P N and
ε ą 0 (which may depend on the size of the game G),
pT, εq-SPARSEMARKOVCCE is the problem of finding a
sequence σp1q, ... ,σpTq, with each σptq P Πmarkov, such that
the distributional policy σ “ 1

T

řT
t“1 Iσptq P ∆pΠgen,rndq is

an ε-CCE of G (or equivalently, such that for all i P rms,
Regi,T pσ

p1q,...,σpTqqďε¨T ).

Decentralized learning algorithms naturally lead to solutions
to the SPARSEMARKOVCCE problem. In particular, consider
any decentralized protocol which runs for T episodes, where
at each timestep tPrT s, each player iPrms chooses a Markov
policy σptqi PΠmarkov

i to play, without knowledge of the other
players’ policies σptq´i (but possibly using the history); any
strategy in which players independently run online learning
algorithms falls under this protocol. If each player experiences
overall regret at most ε ¨ T , then the sequence σp1q, ... ,σpTq

is a solution to the pT, εq-SPARSEMARKOVCCE problem.
However, one might expect the pT,εq-SPARSEMARKOVCCE
problem to be much easier than decentralized learning, since it
allows for algorithms that produce pσp1q,...,σpTqq satisfying the
constraints of Definition 3.1 in a centralized manner. The main
result of this section, Theorem 3.2, rules out the existence of
any efficient algorithms, including centralized ones, that solve
the SPARSEMARKOVCCE problem.

Before moving on, let us give a sense for what sort of scaling
one should expect for the parameters T and ε in the pT,εq-
SPARSEMARKOVCCE problem. First, we note that there al-
ways exists a solution to the p1,0q-SPARSEMARKOVCCE prob-
lem in a Markov game, which is given by a (Markov) Nash equi-
librium of the game; of course, Nash equilibria are intractable
to compute in general.11 For the special case of normal-form
games (where there is only a single state, andH“1), no-regret
learning (e.g., Hedge) yields a computationally efficient so-
lution to the pT,rOp1{

?
Tqq-SPARSEMARKOVCCE problem,

where the rOp¨q hides a maxi log|Ai| factor. Refined conver-
gence guarantees of Daskalakis et al. (2021); Anagnostides et al.
(2022) improve upon this result, and yield an efficient solution

11Such a Nash equilibrium can be seen to exist by using backwards
induction to specify the player’s joint distribution of play at each state
at stepsH,H´1,...,1.
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to the pT,rOp1{Tqq-SPARSEMARKOVCCE problem.

3.2. Main result

Theorem 3.2. There is a constant C0ą1 so that the following
holds. Let nPN be given, and let T PN and εą0 satisfy T ă
exppε2¨n1{2{25q. Suppose there is an algorithm that, given the
description of any 2-player Markov game G with |G|ďn, solves
the pT,εq-SPARSEMARKOVCCE problem in time U , for some
U PN. Then, for each nPN, the 2-player ptn1{2u,4¨εq-NASH
problem (Definition C.2) can be solved in time pnTUqC0 .

We emphasize that the range T ă exppnOp1qq ruled out by
Theorem 3.2 is the most natural parameter regime, since the
runtime of any decentralized algorithm which runs for T
episodes and produces a solution to the SPARSEMARKOVCCE
problem is at least linear in T . Using that 2-player pn,εq-NASH
is PPAD-complete for ε “ n´c (for any c ą 0) (Daskalakis
et al., 2009; Chen et al., 2006; Rubinstein, 2018), we obtain
the following corollary.

Corollary 3.3 (SPARSEMARKOVCCE is PPAD-complete).
For any constant C ą 4, if there is an algorithm which,
given the description of a 2-player Markov game G, solves
the p|G|C, |G|´ 1

C q-SPARSEMARKOVCCE problem in time
polyp|G|q, then PPAD“P.

The condition C ą 4 in Corollary 3.3 is set to ensure that
|G|Căexpp|G|´2{C ¨

a

|G|{26q for sufficiently large |G|, so as
to satisfy the condition of Theorem 3.2. Corollary 3.3 rules out
the existence of a polynomial-time algorithm that solves the
SPARSEMARKOVCCE problem with accuracy ε polynomially
small and T polynomially large in |G|.

Proof overview. The proof of Theorem 3.2 is based on a reduc-
tion, which shows that any algorithm that efficiently solves the
pT,εq-SPARSEMARKOVCCE problem, for T not too large, can
be used to efficiently compute an approximate Nash equilib-
rium of any given normal-form game. In particular, fix n0PN,
and let a 2-player normal form gameGwithn0 actions be given.
We construct a Markov game G“GpGqwith horizonH“n0

and action sets identical to those of the gameG, i.e.,A1“A2“

rn0s. The state space of G consists n2
0 states, which are indexed

by joint action profiles; the transitions are defined so that the
value of the state at steph encodes the action profile taken by the
agents at step h´1.12 At each state of G, the reward functions
are given by the payoff matrices ofG, scaled down by a factor
of 1{H (which ensures that the rewards received at each step be-
long to r0,1{Hs). In particular, the rewards and transitions out
of a given state do not depend on the identity of the state, and
so G can be thought of as a repeated game whereG is played
H times. The formal definition of G is given in Definition D.3.

Fix any algorithm for the SPARSEMARKOVCCE prob-

12For technical reasons, this only is the case for even values of h;
we discuss further details in the full proof in Section D.2.

lem, and recall that for each step h and state s for G,
σptqh psqP∆pA1qˆ∆pA2q denotes the joint action distribution
taken in s at step h for the sequence of σp1q,...,σpTq produced
by the algorithm. The bulk of the proof of Theorem 3.2 consists
of proving a key technical result, Lemma D.4, which states
that if σp1q,...,σpTq indeed solves pT,εq-SPARSEMARKOVCCE,
then there exists some tuple ph,s,tq such that σptqh psq is an
approximate Nash equilibrium for G. With this established,
it follows that we can find a Nash equilibrium efficiently by
simply trying allHST choices for ph,s,tq.

To prove Lemma D.4, we reason as follows. Assume that
σ :“ 1

T

řT
t“1Iσptq P∆pΠgen,rndq is an ε-CCE. If, by contra-

diction, none of the distributions
 

σptqh psq
(

hPrHs,sPS,tPrT s are
approximate Nash equilibria for G, then it must be the case
that for each t, one of the players has a profitable deviation
in G with respect to the product strategy σptqh psq, at least for
a constant fraction of the tuples ps,hq. We will argue that
if this were to be the case, it would imply that there exists
a non-Markov deviation policy for at least one player i in
Definition 2.1, meaning that σ is not in fact an ε-CCE.

To sketch the idea, recall that to draw a trajectory from σ, we
first draw a random index t‹„rT s uniformly at random, and
then execute σpt‹q for an episode. We will show (roughly)
that for each player i, it is possible to compute a non-Markov
deviation policy π:i which, under the draw of a trajectory from
σ, can “infer” the value of the index t‹ within the first few steps
of the episode. Then policy π:i then, at each state s and step h
after the first few steps, play a best response to their opponent’s
portion of the strategy σpt

‹q

h psq. If, for each possible value of
t‹, none of the distributions σpt

‹q

h psq are approximate Nash
equilibria ofG, this means that at least one of the players i can
significantly increase their value in G over that of σ by playing
π:i , which contradicts the assumption that σ is an ε-CCE.

It remains to explain how we can construct a non-Markov pol-
icy π:i which “infers” the value of t‹. Unfortunately, exactly
inferring the value of t‹ in the fashion described above is impos-
sible: for instance, if there are t1‰t2 so that σpt1q“σpt2q, then
clearly it is impossible to distinguish between the cases t‹“t1
and t‹“t2. Nevertheless, by using the fact that each player ob-
serves the full joint action profile played at each step h, we can
construct a non-Markov policy which employs Vovk’s aggregat-
ing algorithm for online density estimation (Vovk, 1990; Cesa-
Bianchi & Lugosi, 2006) in order to compute a distribution
which is close to σpt

‹q

h psq for most hPrHs.13 This guarantee is
stated formally in an abstract setting in Proposition D.2, and is
instantiated in the proof of Theorem 3.2 in ((5)). As we show in
Section D.2, approximating σpt

‹q

h psq as we have described is suf-
ficient to carry out the reasoning from the previous paragraph.

13Vovk’s aggregating algorithm is essentially the exponential
weights algorithm with the logarithmic loss. A detailed background
for the algorithm is provided in Section D.1.
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4. Lower bound for non-Markov algorithms
In this section, we prove Theorem 1.3 (restated formally
below as Theorem 4.3), which strengthens Theorem 3.2 by
allowing the sequence σp1q,...,σpTq of product policies to be
non-Markovian. This additional strength comes at the cost of
our lower bound only applying to 3-player Markov games (as
opposed to Theorem 3.2, which applied to 2-player games).

4.1. SPARSECCE problem and computational model

To formalize the computational model for the SPARSECCE
problem, we must first describe how the non-Markov product
policies σptq “ pσptq1 , ... ,σ

ptq
m q are represented. Recall that a

non-Markov policy σptqi PΠgen,rnd
i is, by definition, a mapping

from agent i’s history and current state to a distribution over
their next action. Since there are exponentially many possible
histories, it is information-theoretically impossible to express
an arbitrary policy in Πgen,rnd

i with polynomially many bits.
As our focus is on computing a sequence of such policies σptq

in polynomial time, certainly a prerequisite is that σptq can be
expressed in polynomial space. Thus, we adopt the represen-
tational assumption, stated formally in Definition 4.1, that each
of the policies σptqi PΠgen,rnd

i is described by a bounded-size
circuit that can compute the conditional distribution of each
next action given the history. This assumption is satisfied
by essentially all empirical and theoretical work concerning
non-Markov policies (e.g., (Leibo et al., 2021; Agapiou et al.,
2022; Jin et al., 2021; Song et al., 2022)).

Definition 4.1 (Computable policy). Given a m-player
Markov game G andN PN, we say that a policy σiPΠgen,rnd

i

isN-computable if for each hPrHs, there is a circuit of sizeN
that,14 on input pτi,h´1,sq PHi,h´1ˆS, outputs the distribu-
tion σipτi,h´1,sqP∆pAiq. A policy σ“pσ1,...,σmqPΠgen,rnd

isN-computable if each constituent policy σi is.

Our lower bound applies to algorithms that produce sequences
σp1q,...,σpTq for which each σptq is N-computable, where the
valueN is taken to be polynomial in the description length of
the game G. For example, Markov policies whose probabilities
can be expressed with β bits areOpHSAiβq-computable for
each player i, since one can simply store each of the probabil-
ities σi,hpsh,ai,hq, each of which takes β bits to represent.

The SPARSECCE problem. SPARSECCE is the problem
of computing a sequence of non-Markov product poli-
cies σp1q, ... , σpTq such that the uniform mixture forms an
ε-approximate CCE. The problem generalizes SPARSE-
MARKOVCCE (Definition 3.1) by relaxing the condition that
the policies σptq be Markov.

14For concreteness, we suppose that “circuit” means “boolean cir-
cuit” as in Definition 6.1 of (Arora & Barak, 2006), where probabilities
are represented in binary. The precise model of computation we use
does not matter, though, and we could equally assume that the policies
σi may be computed by Turing machines that terminate afterN steps.

Definition 4.2 (SPARSECCE Problem). For an m-player
Markov game G and parameters T,N PN and εą0 (which may
depend on the size of the game G), pT,ε,Nq-SPARSECCE is
the problem of finding a sequence σp1q,...,σpTqPΠgen,rnd, with
each σptq beingN-computable, such that the distributional pol-
icy σ“ 1

T

řT
t“1Iσptq P∆pΠgen,rndq is an ε-CCE for G (equiv-

alently, such that for all iPrms, Regi,T pσ
p1q,...,σpTqqďε¨T ).

4.2. Main result

Our main theorem for this section, Theorem 4.3, shows
that for appropriate values of T , ε, and N , solving the
pT,ε,Nq-SPARSECCE problem is at least as hard as computing
Nash equilibria in normal-form games.
Theorem 4.3. Fix n PN, and let T,N PN, and εą 0 satisfy
1 ă T ă exp

´

ε2¨n
16

¯

. Suppose there exists an algorithm
that, given the description of any 3-player Markov game G
with |G| ď n, solves the pT,ε,Nq-SPARSECCE problem in
time U , for some U P N. Then, for any δ ą 0, the 2-player
ptn{2u, 50εq-NASH problem can be solved in randomized
time pnTNU logp1{δq{εqC0 with failure probability δ, where
C0ą0 is an absolute constant.

By analogy to Corollary 3.3, we obtain the following
immediate consequence.
Corollary 4.4 (SPARSECCE is hard under PPADĘRP). For
any Cą4, if there is an algorithm which, given the description
of a 3-player Markov game G, solves the p|G|C,|G|´ 1

C ,|G|Cq-
SPARSECCE problem in time polyp|G|q, then PPADĎRP.

Proof overview for Theorem 4.3. The proof of Theorem 4.3
has a similar high-level structure to that of Theorem 3.2: given
an m-player normal-form G, we define an pm` 1q-player
Markov game G“GpGq which has n0 :“ tn{mu actions per
player and horizonH«n0. The key difference in the proof of
Theorem 4.3 is the structure of the players’ reward functions.
To motivate this difference and the addition of an pm` 1q-
th player, we explain why the proof of Theorem 3.2 fails to
extend: a sequence σp1q,...,σpTq can hypothetically solve the
SPARSECCE problem by attempting to punish any one player’s
deviation policy, and thus avoid having to compute a Nash
equilibrium of G. In particular, if player i plays according to
the policyπ:i that we described in Section 3.2, then other players
j‰ i can use the non-Markov property of σptqj to adjust their
choice of actions in later rounds to decrease player i’s value.

This behavior is reminiscent of “tit-for-tat” strategies which
are used to establish the folk theorem in the theory of repeated
games (Maskin & Fudenberg, 1986). The folk theorem
describes how Nash equilibria are more numerous in repeated
games than in single-shot normal form games. As it turns
out, the folk theorem does not yield to worst-case speedups
in repeated games, when the number of players is at least
3. Indeed, Borgs et al. (2008) gave an “anti-folk theorem”,
showing that computing Nash equilibria in pm` 1q-player
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repeated games is PPAD-hard for mě 2, via a reduction to
m-player normal-form games. We adapt their reduction to our
setting: roughly speaking, this approach adds an pm`1q-th
player whose actions represent potential deviations for each
of the m players. The structure of the rewards ensures that
if σ“ 1

T

řT
t“1Iσptq is an ε-CCE, then for some policy π:m`1

of the pm ` 1q-th player, the first m players will play an
approximate Nash of G with constant probability, under a
trajectory drawn from the joint policy σ´pm`1qˆπ

:
m`1. Thus,

in order to efficiently find a Nash (see Algorithm 2), we need to
simulate the policy σ´pm`1qˆπ

:
m`1, which involves running

Vovk’s algorithm. This approach is in contrast to the proof of
Theorem 3.2, which used Vovk’s algorithm as an ingredient
in the proof but not in the Nash computation algorithm.

Two-player games. One intruiging question we leave open is
whether the SPARSECCE problem remains hard for two-player
Markov games. Interestingly, as shown by Littman & Stone
(2005), there is a polynomial time algorithm to find an exact
Nash equilibrium for the special case of repeated two-player
normal-form games. Though their result only applies in the
infinite-horizon setting, it is possible to extend their results to the
finite-horizon setting, which rules out naive approaches to ex-
tend the proof of Theorem 4.3 and Corollary 4.4 to two players.

5. Multi-player games: lower bounds
In this section we present Theorem 1.4 (restated formally
below as Theorem 5.2), which gives a statistical lower bound
for the SPARSECCE problem. The lower bound applies to any
algorithm, regardless of computational cost, that accesses the
underlying Markov game through a generative model.

Definition 5.1 (Generative model). For anm-player Markov
game G“pS,H,pAiqiPrms,P,pRiqiPrms,µq, a generative model
oracle is defined as follows: given a query described by a
tuple ph,s,aqPrHsˆSˆA, the oracle returns the distribution
Php¨|s,aqP∆pSq and the tuple of rewards pRi,hps,aqqiPrms.

From the perspective of lower bounds, the assumption that
the algorithm has access to a generative model is quite
reasonable, as it encompasses most standard access models in
RL, including the online access model, in which the algorithm
repeatedly queries a policy and observes a trajectory drawn
from it, as well as the local access generative model used in
from (Yin et al., 2022; Weisz et al., 2021). We remark that it is
slightly more standard to assume that queries to the generative
model only return a sample from the distribution Php¨|s,aq as
opposed to the distribution itself (Kakade, 2003; Kearns et al.,
1999), but since our goal is to prove lower bounds, the notion
in Definition 5.1 only makes our results stronger.

To state our main result, we recall the definition
|G| “ maxtS, maxiPrms Ai, H, βpGqu. In the present
section, we consider the setting where the number of players
m is large. Here, |G| does not necessarily correspond to the

description length for G, and should be interpreted, roughly
speaking, as a measure of the description complexity of G |G|
with respect to decentralized learning algorithms. In particular,
from the perspective of an individual agent implementing
a decentralized learning algorithm, their sample complexity
should depend only on the size of their individual action set
(as well as the global parameters S,H,βpGq), as opposed to the
size of the joint action set, which grows exponentially inm; the
former is captured by |G|, while the latter is not. Indeed, a key
advantage shared by much prior work on decentralized RL (Jin
et al., 2021; Song et al., 2022; Mao & Basar, 2021; Daskalakis
et al., 2022) is their avoidance of the curse of multi-agents,
which describes the situation where an algorithm has sample
and computational costs that scale exponentially inm.

Our main result for this section, Theorem 5.2, states that for
m-player Markov games, exponentially many generative model
queries (in m) are necessary to produce a solution to the
pT,ε,Nq-SPARSECCE problem, unless T is exponential inm.

Theorem 5.2. Let m ě 2 be given. There are constants
c, ε ą 0 so that the following holds. Suppose there is an
algorithm B which, given access to a generative model for
a pm` 1q-player Markov game G with |G| ď 2m6, solves
the pT,ε{p10mq,Nq-SPARSECCE problem for G for some T
satisfying 1ă T ă exppcmq, and any N PN. Then B must
make at least 2Ωpmq queries to the generative model.

Theorem 5.2 establishes that there arem-player Markov games,
where the number of states, actions per player, and horizon are
bounded by polypmq, but any algorithm with regret opT{mq
must make 2Ωpmq queries (via Fact C.1). In particular, if there
are polypmq queries per episode, as is standard in the online
simulator model where a trajectory is drawn from the policyσptq

at each episode tPrT s, then Tą2Ωpmq episodes are required to
have regret opT{mq. This is in stark contrast to the setting of
normal-form games, where even for the case of bandit feedback
(which is a special case of the generative model setting), stan-
dard no-regret algorithms have the property that each player’s
regret scales as rOp

?
Tnq (i.e., independently ofm), wheren de-

notes the number of actions per player (Lattimore & Szepesvári,
2020). As with our computational lower bounds, Theorem 5.2
is not limited to decentralized algorithms, and also rules out cen-
tralized algorithms which have access to a generative model.
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Part I

Additional results and discussion
A. Tighter computational lower bounds under ETH for PPAD

Recall that Corollary 3.3 states that if PPAD‰P, then there is no constant Cą 4 and polyp|G|q-time algorithm which solves
the p|G|C,|G|´1{Cq-SPARSEMARKOVCCE problem for any 2-player Markov game G. Using a stronger complexity-theoretic
assumption, the Exponential Time Hypothesis for PPAD (Rubinstein, 2016), we can obtain a hardness result which rules out
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efficient algorithms even when 1) the accuracy ε is constant, as opposed to being |G|´1{C, and 2) T is quasipolynomially large,
as opposed to only being of polynomial size, i.e., |G|C .
Corollary A.1 (ETH-hardness of SPARSEMARKOVCCE). There is a constant ε0ą0 such that if there exists an algorithm that
solves the p|G|oplog|G|q,ε0q-SPARSEMARKOVCCE problem in |G|oplog|G|q time, then the Exponential Time Hypothesis for PPAD
fails to hold.

Corollary A.1 is an immediate consequence of Theorem 3.2 and the fact that for some absolute constant ε0ą 0, there are no
polynomial-time algorithms for computing ε0-Nash equilibria in 2-player normal-form games under the Exponential Time
Hypothesis for PPAD (as shown in (Rubinstein, 2016)).

B. Discussion and interpretation
Theorems 3.2, 4.3, and 5.2 present barriers—both computational and statistical—toward developing efficient decentralized no-regret
guarantees for multi-agent reinforcement learning. We emphasize that no-regret algorithms are the only known approach for
obtaining fully decentralized learning algorithms (i.e., those which do not rely even on shared randomness) in normal-form games,
and it seems unlikely that a substantially different approach would work in Markov games. Thus, these lower bounds for finding
subexponential-length sequences of policies with the no-regret property represent a significant obstacle for fully decentralized
multi-agent reinforcement learning. Moreover, these results rule out even the prospect of developing efficient centralized algorithms
that produce no-regret sequences of policies, i.e., those which “resemble” independent learning. In this section, we compare our
lower bounds with recent upper bounds for decentralized learning in Markov games, and explain how to reconcile these results.

B.1. Comparison to V-learning

The V-learning algorithm (Jin et al., 2021; Song et al., 2022; Mao & Basar, 2021) is a polynomial-time decentralized learning
algorithm that proceeds in two phases. In the first phase, them agents interact over the course ofK episodes in a decentralized
fashion, playing product Markov policies σp1q,...,σpKq PΠmarkov. In the second phase, the agents use data gathered during the
first phase to produce a distributional policy pσP∆pΠgen,rndq, which we refer to as the output policy of V-learning. As discussed
in Section 1, one implication of Theorem 3.2 is that the first phase of V-learning cannot guarantee each agent sublinear regret.
Indeed if K is of polynomial size (and PPAD‰P), this follows because a bound of the form Regi,Kpσ

p1q,...,σpKqqď εK for
all i implies that pσp1q,...,σpKqq solves the pK,εq-SPARSEMARKOVCCE problem.

The output policy pσP∆pΠgen,rndq produced by V-learning is an approximate CCE (per Definition 2.1), and it is natural to ask
how many product policies it takes to represent pσ as a uniform mixture (that is, whether pσ solves the pT,εq-SPARSEMARKOVCCE
problem for a reasonable value of T ). First, recall that V-learning requires K“polypH,S,maxiAiq{ε

2 episodes to ensure
that pσ is an ε-CCE. It is straightforward to show that pσ can be expressed as a non-uniform mixture of at mostKKHS`1 policies in
Πgen,rnd (we prove this fact in detail below). By discretizing the non-uniform mixture, one can equivalently represent it as uniform
mixture of Op1{εq¨KKHS`1 product policies, up to ε error. Recalling the value of K, we conclude that we can express pσ as
a uniform mixture of T“expprOp1{ε2q¨polypH,S,maxiAiqq product policies in Πgen,rnd. Note that the lower bound of Theorem
4.3 rules out the efficient computation of an ε-CCE represented as a uniform mixture of T ! exppε2 ¨maxtH,S,maxiAiuq
efficiently computable policies in Πgen,rnd. Thus, in the regime where 1{ε is polynomial in H,S,maxiAi, this upper bound on
the sparsity of the policy pσ produced V-learning matches that from Theorem 4.3, up to a polynomial in the exponent.

The sparsity of the output policy from V-learning. We now sketch a proof of the fact that the output policy pσ produced by
V-learning can be expressed as a (non-uniform) average ofKKHS`1 policies in Πgen,rnd, whereK is the number of episodes
in the algorithm’s initial phase. We adopt the notation and terminology from Jin et al. (2021).

Consider Algorithm 3 of Jin et al. (2021), which describes the second phase of V-learning, which produces the output policy
pσ. We describe how to write pσ as a weighted average of a collection of product policies, each of which is indexed by a function
φ : rHsˆSˆrKsÑ rKs and a parameter k0 P rKs: in particular, we will write pσ“

ř

k0,φ
wk0,φ ¨σk0,φ P∆pΠgen,rndq, where

wk0,φPr0,1s are mixing weights summing to 1 and σk0,φPΠgen,rnd. The number of tuples pk0,φq isK1`KHS.

We define the mixing weight allocated wk0,φ to any tuple pk0,φq to be:

1

K
¨

ź

ph,s,kqPrHsˆSˆrKs

1tφph,s,kqPrNk
hpsqsu¨α

φph,s,kq

Nk
hpsq

,

whereNk
hpsqPrKs and αi

Nk
hpsq

Pr0,1s (for iPrNk
hpsqs) are defined as in (Jin et al., 2021).
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Next, for each k0,φ, we define σk0,φPΠgen,rnd to be the following policy: it maintains a parameter kPrKs over the first hďH
steps of the episode (as in Algorithm 3 of (Jin et al., 2021)), but upon reaching state s at step h, given the present value of kPrKs,
sets i :“φph,s,kq, and updates kÐkihpsq, and then samples an action a„πkhp¨|sq (where kihpsq,π

k
hp¨|sq are defined in (Jin et al.,

2021)). Since the mixing weights wk0,φ defined above exactly simulate the random draws of the parameter k in Line 1 and the
parameters i in Algorithm 3, Line 4 of (Jin et al., 2021), it follows that the distributional policy pσ defined by Algorithm 3 of (Jin
et al., 2021) is equal to

ř

k0,φ
wk0,φ¨σk0,φP∆pΠgen,rndq.

B.2. No-regret learning against Markov deviations

As discussed in Section 1, Erez et al. (2022) showed the existence of a learning algorithm with the property that if each agent
plays it independently for T episodes, then no player can achieve regret more thanOppolypm,H,S,maxiAiq¨T

3{4q by deviating
to any fixed Markov policy. This notion of regret corresponds to, in the context of Definition 2.2, replacing maxσiPΠgen,rnd

i
with

the smaller quantity maxσiPΠmarkov
i

. Thus, the result of Erez et al. (2022) applies to a weaker notion of regret than that of the
SPARSECCE problem, and so does not contradict any of our lower bounds. One may wonder which of these two notions of
regret (namely, best possible gain via deviation to a Markov versus non-Markov policy) is the “right” one. We do not believe
that there is a definitive answer to this question, but we remark that in many empirical applications of multi-agent reinforcement
learning it is standard to consider non-Markov policies (Leibo et al., 2021; Agapiou et al., 2022). Furthermore, as shown in the
proposition below, there are extremely simple games, e.g., of constant size, in which Markov deviations lead to “vacuous” behavior:
in particular, all Markov policies have the same (suboptimal) value but the best non-Markov policy has much greater value:

Proposition B.1. There is a 2-player, 2-action, 1-state Markov game with horizon 2 and a non-Markov policy σ2PΠgen,rnd
2 for

player 2 so that for all σ1PΠmarkov
1 , V σ1ˆσ21 “1{2 yet maxσ1PΠgen,rnd

1

 

V σ1ˆσ21

(

“3{4.

The proof of Proposition B.1 is provided in Section B.5 below.

Other recent work has also proved no-regret guarantees with respect to deviations to restricted policy classes. In particular,
Zhan et al. (2022) studies a setting in which each agent i is allowed to play policies in an arbitrary restricted policy class
Π1i Ď Πgen,rnd

i in each episode, and regret is measured with respect to deviations to any policy in Π1i. Zhan et al. (2022)
introduces an algorithm, DORIS, with the property that when all agents play it independently, each agent i experiences regret
O
´

polypm,A,S,Hq¨
a

T
řm
i“1log|Π1i|

¯

to their respective class Π1i.
15

DORIS is not computationally efficient, since it involves performing exponential weights over the class Π1i, which requires
space complexity |Π1I|. Nonetheless, one can compare the statistical guarantees the algorithm provides to our own results. Let
Πmarkov,det
i ĂΠmarkov

i denote the set of deterministic Markov policies of agent i, namely sequences πi“pπi,1,...,πi,Hq so that πi,h :

SÑAi. In the case that Π1i“Πmarkov,det
i , Π1i, we have log|Π1i|“OpSHlogAiq, which means that DORIS obtains no-regret against

Markov deviations whenm is constant, comparable to Erez et al. (2022).16 However, we are interested in the setting in which each
player’s regret is measured with respect to all deviations in Πgen,rnd

i (equivalently, Πgen,det
i ). Accordingly, if we take Π1i“Πgen,det

i Ă

Πgen,rnd
i ,17 then log|Π1i|ąpSAiq

H´1, meaning that DORIS does not imply any sort of sample-efficient guarantee, even form“2.

Finally, we remark that the algorithm DORIS (Zhan et al., 2022), as well as the similar algorithm OPMD from earlier work of
Liu et al. (2022), obtains the same regret bound stated above even when the opponents are controlled by (possibly adaptive)
adversaries. However, this guarantee crucially relies on the fact that any agent implementing DORIS must observe the policies
played by opponents following each episode; this feature is the reason that the regret bound of DORIS does not contradict the
exponential lower bound of Liu et al. (2022) for no-regret learning against an adversarial opponent. As a result of being restricted
to this “revealed-policy” setting, DORIS is not a fully decentralized algorithm in the sense we consider in this paper.

15Note that in the tabular setting, the sample complexity of DORIS (Corollary 1) scales with the sizeA of the joint action set, since each player’s
value function class consists of the class of all functions f :SˆAÑr0,1s, which has Eluder dimension scaling with S ¨A, i.e., exponential inm.

16Erez et al. (2022) has the added bonus of computational efficiency, even for polynomially large m, though has the significant drawback
of assuming that the Markov game is known.

17DORIS plays distributions over policies in Π1i “Πgen,det
i at each episode, whereas in our lower bounds we consider the setting where

a policy in Πgen,rnd
i is played each episode; Facts F.2 and F.3 shows that these two settings are essentially equivalent, in that any policy in

Πgen,rnd
1 ˆ¨¨¨ˆΠgen,rnd

m can be simulated by one in ∆pΠgen,det
1 qˆ¨¨¨ˆ∆pΠgen,det

m q, and vise versa.
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B.3. On the role of shared randomness

A key assumption in our lower bounds for no-regret learning is that each of the joint policies σp1q,...,σpTq produced by the algorithm
is a product policy; such an assumption is natural, since it subsumes independent learning protocols in which each agent i selects
σptqi without knowledge of σptq´i. Compared to general (stochastic) joint policies, product policies have the desirable property that,
to sample a trajectory from σptq“pσptq1 ,...,σ

ptq
m qPΠgen,rnd

1 ˆ¨¨¨ˆΠgen,rnd
m “Πgen,rnd, the agents do no require access to shared

randomness. In particular, each agent i can independently sample its action from σptqi at each of the h steps of the episode. It is
natural to ask how the situation changes if we allow the agents to use shared random bits when sampling from their policies, which
corresponds to allowing σp1q,...,σpTq to be non-product policies. In this case, V-learning yields a positive result via a standard
“batch-to-online” conversion: by applying the first phase of V-learning during the first T2{3 episodes and playing trajectories
sampled i.i.d. from the output policy produced by V-learning during the remaining T´T2{3 episodes (which requires shared
randomness), it is straightforward to see that a regret bound of order polypH,S,maxiAiq¨T

2{3 can be obtained. Similar remarks
apply to SPoCMAR (Daskalakis et al., 2022), which can obtain a slightly worse regret bound of order polypH,S,maxiAiq¨T

3{4

in the same fashion. In fact, the batch-to-online conversion approach gives a generic solution for the setting in which shared
randomness is available. That is, the assumption of shared randomness eliminates any distinction between no-regret algorithms and
(non-sparse) equilibrium computation algorithms, modulo slight loss in rates. For this reason, the shared randomness assumption
is too strong to develop any sort of distinct theory of no-regret learning.

B.4. Comparison to lower bounds for finding stationary CCE

A separate line of work Daskalakis et al. (2022); Jin et al. (2022) has recently shown PPAD-hardness for the problem of finding
stationary Markov CCE in infinite-horizon discounted stochastic games. These results are incomparable with our own: stationary
Markov CCE are not sparse (in the sense of Definition 3.1), whereas we do not require stationarity of policies (as is standard
in the finite-horizon setting).

B.5. Proof of Proposition B.1

Below we prove Proposition B.1.

Proof of Proposition B.1. We construct the claimed Markov game G as follows. The single state is denoted by s; as there is only
a single state, the transitions are trivial. We denote each player’s action space as A1“A2“t1,2u. The rewards to player 1 are
given as follows: for all pa1,a2qPA,

R1,1ps,pa1,a2qq“
1

2
¨Ia2“1, R1,2ps,pa1,a2qq“

1

2
¨Ia1“a2.

We allow the rewards of player 2 to be arbitrary; they do not affect the proof in any way.

We let σ2“pσ2,1,σ2,2qPΠgen,rnd
2 be the policy which plays a uniformly random action at step 1 and then plays the same action

at step 2: formally, σ2,1ps1q“UnifpA2q, and σ2,2pps1,a2,1,r2,1q,s2q“Ia2,1 . Then for any Markov policy σ1PΠmarkov
1 of player

1, we must have Pσ1ˆσ2pa1,2“a2,2q“1{2, which means that V σ1ˆσ21 “ 1
2 ¨Eσ1ˆσ2rIa2,1“1`Ia1,2“a2,2s“1{2¨p1{2`1{2q“1{2.

On the other hand, any general (non-Markov) policy σ1PΠgen,rnd
1 which satisfies

σ1,2pps1,a1,1,r1,1q,s2q“

#

I1 : r1,1“1{2

I2 : r1,1“0

has V σ1ˆσ21 “1{2¨p1{2`1q“3{4.
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Part II

Proofs
C. Additional preliminaries
C.1. Additional preliminaries for Markov games

Deterministic policies. It will be helpful to introduce notation for deterministic general (non-Markov) policies, which correspond
to the special case of randomized policies where each policy σi,h exclusively maps to singleton distributions. In particular, a
deterministic general policy of agent i is a collection of mappings πi“pπi,1,...,πi,Hq, where πi,h :Hi,h´1ˆSÑAi. We denote
by Πgen,det

i the space of deterministic general policies of agent i, and further write Πgen,det :“Πgen,det
1 ˆ¨¨¨ˆΠgen,det

m to denote
the space of joint deterministic policies. We use the convention throughout that deterministic policies are denoted by the letter
π, whereas randomized policies are denoted by σ.

Additional facts on regret and CCE. The following facts regarding deterministic policies and the definition of coarse correlated
equilibria and regret are well-known:

• In the context of Definition 2.1 (defining an ε-CCE), the maximizing policy σ1i can always be chosen to be determinimistic,
so P P∆pΠgen,rndq is an ε-CCE if and only if maxπiPΠ

gen,det
i

V
πiˆP´i

i ´V Pi ďε.

• In the context of (1) in the definition of regret, the maximum over σiPΠgen,rnd
i is always achieved by a deterministic general

policy, so we have Regi,T “maxπiPΠ
gen,det
i

řT
t“1

`

V
πiˆσ

ptq
´i

i ´V σ
ptq

i

˘

.

Next, the following standard result shows that the uniform average of any no-regret sequence forms an approximate coarse
correlated equilibrium.

Fact C.1 (No-regret is equivalent to CCE). Suppose that a sequence of policies σp1q, ... , σpTq P Πgen,rnd satisfies
Regi,T pσ

p1q, ... , σpTqq ď ε ¨ T for each i P rms. Then the uniform average of these T policies, namely the distributional
policy σ :“ 1

T

řT
t“1Iσptq P∆pΠgen,rndq, is an ε-CCE.

Likewise if a sequence of policies σp1q, ... , σpTq P Πgen,rnd has the property that the distributional policy
σ :“ 1

T

řT
t“1Iσptq P∆pΠgen,rndq, is an ε-CCE, then we have Regi,T pσ

p1q,...,σpTqqďε¨T for all iPrms.

Fact C.1 is an immediate consequence of Definitions 2.1 and 2.2.

C.2. Nash equilibria and computational hardness.

The most foundational and well known solution concept for normal-form games is the Nash equilibrium (Nash, 1951).

Definition C.2 (pn, εq-NASH problem). For a normal-form game G “ pM1, ... ,Mmq and ε ą 0, a product distribution
pP

śm
j“1∆prnsq is said to be an ε-Nash equilibrium forG if for all iPrns,

max
a1iPrns

Ea„prpMiqa1i,a´i
s´Ea„prpMiqasďε.

We define them-player pn,εq-NASH problem to be the problem of computing an ε-Nash equilibrium of a givenm-player n-action
normal-form game.18

Informally, p is an ε-Nash equilibrium if no player i can gain more than ε in reward by deviating to a single fixed action a1i, while
all other players randomly choose their actions according to p. Despite the intuitive appeal of Nash equilibria, they are intractable
to compute: for any cą 0, it is PPAD-hard to solve the pn,n´cq-NASH problem, namely, to compute n´c-approximate Nash

18One must also take care to specify the bit complexity of representing a normal-form game. We assume that the payoffs of any normal-form
game given as an instance to the pn,εq-NASH problem can each be expressed with maxtn,mu bits; this assumption is without loss of generality
as long as εě2´maxtn,mu (which it will be for us).
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equilibria in 2-player n-action normal-form games (Daskalakis et al., 2009; Chen et al., 2006; Rubinstein, 2018). We recall that the
complexity class PPAD consists of all total search problems which have a polynomial-time reduction to the End-of-The-Line
(EOTL) problem. PPAD is the most well-studied complexity class in algorithmic game theory, and it is widely believed that
PPAD‰P. We refer the reader to (Daskalakis et al., 2009; Chen et al., 2006; Rubinstein, 2018; Papadimitriou, 1994) for further
background on the class PPAD and the EOTL problem.

C.3. Query complexity of Nash equilibria

Our statistical lower bound for the SPARSECCE problem in Theorem 5.2 relies on existing query complexity lower bounds
for computing approximate Nash equilibria in m-player normal-form games. We first review the query complexity model for
normal-form games.

Oracle model for normal-form games. Form,nPN, consider anm-player n-action normal form gameG, specified by payoff
tensors M1,...,Mm. Since the tensors M1,...,Mm contain a total of mnm real-valued payoffs, in the setting when m is large,
it is unrealistic to assume that an algorithm is given the full payoff tensors as input. Therefore, prior work on computing equilibria
in such games has studied the setting in which the algorithm makes adaptive oracle queries to the payoff tensors.

In particular, the algorithm, which is allowed to be randomized, has access to a payoff oracle OG for the gameG, which works
as follows. At each time step, the algorithm can choose to specify an action profile aP rnsm and then query OG at the action
profile a. The oracle OG then returns the payoffs pM1qa,...,pMmqa for each player if the action profile a is played.

Query complexity lower bound for approximate Nash equilibrium. The following theorem gives a lower bound on the number
of queries any randomized algorithm needs to make to compute an approximate Nash equilibrium in anm-player game.

Theorem C.3 (Corollary 4.5 of (Rubinstein, 2016)). There is a constant ε0ą0 so that any randomized algorithm which solves
the p2,ε0q-NASH problem form-player normal-form games with probability at least 2{3 must use at least 2Ωpmq payoff queries.

We remark that (Babichenko, 2016; Chen et al., 2017) provide similar, though quantitatively weaker, lower bounds to that in
Theorem C.3. We also emphasize that the lower bound of Theorem C.3 applies to any algorithm, i.e., including those which
require extremely large computation time.

D. Proofs of lower bounds for SPARSEMARKOVCCE (Section 3)
D.1. Preliminaries: Online density estimation

Our proof makes use of tools for online learning with the logarithmic loss, also known as conditional density estimation. In
particular, we use a variant of the exponential weights algorithm known as Vovk’s aggregating algorithm in the context of density
estimation (Vovk, 1990; Cesa-Bianchi & Lugosi, 2006). We consider the following setting with two players, a Learner and Nature.
Furthermore, there is a set Y, called the outcome space, and a set X , called the context space; for our applications it suffices
to assume Y and X are finite. For some T PN, there are T time steps t“1,2,...,T . At each time step tPrT s:

• Nature reveals a context xptqPX ;

• Having seen the context xptq, the learner predicts a distribution pqptqP∆pYq;

• Nature chooses an outcome yptqPY, and the learner suffers loss `ptqlogppq
ptqq :“ log

´

1
pqptqpyptqq

¯

.

For each tPrT s, we let Hptq“tpxp1q,yp1q,pqp1qq,...,pxptq,yptq,pqptqqu denote the history of interaction up to step t; we emphasize that
each context xptq may be chosen adaptively as a function of Hpt´1q. Let F ptq denote the sigma-algebra generated by pHptq,xpt`1qq.
We measure performance in terms of regret against a set I of experts, also known as the expert setting. Each expert iPI consists of
a function pi :XÑ∆pYq. The regret of an algorithm against the expert class I when it receives contexts xp1q,...,xpTq and observes
outcomes yp1q,...,ypTq is defined as

RegI,T “
T
ÿ

t“1

`ptqlogppq
ptqq´min

iPI

T
ÿ

t“1

`ptqlogppipx
ptqqq.

Note that the learner can observe the expert predictions tpipxptqquiPI and use them to make its own prediction at each round t.
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Proposition D.1 (Vovk’s aggregating algorithm). Consider Vovk’s aggregating algorithm, which predicts via

pqptqpyq :“Ei„rqptqrpipxptqqs, where rqptqpiq :“
exp

´

´
řt´1
s“1`

psq

logppipx
psqqq

¯

ř

jPIexp
´

´
řt´1
s“1`

psq

logppjpx
psqqq

¯ . (2)

This algorithm guarantees a regret bound of RegI,T ď log|I|.

Recall that for probability distributions p,q on a finite set B, their total variation distance is defined as

DTVpp,qq“max
EĂB

|ppEq´qpEq|. (3)

As a (standard) consequence of Proposition D.1, in the realizable setting in which the distribution of yptq|xptq follows pi‹pxptqq
for some fixed (unknown) expert i‹PI, we can obtain a bound on the total variation distance between the algorithm’s predictions
and those of pi‹pxptqq.

Proposition D.2. If the distribution of outcomes is realizable, i.e., there exists an expert i‹PI so that yptq„pi‹pxptqq | xptq,Hpt´1q

for all tPrT s, then the predictions pqptq of the aggregation algorithm (2) satisfy

T
ÿ

t“1

ErDTVppq
ptq,pi‹px

ptqqqsď
a

T log|I|.

For completeness, we provide the proof of Proposition D.2 here.

Proof of Proposition D.2. To simplify notation, for an expert iPI, a context xPX , and an outcome y PY, we write pipy|xq to
denote pipxqpyq.

Proposition D.1 gives that the following inequality holds (almost surely):

RegI,T “
T
ÿ

t“1

log

ˆ

1

pqptqpyptqq

˙

´

T
ÿ

t“1

log

ˆ

1

pi‹pyptq|xptqq

˙

ď log|I|.

For each tPrT s, note that pqptq and xptq are F pt´1q-measurable (by definition). Then

T
ÿ

t“1

DTVppq
ptq,pi‹px

ptqqq2ď

T
ÿ

t“1

DKLppi‹px
ptqq}pqptqq

“

T
ÿ

t“1

ÿ

yPY
pi‹py|x

ptqq¨log

ˆ

pi‹py|x
ptqq

pqptqpyq

˙

“

T
ÿ

t“1

E
„

log

ˆ

1

pqptqpyptqq

˙

´log

ˆ

1

pi‹pyptq|xptqq

˙

|F pt´1q



,

where the first inequality uses Pinsker’s inequality and the final equality uses the fact that yptq„pi‹pxptqq|xptq,Hpt´1q. It follows that

E

«

T
ÿ

t“1

DTVppq
ptq,pi‹px

ptqqq2

ff

ďErRegI,T sď log|I|.

Jensen’s inequality now gives that

E

«

T
ÿ

t“1

DTVppq
ptq,pi‹px

ptqqq

ff

ď
?
T ¨

g

f

f

eE

«

T
ÿ

t“1

DTVppqptq,pi‹pxptqqq2

ff

ď
a

T log|I|.
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D.2. Proof of Theorem 3.2

Proof of Theorem 3.2. Fix n P N, which we recall represents an upper bound on the description length of the Markov game.
Assume that we are given an algorithm B that solves the pT,εq-SPARSEMARKOVCCE problem for Markov games G satisfying
|G|ďn in time U . We proceed to describe an algorithm which solves the 2-player ptn1{2{2u,4¨εq-NASH problem in time pnTUqC0 ,
as long as Tăexppε2¨n1{2{25q. First, define n0 :“tn1{2{2u, and consider an arbitrary 2-player n0-action normal formG, which
is specified by payoff matrices M1,M2 P r0,1s

n0ˆn0 , so that all entries of the game can be written in binary using at most n0

bits (recall, per footnote 18, that we may assume that the entries of an instance of pn0,4¨εq-NASH can be specified with n0 bits).
Based onG, we construct a 2-player Markov game G :“GpGq as follows:

Definition D.3. We define the game GpGq to consist of the tuple GpGq“pS,H,pAiqiPr2s,P,pRiqiPr2s,µq, where:

• The horizon of G isH“2tn0{2u (i.e., the largest even number at most n0).

• LetA“n0; the action spaces of the 2 agents are given by A1“A2“rAs.

• There are a total of A2`1 states: in particular, there is a state spa1,a2q for each pa1,a2q P rAs
2, as well as a distinguished

state s, so we have:

S“tsuYtspa1,a2q : pa1,a2qPrAs
2u.

• For all odd h P rHs, the reward to agents j P r2s given that the action profile pa1,a2q is played at step h is given by
Rj,hps,pa1,a2qq :“

1
H ¨pMjqa1,a2 , for all sPS. All agents receive 0 reward at even steps hPrHs.

• At odd steps hPrHs, if actions a1,a2 PrAs are taken, the game transitions to the state spa1,a2q. At even steps hPrHs, the
game always transitions to the state s.

• The initial state (i.e., at step h“1) is s (i.e., µ is a singleton distribution supported on s).

It is evident that this construction takes polynomial time, and satisfies |G|ďA2`1ďn2
0`1ďn. We will now show by applying

the algorithm B to G, we can efficiently compute 4¨ε-approximate Nash equilibrium for the original gameG. To do so, we appeal
to Algorithm 1.

Algorithm 1 Algorithm to compute Nash equilibrium used in proof of Theorem 3.2.
1: Input: 2-player, n0-action normal form gameG.

2: Construct the 2-player Markov game G“GpGq per Definition D.3, which satisfies |G|ďn.

3: Call the algorithm B on the game G, which produces a sequence σp1q,...,σpTq, where each σptqPΠmarkov.

4: for tPrT s and odd hPrHs: do
5: if σptqh psqP∆pA1qˆ∆pA2q is a p4¨ε,nq-Nash equilibrium ofG: then
6: return σptqh psq.

7: end if
8: end for
9: if the for loop terminates without returning: return fail.

Algorithm 1 proceeds as follows. First, it constructs the 2-player Markov game GpGq as defined above, and calls the algorithm B,
which returns a sequence σp1q,...,σpTqPΠmarkov of product Markov policies with the property that the average σ :“ 1

T

řT
t“1Iσptq

is an ε-CCE of G. It then enumerates over the distributions σptqh psqP∆pA1qˆ∆pA2q for each tPrT s and hPrHs odd, and checks
whether each one is a 4¨ε-approximate Nash equilibrium ofG. If so, the algorithm outputs such a Nash equilibrium, and otherwise,
it fails. The proof of Theorem 3.2 is thus completed by the following lemma, which states that as long as σ is an ε-CCE of G,
Algorithm 1 never fails.

Lemma D.4 (Correctness of Algorithm 1). Consider the normal form gameG and the Markov game G“GpGq as constructed
above, which has horizonH. For any ε0ą0, T PN, if TăexppH ¨ε20{2

8q and σp1q,...,σpTqPΠmarkov are product Markov policies
so that 1

T

řT
t“1Iσptq is an pε0{4q-CCE of G, then there is some odd hPrHs and tPrT s so that σptqh psq is an ε0-Nash equilibrium ofG.
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The proof of Lemma D.4 is given below. Applying Lemma D.4 with ε0 “ 4ε (which is a valid application since
T ăexppn0 ¨p4εq

2{28q by our assumption on T,ε), yields that Algorithm 1 always finds a 4ε-Nash equilibrium of the n0-action
normal form game G, thus solving the given instance of the pn0,4¨εq-NASH problem. Furthermore, it is straightforward to see
that Algorithm 1 runs in time U`pnTqC0ďpUnTqC0 , for some constant C0ě1.

Proof of Lemma D.4. Consider a sequence of product Markov policies σp1q, ... , σpTq with the property that the average
σ“ 1

T

řT
t“1IσpTq is an pε0{4q-CCE of G. For all odd hP rHs and j P r2s, let pptqj,h :“σptqj,hpsq P∆pAjq, which is the distribution

played under σptq by player j at step h (at the unique state s with positive probability of being reached at step h). For odd h, we
have σptqh psq“p

ptq

1,hˆp
ptq

2,h, and our goal is to show that for some odd hPrHs and tPrT s, pptq1,hˆp
ptq

2,h is an ε0-Nash equilibrium
ofG. To proceed, suppose for the sake of contradiction that this is not the case.

Let us write OH :“ th P rHs : h oddu to denote the set of odd-numbered steps, and EH “ rHszOH to denote the set of
even-numbered steps. Let H0“|OH|“ |EH|“H{2. We first note that for j P r2s, agent j’s value under the mixture policy σ
is given as follows:

V σj “
1

TH

T
ÿ

t“1

ÿ

hPOH

E
a1„p

ptq
1,h,a2„p

ptq
2,h

rpMjqa1,a2s.

For each j P r2s, we will derive a contradiction by constructing a (non-Markov) deviation policy for player j in G, denoted
π:j P Πgen,det

j , which will give player j a significant gain in value against the policy σ. To do so, we need to specify
π:j,hpτj,h´1,shqPAj, for all τj,h´1PHj,h´1 and shPS; note that we may restrict our attention only to histories τj,h0´1 that occur
with positive probability under the transitions of G.

Fix any h0 P rHs, τj,h0´1 PHj,h0´1, and sh0
P S. If τj,h0´1 occurs with positive probability under the transitions of G, then

for each h POH , hă h0´1 and both j1 P r2s, the action played by agent j1 at step h is determined by τj,h. Namely, if the
state at step h`1 of τj,h0´1 is spa11,a12q, then player j1 played action a1j at step h. So, for each hPOH with hăh0´1, we may
define pa1,h,a2,hq as the action profile played at step h, which is a measurable function of τj,h0´1. With this in mind, we define
π:j,h0

pτj,h0´1,sh0
q by applying Vovk’s aggregating algorithm (Proposition D.2) as follows.

1. If h0 is even, play an arbitrary action (note that the actions at even-numbered steps have no influence on the transitions or
rewards).

2. If h0 is odd, define pqj,h0
P∆pAjq, by pqj,h0

:“Et„rqj,h0
rpptq
´j,hs, where rqj,h0

P∆prT sq is defined as follows: for tPrT s,

rqj,h0
ptq :“

exp

ˆ

´
ř

hăh0: hPOH
log

ˆ

1

p
ptq
´j,hpa´j,hq

˙˙

řT
t1“1exp

ˆ

´
ř

hăh0: hPOH
log

ˆ

1

p
pt1q
´j,hpa´j,hq

˙˙ .

Note that pqj,h0
is a function of τj,h0´1 via the action profiles tpa1,h,a2,hquhăh0:hPOH

; to simplify notation, we suppress
this dependence.

3. Then for any state sh0 PS, define π:j,h0
pτj,h0´1,sh0q to be a best response to pqj,h0 , namely

π:j,h0
pτj,h0´1,sh0

q :“argmax
ajPAj

Ea´j„pqj,h0
rRj,hpsh0

,pa1,a2qqs“argmax
ajPAj

Ea´j„pqj,h0
rpMjqa1,a2s. (4)

Note that, for odd h0, the distribution pqj,h0 P∆pAjq defined above can be viewed as an application of Vovk’s online aggregation
algorithm at step ph0`1q{2 in the following setting: the number of steps (T , in the notation of Proposition D.2; note that T plays
a different role in the present proof) isH0“H{2, the context space is OH , and the outcome space is A´j.19 There are T experts
rpp1q,...,rppTq (i.e., we have I“trpptqutPrT s), whose predictions on a context hPOH are defined as follows: the expert rpptq predicts

19Here´j denotes the index of the player who is not j.
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rpptqphq :“pptq
´j,h. Then, the distribution pqj,h0

is obtained by updating the aggregation algorithm with the context-observation pairs
ph,a´j,hq, for odd values of hăh0.

We next analyze the value of V
π:j,σ´j

j for jPr2s to show that the deviation strategy we have defined indeed obtains significant gain.
To do so, recall that this value represents the payoff for player j under the process in which we draw an index t‹PrT s uniformly
at random, then for each step hP rHs, player j plays according to π:j and player ´j plays according to σpt

‹q

´j . (In particular, at
odd-numbered steps, player´j plays according to ppt

‹q

´j,h.) We recall that Eπ:jˆσ´j
r¨s denotes the expectation under this process.

We let τj,h´1PHj,h´1 denote the random variable which is the history observed by player j in this setup, i.e., when the policy
played is π:jˆσ´j, and let tpa1,h,a2,hquhPOH

denote the action profiles for odd rounds, which are a measurable function of each
player’s trajectory.

We apply Proposition D.2 with the time horizon asH0, and with the set of experts set to I :“trpp1q,...,rppTqu as defined above. The
context sequence the sequence of increasing values of hPOH , and for each hPOH , the outcome at step ph`1q{2 (for which the
context is h) is distributed as a´j,h„rppt

‹qphq“ppt
‹q

´j,h conditioned on t‹, which in particular satisfies the realizability assumption
stated in Proposition D.2. Then, since (as remarked above), the distributions pqj,h, for hPOH , are exactly the predictions made
by Vovk’s aggregating algorithm, Proposition D.2 gives that20

Eπ:jˆσ´j

«

ÿ

hPOH

DTVppqj,h,p
pt‹q

´j,hq

ff

“Eπ:jˆσ´j

«

ÿ

hPOH

DTVppqj,h,rp
pt‹qphqq

ff

ď
a

H0logT. (5)

Recall that we have assumed for the sake of contradiction that pptq1,hˆp
ptq

2,h is not an ε0-Nash equilibrium of G for each hPrHs
and tPrT s. Consider a fixed draw of the random variable t‹PrT s defined above. Then it holds that for jPr2s and hPrHs, defining

ε0,j,h :“ max
ajPrAs

E
a´j„p

pt‹q
´j,h

rpMjqa1,a2s´Ea1„ppt‹q1,h ,a2„p
pt‹q
2,h

rpMjqa1,a2s, (6)

we have ε0,1,h`ε0,2,hěε0. Consider any jPr2s, hPOH , and a history τj,h´1PHj,h´1 of agent j up to step h´1 (conditioned
on t‹). Let us write δpt

‹q

´j,h :“DTVpp
pt‹q

´j,h,pqj,hq; note that δpt
‹q

´j,h is a function of τj,h´1, through its dependence on pqj,h. We have,
by the definition of π:j,hpτj,h´1,shq in (4) and the definition of δpt

‹q

´j,h,

E
a´j„p

pt‹q
´j,h

”

pMjqπ:h,jpτj,h´1,sq,a´j
| t‹, τj,h´1

ı

ěEa´j„pqj,h

”

pMjqπ:h,jpτj,h´1,sq,a´j
| t‹, τj,h´1

ı

´δpt
‹q

´j,h

“max
ajPrAs

Ea´j„pqj,h

“

pMjqaj,a´j
| t‹, τj,h´1

‰

´δpt
‹q

h,´j

ěmax
ajPrAs

E
a´j„p

pt‹q
h,´j

“

pMjqaj,a´j

‰

´2δpt
‹q

´j,h. (7)

Combining (6) and (7), we get that for any fixed hPOH , jPr2s, and τj,h´1PHj,h´1,

E
a´j„p

pt‹q
´j,h

”

pMjqπ:j,hpτj,h´1,sq,a´j
| t‹, τj,h´1

ı

´E
a1„p

pt‹q
1,h ,a2„p

pt‹q
2,h

rpMjqa1,a2sąε0,j,h´2δpt
‹q

´j,h. (8)

20In fact, Proposition D.2 implies that a similar bound holds uniformly for each possible realization of t‹, but (5) suffices for our purposes.
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Averaging over the draw of t‹PrT s, which we recall is chosen uniformly, we see that

ÿ

jPr2s

V
π:jˆσ´j

j ´V σj

“
1

T

T
ÿ

t“1

ÿ

jPr2s

V
π:jˆσ

ptq
´j

j ´V σ
ptq

j (9)

“
1

T

T
ÿ

t“1

ÿ

jPr2s

E
π:jˆσ

ptq
´j

«

ÿ

hPOH

E
a´j„p

ptq
´j,h

rRj,hps,pπ
:

j,hpτj,h´1,sq,a´jqq | t, τj,h´1s´Ea1„pptq1,h,a2„p
ptq
2,h

rRj,hps,pa1,a2qqs

ff

“
1

TH

T
ÿ

t“1

ÿ

jPr2s

E
π:jˆσ

ptq
´j

«

ÿ

hPOH

E
a´j„p

ptq
´j,h

rpMjqπ:j,hpτj,h´1,sq,a´j
| t, τj,h´1s´Ea1„pptq1,h,a2„p

ptq
2,h

rpMjqa1,a2s

ff

ě
1

TH

T
ÿ

t“1

ÿ

jPr2s

E
π:jˆσ

ptq
´j

«

ÿ

hPOH

´

ε0,j,h´2δptq
´j,h

¯

ff

(10)

ě
ε0
2
´

2

TH

T
ÿ

t“1

2
a

H0logTě
ε0
2
´4

a

logpTq{H, (11)

where (9) follows from the definition σ“ 1
T

řT
t“1Iσptq , (10) follows from (8), and (11) uses (5). As long as TăexppH ¨pε0{16q2q,

the this expression is bounded below by ε0{4, meaning thatσ is not an ε0{4-approximate CCE. This completes the contradiction.

E. Proofs of lower bounds for SPARSECCE (Sections 4 and 5)
In this section we prove our computational lower bounds for solving the SPARSECCE problem with m“3 players (Theorem
4.3 and Corollary 4.4), as well as our statistical lower bound for solving the SPARSECCE problem with a general number m
of players (Theorem 5.2).

Both theorems are proven as consequences of a more general result given in Theorem E.1 below, which reduces the NASH problem
inm-player normal-form games to the SPARSECCE problem in pm`1q-player Markov games. In more detail, the theorem shows
that (a) if an algorithm for SPARSECCE makes few calls to a generative model oracle, then we get an algorithm for the NASH
problem with few calls to a payoff oracle (see Section C.3 for background on the payoff oracle for the NASH problem), and (b)
if the algorithm for SPARSECCE is computationally efficient, then so is the algorithm for the NASH problem.

Theorem E.1. There is a constant C0ą0 so that the following holds. Consider n,mPN, and suppose T,N,QPN and εą0

satisfy 1ăT ăexp
´

ε2¨tn{mu

m2

¯

. Suppose there is an algorithm B which, given a generative model oracle for a pm`1q-player

Markov game G with |G|ďn, solves the pT,ε,Nq-SPARSECCE problem for G using Q generative model oracle queries. Then
the following conclusions hold:

• For any δą0, them-player ptn{mu,16pm`1q¨εq-NASH problem for any normal-form gameG can be solved, with failure
probability δ, using at most C0¨pQ¨logp1{δqq`plogp1{δq¨nm{εqC0 queries to a payoff oracle OG forG.

• If the algorithm B additionally runs in time U for some U PN, then the algorithm solving NASH from the previous bullet
point runs in time pnmTNU logp1{δq{εqC0 .

Theorem 4.3 follows directly from Theorem E.1 by takingm“2.

Proof of Theorem 4.3. Suppose there is an algorithm which, given the description of any 3-player Markov game G with |G|ďn,
solves the pT,ε,Nq-SPARSECCE problem in time U . Such an algorithm immediately yields an algorithm which can solve the
pT,ε,Nq-SPARSECCE problem in time U `|G|Op1q using only a generative model oracle, since the exact description of the
Markov game can be obtained with HS|A|ďHSpmaxiAiq

3ď|G|5 queries to the generative model (across all ph,s,aq tuples).
We can now solve the problem of computing a 50 ¨ε-Nash equilibrium of a given 2-player tn{2u-action normal form game G
as follows. We simply apply the algorithm of Theorem E.1 withm“2, noting that the oracle OG in the theorem statement can
be implemented by reading the corresponding bits of input of the input gameG. The second bullet point yields that this algorithm
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takes time pnTNU logp1{δq{εqC0 , for some constant C0. Furthermore, the assumption Tăexppε2¨tn{mu{m2q of Theorem E.1
is implied by the assumption that Tăexppε2n{16q of Theorem 4.3.

In a similar manner, Theorem 5.2 follows from Theorem E.1 by applying Theorem C.3, which states that there is no randomized
algorithm that finds approximate Nash equilibria ofm-player, 2-action normal form games in time 2opmq.

Proof of Theorem 5.2. Let ε0 be the constant from Theorem C.3, and consider anymě3. Suppose there is an algorithm which,
for any m-player Markov game G with |G|ď2m6, makes Q oracle queries to a generative model oracle for G, and solves the
pT,ε0{p10mq,Nq-SPARSECCE problem for G for some T,N PN so that Tăexppcmq, for a sufficiently small absolute constant
c. Then, by Theorem E.1 with ε“ ε0{p10mq and n“m6 (which ensures that T ă expppε0{p10mqq2 ¨tn{mu{m2q as long as c
is sufficiently small), there is an algorithm which solves the pm5,ε0q-NASH problem—and thus the p2,ε0q-NASH problem—for
pm´1q-player games with failure probability 1{3, using OpQq`mOp1q queries to a payoff oracle. But by Theorem C.3, any
such algorithm requires 2Ωpmq queries to a payoff oracle. It follows thatQě2Ωpmq, as desired.

E.1. Proof of Theorem E.1

Proof of Theorem E.1. Fix any m ě 2, n P N. Suppose we are given an algorithm B that solves the pm ` 1q-player
pT,ε,Nq-SPARSECCE problem for Markov games G satisfying |G| ď n, running in time U and using at most Q generative
model queries. We proceed to describe an algorithm which solves the m-player ptn{mu,16pm`1q ¨εq-NASH problem using
C0 ¨ pQ ¨ logp1{δqq` plogp1{δq ¨nm{εqC0 queries to a payoff oracle, and running in time pnmTNU logp1{δq{εqC0 , where δ
represents the failure probability. Define n0 :“ tn{mu, and assume we are given an arbitrary m-player n0-action normal form
G, which is specified by payoff matricesM1,...,MmPr0,1s

n0ˆ¨¨¨ˆn0 . We assume that all entries of each of the matricesMj have
only the most significant maxtn0,rlog1{εsu bits nonzero; this assumption is without loss of generality, since by truncating the
utilities to satisfy this assumption, we change all payoffs by at most ε, which degrades the quality of any approximate equilibrium
by at most 2ε (in addition, we have rlog1{εsďn0 since we have assumed 1ăT ăexppε2n0{m

2q). We assume εď1{2 without
loss of generality. Based onG, we construct an pm`1q-player Markov game G :“GpGq as follows.

Definition E.2. We define the Markov game GpGq as the tuple GpGq“pS,H,pAiqiPr2s,P,pRiqiPr2s,µq, where:

• The horizon of G is chosen to be the power of 2 satisfying n0ďHă2n0.

• LetA :“n0. The action spaces of agents 1,2,...,m are given by A1“¨¨¨“Am“rAs. The action space of agentm`1 is

Am`1“tpj,ajq : jPrms,aj PAju,

so that |Am`1|“Amďn.

We write A“
śm
j“1Aj to denote the joint action space of the firstm agents, and A :“

śm`1
j“1 Aj to denote the joint action

space of all agents.

• There is a single state, denoted by s, i.e., S“tsu (in particular, µ is a singleton distribution supported on s).

• For all hPrHs, the reward for agent jPrm`1s, given an action profile a“pa1,...,am`1q at the unique state s, is as follows:
writing am`1“pj

1,a1j1q, we have

Rj,hps,aq“Rj,hps,aq`
1

H
¨2´3rlog1{εs¨encpaq, (12)

whereRj,hps,aq is defined per the kibitzer construction of (Borgs et al., 2008):

Rj,hps,aq :“

$

’

’

&

’

’

%

0 :jRtj1,m`1u
1
H ¨

´

pMjqa1,...,am´pMjqa1,...,a1j1 ,...,am

¯

:j“j1

1
H ¨

´

pMjqa1,...,a1j1 ,...,am
´pMjqa1,...,am

¯

:j“m`1.

(13)

In (12) above, encpaqPr0,1s is the binary representation of a binary encoding of the action profile a. In particular, if the binary
encoding of a is pb1,...,bNq, with biPt0,1u, then encpaq“

řN
i“12´i¨bi. Note that encpaq takesN“Opmlogn0qďOpmlognq

bits to specify.
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Algorithm 2 Algorithm to compute Nash equilibrium used in proof of Theorem E.1.
1: Input:
2: Parameters n,n0,m,T PN, δ“ε{p6Hq,K“r4logpmn0{δq{ε

2s.

3: Anm-player, n0-action normal form gameG, with utilies accessible by oracle OG.

4: An algorithm B for computing approximate CCE of Markov games.

5: Call the algorithm B on the pm`1q-player Markov game G “ GpGq constructed as in Definition E.2, which produces

a sequence σp1q,...,σpTq, where each σptq “ pσptq1 ,...,σ
ptq

m`1q with σptqj PΠgen,rnd
j . Here, we use the oracle OG to simulate

generative model oracle queries made by B.

6: Draw t‹PrT s uniformly at random.

7: For each jPrms, initialize τj,0 to be an empty trajectory.

8: for hPrHs: do
9: Set sh“s (per the transitions of G).

10: For each jPrms, define pqj,h :“Et„rqj,h
”

σptqj,hpτj,h´1,shq
ı

P∆pAjq, where rqj,hP∆prT sq is defined as follows: for tPrT s,

rqj,hptq :“

exp

ˆ

´
ř

găhlog

ˆ

1

σ
ptq
j,gpaj,g|τj,g´1,sgq

˙˙

řT
t1“1exp

ˆ

´
ř

găhlog

ˆ

1

σ
pt1q
j,g paj,g|τj,g´1,sgq

˙˙ .

11: DrawK i.i.d. samples a1
h,...,a

K
h „

Ś

jPrmspqj,h.

12: For each a1 PAm`1, define pRm`1,hpa
1q :“ 1

K

řK
k“1Rm`1,hpsh,pa

k
h,a

1qq. Here, we use the oracle OG to compute

Rm`1,hpsh,pa
k
h,a

1qq for each tuple pakh,a
1q.

13: For each jPrms, draw aj,h„σ
pt‹q

j,h p¨|τj,h´1,shq.

14: Choose the action am`1,h of playerm`1 as follows: (Action am`1,h is corresponds to the action selected by the policy

π:m`1 of player m`1 defined within the proof of Lemma E.3; this policy is well-defined because the action profiles

of all players iPrms can be extracted from the lower-order bits of playerm`1’s reward)

am`1,h :“argmax
a1PAm`1

!

pRm`1,hpa
1q

)

. (14)

15: For each jPrm`1s, let rj,h“Rj,hpsh,pa1,h,...,am`1,hqq.

16: Each player j constructs τj,h by updating τj,h´1 with psh,aj,h,rj,hq.

17: if pRm`1,hpam`1,hqď14pm`1q¨ε{H then
18: return pqh :“

Ś

jPrmspqj,h as a candidate approximate Nash equilibrium forG.

19: end if
20: end for
21: if the for loop terminates without returning: return fail.

It is evident that this construction takes polynomial time and satisfies |G|ďmn0ďn. Furthermore, it is clear that a single generative
model oracle call for the Markov game G (per Definition 5.1) can be implemented using at most 2 calls to the oracle OG for
the normal-form gameG. We will now show by applying the algorithm B to G, we can efficiently (in terms of runtime and oracle
calls) compute a 16pm`1q¨ε-approximate Nash equilibrium for the original gameG. To do so, we appeal to Algorithm 2.

Algorithm 2 proceeds as follows. First, it calls the algorithm B on the pm`1q-player Markov game GpGq, using the oracle OG to
simulate B’s calls to the generative model oracle for G. By assumption, the algorithm B returns a sequence σp1q,...,σpTq of product
policies of the form σptq“pσptq1 ,...,σ

ptq

m`1q, so that each σptqj PΠgen,rnd
j isN-computable, and so that the average σ :“ 1

T

řT
t“1Iσptq
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is an ε-CCE of G. Next, Algorithm 2 samples a trajectory from G in which:

• Players 1,...,m each play according to a policy σpt‹q for an index t‹PrT s chosen uniformly at the start of the episode.

• Player m`1 plays according to a strategy that, at each step hP rHs, computes distributions pqj,h representing its “belief”
of what action each player j Prms will play at step h (Line 10), and plays an approximate best response to the product of
the strategies pqj,h, jPrms (Line 14).

In order avoid exponential dependence on the number of playersm when computing an approximate best response to
Ś

jPrmspqj,h,
we drawK :“r4logpmn0{δq{ε

2s (for δ“ε{p6Hq) samples from
Ś

jPrmspqj,h and use these samples to compute the best response.

In particular, letting aKh PA denote the kth sampled action profile, we construct a function pRm`1,h :Am`1ÑR in Lines 11 and
14 which, for each a1 PAm`1, is defined as the average over samples takhukPrKs of the realized payoffs Rm`1,hpsh,pa

k
h,a

1qq;
note that to compute the payoffs for each sample, Algorithm 2 needs only two oracle calls to OG.

The following lemma, proven in the sequel, gives a correctness guarantee for Algorithm 2.

Lemma E.3 (Correctness of Algorithm 2). Given any m-player n0-action normal form game G, if the algorithm B solves
the pT,ε,Nq-SPARSECCE problem for the game GpGq with T,ε,N satisfying T ď exppn0ε

2{m2q, then Algorithm 2 outputs a
16pm`1q¨ε-approximate Nash equilibrium ofG with probability at least 1{3, and otherwise fails.

The assumption that Tăexp
´

ε2¨tn{mu

m2

¯

from the statement of Theorem E.1 yields that Tďexppn0ε
2{m2q, so Lemma E.3 yields

that Algorithm 2 outputs a 16pm`1q¨ε-Nash equilibrium of G with probability at least 1{3 (and otherwise fails). By iterating
Algorithm 2 for logp1{δq times, we may thus compute a 16pm`1q¨ε-Nash equilibrium ofG with failure probability 1´δ.

We now analyze the oracle cost and computational cost of Algorithm 2. It takes 2Q oracle calls to OG to simulate theQ generative
model oracle calls of B, and therefore, if B runs in time U , then the call to B on Line 5, using oracle calls to OG to simulate
simulate the generative model oracle calls, runs in time OpUq. Next, the computations of rqj,h (and thus pqj,h) in Line 10 can
be performed in pnmTNqOp1q time, the computation of pRm`1,h :Am`1ÑR in Line 14 requires time (and oracle calls to OG)
bounded above byOp|Am`1|¨Kqďpnmlogp1{δq{εqOp1q, constructing the actions aj,h (for jPrm`1s) in Lines 13 and 14 takes
time pNmnqOp1q (using the fact that the policies σpt

‹q

j,h areN-computable), and constructing the rewards rj,h on Line 15 requires
another 2pm`1q oracle calls to OG. Altogether, Algorithm 2 requires 2Q`pnmlogp1{δq{εqC0 oracle calls to OG and, if B runs
in time U , then Algorithm 2 takes time pnmTNU logp1{δq{εqC0 , for some absolute constant C0.

Remark E.4 (Bit complexity of exponential weights updates). In the above proof we have noted that rqj,h (as defined in Line 10 of
Algorithm 2) can be computed in time pnmTNqOp1q. A detail we do not handle formally is that, since the values of rqj,hptq are in
general irrational, only the pnmTNqOp1q most significant bits of each real number rqj,hptq can be computed in time pnmTNqOp1q.
To give a truly polynomial-time implementation of Algorithm 2, one can compute only the pnmTNqOp1q most significant bits
of each distribution rqj,h, which is sufficient to approximate the true value of pqj,h to within expp´pnmTNqOp1qq in total variation
distance. Since pqj,h only influences the subsequent execution of Algorithm 2 via the samples a1

h,...,a
K
h „

Ś

jPrmspqj,h drawn
in Line 11, by a union bound, the approximation of pqj,h we have described perturbs the execution of the algorithm by at most
OpKHq¨expp´pnmTNqOp1qq in total variation distance. In particular, the correctness guarantee of Lemma E.3 still holds, with
sucess probability at least 1{3´expp´pnmTNqOp1qqą1{4.

It remains to prove Lemma E.3, which is the bulk of the proof of Theorem E.1.

Proof of Lemma E.3. We will establish the following two facts:

1. First, the choices of am`1,h in Line 14 (i.e., Eq. 14) of Algorithm 2 correspond to a valid policy π:m`1PΠgen,rnd for player
m`1 (representing a strategy for deviating from the equilibrium σ), in that they can be expressed as a function of player
pm`1q’s history, pτm`1,h´1,shq at each step h.

2. Second, we will show that, since σ is an ε-CCE of G, the strategy π:m`1 cannot not lead to a large increase of value for player
m`1, which will imply that Algorithm 2 must return a Nash equilibrium with high enough probability.
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Defining π:i for iPrm`1s. We begin by constructing the policy π:m`1 described; for later use in the proof, it will be convenient
to construct a collection of closely related policies π:i PΠgen,rnd for iP rms, also representing strategies for deviating from the
equilibrium σ.

Let i P rm ` 1s be fixed. For h P rHs, the mapping π:i,h : Hi,h´1 ˆ S Ñ Ai is defined as follows. Given a history
τi,h´1“ps1,ai,1,ri,1,...,sh´1,ai,h´1,ri,h´1qPHi,h´1 (we assume without loss of generality that τi,h´1 occurs with positive proba-
bility under some sequence of general policies) and a current state sh, we define π:i,hpτi,h´1,shqPAi through the following process.

1. First, we claim that for all players j P rm`1sztiu, it is possible to extract the trajectory τj,h´1 from the trajectory τi,h´1

of player i.

(a) Recall that for each găh, from the definition in (12) and the function encpaq, the bits following position 3rlog1{εs of the
reward ri,g given to player i at step g of the trajectory τi,g´1 encode an action profile ag PA. Since τi,h´1 occurs with
positive probability, this is precisely the action profile which was played by agents at step g. Note we also use here that by
definition of the rewardsRj,hps,aq in (12), the componentRj,hps,aq of the reward only affects the first 2rlog1{εs bits.

(b) For găh and jPrm`1sztiu, define rj,g :“Rj,gpsg,agq.
(c) For jPrm`1sztiu, write τj,h´1 :“ps1,aj,1,rj,1,...,sh´1,aj,h´1,rj,h´1q; in particular, τj,h´1 is a deterministic function

of pτi,h´1,shq. (Note that, since τi,h´1 occurs with positive probability, the history τj,h´1 observed by player j up
to step h´1 can be computed from it via Steps (a) and (b)). Going forward, for găh´1, we let τj,g denote the prefix
of τj,h´1 up to step g.

2. Now, using that player i can compute all players’ trajectories, for each jPrm`1s we define

pqj,h :“Et„rqj,h
”

σptqj,hpτj,h´1,shq
ı

P∆pAjq, (15)

where rqj,hP∆prT sq is defined as follows: for tPrT s,

rqj,hptq :“

exp

ˆ

´
ř

găhlog

ˆ

1

σ
ptq
j,gpaj,g|τj,g´1,sgq

˙˙

řT
t1“1exp

ˆ

´
ř

găhlog

ˆ

1

σ
pt1q
j,g paj,g|τj,g´1,sgq

˙˙ . (16)

Note that pqj,h is a random variable which depends on the trajectory pτj,h´1,shq (which can be computed from pτi,h´1,shq).
In addition, the definition of pqj,h (for each jPrms) is exactly as is defined in Line 10 of Algorithm 2.

3. For iPrms, define π:i,hpτi,h´1,shq as follows:

π:i,hpτi,h´1,shq :“argmax
a1PAi

Ea´i„
Ś

j‰ipqj,h

“

Rm`1,hpsh,pa
1,a´iqq

‰

. (17)

For the case i“m`1, define π:m`1,hpτm`1,h´1,shqP∆pAm`1q (implicitly) to be the following distribution over a:m`1,hP

Am`1: draw a1
h,...,a

K
h „

Ś

jPrmspqj,h, define pRm`1,hpa
1q :“ 1

K

řK
k“1Rm`1,hpsh,pa

k
h,a

1qq for a1PAm`1, and finally set

a:m`1,h :“argmax
a1PAm`1

!

pRm`1,hpa
1q

)

. (18)

Note that, for each choice of pτm`1,h´1,shq, the distribution π:m`1,hpτm`1,h´1,shq as defined above coincides with the
distribution of the action a:m`1,h defined in Eq. 14 in Algorithm 2, when player m` 1’s history is τm`1,h´1 and the
state at step h is sh. The following lemma, for use later in the proof, bounds the approximation error incurred in sampling
a1
h,...,a

K
h „

Ś

jPrmspqj,h.

Lemma E.5. Fix any pτm`1,h´1,shq PHj,h´1. With probability at least 1´δ over the draw of a1
h,...,a

K
h „

Ś

jPrmspqj,h,
it holds that for all a1PAm`1,

ˇ

ˇ

ˇ

pRm`1,hpa
1q´Eaj„pqj,h @jPrmsrRm`1,hpsh,pa1,...,am,a

1qqs

ˇ

ˇ

ˇ
ď
ε

H
,
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which implies in particular that with probability at least 1´δ over the draw of a:m`1,h„π
:

m`1,hpτm`1,h´1,shq,

max
a1PAm`1

 

Eaj„pqj,h @jPrmsrRm`1,hpsh,pa1,...,am,a
1qqs

(

´
2ε

H
ďEaj„pqj,h @jPrmsrRm`1,hpsh,pa1,...,am,a

:

m`1,hqqs. (19)

It is immediate from our construction above that the following fact holds.

Lemma E.6. The joint distribution of τj,h, for jPrm`1s and hPrHs, as computed by Algorithm 2, coincides with the distribution
of τj,h in an episode of G when players follow the policy π:m`1ˆσ´pm`1q.

Analyzing the distributions pqj,h. Fix any iPrm`1s. We next prove some facts about the distributions pqj,h defined above (as
a function of pτi,h´1,shq) in the process of computing π:i,hpτi,h´1,shq.

For each hPrHs, consider any choice of pτi,h´1,shqPHi,h´1ˆS; note that for each jPrm`1s, the distributions pqj,hP∆pAjq for
hPrHsmay be viewed as an application Vovk’s aggregating algorithm (Proposition D.2) in the following setting: the number of
steps (T , in the context of Proposition D.2; note that T has a different meaning in the present proof) horizon isH, the context space is
ŤH
h“1Hj,h´1ˆS, and the output space is Aj. The expert set is I“tρp1qj ,...,ρ

pTq

j u (which has |I|“T ), and the experts’ predictions
on a context pτj,h´1,sqPHj,h´1ˆS are defined via ρptqj p¨|τj,h´1,sq :“σ

ptq

j,hp¨|τj,h´1,sqP∆pAjq. Then for each hPrHs, the distri-
bution pqj,h is obtained by updating the aggregating algorithm with the context-observation pairs pτj,h1´1,aj,h1q for h1“1,2,...,h´1.

In more detail, fix any t‹PrT s and jPrm`1swith i‰j. We may apply Proposition D.2 with the number of steps set toH, the
set of experts as I“tρp1qj ,...,ρ

pTq

j u, and contexts and outcomes generated according to the distribution induced by running the
policy π:iˆσ

pt‹q

´i in the Markov game G as follows:

• For each hPrHs, we are given, at steps h1ăh, the actions ak,h1 rewards rk,h1 for all agents kPrm`1s, as well as the states
s1,...,sh.

– For each kPrm`1s, set τk,h´1“ps1,ak,1,rk,1,...,sh´1,ak,h´1,rk,h´1q to be agent k’s history.
– The context fed to the aggregation algorithm at step h is pτj,h´1,shq.
– The outcome at step h is given by aj,h„σ

pt‹q

j,h p¨|τj,h´1,shq; note that this choice satisfies the realizability assumption
in Proposition D.2.

– To aid in generating the next context at step h`1, choose ak,h„σt
‹

k,hpτk,h´1,shq for all kPrm`1szti,ju and ai,h“
π:i,hpτi,h´1,shq. Then set sh`1 to be the next state given the transitions of G and the action profile ah“pa1,h,...,am`1,hq.

By Proposition D.2, it follows that for any fixed t‹PrT s and jPrm`1s with j‰i, under the process described above we have

E
π:iˆσ

pt‹q
´i

«

H
ÿ

h“1

DTVpσ
pt‹q

j,h pτj,h´1,shq,pqj,hq

ff

ď
a

H ¨logT. (20)

Analyzing the value of π:m`1. Next, using the development above, we show that if Algorithm 2 successfully computes a Nash
equilibrium with constant probability (via π:m`1) whenever sσ is an ε-CCE. We first state the following claim, which is proven

in the sequel by analyzing the values V π
:
iˆσ´i

i for iPrms.

Lemma E.7. If σ is an ε-CCE of G, then it holds that for all iPrms,

V σi ě´ε´m
a

logpTq{H.

Note that in the game G, since for all h P rHs, s P S and a P A, it holds that
ˇ

ˇ

ˇ

řm`1
j“1 Rj,hps,aq

ˇ

ˇ

ˇ
ď
pm`1qε2

H (which holds

since in (12), encpaq is multiplied by 1
H ¨2

´3rlog1{εs), it follows that
ˇ

ˇ

ˇ

řm`1
j“1 V

σ
j

ˇ

ˇ

ˇ
ďpm`1qε2. Thus, by Lemma E.7, we have

V σm`1ďpm`1qε2`m¨pε`m
a

logpTq{Hq, and since σ is an ε-CCE of G it follows that

V
π:m`1ˆσ´pm`1q

m`1 ď2pm`1q¨ε`m2¨
a

logpTq{H. (21)
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To simplify notation, we will write pqh :“pq1,hˆ¨¨¨ˆpqm,h in the below calculations, where we recall that each pqj,h is determined
given the history up to step h, pτj,h´1,shq, as defined in (15) and (16). An action profile drawn from pqh is denoted as a„pqh,

with aPA. We may now write V
π:m`1ˆσ´pm`1q

m`1 as follows:

V
π:m`1ˆσ´pm`1q

m`1

“Et‹„rT s
H
ÿ

h“1

E
π:m`1ˆσ

pt‹q

´pm`1q

E
aj,h„σ

pt‹q
j,h pτj,h´1,shq @jPrms

am`1,h„π
:

m`1,hpτm`1,h´1,shq

a:“pa1,h,...,am`1,hq

rRm`1,hpsh,aqs

ěEt‹„rT s
H
ÿ

h“1

E
π:m`1ˆσ

pt‹q

´pm`1q

˜

E aj,h„pqj,h @jPrms

am`1,h„π
:

m`1,hpτm`1,h´1,shq

a:“pa1,h,...,am`1,hq

rRm`1,hpsh,aqs

´
1

H

ÿ

jPrms

DTVpσ
pt‹q

j,h pτj,h´1,shq,pqj,hq

¸

ěEt‹„rT s
H
ÿ

h“1

E
π:m`1ˆσ

pt‹q

´pm`1q

˜

max
a1m`1,hPAm`1

Ea„pqh

“

Rm`1,hpsh,pa,a
1
m`1,hqq

‰

´
2ε

H
´
δ

H

´
1

H

ÿ

jPrms

DTVpσ
pt‹q

j,h pτj,h´1,shq,pqj,hq

¸

ě
1

H
¨Et‹„rT s

H
ÿ

h“1

E
π:m`1ˆσ

pt‹q

´pm`1q

˜

max
jPrms,a1j,hPAj

Ea„pqhrpMjqa1j,a´j
´pMjqas

¸

´
m

H
¨
a

HlogT´2ε´δ´ε2,

where:

• The first inequality follows from the fact that Rm`1,hp¨q takes values in r´1{H,1{Hs and the fact that the total variation
between product distributions is bounded above by the sum of total variation distances between each of the pairs of component
distributions.

• The second inequality follows from the inequality (19) of Lemma E.5.

• The final equality follows from the definition of the rewards in (12) and (13), and by summing (20) over jPrms. We remark
that the´ε2 term in the final line comes from the term 1

H ¨2
´3rlog1{εs¨encpaq in (12).

Rearranging and using (21) as well as the fact that δ`ε2“ε{p6Hq`ε2ďε (as εď1{2), we get that

Et‹„rT sEπ:m`1ˆσ
pt‹q

´pm`1q

H
ÿ

h“1

˜

max
jPrms,a1j,hPAj

Ea„pqhrpMjqa1j,a´j
´pMjqas

¸

ď2H ¨ε¨pm`1q`pm`1qm¨
a

HlogT`3Hε.

Since pqh is a product distribution a.s., we have that

max
jPrms,a1j,hPAj

Ea„pqhrpMjqa1j,a´j
´pMjqasě0.

Therefore, by Markov’s inequality, with probability at least 1{2 over the choice of t‹ „ rT s and the trajectories
pτj,h´1,shq„π

:
m`1ˆσ

pt‹q

´pm`1q for jPrms (which collectively determine pqh), there is some hPrHs so that

max
jPrms,a1j,hPAj

Ea„pqhrpMjqa1j,a´j
´pMjqasď10pm`1q¨ε`2pm`1qm¨

a

logpTq{Hď12pm`1q¨ε, (22)

where the final inequality follows as long as H ¨ε2ěm2logT , i.e., T ď exp
´

H¨ε2

m2

¯

, which holds since H ěn0 and we have

assumed that Tďexppε2¨n0{m
2q.
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Note that (22) implies that with probability at least 1{2 under an episode drawn from π:m`1ˆσ´pm`1q, there is some hP rHs
so that pqh is a 12pm`1q¨ε-Nash equilibrium of the stage gameG. Thus, by Lemma E.6, with probability at least 1{2 under an
episode drawn from the distribution of Algorithm 2, there is some hPrHs so that pqh is a 12pm`1q¨ε-Nash equilibrium ofG.

Finally, the following two observations conclude the proof of Lemma E.3.

• If pqh is a 12pm`1q¨ε-Nash equilibrium ofG, then by definition of the reward functionRm`1,hp¨q in (12), upper bounding
1
H ¨2

´3rlog1{εs¨encpaq by ε2{H,

max
a1PAm`1

Ea„pqh

“

Rm`1,hps,pa,a
1qq
‰

ď
1

H
¨12pm`1q¨ε`

ε2

H
,

which implies, by Lemma E.5, that with probability at least 1´δ over the draw of a1
h,...,a

K
h ,

max
a1PAm`1

!

pRm`1,hpa
1q

)

ď
1

H
¨12pm`1q¨ε`

ε2

H
`
ε

H
ď

1

H
¨14pm`1q¨ε,

i.e., the check in Line 17 of Algorithm 2 will pass and the algorithm will return pqh (if step h is reached).

• Conversely, if maxa1PAm`1

!

pRm`1,hpa
1q

)

ď 14pm`1q ¨ ε, i.e., the check in Line 17 passes, then by Lemma E.5, with

probability at least 1´δ over a1
h,...,a

K
h ,

max
a1PAm`1

Ea„pqh

“

Rm`1,hps,pa,a
1qq
‰

ď
1

H
¨14pm`1q¨ε`

ε

H
ď

1

H
¨15pm`1q¨ε,

which implies, by the definition ofRm`1,hp¨q in (12) and (13), that pqh is a 16pm`1q¨ε-Nash equilibrium ofG.

Taking a union bound over allH of the probability-δ failure events from Lemma E.5 for the sampling a1
h,...,a

K
h „pqh (for hPrHs),

as well as over the probability-1{2 event that there is no pqh which is a 12pm`1q¨ε-Nash equilibrium ofG, we obtain that with
probability at least 1´1{2´H ¨ε{p6Hqě1{3, Algorithm 2 outputs a 16pm`1q¨ε-Nash equilibrium ofG.

Finally, we prove the remaining claims stated without proof above.

Proof of Lemma E.5. SinceRm`1,hps,aqPr´1{H,1{Hs for each aPA, by Hoeffding’s inequality, for any fixed a1PAm`1, with
probability at least 1´δ{|Am`1|“1´δ{pmn0q over the draw of a1

h,...,a
K
h „

Ś

jPrmspqj,h, it holds that

ˇ

ˇ

ˇ

pRm`1,hpa
1q´Eaj„pqj,h @jPrmsrRm`1,hpsh,pa1,...,am,a

1qqs

ˇ

ˇ

ˇ
ď

2

H
¨

c

logmn0{δ

K
ď
ε

H
,

where the final inequality follows from the choice of K“ r4logpmn0{δq{ε
2s. The statement of the lemma follows by a union

bound over all |Am`1| actions a1PAm`1.

Proof of Lemma E.7. Fix any agent iPrms. We will argue that the policy π:i PΠgen,det
i defined within the proof of Lemma E.3

satisfies V π
:
i ,σ´i

i ě´m
a

logpTq{H. Since σ is an ε-CCE of G, it follows that

εěV
π:i ,σ´i

i ´V σi ě´m
a

logpTq{H´V σi ,

from which the result of Lemma E.7 follows after rearranging terms. To simplify notation, let us write pq´i,h :“
Ś

j‰ipqj,h, where
we recall that each pqj,h is determined given the history up to step h, pτj,h´1,shq, as defined in (15) and (16). An action profile
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drawn from pq´i,h is denoted by a´i„pq´i,h, with a´iPA´i. We compute

V
π:iˆσ´i

i

“Et‹„rT s
H
ÿ

h“1

E
π:iˆσ

pt‹q
´i

E
a´i„

Ś

j‰iσ
pt‹q
j,h pτj,h´1,shq

”

Ri,hpsh,pπ
:

i,hpτi,h´1,shq,a´iqq
ı

ěEt‹„rT s
H
ÿ

h“1

E
π:iˆσ

pt‹q
´i

˜

Ea´i„pq´i,h

”

Ri,hpsh,pπ
:

i,hpτi,h´1,shq,a´iqq
ı

´
1

H

ÿ

j‰i

DTVpσ
pt‹q

j,h pτj,h´1,shq,pqj,hq

¸

ěEt‹„rT s
H
ÿ

h“1

E
π:iˆσ

pt‹q
´i

ˆ

max
a1iPAi

Ea´i„pq´i,h

“

Ri,hpsh,pa
1
i,a´iqq

‰

˙

´
m

H
¨
a

HlogT

ě´m
a

logpTq{H,

where:

• The first inequality follows from the fact that the rewards Ri,hp¨q take values in r´1{H,1{Hs and that the total variation
between product distributions is bounded above by the sum of total variation distances between each of the pairs of component
distributions.

• The second inequality follows from the definition of π:i,hpτi,h´1,shq in terms of pq´i,h in (17) as well as (20) applied to each
j‰i and each t‹PrT s.

• The final inequality follows by Lemma E.8 below, applied to agent i and to the distribution pq´i,h, which we recall is a product
distribution almost surely.

Lemma E.8. For any iPrms, sPS,hPrHs, and any product distribution qP∆pA´iq, it holds that

max
a1iPAi

Ea„q

“

Ri,hps,pa
1
i,aqq

‰

ě0.

Proof. Choose a‹i :“argmaxa1iPAEa„q

“

pMiqa1i,a
‰

. Now we compute

H ¨Ea„qrRi,hps,pa
‹
i ,aqqsěH ¨ min

a1m`1PAm`1

Ea„q

“

Ri,hps,pa
‹
i ,a
1
m`1,a´pm`1qqq

‰

ě min
pj,a1jqPAm`1

1tj“iu¨Ea„q

“

pMiqa‹i ,a´pMiqa1i,a
‰

ě0,

where the first inequality follows since q is a product distribution, the second inequality uses that encp¨q is non-negative, and the
final inequality follows since by choice of a‹i we have Ea„q

“

pMiqa‹i ,a
‰

ěEa„q

“

pMiqa1i,a
‰

for all a1iPAi.

E.2. Remarks on bit complexity of the rewards

The Markov game GpGq constructed to prove Theorem E.1 uses lower-order bits of the rewards to record the action profile taken
each step. These lower order bits may be used by each agent to infer what actions were taken by other agents at the previous step,
and we use this idea to construct the best-response policies π:i defined in the proof. As a result of this aspect of the construction, the
rewards of the game GpGq each takeOpm¨logpnq`logp1{εqq bits to specify. As discussed in the proof of Theorem E.1, it is without
loss of generality to assume that the payoffs of the given normal-form gameG takeOplog1{εq bits each to specify, so when either
m"1 or n"1{ε, the construction of GpGq uses more bits to express its rewards than what is used for the normal-form gameG.

It is possible to avoid this phenomenon by instead using the state transitions of the Markov game to encode the action profile
taken at each step, as was done in the proof of Theorem 3.2. The idea, which we sketch here, is to replace the game GpGq of
Definition E.2 with the following game G1pGq:
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Definition E.9 (Alternative construction to Definition E.2). Given anm-player, n0-action normal-form gameG, we define the
game G1pGq“pS,H,pAiqiPr2s,P,pRiqiPr2s,µq as follows.

• The horizon of G isH“n0.

• LetA“n0. The action spaces of agents 1,2,...,m are given by A1“¨¨¨“Am“rAs. The action space of agentm`1 is

Am`1“tpj,ajq : jPrms,aj PAju,

so that |Am`1|“Amďn.

We write A“
śm
j“1Aj to denote the joint action space of the firstm agents, and A :“

śm`1
j“1 Aj to denote the joint action

space of all agents. Then |A|“Am¨pmAq“mAm`1ďn.

• The state space S is defined as follows. There are |A| states, one for each action tuple aPA. For each aPA, we denote
the corresponding state by sa.

• For all hPrHs, the reward to agent jPrm`1s given action profile a“pa1,...,am`1q at any state sPS is as follows: writing
am`1“pj

1,a1j1q,

Rj,hps,aq :“

$

’

’

&

’

’

%

0 :jRtj1,m`1u
1
H ¨

´

pMjqa1,...,am´pMjqa1,...,a1j1 ,...,am

¯

:j“j1

1
H ¨

´

pMjqa1,...,a1j1 ,...,am
´pMjqa1,...,am

¯

:j“m`1.

(23)

• At each step hPrHs, if action profile aPA is taken, the game transitions to the state sa.

Note that the number of states of G1pGq is equal to |A| “mnm`1
0 , and so |G1pGq| “mnm`1

0 . As a result, if we were to use
the game G1pGq in place of GpGq in the proof of Theorem E.1, we would need to define n0 :“ tn1{pm`1q{mu to ensure that
|G1pGq|ďn, and so the condition T ă exppε2 ¨tn{mu{m2q would be replaced by T ă exppε2 ¨tn1{pm`1q{mu{m2q. This would
only lead to a small quantitative degradement in the statement of Theorem 4.3, with the condition in the statement replaced by
T ăexppc¨ε2 ¨n1{3q for some constant cą0. However, it would render the statement of Theorem 5.2 essentially vacuous. For
this reason, we opt to go with the approach of Definition E.2 as opposed to Definition E.9.

We expect that the construction of Definition E.2 can nevertheless still be modified to useOplog1{εq bits to express each reward
in the Markov game G. In particular, one could introduce stochastic transitions to encode in the state of the Markov game a small
number of random bits of the full action profile played at each step. We leave such an approach for future work.

F. Equivalence between Πgen,rnd
j and ∆pΠgen,det

j q

In this section we consider an alternate definition of the space Πgen,rnd
i of randomized general policies of player i, and show that

it is equivalent to the one we gave in Section 2.

In particular, suppose we were to define a randomized general policy of agent i as a distribution over deterministic gen-
eral policies of agent i: we write rΠgen,rnd

i :“ ∆pΠgen,det
i q to denote the space of such distributions. Moreover, write

rΠgen,rnd :“ rΠgen,rnd
1 ˆ ¨¨¨ ˆ rΠgen,rnd

m “ ∆pΠgen,det
1 q ˆ ¨¨¨ ˆ∆pΠgen,det

m q to denote the space of product distributions over
agents’ deterministic policies. Our goal in this section is to show that policies in rΠgen,rnd are equivalent to those in Πgen,rnd in the
following sense: there is an embedding map Emb :Πgen,rndÑ rΠgen,rnd, not depending on the Markov game, so that the distribution
of a trajectory drawn from any σ PΠgen,rnd, for any Markov game, is the same as the distribution of a trajectory drawn from
Embpσq (Fact F.2). Furthermore, Emb is surjective in the following sense: any policy rσP rΠgen,rnd produces trajectories that are
distributed identically to those of Embpσq (and thus of σ), for some σPΠgen,rnd (Fact F.3). In Definition F.1 below, we define Emb.

Definition F.1. For j Prms and σj PΠgen,rnd
j , define EmbjpσjqP rΠ

gen,rnd
j “∆pΠgen,det

j q to put the following amount of mass
on each πj PΠgen,det

j :

pEmbjpσjqqpπjq :“
H
ź

h“1

ź

pτj,h´1,shqPHj,h´1ˆS

σjpπj,hpτj,h´1,shq | τj,h´1,shq (24)
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Furthermore, for σ“pσ1,...,σmqPΠgen,rnd, define Embpσq“pEmbpσ1q,...,Embpσmqq.

Note that, in the special case that σj PΠgen,det
j , Embjpσjq is the point mass on σj.

Fact F.2 (Embedding equivalence). Fix a m-player Markov game G and, arbitrary policies σj PΠgen,rnd
j . Then a trajectory

drawn from the product policy σ“pσ1,...,σmq PΠgen,rnd
1 ˆ¨¨¨ˆΠgen,rnd

m is distributed identically to a trajectory drawn from
EmbpσqP rΠgen,rnd.

The proof of Fact F.2 is provided in Section F.1. Next, we show that the mapping Emb is surjective in the following sense:

Fact F.3 (Right inverse of Embj). There is a mapping Fac : rΠgen,rnd Ñ Πgen,rnd so that for any Markov game G and any
rσP rΠgen,rnd, the distribution of a trajectory drawn from rσ is identical to the distribution of a trajectory drawn from Emb˝Facprσq.

We will write Facpprσ1,...,rσmqq :“pFac1prσ1q,...,Facmprσmqq. Fact F.3 states that the policy Facprσqmaps, under Emb, to a policy
in rΠgen,rnd which is equivalent to rσ (in the sense that their trajectories are identically distributed for any Markov game).

An important consequence of Fact F.2 is that the expected reward (i.e., value) under any σPΠgen,rnd is the same as that of Embpσq.
Thus given a Markov game, the induced normal-form game in which the players’ pure action sets are Πgen,rnd

1 ,...,Πgen,rnd
m

is equivalent to the normal-form game in which the players’ pure action sets are Πgen,det
1 ,...,Πgen,det

m , in the following sense:
for any mixed strategy in the former, namely a product distributional policy P P∆pΠgen,rnd

1 qˆ ¨¨¨ˆ∆pΠgen,rnd
m q, the policy

Eσ„P rEmbpσqsP∆pΠgen,det
1 qˆ¨¨¨ˆ∆pΠgen,det

m q“ rΠgen,rnd is a mixed strategy in the latter which gives each player the same
value as under P . (Note that Eσ„P rEmbpσqs is indeed a product distribution since P is a product distribution and Emb factors
into individual coordiantes.) Furthermore, by Fact F.3, any distributional policy in rΠgen,rnd arises in this manner, for some
P P∆pΠgen,rnd

1 qˆ¨¨¨ˆ∆pΠgen,rnd
m q; in fact, P may be chosen to place all its mass on a single σ PΠgen,rnd

1 ˆΠgen,rnd
m . Since

Emb factors into individual coordinates, it follows that Emb yields a one-to-one mapping between the coarse correlated equilibria
(or any other notion of equilibria, e.g., Nash equilibria or correlated equilibria) of these two normal-form games.

F.1. Proofs of the equivalence

Proof of Fact F.2. Consider any trajectory τ “ ps1,a1,r1,...,sH,aH,rHq consisting of a sequence of H states and actions and
rewards for each of them agents. Assume that ri,h“Ri,hps,ahq for all i,h (as otherwise τ has probability 0 under any policy). Write:

pτ :“
H´1
ź

h“1

Phpsh`1|sh,ahq.

Then the probability of observing τ under σ is

pτ ¨
H´1
ź

h“1

m
ź

j“1

σj,hpaj,h|τj,h´1,shq (25)

where, per usual, τj,h´1“ps1,aj,1,rj,1,...,sh´1,aj,h´1,rj,h´1q. Write σ“pσ1,...,σmq“Embpσq. The probability of observing
τ under σ is

pτ ¨
ź

jPrms

ÿ

πjPΠ
gen,det
j : @h, πpτj,h´1,shq“aj,h

σjpπjq (26)

It is now straightforward to see from the definition of σjpπjq in (24) that the quantities in (25) and (26) are equal.

Proof of Fact F.3. Fix a policy rσj P rΠ
gen,rnd
j “∆pΠgen,det

j q. We define Facjprσjq to be the policy σj PΠgen,rnd
j , which is defined

as follows: for τj,h´1“psj,1,aj,1,rj,1,...,sj,h´1,aj,h´1,rj,h´1qPHj,h´1, shPS, we have, for aj,hPAj,

σjpτj,h´1,shqpaj,hq“
rσj

´

tπj PΠgen,det
j : πjpτj,g,sgq“aj,g @gďhu

¯

rσj

´

tπj PΠgen,det
j : πjpτj,g,sgq“aj,g @gďh´1u

¯ .

33



Hardness of Independent Learning in Markov Games

If the denominator of the above expression is 0, then σjpτj,h´1, shq is defined to be an arbitrary distribution on ∆pAjq.
(For concreteness, let us say that it puts all its mass on a fixed action in Aj.) Furthermore, for rσ P rΠgen,rnd, define
Facprσq :“pFac1prσ1q,...,FacmprσmqqPΠgen,rnd.

Next, fix any rσ“prσ1,...,rσmq P rΠ
gen,rnd
1 ˆ¨¨¨ˆ rΠgen,rnd

m . Let σ“Facprσq. By Fact F.2, it suffices to show that the distribution
of trajectories under σ is the same as the distribution of trajectories drawn from σ.

So consider any trajectory τ “ps1,a1,r1,...,sH,aH,rHq consisting of a sequence of H states and actions and rewards for each
of them agents. Assume that ri,h“Ri,hps,ahq for all i,h (as otherwise τ has probability 0 under any policy). Write:

pτ :“
H´1
ź

h“1

Phpsh`1|sh,ahq.

Then the probability of observing τ under σ is

pτ ¨
H
ź

h“1

m
ź

j“1

σj,hpaj,h|τj,h´1,shq

“pτ ¨
m
ź

j“1

H
ź

h“1

rσj

´

tπj PΠgen,det
j : πjpτj,g,sgq“aj,g @gďhu

¯

rσj

´

tπj PΠgen,det
j : πjpτj,g,sgq“aj,g @gďh´1u

¯

“pτ ¨
m
ź

j“1

rσj

´

tπj PΠgen,det
j : πjpτj,g,sgq“aj,g @gďHu

¯

,

which is equal to the probability of observing τ under rσ.
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