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Abstract
The use of deep neural networks for modelling
system dynamics is increasingly popular, but long-
term prediction accuracy and out-of-distribution
generalization still present challenges. In this
study, we address these challenges by consider-
ing the parameters of dynamical systems as fac-
tors of variation of the data and leverage their
ground-truth values to disentangle the represen-
tations learned by generative models. Our exper-
imental results in phase-space and observation-
space dynamics, demonstrate the effectiveness of
latent-space supervision in producing disentan-
gled representations, leading to improved long-
term prediction accuracy and out-of-distribution
robustness.

1. Introduction
The robust prediction of the behaviour of dynamical systems
remains an open question in machine learning, and engi-
neering in general. The ability to make robust predictions is
important not only for forecasting systems of interest like
weather (Garg et al., 2021), but also because it supports
innovations in fields like system control, autonomous plan-
ning (Hafner et al., 2019) and computer-aided engineering
(Brunton et al., 2020). In this context, the use of deep gen-
erative models has recently gained significant traction for
sequence modelling (Girin et al., 2020). The robustness
of machine learning models can be considered along two
axes: (1) long-term and (2) out-of-distribution (OOD) per-
formance. Accurate long-term prediction can be notoriously
difficult in many dynamical systems because error accumu-
lation can cause divergence in finite time (Zhou et al., 2020;
Raissi et al., 2019), a problem that even traditional solvers
can suffer from. At the same time, machine learning tech-
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niques are known to suffer from poor OOD performance
(Goyal & Bengio, 2020), when they are employed in a set-
ting they had not encountered in their training phase.

When it comes to modelling dynamics, training data contain
both the dynamics themselves and the dynamical system
parameters. However, many approaches to learning fail to
distinguish between the two, which could result in entan-
gled representations, leading to overfitting and thus poorer
forecasts (Bengio et al., 2013). Here, our aim is to investi-
gate generative models whose latent space is disentangled
in such a way that the parameters and the dynamics are
distinctly represented. More specifically, we explore dynam-
ical systems modelled by ordinary differential equations
(ODEs) and their respective parameters.

Our method builds on two elements. First, the inherent abil-
ity of Variational Autoencoders (VAEs) (Kingma & Welling,
2014) to produce disentangled representations in an unsu-
pervised way (Higgins et al., 2017), a feature that has been
applied in the context of image and scene modelling (Kim &
Mnih, 2018). Second, latent space supervision with ground-
truth factors has been found to produce more disentangled
representations in image modelling (Locatello et al., 2019).
We motivate the use of disentangled representations through
a theoretical analysis of the emission process through the
scope of dynamical systems. In practice, we treat the param-
eters of a dynamical system as factors of variation of the
data distribution and use the ground-truth values of these
parameters to improve the latent space disentanglement.
While various assumptions, like domain stationarity, have
been used to improve the disentanglement in the predic-
tion of dynamical systems in an unsupervised way (Li &
Mandt, 2018; Miladinović et al., 2019), to the best of our
knowledge, this is the first attempt to use supervised disen-
tanglement for system dynamics. Furthermore, contrary to
system-identification techniques that require knowledge of
the full underlying system to be computationally effective
(Ayyad et al., 2020), our technique only needs to be aware
of the system parameters.

Contributions Our work is the first, to the best of our knowl-
edge, that uses ground-truth information of the dynamical
system parameters to disentangle the latent space of genera-
tive models. We provide a theoretical motivation for disen-
tangled representations in dynamical system prediction and,
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practically, encourage latent space disentanglement through
supervision. We conduct experiments with VAEs trained
with noisy observations of the phase-space of 3 dynamical
systems. We also apply our method to a state-of-the-art
generative model (Recurrent State Space Model (Hafner
et al., 2019)) trained on image sequences of a swinging
pendulum. We propose a definition of OOD data in the
context of system dynamics and evaluate the performance
of models in- and out-of-distribution. We demonstrate that
models with a disentangled latent space can better capture
the variability of dynamical systems and produce more accu-
rate long-term predictions, both in- and out-of-distribution.
However, the practical importance of our method is cur-
rently limited by the labelling cost. It would be worth as-
sessing the model in the semi-supervised setting, as that
would be better suited for real-world application. All the
necessary code to reproduce our experiments is provided at
https://github.com/stathius/sd-vae.

2. Related Work
VAEs and disentanglement. Disentanglement aims to pro-
duce representations where each latent variable captures a
different factor of variation of the data distribution. This
can also be seen as identifying the true causal model of
the data-generating process (Schölkopf, 2019). While su-
pervised disentanglement is a long-standing idea (Math-
ieu et al., 2016), information-theoretic properties can be
leveraged to allow unsupervised disentanglement in VAEs
(Higgins et al., 2017; Kim & Mnih, 2018). Recent findings
(Locatello et al., 2020a) emphasize the vital role of induc-
tive biases from models or data for useful disentanglement,
leading to semi- and weakly-supervised disentanglement
approaches (Locatello et al., 2019; 2020b). In the field of
physical sciences, hierarchical priors have been proposed
to learn disentangled representations of high-dimensional
spatial fields (Jacobsen & Duraisamy, 2022). To assess the
strength of disentanglement, simulated datasets are usually
used, because simulations give access to the ground-truth
factors of variation (i.e., color or shape of an object in image
data). Various metrics have been proposed to quantify dis-
entanglement, both predictor-based (Eastwood & Williams,
2018; Kumar et al., 2018) and information-theoretic ones
(Chen et al., 2018) but the task still presents challenges
(Carbonneau et al., 2020).

Disentanglement in sequence modelling. While disentan-
glement methods are often tested in a static (image) setting,
there is a growing interest in applying disentanglement to se-
quence dynamics. Using a bottleneck corresponding to the
degrees of freedom of the physical system, Iten et al. (2018)
learn an interpretable representation using a VAE. How-
ever, their model gives physically inconsistent predictions
in OOD data (Barber et al., 2021). Disentangling content

from dynamics has also been tried in deep state-space mod-
els (SSMs) (Fraccaro et al., 2017; Li & Mandt, 2018), but
these methods focus mostly on modelling variations in the
appearance of moving objects, failing to take dynamics into
account. Unsupervised techniques have also been proposed.
Assuming domain stationarity, Miladinović et al. (2019)
separate the dynamics from sequence-wide properties in
dynamical systems like Lotka-Volterra but they do not fully
evaluate the OOD performance of their model. Yeo et al.
(2021) suggest that learning hierarchy of semantic concepts
leads to feature abstraction and enhanced disentanglement,
while (Li et al., 2023) propose a model for time-series gen-
eration whose representation is disentangled by minimizing
the pairwise total correlation between the latent variables.
While unsupervised methods have their advantages, they
also dismiss a wealth of information that can be cheaply
collected from simulated data, a gap that our method tries
to fill.

VAEs for sequence modelling. Dynamical VAEs (Girin
et al., 2020) have long been used to model sequence dy-
namics. Combining VAEs with physics-informed neural
networks (Raissi et al., 2019) can also be used to model
stochastic differential equations (Zhong & Meidani, 2022).
Feed-forward VAEs have also attracted a lot of interest in
modelling physical systems. There are two main motiva-
tions for this. First, VAEs offer various ways to incorporate
the inductive biases obtained from prior knowledge of the
physical system. Second, since their latent space is rela-
tively simple, one can easily assess if those inductive biases
result in more interpretable representations. Methods to
incorporate inductive biases include (i) bottlenecks based
on the degrees of freedom of the physical system (Iten et al.,
2018), (ii) the use of geometric and topological information
of the dynamical system responses to shape the manifold of
the latent representations (Lopez & Atzberger, 2022), and
(iii) using physics-informed priors (Takeishi & Kalousis,
2021). Furthermore, feed-forward VAEs can be combined
with recurrent neural networks (RNN) to improve accuracy
while at the same time learning highly-disentangled repre-
sentations of dynamical systems (Yeo et al., 2021).

3. Problem formulation
3.1. Dynamical systems

Let u ∈ R𝑑 be the state of a system. We consider system
dynamics that are governed by a set of differential equations
(DEs):

𝑑u
𝑑𝑡

= F (u, 𝝃) (1)

where F describes the governing equations and 𝝃 ∈ R𝑁b

denotes the parameters of these DEs. While these equations
describe how the system state evolves over time, there is a
limited number of real-world problems where they can be
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solved analytically. Hence, most often, the time evolution
of a system is acquired by numerical methods, given the
governing equations and some initial state. In experimental
data, observations ũ𝑡 contain some noise: ũ𝑡 = u𝑡 + 𝝐𝑡 ,
where 𝝐𝑡 ∈ R𝑑 is the stochastic uncorrelated noise. In
our computational experiments, the data are corrupted with
white Gaussian noise to simulate observation noise.

In the experimental section, we are concerned with dynam-
ical systems governed by Ordinary DEs (ODEs) but our
methods could in principle apply to Partial DEs as well. The
three dynamical systems we study are the swinging pendu-
lum, the Lotka-Volterra system used to model prey-predator
populations, and the planar 3-body system. The governing
equations are the following:

Simple pendulum: ¥\ = −𝑔
ℓ

sin \ (2)

Lotka-Volterra: ¤𝑥 = 𝛼𝑥 − 𝛽𝑥𝑦
¤𝑦 = 𝛿𝑥𝑦 − 𝛾𝑦 (3)

3-body system: ¤v𝑖 =
𝐾1
𝑚𝑖

∑︁
𝑗

𝑚𝑖𝑚 𝑗

|r𝑖 𝑗 |3
r𝑖 𝑗

¤x𝑖 = 𝐾2v𝑖 (4)

v𝑖 , x𝑖 ∈ R2, 𝑖 ∈ [1, 2, 3]

Where \ is the length of the pendulum, 𝑔 is the acceleration
due to gravity and ℓ is its length. Since the two parameters
appear in ratio we keep gravity constant and only vary the
length of the pendulum, i.e., 𝝃 = [ℓ]. In Lotka-Volterra, 𝑥, 𝑦
are the prey and predator populations while the 4 parameters
𝝃 = [𝛼, 𝛽, 𝛾, 𝛿] describe the interaction of the two species.
In the 3-body, x𝑖 , v𝑖 are the positions and velocities of the
bodies and the 4 parameters 𝝃 = [𝐾1, 𝑚1, 𝑚2, 𝑚3] represent
the gravity constant and masses. Overall, these systems are
characterized by a varied number of degrees of freedom,
governing equations and number of parameters. We also
refer to Appendix B.2 for more details.

3.2. Theoretical motivation for disentanglement

The problem setup that involves inferring the evolution of
a system state, up to some time in future, 𝑡 + 𝑛, given a
number of previous (observed) states up to a point in time 𝑡.
The system dynamics are defined by the form of the differ-
ential equation (DE), the parameters of it 𝝃, and the initial
conditions 𝑰. Since the DE is deterministic, if parameters
and current state is known then next step can be calculated
using numerical methods with a high precision (bound by
the numerical precision of the computational method). We
can consider the simplified setting where the conditional
distribution of the next state 𝑃(x𝑡:𝑡+𝑛 |x<𝑡 ; 𝝃𝐶 , 𝑰𝐶 ) is char-
acterized only by the noise of the observations, assuming
there is no other type of uncertainty. In the absence of noise
the distribution becomes Dirac’s delta function. In practice

Figure 1: Samples from the parameter distributions of pen-
dulum length ℓ. Each trajectory in the train, validation & test
sets is simulated with length drawn from ℓ ∼ U(1.0, 1.5),
while OOD-Easy and OOD-Hard have disjoint distributions.
Note that predicting the trajectory of a shorter pendulum is
harder for our models because it swings faster.

we often do not have access to 𝝃, 𝑰. There are two options
in this case a) assign priors on 𝝃𝐶 , 𝑰𝐶 , and marginalize over
them to obtain an estimate of the marginal, and b) estimate
𝝃𝐶 and 𝑰𝐶 and directly model the conditional. Given the
wide nature of divergence in the trajectories of a system for
different 𝝃𝐶 , 𝑰𝐶 , it is hard to both assign a proper prior and
efficiently marginalize. On the other hand if we can derive
good estimates for 𝝃𝐶 , 𝑰𝐶 , then the second modelling choice
becomes more appealing and this is where disentanglement
can be beneficial. For simplicity, we consider the pendulum
where its length 𝝃𝐶 = 𝑙 varies between trajectories, and
all other parameters and initial conditions are constant and
known. In this case, the marginal 𝑃(x𝑡:𝑡+𝑛 |x<𝑡 ) remains un-
known, the conditional, 𝑃(x𝑡:𝑡+𝑛 |x<𝑡 , 𝑙) is just characterized
by the observational noise, as described earlier. In VAEs
this procedure is modelled by the decoder as 𝑃(x𝑡+𝑛 |z<𝑡 ).
Disentanglement allows the separation of the latent vector
in two parts i) z<𝑡 that captures the dynamics and ii) z𝑙
that encodes the pendulum length. This leads to a condi-
tional distribution 𝑃(x𝑡:𝑡+𝑛 |z<𝑡 , z𝑙) which better resembles
the functional structure of the real conditional distribution
above.

3.3. Definition of OOD dataset

The evolution of a dynamical system is defined by far and
foremost by the form of F in Equation (1). Considering F
given, the next most important factor that characterizes the
distribution of trajectories in the system is the values of the
parameters 𝝃. If these parameters come from a distribution
𝝃 ∼ 𝑃(𝝃), the trajectories of states that the system can fol-
low will form another distribution u≤𝑡 ∼ 𝑃(u≤𝑡 | 𝝃), where
u≤𝑡 is the evolution of the system states from the start-up
to time 𝑡. Given the nature of dynamical systems, different
parameters can produce widely different trajectories in state
space (Lai & Winslow, 1994) so it is reasonable to assume
that changes in the parameter distribution will affect the tra-
jectory distribution as well. For our systems, we additionally
verify this by visually inspecting the trajectories produced
by each parameter distribution (see Appendix A.1). Here,
we define an OOD dataset as a dataset comprising a set
of trajectories derived from a parameter distribution that is

3



Disentangled Generative Models for Robust Prediction of System Dynamics

...
z1

zk
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...

Encoder

x1, ... xt 
(time series) 

Decoder

xt+1,... xt+n 
(prediction) 

Supervised  
disentanglement

ξ1 ... ξk 
(parameters) 

Figure 2: The SD-VAE model Taking as input 𝑡 observa-
tions of the phase space, the model predicts the state in
future time-steps in one pass. The model is trained with an
additional loss term over some of the latent, which makes
the representation more disentangled.

disjoint from the one used to generate the trajectories of the
training dataset. For each system, we draw the parameters
𝝃 from a uniform distribution which is the same for the
training, validation and test sets. These three datasets are
considered in-distribution. Furthermore, we create two addi-
tional datasets using different parameter distributions. The
support of these distributions is disjoint from the previous
distribution and with each other. We name these datasets
OOD-Easy and OOD-Hard. Figure 1 illustrates the distribu-
tion of lengths of the pendulum datasets.

Capturing the whole distribution of trajectories in a sin-
gle training set is unrealistic (Fotiadis et al., 2020) and for
learning models with robust OOD prediction, some extra
inductive biases are needed (Bird & Williams, 2019; Barber
et al., 2021). In our method, this inductive bias comes by
leveraging the ground-truth parameters to disentangle the
latent representation. For the observation-space pendulum
experiments, we extend the notion of parameters to include
the initial conditions (boundary conditions could also be
added). A detailed description of the datasets is provided in
Table 3 of the Appendix.

4. Methods
4.1. Variational Autoencoders (VAEs)

VAEs (Kingma & Welling, 2014) offer a principled ap-
proach to latent variable modeling. It combines an encoder
𝑄𝜙 (𝒛 |𝒙) which takes the data 𝑥 as input and infers the la-
tent representation 𝑧, with a generative decoder 𝑃\ (𝒙 |𝒛)
that project the representation back to the data space. The
encoder and decoder are parameterized by neural networks
which makes the computation of the marginal likelihood
prohibitively expensive. Training is, thus, done with approx-
imate inference, i.e., maximizing the evidence lower bound
(ELBO) of the marginal over the data.

L𝜙,\ (x) = E𝑄𝜙 (z |x) [log 𝑃\ (x | z)]
− 𝐷𝐾𝐿

(
𝑄𝜙 (z | x) | |𝑃(z)

) (5)

Input  
x1 ,... xt

Predictions 
xt+1, ...

Figure 3: Autoregressive prediction By using model au-
toregressively on its own predictions we can derive an arbi-
trarily long horizon.

In the standard formulation, the ELBO consists of a recon-
struction loss and the Kullback-Leibler divergence between
the posterior distribution 𝑄𝜙 (z | x) and a prior 𝑃(z).

4.2. Disentangling VAEs for modelling dynamics

In theory, disentanglement in VAEs can be also achieved in
an unsupervised way. Choices include using a prior with
uncorrelated variables like the standard normal, adding a
weighting factor on the KL divergence term of the loss (Hig-
gins et al., 2018) or constraining the size of the latent space
to coincide with the factors of variation in the data (Iten
et al., 2020). As Locatello et al. (2020a) has shown, unsu-
pervised disentanglement only works if there are biases in
the data to exploit. Supervised disentanglement is possible
when information about the factors of variation of the data
is available. Using the ground-truth values of simulated
images to disentangle VAE representations improves image
generation quality (Locatello et al., 2019).

We extend the idea of supervised disentanglement to the
context of modelling dynamics. In our datasets, each tra-
jectory is accompanied by the parameters 𝝃 of the ODE
that were used to produce it. We treat those parameters
as factors of variation in the data and use them to enforce
a structure on the latent space using constrained optimiza-
tion. Under the Karush-Kuhn-Tucker conditions, we can
rewrite the constraint in the Langragian form and obtain the
regularization term L𝝃 (z1:𝑁𝝃 , 𝝃), between the ground truth
parameters 𝝃 ∈ R𝑁b and the output of the first 𝑁b latents
of the VAE, z1:𝑁b

. We discuss the choice of the regression
term L𝝃 in Section 5. Extending the original VAE to gener-
ate predictions instead of reconstructions, is also needed. To
accommodate for this, we change the reconstruction term
in Equation (5) to a prediction term log 𝑃\

(
x𝑡<,≤𝑡+𝑛 | z

)
,

leading to the the final training objective:

L𝜙,\ (x≤t) = E𝑄𝜙 (z |x≤𝑡 )
[
log 𝑃\ (x𝑡<,≤𝑡+𝑛 | z)

+ 𝛿 L𝝃 (z1:𝑁𝝃 , 𝝃)
]

− 𝛽𝐷𝐾𝐿
(
𝑄𝜙 (z | x≤𝑡 ) | |𝑃(z)

) (6)
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Where 𝑡 is the length of the input and 𝑛 of the predicted
output and we drop the dependence of z on t to simplify
the notation. To allow more flexibility between prediction
and disentanglement, both the KLD and regression terms
are weighted by tunable parameters (𝛽 and 𝛿 respectively).
Weighting the prediction term can also be seen as tuning
the decoder variance. A more elaborate derivation of the
objective can be found in Appendix C.1 We refer to this
model as SD-VAE. A schematic of the architecture can be
seen in Figure 2.

Both the VAE and SD-VAE can produce arbitrarily-long
predictions by re-feeding the model predictions back as
input (Figure 3). This autoregressive approach has been
shown to work well in problems like wave propagation and
weather forecasting (Fotiadis et al., 2020; Lam et al., 2022).

4.3. Disentanglement of dynamics in observation-space

We investigate how disentanglement affects modelling of
dynamics when the state of the system is not accessible
directly but it inferred from high-dimensional observations
like image sequences. In this case, the state of the system
u𝑡 ∈ 𝑅𝑑 is mapped to a high-dimensional rendering f𝑡 . In
our dataset f𝑡 ∈ R64×64

≥0 and 𝑡 ∈ N. The model for this
dataset is the Recurrent State Space Model (RSSM) (Hafner
et al., 2019). RSSM has been successfully used for plan-
ning from pixels and is considered state-of-the-art model in
long-term spatiotemporal prediction (Saxena et al., 2021).
Furthermore, RSSM is a hybrid model combining determin-
istic and stochastic components, and this allows us to assess
disentanglement outside VAEs. We use the same formula-
tion of the loss function as in the original paper, with the
addition of the supervised disentanglement loss, similarly
to what we do in Equation (6). Since the RSSM has latent
variables for each time-step, we apply a disentanglement
loss on all of them. The SD-RSSM loss function can be
found in Appendix C.3.

5. Disentangling for system dynamics
In this section we compare models trained to predict the
evolution of dynamical systems. The main goal of our ex-
periments is to assess whether supervised disentanglement
of VAEs improves the prediction accuracy and if the im-
provement also transfers to OOD data. To achieve this we
compare VAEs with our proposed SD-VAE. Additionally,
using quantitative and qualitative approaches, we analyze
how latent space supervision affects the representation of
VAEs. Next, we try to see if supervised disentanglement
works also in deterministic autoencoders (AEs). Lastly,
we conduct experiments with LSTMs, a popular recurrent
method for low dimensional sequence modelling (Yu et al.,
2019). Overall, we train and compare VAE, SD-VAE, AE,
SD-AE and LSTM models.

5.1. Datasets

To create the datasets, we use an adaptive Runge-Kutta inte-
grator with a timestep of 0.01 seconds. For every simulated
sequence we draw a different combination of parameters.
For the pendulum simulations we randomly draw the initial
angle \ from a uniform distribution 10◦ − 170◦, the angular
velocity 𝜔 is always 0. For the Lotka-Volterra and 3-body
system, the initial conditions are always the same to avoid
pathological trajectories. Dataset details can be found in
Appendix A.1.

5.2. Models and training

Choices for the VAE models We use the same model
choices for both VAE and SD-VAE. Our prior is an isotropic
Gaussian 𝑃(𝒛) = N(𝒛 | 0, 𝑰) which helps to disentangle
the learned representation (Higgins et al., 2017). To get a
closed form KL-divergence term, we use a Gaussian with di-
agonal covariance as the approximate posterior distribution
𝑞𝜙 (𝒛 | 𝒙) = N (𝒛 | 𝝁𝑧 ,𝚺𝑧), a common practical choice
(Kingma & Welling, 2014). The decoder has a Laplace
distribution 𝑝\ (𝒙 | 𝒛) = Laplace (𝒙 | 𝝁𝑥 , 𝑰) which is equiv-
alent to using a 𝐿1 prediction loss. Preliminary experiments
showed that 𝐿1 loss works better than 𝐿2. This is not un-
expected, since 𝐿1 is known to provide crisper results in
image modelling (Mathieu et al., 2019) and has also been
used in time-series forecasting (Tang & Matteson, 2021).
The covariance of the decoder is constant and isotropic. No
scaling of the covariance is needed since we weight the
KLD term in Equation (6).

Choices for the supervised disentanglement term For the
regression loss we chose the 𝐿1 loss, corresponding to a
Laplacian prior with mean 𝝃𝑖 and unitary covariance. This
choice was driven by preliminary experiments with vari-
ous loss functions. Using a standard normal prior pulls the
latents to be close to 0 but this comes at odds with the disen-
tanglement loss term because the target parameters can have
larger values. To alleviate this issue we scale the parameters
𝝃 ∈ [0, 1]. We find that linear scaling offers some small im-
provement and we use it throughout our experiments (details
in Appendix C.2).

Training Early experiments revealed significant variance in
the performance of the models, depending on hyperparame-
ters. With this in mind, we take various steps to make model
comparisons as fair as possible. Firstly, all models have
similar capacity of neurons. Both the VAE and AE have
an encoder with two hidden layers of sizes 400 and 200 re-
spectively and a reverse decoder. The LSTM model has two
stacked LSTM cells with a hidden size of 100, which results
in an equivalent number of learned parameters. We tune
the hyperparameters of each method using grid-search and
train the same number of models for each method to avoid
favouring one over the others by chance. To further reduce
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Figure 4: Disentangled VAE (SD-VAE) vs VAE. Normalized MAE difference between the SD-VAE and the plain VAE.
Negative values indicate that SD-VAE has lower error. We plot the mean and one standard deviation interval of the best 5
models (selected based on the cummulative MAE over a validation set)

Table 1: MAE averaged over 800 steps. Mean of the best 5 models that were selected by validation MAE. SD-VAE
outperforms VAE and the other models. LSTM diverged during testing on Lotka-Volterra.

Pendulum Lotka-Volterra 3-body system
Test-set OOD-Easy OOD-Hard Test-set OOD-Easy OOD-Hard Test-set OOD-Easy OOD-Hard

LSTM 0.829 1.318 1.985 − − − 0.061 0.082 0.099
MLP 0.635 1.097 1.420 0.103 0.140 0.157 0.064 0.079 0.093
SD-MLP 0.687 1.088 1.442 0.104 0.141 0.157 0.053 0.067 0.084
VAE 0.673 1.128 1.386 0.104 0.142 0.159 0.060 0.075 0.089
SD-VAE 0.443 0.819 1.185 0.100 0.138 0.155 0.048 0.062 0.080

statistical chance, we conduct large-scale experiments train-
ing overall 1200 models which required more than 5, 000
CPU-hours. Details for the hyperparameters and number of
experiments can be found in Appendix D.1.

5.3. Long-term and OOD prediction accuracy

We compare the prediction accuracy of VAE and SD-VAE
on the three dynamical systems described in Section 3.1
and for each system we compare on three datasets: the
in-distribution test-set, which shares the same parameter
distribution with the training set, and the OOD-Easy and
OOD-Hard sets which represent an increasing distribution
shift from the training data. Models are compared using
the Mean Absolute Error (MAE) between prediction and
ground truth, a widely used metrics for sequence prediction
problems (Girin et al., 2020), that was also used for training.
Models are used in an autoregressive manner (Section 4.2)
to produce long-term predictions of 800 timesteps. We
consider this to be sufficiently long-term since it is 20 times
longer than the output of a forward pass. We predict up
to 800 timesteps because the simulated trajectories are of
1000 steps long and we reserve the first 200 timesteps to
randomly select a starting point for the input. To account
for the variability in model training, we provide the mean

and standard deviation computed for the 3 best models of
each method. The best models are selected based on average
validation MAE.

Results (Figure 4 & Table 1) indicate that SD-VAE offers
a substantial and consistent improvement over the VAE
across all 3 dynamical systems and datasets with a reduction
in error that surpasses 30% in the pendulum system. In
both the pendulum and 3-body system the improvement is
mostly increasing for long-term predictions indicating that
SD-VAE captures better the system dynamics. While the
accuracy of both models deteriorates in the OOD-Easy and
OOD-Hard set (details in Figure 13 of the Appendix), SD-
VAE still outperforms the VAE. This is an indication that
the disentanglement of domain parameters can be a useful
inductive bias for OOD generalization. Overall, results show
that SD-VAE forecasts more accurately both long-term and
OOD, indicating that supervised disentanglement helps the
model to better capture the system dynamics.

5.4. Disentanglement of representations

We want to understand if latent space supervision leads to
differences in the learned representations of VAEs and SD-
VAEs. For this, we use various metrics to quantify disentan-
glement. Measuring disentanglement is a challenging task;
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Table 2: SD-VAE exhibits stronger disentanglement properties than the plain VAE according to widely used metrics.
Scores are averages over the best 3 models (selected by validation accuracy).

Pendulum Lotka-Volterra 3 body system
VAE SD-VAE VAE SD-VAE VAE SD-VAE

Disentanglement - - 0.27 0.53 0.20 0.90
Completeness 0.17 0.90 0.20 0.57 0.13 0.90
Informativeness 0.94 0.99 1.00 1.00 1.00 1.00
SAP 0.03 0.87 0.04 0.21 0.01 0.67
MIG 0.01 0.17 0.00 0.03 0.00 0.08

VAE SD-VAE
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Figure 5: Disentanglement of representations. The 𝑥-axis
corresponds to the parameters and the 𝑦-axis to the latent
various. The color scale denotes the value of the importance
weights. These values were extracted from the weights of a
regressor trained to predict the parameters from the latent
values. High values (yellow) indicate that the latent variable
that has high predictive power over the ground-truth value.
We present the top 3 models for each method and dataset.
The latent space of the SD-VAE is disentangled in highly-
predictive and non-predictive parts, while the VAE encoding
exhibits no such characteristic.

many metrics have been proposed that do not always corre-
late well with each other (Locatello et al., 2020a). In this
work we use Disentanglement, Completeness, Informative-
ness (DCI) (Eastwood & Williams, 2018), a predictor-based
measuring frameworks that analyses three different aspects
of disentanglement. Briefly, Disentanglement measures how
well the factors of variation are factorized in the represen-
tation, Completeness indicates if each factor is captured by
a single latent variable, and Informativeness quantifies the
amount of information a representation captures about the
factors of variation. Recent studies suggest that in practice

DCI with random forests is "the best all-around metric"
(Zaidi et al., 2020). For completeness, we additional in-
clude Mutual Information Gap (MIG) (Chen et al., 2018)
an information-theoretic metric that quantifies disentangle-
ment as the difference between the mutual information (MI)
between the top two latent-factor pairs, and the Attribute
Predictability Score (SAP) (Kumar et al., 2018) a metric
that works similarly to MIG but uses the importance weight
of a learned predictor instead of MI.

Metrics in Table 2 indicate that SD-VAE produces more dis-
entangled representations than the VAE in all the systems.
Specifically, we observe a significant increase in Disentan-
glement, Completeness and SAP scores and a more modest
increase in MIG. We also observe that the Informativeness
of both VAE and SD-VAE is close to the maximum (1), this
suggests that the representation of the VAE also captures in-
formation about the parameters but this is spread across the
latent dimensions. Disentanglement can not be computed
for the pendulum since there is only one factor of variation
(length).

To compute the DCI metrics, we train a boosted trees re-
gressor to predict the parameters from the latent codes (on
the training dataset). The importance weights of the learned
regressor demonstrate the predictive power of each latent
for each parameter. We visualize the weights of the best
SD-VAE and VAE models in Figure 5. We use the best 3
models as before (selected by validation MAE). To allow
better visual inspection we keep the first 8 latents. To further
facilitate the comparison for the VAE we place the highest
value of each column at the top diagonal positions ([1,1],
[2,2] etc). We provide visualizations of the full latent space
with importance weights. We observe that the supervised la-
tents of the SD-VAE have very high predictive power for the
system parameters, while the other latents are not significant.
In the case of VAE, the predictive power is spread across
the whole latent code. In conjunction with the disentangle-
ment metrics, these findings demonstrate that latent space
supervision produces highly disentangled representations.
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5.5. Linearity of correlation

The importance weights in the previous section denote the
strong correlation between latents z and parameters 𝝃. Since
trees can capture both linear and non-linear dependencies,
the nature of the relationship remains, unclear. To quan-
tify the linearity, we fit linear regression models for each
𝑧𝑖 , b 𝑗 pair and compute the absolute Pearson correlation
coefficient between the two variables. Pearson 𝑟 values are
visualized in Figure 15. Results (see Appendix E.1) indicate
that the relationship between supervised latents and param-
eters and is strongly linear in most cases. This aligns with
our experimental findings that linear scaling works best for
the disentanglement loss (see Appendix C.2). We exploit
this linearity to perform traversals of the latent space in the
next section.

5.6. Latent space traversals

Being able to traverse between two points in the latent space
is a property that indicates meaningful representations. In-
terpolation in latent space can produce meaningful images
in properly disentangled VAEs (Higgins et al., 2017). While
images have easily recognizable visual components, traver-
sals of dynamical systems are harder to portray. Here we
study whether interpolating between two points in the la-
tent space of SD-VAE can produce meaningful trajecto-
ries. For this, we create a new pendulum dataset containing
100 trajectories with linearly spaced length in the range
𝑙 ∈ [1.0 − 1.5]. The initial conditions are kept constant
(\ = 𝑝𝑖

2 , 𝜔 = 0) for all the trajectories to facilitate compar-
isons . We use the encoder of our best SD-VAE model to
extract the latent variables for each trajectory. For each tra-
jectory, the encoder produces 4 latent variables 𝑧1 . . . 𝑧4. We
linearly interpolate between the latents of the two extreme
trajectories (𝑙 = 1.0 and 𝑙 = 1.5), driven by our findings
in Appendix E.1 that latents and parameters have a higly
linear correlation. Next, we feed the real and interpolated
latents to the decoder and predict up to 1000 timesteps. We
find that the total mean absolute error between prediction
and ground truth is 0.29 with the real latents and 0.33 with
the interpolated one. These results indicate that linear latent
space interpolation produces meaningful latent codes. This
is further corroborated by plotting the real and interpolated
latents together (Figure 3). The relationship between the
real latents 𝑧𝑖 and pendulum length 𝑙 is highly linear, which
further explains with the linear interpolation method works
well.

5.7. Disentangling AEs and stability

We pose the question of whether supervised disentanglement
can also be applied to (deterministic) AEs. For this, we
train both AE and SD-AE models and compare them with
VAE and SD-VAE models (Table 1). Results indicate that

disentangling AEs does not offer much if any improvement
in prediction accuracy. Probabilistic models seem better
suited to capture the variation in the data distribution. It also
illustrates that latent space disentanglement is not trivial and
more work is needed to help us understand what works in
practice and why.

We also trained LSTMs and found that their prediction accu-
racy is subpar compared to the other models. In fact for the
Lotka-Volterra system, LSTMs proved to be very unstable:
none of the 72 trained LSTMs could predict long-term (800
steps) without diverging. On the note of model stability,
this is something to take into consideration when using su-
pervised disentanglement in practice. In AEs supervised
disentanglement resulted in a higher percentage of unstable
models. SD-VAE was the most stable model in the pendu-
lum and 3-body systems with more than 90% of the models
being stable, but in the Lotka-Volterra systems the VAE
training produced more stable models.

6. Modelling dynamics in observation-space
We extend the idea of supervised disentanglement to models
that infer the state from high-dimensional observations such
as image sequences.

6.1. Datasets

The dynamical system we use in this experiment is the
swinging pendulum, a common benchmark for modelling
dynamics in image sequences (Brunton et al., 2020; Barber
et al., 2021). The data set contains sequences of images of a
moving pendulum. The positions of the pendulum are first
computed by a numerical simulator and then rendered in
image space as frames of dimension 64 × 64. The length
of the pendulum ℓ, the strength of gravity 𝑔 and the ini-
tial conditions (position \, angular velocity 𝜔 ) are set to
different values in each trajectory so they differ from each
other. Parameters are drawn from a uniform distribution.
For the OOD sets we change the distributions of length 𝑙,
and gravity 𝑔 but keep the same distribution of \ and 𝜔 as
in training. More details about the data set are illustrated
in Appendix A.3. For the simulations, we use an adaptive
Runge-Kutta integrator with a timestep of 0.05 seconds.

6.2. Model and Training

In this experiment, we use RSSM described in Section 4.3.
RSSM is a generative model including both stochastic and
deterministic latents. We use supervised disentanglement
on the stochastic part, and term that model SD-RSSM. The
RSSM model we use follows the architecture as described
in (Hafner et al., 2019) & (Saxena et al., 2021). Disentangle-
ment is applied to all four parameters (length ℓ, gravity 𝑔,
initial position \ and velocity 𝜔), but only length and gravity
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Figure 6: Prediction quality on the observation-space pendulum. Structural Similarity (SSIM) as a function of the
predicted timestep. The disentangled SD-RSSM model seems more robust on long-term predictions.

vary between datasets. For training, we use sequences of
100 frames and batch size 100. We use an 𝐿2 loss for the
disentanglement term because preliminary results showed it
performs better than 𝐿1 and BCE. During testing the model
uses 50 frames as context. We train 24 RSSM and 24 SD-
RSSM models (detailed hyperparameters in Appendix D.2).

6.3. Results

We compare the predictions of RSSM and SD-RSSM using
structural similarity (SSIM), a metric that takes into account
the qualitative characteristics of the image, something that
pixel-wise metrics like MSE and MAE fail to do (Wang
et al., 2004). We select the best RSSM and SD-RSSM mod-
els based on the average SSIM over the validation set and
plot the SSIM as a function of the timestep (Figure 6) and
is widely used for dynamical system prediction from spa-
tiotemporal data (Pant & Farimani, 2020). Results show that
while for the short-term predictions, the RSSM has higher
SSIM, in long-term prediction after about 350 steps SD-
RSSM is performing better, in all 3 datasets. Furthermore,
as we move from the test-set to the OOD sets, we observe
that the SD-RSSM model closes the performance gap in
the short-term prediction. Specifically, in the OOD-Hard
for predictions up to around 350 step it is almost equivalent
to RSSM while at the same time maintaining its long-term
(>350) advantage. We hypothesize that SD-RSSM has better
long-term performance due to less overfitting to the rela-
tively short training horizon. Similarly, the robustness in
increasing distribution shifts could also be explained by
less overfitting on the parameters of the training data. We
also compared using the peak signal-to-noise ratio (PSNR),
drawing similar conclusions (details in Appendix F). Quali-
tative results show that both models produce accurate short
time predictions and also accurately capture the appearance
of the pendulum even in long-term predictions. Where they
differ is in how well they capture the long-term dynamics
indicating that latent space disentanglement is helpful for
long-term prediction. Overall, results suggest that super-
vised disentanglement can be used to model dynamical sys-

tems in observation-space sequences, resulting in improved
long-term and OOD performance.

7. Conclusion
We have shown that using ground-truth parameters to super-
vise the latent space of VAEs encourages them to learn more
disentangled and interpretable representations while at the
same time increasing their prediction accuracy and OOD
generalization in three dynamical systems. We have, further,
shown that supervised disentanglement improves generative
models like RSSM trained on observation-space data of a
swinging pendulum and leads to better long-term forecasting
performance and robustness to OOD shifts. These results
make supervised disentanglement an attractive choice for
the generative modelling of system dynamics. In practice,
VAE and SD-VAEs should be preferred over their determin-
istic counterparts. Using simulated data makes the label
collection cheap but this is not always possible. Extending
our method to the semi-supervised setting, i.e., supervising
with few labels, is important for real-world applications
where the collection of labels is more expensive but robust
prediction of system dynamics remains critical. Further
analysis of the method using systems with more complex
dynamics is also an important avenue for future work.
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Software and Data
We provide all the necessary code to reproduce our experiments at https://github.com/stathius/sd-vae. The repository
contains code and instructions for generating all the datasets and training all the models presented in this work using the
hyperparameters that are clearly presented in the paper. This should significantly help others reproduce our experiments. For
any further clarifications, readers are encouraged to contact the corresponding author(s).

Accessibility
We have used vector-based figures to increase clarity for zooming-in, a color palette that is easily distinguishable by
colorblind people and different line styles. We have also curated arxiv citations to refer to the corresponding conference or
journal publications where possible.

A. Datasets
A.1. Phase space

For simulations, we use an adaptive Runge-Kutta integrator with a timestep of 0.01 seconds. Each simulated sequence
has a different combination of parameters. Simulation of the pendulum uses an initial angle \ which is randomly between
10◦ − 170◦ while the angular velocity 𝜔 is 0. For the other two systems the initial conditions are always the same to avoid
pathological configurations.

A.2. Visualizing dataset shift

Visualizing the distribution shift between datasets is not always straightforward. Especially in cases like dynamical system
trajectories where there is usually not much familiarity with their visual representation in comparison for example to natural
images. To facilitate qualitative comparisons we we depict the datasets from the three dynamical systems. We provide plots
for all the dynamical systems and each dataset in separate figures so that the differences become more apparent. Apart
from the phase space diagrams we also provide trajectories across time, offering another way to discern the difference in
dynamics.
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Figure 7: Phase space diagrams (top) and evolution over time (bottom) for random samples from the pendulum datasets.
The OOD-Hard test set exhibits higher variation in the trajectories of \, 𝜔 as can be seen in the bottom row.
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Figure 8: Example illustration of the parameter distribution for the LV test sets. The regions do not overlap, colors represent
regions not boundaries. The OOD-Easy test (green) set does not include any of the parameter configurations of the training
and original test set (blue). Respectively, the OOD-Hard dataset (magenta) does not include none of the OOD-Easy or the
original test set configurations. The parameter space of the blue region is almost half as big at the green area (again without
any overlap), signifying a significant OOD shift).
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Table 3: Datasets. In L-V and 3-body OOD test sets, at least one domain parameter is outside of the parameter range used
for training.

Pendulum Lotka-Volterra 3-Body

ODEs ¥\ + 𝑔
ℓ

sin \ = 0 ¤𝑥 = 𝛼𝑥 − 𝛽𝑥𝑦
¤𝑦 = 𝛿𝑥𝑦 − 𝛾𝑦

�̄�𝑖
𝑑 ®𝑣𝑖
𝑑𝑡

= 𝐾1
∑
𝑗
�̄�𝑖�̄� 𝑗

𝑟3
𝑖 𝑗

−→𝑟𝑖 𝑗
𝑑
−→̄
𝑥 𝑖

𝑑𝑡
= 𝐾2®𝑣𝑖

Number of ODEs 1 2 6
Independent Variables \, 𝜔 𝑥(prey), 𝑦(predator) −→𝑥 𝑖 ,−→𝑣 𝑖 , 𝑖 = 1, 2, 3

Initial values \ ∈ [10𝑜 − 170𝑜]
𝜔 = 0 𝑥 = 5, 𝑦 = 3

−→𝑥1 = (−1,−1),−→𝑣1 = (0.0, 0.5)
−→𝑥2 = (1,−1),−→𝑣2 = (0.5 − 0.5)
−→𝑥3 = (0, 1),−→𝑣3 = (−0.5, 0.0)

Timestep 0.01 0.01 0.01
Sequence length 2000 1000 1000
Noise 𝜎2 0.05 0.05 0.01

Parameters 𝑙(length) 𝛼, 𝛽, 𝛾, 𝛿 𝐾2, 𝑚1, 𝑚2, 𝑚3

Train/Val/Test 𝑙 ∈ [1.0 − 1.5]

𝐴 = {𝛼 ∈ [1.95, 2.05]}
𝐵 = {𝛽 ∈ [0.95, 1.05]}
𝐶 = {𝛾 ∈ [3.95, 4.05]}
𝐷 = {𝛿 ∈ [1.95, 2.04]}

Ωtrain = (𝐴 × 𝐵 × 𝐶 × 𝐷)

𝐾 = {𝐾2 ∈ [1.95, 2.05]}
𝑀1 = {𝑚1 ∈ [1.95, 2.05]}
𝑀2 = {𝑚2 ∈ [1.95, 2.05]}
𝑀3 = {𝑚3 ∈ [1.95, 2.05]}

ΩOOD-Hard =

(𝐾 × 𝑀1 × 𝑀2 × 𝑀3)
.

OOD Test Set Easy 𝑙 ∈ [1.5 − 1.6]

𝐴 = {𝛼 ∈ [1.94, 2.06]}
𝐵 = {𝛽 ∈ [0.94, 1.06]}
𝐶 = {𝛾 ∈ [3.94, 4.06]}
𝐷 = {𝛿 ∈ [1.94, 2.06]}

ΩOOD-Easy =

(𝐴 × 𝐵 × 𝐶 × 𝐷) \Ωtrain
.

𝐾 = {𝐾2 ∈ [1.94, 2.06]}
𝑀1 = {𝑚1 ∈ [1.94, 2.06]}
𝑀2 = {𝑚2 ∈ [1.94, 2.06]}
𝑀3 = {𝑚3 ∈ [1.94, 2.06]}

ΩOOD-Hard =

(𝐾 × 𝑀1 × 𝑀2 × 𝑀3) \Ωtrain

OOD Test Set Hard 𝑙 ∈ [0.9 − 1.0]

𝐴 = {𝛼 ∈ [1.93, 2.07]}
𝐵 = {𝛽 ∈ [0.93, 1.07]}
𝐶 = {𝛾 ∈ [3.93, 4.07]}
𝐷 = {𝛿 ∈ [1.93, 2.07]}

ΩOOD-Hard =

(𝐴 × 𝐵 × 𝐶 × 𝐷)\
(Ωtrain ∪ΩOOD-Easy)

.

𝐾 = {𝐾2 ∈ [1.93, 2.07]}
𝑀1 = {𝑚1 ∈ [1.93, 2.07]}
𝑀2 = {𝑚2 ∈ [1.93, 2.07]}
𝑀3 = {𝑚3 ∈ [1.93, 2.07]}

ΩOOD-Hard =

(𝐾 × 𝑀1 × 𝑀2 × 𝑀3)\
(Ωtrain ∪ΩOOD-Easy)

Number of sequences
Train/Val/Test 8000/1000/1000
OOD Test Set Easy 1000
OOD Test Set Hard 1000
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Figure 9: Phase space diagrams (top) and evolution over time (bottom) for random samples from the Lotka-Volterra datasets.
The OOD test sets have an increasingly wider coverage of the domain in the phase-space and time.
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Figure 10: Cartesian coordinates (top) and evolution over time (bottom) for random samples from the 3-body system
datasets. We only plot the first body to avoid cluttering. The OOD test sets include a wider range of possible trajectories.
This is evident by the higher coverage of the domain in the cartesian coordinates plot.
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A.3. Observation-space

This data set contains image sequences of a moving pendulum under different conditions. The positions of the pendulum
are first computed by a numerical simulator and then rendered in pixel space as frames of dimension 64 × 64. An example
image sequence is shown in Figure 11. For the simulations, we use an adaptive Runge-Kutta integrator with a timestep of
0.05 seconds. The length of the pendulum, the strength of gravity and the initial conditions (position, momentum) are set to
different values so that each trajectory slightly differs from the others. The initial angle and initial velocity are drawn from
the same uniform distribution for all data sets. The initial angle ranges from 30◦ to 170◦ and the initial velocity ranges from
−2 to 2 rad/s. For training, validation and in-distribution testing set, the gravity fall in the range 8.0 − 12.0 m2/s , and the
pendulum length lies between 1.20 − 1.40 m. In the easy OOD testing set, the gravity is between 12.0 − 12.5 m2/s and
the pendulum length is between 1.40 − 1.45 m, while in the hard OOD testing set, the gravity is 12.5 − 13.0 m2/s and the
pendulum length is 1.45 − 1.50 m. The distributions of these parameters are shown in Figure 12.

Figure 11: Example image sequence from the observation-space pendulum data set
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Figure 12: Parameter distribution for the observation-space pendulum test-sets. Left For the in-distribution test-set
we draw the pendulum length and gravity from the same distribution as during training. The OOD test-sets represent
distribution shifts of increasing magnitude, where parameters are drawn from totally different space which has zero overlap
with the training and in-distribution test-set. Right The initial angle and angular velocity are drawn from the same uniform
distribution for all test-sets.

B. Motivating disentanglement
Disentanglement for dynamical system prediction is motivated both from previous experimental results and theoretically.

B.1. Experimental motivation

It is well established that disentangled representations can improve downstream tasks performance and are less prone to
overfitting (Bengio et al., 2013). For example, in image generation, disentangled representations enable more controlled
synthesis of images with desired attributes while in image reconstruction or inpainting, they can help fill in missing parts of
an image while preserving the existing attributes (Higgins et al., 2017; Locatello et al., 2020a).
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Disentangled representations can also be beneficial for time-series prediction by separating appearance from the underlying
dynamics (Li & Mandt, 2018) or by separating trends, seasonal patterns, noise, and other relevant factors (Li et al., 2022).

Disentanglement for dynamical systems has not been studied as extensively but previous research demonstrated VAEs
can fully recover the parameters of a physical system in their latent space (Iten et al., 2018). This is something we also
corroborate in this work, where we see that the latent space of the plain VAE contains almost all the information of the
system parameters (as indicated by Informativeness on Table 2). This is a strong indication that parameter inference is very
important for prediction and models learn it implicitly. Latent space supervision acts as a regularizer, making the parameter
inference task explicit. If this leads to disentangled representations, and results in Table 2 suggests it does, the increased
prediction performance should be expected.

B.2. Theoretical motivation

Disentanglement can also be motivated by a probabilistic view of the evolution of dynamical systems. We assume a class, 𝐶,
of a deterministic dynamical system, 𝑆𝐶 , parameterized by unobserved parameters 𝝃𝐶 . Our aim is to predict the evolution of
the system state, up to some time in future, 𝑡 + 𝑛, given a number of observations of the system state up to some point in time
𝑡. The initial conditions of the dynamical system, 𝑰𝐶 , are also unobserved at inference, and constitute a form of uncertainty.
Given this form of uncertainty, we can consider the inference problem under a probabilistic framework as estimating the
distribution 𝑃(x𝑡:𝑡+𝑛 |x<𝑡 ; 𝝃𝐶 , 𝑰𝐶 ) where 𝝃𝐶 , 𝑰𝐶 are not observed. Our best options for solving the prediction problem are:

• Assign priors on 𝝃𝐶 , 𝑰𝐶 , and marginalize over them to obtain an estimate of the marginal 𝑃(x𝑡:𝑡+𝑛 | x<𝑡 )

• Estimate 𝝃𝐶 and 𝑰𝐶 and directly model the conditional

Both of these two approaches can be modelled with neural networks, but given the wide nature of divergence in the
trajectories of a system for different 𝝃𝐶 , 𝑰𝐶 (they may be considered quasi-chaotic), it is hard to both assign a proper prior
and efficiently marginalize. If, on the other hand, the model can identify 𝝃𝐶 , 𝑰𝐶 correctly, we’d be better of with the second
modelling choice. Disentanglement can help with better system identification.

To see how disentanglement can be beneficial in this case, we consider the nature of the probability distribution 𝑃(x𝑡:𝑡+𝑛 |x<𝑡 )
and illustrate it with an example on the simple pendulum. For this example, we assume that 𝝃𝐶 = 𝑙 the length of the
pendulum, while all other parameters and initial conditions are constant. The marginal 𝑃(x𝑡:𝑡+𝑛 |x<𝑡 ) remains unknown,
but if we condition on pendulum length, 𝑃(x𝑡:𝑡+𝑛 |x<𝑡 , 𝑙) is a Gaussian distribution (since the model is deterministic and
we assume Gaussian observation noise). In VAE terms this procedure is modelled by the decoder as 𝑃(x𝑡+𝑛 |z<𝑡 ). With
supervised disentanglement we can separate the latent vector in two parts (i) z<𝑡 , which captures the dynamics, and (ii) z𝑙 ,
which captures the information about the pendulum length. This leads to a conditional distribution 𝑃(x𝑡:𝑡+𝑛 |z<𝑡 , z𝑙) which
better resembles the functional structure of the real conditional distribution. Assuming that the model is able to capture well
the deterministic dynamics after training, this should be a better modelling choice and increase prediction performance.

C. Training objective
C.1. Derivation of SD-VAE loss

VAEs are trained by maximizing the Evidence Lower Bound over the dataset:

ELBO := Ex
[
E𝑞𝜙 (z |x) [log 𝑝\ (x | z)] − 𝐷KL

(
𝑞𝜙 (z | x)∥𝑝(z)

) ]
We can enforce a structure on the latent space of VAEs using constrained optimization. Rewriting the objective in the
Langragian form, under the Karush-Kuhn-Tucker conditions, the constrains become regularization terms. The majority of the
methods using this approach can be subsumed in the following objective (see Tschannen et al. (2018) for a comprehensive
review):

ELBO(𝜙, \) + 𝛽Ex𝑅1
(
𝑞𝜙 (z | x)

)
+ 𝛿Ex,z𝑅2

(
𝑞𝜙 (z | x), z

)
We use 𝑅1 = 𝐷KL

(
𝑞𝜙 (𝑧 | 𝑥)∥𝑝(𝑧)

)
a common choice for enabling unsupervised disentanglement that was originally

proposed in beta-VAE (Higgins et al., 2017). Contrary to many other approaches for the second regularizer we use a
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supervised term 𝑅2 = L𝝃 (z1:𝑁b
, 𝝃) = ∥z1:𝑁b

− 𝝃∥2 where b the real ODE parameters as described in Section 4.2. While
many dynamical VAE methods use a different latent for each time step (Li & Mandt, 2018), our model can be seen as
performing multi-step prediction from a single latent vector. Putting the above together we arrive at the formulation of
Equation (6):

L𝜙,\ (x≤t) = E𝑄𝜙 (z |x≤𝑡 )
[
log 𝑃\ (x𝑡<,≤𝑡+𝑛 | z) + 𝛿L𝝃 (z1:𝑁𝝃 , 𝝃)

]
− 𝛽𝐷𝐾𝐿

(
𝑄𝜙 (z | x≤𝑡 ) | |𝑃(z)

)
C.2. Scaling of the parameter

For our experiments (both in phase and observation space) we scale the ground-truth parameter in the [0, 1] range:

b̂𝑖 =
b − min(b𝑖)

max(b𝑖) − min(b𝑖)
(7)

where b𝑖 are the domain parameters and their corresponding minimum and maximum values of domain parameters from the
training set. During training we use the output of b̂ as the target for the regression loss.

C.3. SD-RSSM loss

The SD-RSSM is built upon the original RSSM with the addition of regression loss term which enhances the latent space
disentanglement. Since the RSSM has latent variables for each time-step, we apply a disentanglement loss on all of them.

L𝑆𝐷−𝑅𝑆𝑆𝑀 (𝒐≤𝑡 ) =
𝑇∑︁
𝑡=1

©«E𝑞 (𝒔𝒕 |𝒐≤𝒕 ) [ln 𝑝(𝒐𝒕 | 𝒔𝒕))]︸                          ︷︷                          ︸
reconstruction

− E𝑞 (𝒔𝒕−1 |𝒐≤𝒕−1 ) [KL[𝑞(𝒔𝒕 | 𝒐≤𝒕 )∥𝑝(𝒔𝒕 | 𝒔𝒕−1)]]︸                                                      ︷︷                                                      ︸
prediction

+ 𝛿E𝑞 (𝒔𝒕 |𝒐≤𝒕 )
[𝝃 − 𝒔

(1:𝑁b )
𝒕


2

]
︸                              ︷︷                              ︸

supervised disentanglement loss

ª®®®®¬
Where 𝒐𝒕 is the observations, 𝒔𝒕 the stochastic latent variables at time 𝑡, 𝝃 are the 𝑘 dimensional domain parameters and 𝛿
tunes the supervised disentanglement strength.

D. Training and hyperparameters
D.1. Phase Space Experiments

Typically our training sequences are at least 1000 steps long. As a form of data augmentation, for each batch we select a
random starting point 𝑡 within the sequence.

An Adam optimizer with 𝑏1 = 0.9 and 𝑏2 = 0.999 and a scheduler for the learning rate are employed. The maximum
number of epochs was set to 2000 but we also do early stopping using a validation set which led to significantly less epochs.
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Table 4: Pendulum hyperparameters

AE SD-AE VAE SD-VAE LSTM

Input Size 10, 50
Output Size 1, 10
Hidden Layers [400, 200] 50,100,200
Latent Size 4, 8, 16 -
Nonlinearity Leaky ReLU Sigmoid
Num. Layers - - - - 1,2,3
Learning rate 10−3

Batch size 16, 32 16 16, 32 16 16, 64
Sched. patience 20, 30, 40 20,30 20 20 30
Sched. factor 0.3 0.3 0.3 0.3 0.3
Gradient clipping No 1.0 1.0
Layer norm (latent) No No Yes Yes No
Teacher Forcing - - - - Partial
Decoder 𝛾 - - 10−3, 10−4, 10−5 10−3, 10−4 -
Sup. scaling - Linear - Linear -
Supervision 𝛿 - 0.1, 0.2, 0.3 - 0.01, 0.1, 0.2 -

# of experiments 72 72 72 72 72

Table 5: Lotka-Volterra hyperparameters

AE SD-AE VAE SD-VAE LSTM

Input Size 50
Output Size 10
Hidden Layers [400, 200] 50,100
Latent Size 8, 16, 32 -
Nonlinearity Leaky ReLU Sigmoid
Num. Layers - - - - 1,2,3
Learning rate 10−3, 10−4 10−3, 10−4 10−3, 10−4 10−3 10−3

Batch size 16, 32, 64 16, 32 16, 32 16 10, 64, 128
Sched. patience 20, 30 20, 30 20 20 20, 30
Sched. factor 0.3, 0.4 0.3 0.3 0.3 0.3
Gradient clipping No No 0.1, 1.0 0.1, 1.0 No
Layer norm (latent) No No No No No
Teacher Forcing - - - - Partial, No
Decoder 𝛾 - - 10−4, 10−5, 10−6 10−4, 10−5, 10−6 -
Sup. scaling - Linear - Linear -
Supervision 𝛿 - 0.1, 0.2, 0.3 - 0.01, 0.1, 0.2, 0.3 -

# of experiments 72 72 72 72 72
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Table 6: 3-body system hyperparameters

AE SD-AE VAE SD-VAE LSTM

Input Size 50
Output Size 10
Hidden Layers [400, 200] 50,100
Latent Size 8, 16, 32 -
Nonlinearity Leaky ReLU Sigmoid
Learning rate 10−3, 10−4 10−3, 10−4 10−3, 10−4 10−3

Batch size 16, 32 16 16 16 16, 64, 128
Sched. patience 30, 40, 50, 60 30, 40, 50, 60 30, 40, 50, 60 30, 40, 50, 60 20, 30
Sched. factor 0.3, 0.4 0.3 0.3, 0.4 0.3, 0.4 0.3
Gradient clipping No No No No No
Layer norm (latent) No No No No No
Decoder 𝛾 - - 10−5, 10−6 10−5, 10−6 -
Sup. scaling - Linear - Linear, Sigmoid -
Supervision 𝛿 - 0.05, 0.1, 0.2, 0.3 - 0.1, 0.2 -

# of experiments 96 96 96 96 96

Table 7: Number of experiments with phase space data. Each experiment corresponds to a distinct configuration of
hyperparameters.

AE SD-AE VAE SD-VAE LSTM Total

Pendulum 72 72 72 72 72 360
L-V 72 72 72 72 72 360
3-body 96 96 96 96 96 480

Total experiments 1200

D.2. Observation-space experiments

Table 8: Hyperparameters for the RSSM and SD-RSSM models

RSSM SD-RSSM

Batch Size 50, 100
Decoder std. 1.0, 2.0
Train Input Length 50, 100
Supervision 𝛿 - 0.01, 0.1, 1
Seeds 3 1

# of experiments 24 24

E. Additional Results for Phase Space Experiments
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Table 9: SD-VAE exhibits stronger disentanglement properties than the plain VAE according to many common
metrics. Figures are computed over the best 3 models.

Pendulum Lotka-Volterra 3 body system
VAE SD-VAE VAE SD-VAE VAE SD-VAE

Disentanglement - - 0.27 ± 0.06 0.53 ± 0.06 0.20 ± 0.00 0.90 ± 0.00
Completeness 0.17 ± 0.06 0.90 ± 0.00 0.20 ± 0.00 0.57 ± 0.06 0.13 ± 0.06 0.90 ± 0.00
Informativeness 0.94 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
SAP 0.03 ± 0.04 0.87 ± 0.02 0.04 ± 0.01 0.21 ± 0.04 0.01 ± 0.01 0.67 ± 0.04
MIG 0.01 ± 0.00 0.17 ± 0.01 0.00 ± 0.00 0.03 ± 0.00 0.00 ± 0.00 0.08 ± 0.01

Table 10: Model stability Percentage of models that diverge during testing in all some trajectories (out of all the trained
models)

Pendulum Lotka-Volterra 3-body system

LSTM 86% 100% 53%
AE 42% 14% 50%
SD-AE 69% 29% 58%
VAE 3% 10% 15%
SD-VAE 2% 48% 9%
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Figure 13: Mean Absolute Error (MAE) between model predictions and ground-truth trajectories.
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Figure 14: Model predictions in phase space. Trajectories are taken from the OOD-Hard set of each system. The trajectory
observations are noisy, denoted by the grey ‘×’ markers. The orange circle and the orange and bold ‘×’ markers denote the
start and end of the ground-truth trajectories respectively

E.1. Linear correlation between 𝒛 and 𝝃

To capture the relationship between latents 𝑧 and parameters b we train boosted trees regressors with 𝑧 as predictors and b as
targets. The weights of the trained trees indicate whether there is a strong correlation between latents and real parameters.
These results, depicted in Figure 5 and Figure 15 (a,b), show that supervised latents have very high predictive power for their
respective real parameters. Nevertheless, trees can capture both linear and non-linear dependencies. It remains, unclear from
this analysis if the relationship is linear or not. To futher clarify the relationship, we fit linear regression models between all
𝑧𝑖 , b 𝑗 pairs. For each fit we compute the absolute Pearson correlation coefficient 𝑟 that captures the linearity between the
two variables. A value of 𝑟 close to 1 denotes a highly linear correlation. Pearson 𝑟 values are visualized in Figure 15 (c,d).
We also provide numerical values of 𝑟 for the supervised latents:

• Pendulum: 𝑟𝑙 = 0.94

• Lotka-Volterra : 𝑟𝑎 = 0.52, 𝑟𝑏 = 0.91, 𝑟𝑐 = 0.23, 𝑟𝑑 = 0.82

• 3-Body system: 𝑟𝐾 = 0.84, 𝑟𝑚1 = 0.87, 𝑟𝑚2 = 0.87, 𝑟𝑚3 = 0.85

These results show that the relationship between supervised latents and is highly linear in most cases. This aligns with
our experimental findings that linear scaling works best for the disentanglement loss (see Appendix C.2). We furthermore,
exploit this linearity to perform traversals of the latent space in Appendix E.2.
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Figure 15: Correlation between latent values and system parameters. Top The importance weights of a random forest
regressor trained to predict the ground-truth parameter values from the latents computed on the training set. High importance
weights indicate a latent variable that has high predictive power over the ground-truth value. Bottom Pearson correlation
between (absolute) between the system paramters and the latent variables.
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(a) Importance weights. Ordered and truncated latents.
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(b) Importance weights. All latents.
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(c) Pearson correlation. Ordered and truncated latents.
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(d) Pearson correlation. All latents.

E.2. Latent space traversals

Being able to traverse between two point in the latent space and obtain a meaningful representation is a highly desirable
property. Simple linear interpolation in latent space can produce meaningful images in properly disentangled VAEs (Higgins
et al., 2017). While images have easily recognizable visual components, similar traversals for dynamical systems are harder
to portray. Here we study whether interpolating between two points in the latent space of SD-VAE can produce meaningful
trajectories. First, we create a new pendulum dataset containing 100 trajectories with linearly spaced pendulum length in the
range 𝑙 ∈ [1.0− 1.5]. The initial conditions are kept constant (\ = 𝑝𝑖

2 , 𝜔 = 0) for all the trajectories to facilitate comparisons
and we use the same noise level as in the training dataset. We use the encoder of our best SD-VAE model to extract the
latent variables for each trajectory. For each trajectory the encoder produces 4 latent variables 𝑧1 . . . 𝑧4. We interpolate
between the latents of the the two extreme trajectories (𝑙 = 1.0 and 𝑙 = 1.5). The interpolation we use is linear, driven by our
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findings that latents and parameters have a strongly linear correlation (Section 5.5 and Appendix E.1). Next, we feed the
real and interpolated latents to the decoder and predict up to 1000 timesteps. We find that the total mean absolute error
between prediction and ground truth is 0.29 with the real latents and 0.33 with the interpolated one. These results indicate
that linear latent space interpolation produces meaningful latent codes. This is further corroborated by plotting the real and
interpolated latents together. As we can see in Figure 3 the relationship between the real latents 𝑧𝑖 and pendulum length 𝑙 is
highly linear, which further explains with the linear interpolation method works well.
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Figure 16: Traversals of the latent space of SD-VAE on the pendulum system. We pass trajectories corresponding to
different pendulum length through the encoder to obtain the real values of 𝑧𝑖 . The interpolation is done between the latent of
minimum(𝑙 = 1.0) and maximum(𝑙 = 1.5) length. For this experiment the initial conditions were kept constant \ = 𝜋

2 , 𝜔 = 0

F. Additional Results for Phase Space Experiments

Table 11: Model comparison in observation-space pendulum. Metrics are calculated between ground truth and prediction
of the models at exactly 800 timesteps in the future.

SSIM PSNR
Test-set OOD-Easy OOD-Hard Test-set OOD-Easy OOD-Hard

RSSM 0.795 0.787 0.783 2 13.36 12.71 12.26
SD-RSSM 0.813 0.808 0.794 14.16 13.82 12.90
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Figure 17: Prediction quality on the observation-space pendulum. PSNR as a function of the distance predicted into the
future (x axis)
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Figure 18: Samples of predicted trajectories. Absolute difference between ground truth and predictions on the test-set of
the pendulum data set.
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