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Abstract

In a recent work, Laforgue et al. introduce the
model of last switch dependent (LSD) bandits,
in an attempt to capture nonstationary phenom-
ena induced by the interaction between the player
and the environment. Examples include satiation,
where consecutive plays of the same action lead to
decreased performance, or deprivation, where the
payoff of an action increases after an interval of
inactivity. In this work, we take a step towards un-
derstanding the approximability of planning LSD
bandits, namely, the (NP-hard) problem of com-
puting an optimal arm-pulling strategy under com-
plete knowledge of the model. In particular, we
design the first efficient constant approximation
algorithm for the problem and show that, under a
natural monotonicity assumption on the payoffs,
its approximation guarantee (almost) matches the
state-of-the-art for the special and well-studied
class of recharging bandits (also known as delay-
dependent). In this attempt, we develop new tools
and insights for this class of problems, includ-
ing a novel higher-dimensional relaxation and
the technique of mirroring the evolution of vir-
tual states. We believe that these novel elements
could potentially be used for approaching richer
classes of action-induced nonstationary bandits
(e.g., special instances of restless bandits). In the
case where the model parameters are initially un-
known, we develop an online learning adaptation
of our algorithm for which we provide sublin-
ear regret guarantees against its full-information
counterpart.
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1. Introduction
Shortly after the introduction of the (stochastic) multi-
armed bandits (MAB) framework (Bubeck & Cesa-Bianchi,
2012; Lattimore & Szepesvári, 2020), practitioners and re-
searchers quickly raised the issue of nonstationarity, thus
questioning the restrictive assumption of the original model
(Thompson, 1933; Lai et al., 1985) that the environment
(meaning the payoff distributions of the actions) remains
intact. This opened the way to the development of important
and well-studied extensions of the model, including adver-
sarial bandits (Auer et al., 2002b), reinforcement learning
(Jaksch et al., 2010; Szepesvari, 2010), and more (Keskin
& Zeevi, 2017; Besbes et al., 2014; Kleinberg et al., 2010;
Auer et al., 2019). In many situations, a potential shift in
the environment is not solely the result of external factors,
rather than a natural consequence of its interaction with pre-
viously made decisions (see (Whittle, 1988) for examples).
In an attempt to address this issue of action-induced nonsta-
tionarity various models have been proposed with restless
(Whittle, 1988; Tekin & Liu, 2012; Guha et al., 2010) and
rested (Gittins, 1979; Tekin & Liu, 2012) bandits being the
most prominent. In these settings, every arm is associated
with a state-machine and its mean payoff depends on the
current state. The state of each arm can change (poten-
tially stochastically) at every round (in the restless case) or
only after the arm is pulled (in rested case). Even ignoring
the learning aspect and assuming complete knowledge of
the underlying arm-state distributions, any attempt to com-
pute a (near-)optimal planning policy – usually via solving
Bellman’s equations (Bertsekas, 2000)) – requires an expo-
nentially large space in the number of actions and hits the
wall of strong inapproximability results (Papadimitriou &
Tsitsiklis, 1999).

More recently, researchers have shifted their attention to
special cases of restless bandits, which are simple enough
to accept efficient (near-)optimal planning algorithms, yet
expressive enough to capture fundamental action-induced
nonstationary phenomena (Levine et al., 2017; Metelli et al.,
2022). Immorlica & Kleinberg (2018) first attempt to model
the effect of deprivation in online decision-making by in-
troducing the model of recharging (a.k.a., delay-dependent)
bandits. Here, the (mean) payoff of each action depends
– in an increasing fashion – on the time elapsed since the
action was played for the last time (often called “delay”).
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Soon afterwards, a number of works focused on general-
izations (Simchi-Levi et al., 2021; Papadigenopoulos et al.,
2022), variations (Cella & Cesa-Bianchi, 2020; Pike-Burke
& Grunewalder, 2019), and special cases (Basu et al., 2019;
Papadigenopoulos & Caramanis, 2021) of the model. Due
to the computational hardness of the underlying planning
problem, these works have a dual purpose: to construct an
efficient near-optimal planning algorithm and, subsequently,
to adapt it into an online learning policy for the case where
the payoff distributions are unknown.

Last switch dependent bandits. In an attempt to cap-
ture a richer class of action-induced nonstationary phenom-
ena, Laforgue, Clerici, Cesa-Bianchi, and Gilad-Bachrach
(Laforgue et al., 2022) recently introduced the model of
last switch dependent (LSD) bandits. In their setting, the
notion of “delay” – of central role in recharging bandits –
is replaced by that of a “switch”: a change in the course of
action from the part of the decision-maker (see below). This
shift of perspective not only strictly subsumes the recharging
bandits model, but also captures additional natural behav-
iors, including that of satiation: the (gradual) degradation
in performance due to the repeated use of resources.

In this work, we study a variation of the LSD model, which
we (informally) describe below:
Problem (Last Switch Dependent Bandits with Monotone
Payoffs (k-MLSD)). We consider a setting where the payoff
of each arm is a function of its state at any given round. The
state of an arm can be any (positive or negative) integer
and changes, at the end of each round, according to the
following rules: when an arm is at a positive state τ > 0
and is not played at the current round, its state “increases”
to τ + 1, while if it is played, its state transitions to −1.
Dually, if an arm is at a negative state τ < 0, and is played
at the current round, its state “decreases” to τ − 1, while
if it is not played it transitions to +1. The payoff of each
arm is a monotone non-decreasing function over the space
of integer states. At each round, the decision-maker selects
at most k of the available arms and collects the sum of the
associated payoffs (evaluated at the corresponding states).
The objective is to maximize the total collected payoff within
a (potentially unknown) time horizon.

The fundamental difference between the above model com-
pared to its original formulation (Laforgue et al., 2022) is
the monotonicity. Specifically, we assume that the payoff
function of each arm is monotone non-decreasing over the
whole set of integer states, while in (Laforgue et al., 2022)
this assumption is only made for its negative part. Although
the assumption excludes from the model any possible sea-
sonal behaviors, our setting still widens the class of action-
induced phenomena that can be captured (e.g., satiation),
and still generalizes many existing works – either strictly
(Simchi-Levi et al., 2021; Papadigenopoulos et al., 2022;

Basu et al., 2019; Papadigenopoulos & Caramanis, 2021;
Immorlica & Kleinberg, 2018) or conceptually (Mintz et al.,
2020). In addition, monotonicity is a plausible assumption
in many situations where the positive effect of an action
after a period of deprivation is higher than while in satiation
(an everyday example is food consumption). Finally, we
believe that monotonicity changes dramatically the approx-
imability status of the problem; in fact, we conjecture that
without this assumption the problem does not accept any
polynomial-time constant approximations under standard
complexity assumptions (yet proving it falls beyond the
scope of this work). The validity of such a statement would
justify the fact the algorithm developed in (Laforgue et al.,
2022) is not efficient and the provided guarantees involve
additive losses.

Summary of contributions. In this work, we provide the
first polynomial-timeO(1)-approximation algorithm for the
problem of planning LSD bandits with monotone payoff
functions. Interestingly, the approximation guarantee of
our algorithm matches (up to an arbitrarily small error) the
state-of-the-art for the special case of recharging bandits
(Papadigenopoulos et al., 2022). An immediate practical
implication of our work is that one can replace the recharg-
ing model with the (strictly more expressive) k-MLSD one
without any sacrifice in the approximability (compared to
the state-of-the-art until this work). Moreover, compared to
(Laforgue et al., 2022), our algorithm can also handle the
case where more than one arms can be played at each round
with gradually improved provable performance, and does
not dependent on the time horizon. Finally, we complement
our results by developing an online bandit adaptation of our
algorithm and proving that the latter achieves (efficiently)
sublinear regret in the regime where the payoff functions
are initially unknown.

We address the reader to Appendix A for a more technical
discussion on the related work.

1.1. Technical Challenges and Roadmap

The main contribution of this work is an efficient LP-based
approximation algorithm for the problem of planning k-
MLSD bandits. In particular, our algorithm collects (asymp-
totically and in expectation) a (1−ε)

(
1− kk/ekk!

)
-fraction1

of the optimal expected payoff in time poly(n, τmax, 1/ε),
where n is the number of arms and τmax the maximum
saturation time of any payoff function (formally defined
in Section 2). The fact that the above guarantee (almost)
matches the state-of-the-art for the case of recharging pay-
offs stems from our attempt to generalize the best-known

1Using Stirling’s formula one can show that, for large k,
the long-run approximation guarantee of our algorithm behaves
roughly as (1− ε)

(
1− 1√

2πk

)
.
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framework for the latter (Papadigenopoulos et al., 2022).
Extending the existing framework to the case of k-MLSD re-
quires several novel technical elements and insights, which
we outline below.

Continuous relaxation based on recurrent intervals. A
safe takeaway from the existing literature on recharging
bandits (Immorlica & Kleinberg, 2018; Simchi-Levi et al.,
2021; Papadigenopoulos et al., 2022) is the use of continu-
ous relaxations – a technique which seemingly facilitates the
design (and/or analysis) of near-optimal approximation algo-
rithms for this kind of dynamic planning problems. Another
common element in these works is that, due to computa-
tional and practical reasons (e.g., large or unknown time
horizon, respectively), such a relaxation should have a flu-
idized form; that is, one which (approximately) recovers the
“optimal” frequencies for playing each individual arm under
a given delay, rather than time-accurate playing sequences.
After obtaining such information as a starting point, the
role of an algorithm becomes to construct a feasible play-
ing schedule which closely approximates these frequencies.
However, as opposed to the special case of recharging ban-
dits, the (two-sided) state transitions in k-MLSD present an
asymmetry: after a nonplay-play switch an arm transitions
to a different state compared to that of a play-nonplay one.
This fact seems to preclude the design of tight continuous
relaxations based on the frequencies of playing each arm
under a given state, as in (Immorlica & Kleinberg, 2018;
Simchi-Levi et al., 2021; Papadigenopoulos et al., 2022),
thus, posing a significant technical hurdle.

In Section 3, we develop a continuous LP-based relaxation
of slightly increased dimension, based on the novel notion
of recurrent intervals.

Online rounding via mirroring virtual evolutions. Start-
ing from an optimal solution to the relaxation, the high-level
goal becomes to “round” it into a feasible arm-pulling sched-
ule, where each arm is played at a pattern “close” to the
one indicated by the corresponding variables of the LP. A
critical issue that emerges from any such rounding is that
of collisions: situations where trying to mimic the “op-
timal” pattern of all arms requires playing more than k
arms in some rounds. For the case of recharging bandits, a
way to minimize the effect of collisions among the arms is
the technique of interleaved scheduling, presented in (Pa-
padigenopoulos et al., 2022). In that simpler setting, after
sampling a unique delay for each arm from the correspond-
ing LP relaxation, the arm is allowed to be played only in
rounds which are integer multiples of this delay. The effect
of collisions is controlled by adding a uniformly random
offset to each of the above subsequences, aiming to avoid
adversarial worst-case scenarios. Combined with other el-
ements (e.g., the correlation gap of uniform matroid rank

function), this ensures that the expected average payoff col-
lected consists a constant fraction of the relaxation (and,
hence, the optimal). In the k-MLSD setting, however, the
recurrent intervals involve richer arm-playing patterns com-
pared to a unique periodic play of (Papadigenopoulos et al.,
2022) – a fact which complicates the implementation of the
above technique.

In Section 4, we design a planning algorithm for the k-
MLSD problem and provide an analysis of its approxima-
tion guarantee. To achieve this, we generalize the random-
ized rounding procedure in (Papadigenopoulos et al., 2022)
and introduce the technique of mirroring virtual evolutions;
the latter allows us to overcome the issue of collisions via ab-
stracting the interleaved scheduling technique and extending
it to the k-MLSD setting.

Sample complexity and online learning. In Section 5,
we present an adaptation of our algorithm for the case where
the payoff functions are unknown and the decision-maker re-
ceives noisy semi-bandit feedback on the selected arms. Af-
ter observing that our planning algorithm constructs feasible
schedules starting from any (possibly suboptimal) solution
to our LP, we start by providing sample complexity results
for approximating the latter. Using these we construct a
bandit adaptation of our algorithm, based on a combination
of Explore-then-Commit and the doubling trick, for which
we provide sublinear regret guarantees.

All the omitted proofs of our results have been moved to the
Appendix.

2. Problem Definition and Notation
We consider a set A = [n] of arms (or actions) and an
unknown time horizon of T rounds. Each arm i ∈ [n] is
associated with a (mean) payoff function pi(·) : S → [0, 1]
defined over a set of states, where pi(τ) denotes the mean
payoff of arm i when played under state τ . The set of states
is the same for all arms and coincides with that of all integers
(positive and negative) excluding 0, namely, S = Z \ {0}.
At the beginning of each round t, the state of each arm i,
denoted by τi(t) ∈ S , is a function of the state and the action
taken in the previous round (see below for more details on
state transitioning). At each round, a decision-maker can
play any subset of at most k < n arms and collect the sum
of associated payoffs, each drawn from a distribution of
mean given by its payoff function, evaluated at its current
state. The planning objective is to maximize the cumulative
expected payoff collected in T rounds.

Payoff functions. For every arm i ∈ A, we assume that
its payoff function is: (a) monotone non-decreasing, i.e.,
for every two states τ1, τ2 ∈ S with τ1 < τ2, it holds
that pi(τ1) ≤ pi(τ2). Further, (b) we assume that the payoff
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function satisfies the finite saturation property, namely, there
exist known integers τmin

i < 0 < τmax
i such that pi(τ) =

pi(τ
max
i ) for every τ > τmax

i and pi(τ) = pi(τ
min
i ) for

every τ < τmin
i . For simplicity of exposition, we assume

without loss of generality that all arms have the same (upper
and lower) saturation times, given by τmax = maxi∈A τ

max
i

and τmin = mini∈A τ
min
i . We remark that payoff functions

are given explicitly as part of the problem input and, hence,
the running time of efficient algorithms can be polynomial
in τmax and |τmin|.

State transitions. For every arm i ∈ A, the state at the
beginning of round t is given by the following rule: τi(1) =
1 and τi(t+ 1) = δi(τi(t), At), where At ⊆ A is the subset
of arms played at round t and δi(·, ·) is the state transition
function, defined as

δi(τ, S) =


τ − 1 if i ∈ S and τ < 0
1 if i /∈ S and τ < 0
−1 if i ∈ S and τ > 0
τ + 1 if i /∈ S and τ > 0

. (1)

Intuitively, the state of each arm i denotes the time passed
since the arm last took place in a switch of actions. In
particular, a positive state τ > 0 denotes that arm i has not
been played for the last τ rounds. Thus, as time progresses
and i is not played, its state increases by 1 at each round
until the first time where i is played again, at which point
its state transitions to −1. Similarly, a negative state τ < 0
denotes that arm i has been played for −τ consecutive time
steps. If an arm is played at some state τ < 0 its state
decreases by 1 while, if it is not played, it transitions to +1.

We remark that the choice of initial state of 1 for every arm
is made for mathematical convenience and does not affect
our results qualitatively.

Technical notation. For any integer q, we use the notation
[q] = {1, 2, . . . , q}. For any vector x ∈ Rn and set S ⊆
[n], we denote x(S) =

∑
i∈S xi. For any x ∈ [0, 1]n, let

D(x) denote some distribution over 2[n] whose marginal
probabilities are given by xi = P

S∼D(x)
[i ∈ S] for all i ∈

[n]. Similarly, let I(x) denote the element-wise independent
distribution over 2[n] with marginals x = (xi)i, that is, the
distribution such that sampling S ∼ I(x) consists of adding
each element i ∈ [n] to S independently with probability
xi. For any l, u ∈ Z such that u ≥ l we denote by Sul =
S ∩[l, u] the subset of states ranging from l to u, while we
define Sul = ∅ in the case where l > u.

3. LP Relaxation Based on Recurrent Intervals
As we have already discussed, the idea of developing a relax-
ation based on the fraction of time an arm is played under a

specific state (as in (Immorlica & Kleinberg, 2018; Simchi-
Levi et al., 2021; Papadigenopoulos et al., 2022)) does not
quite work for the k-MLSD setting (see Appendix E.2 for a
discussion). Instead, we manage to construct a continuous
relaxation of the planning problem, based on the novel no-
tion of a recurrent interval: a minimal sequence of states
(and admissible actions) which start and end (by transition-
ing) to the same state. We begin this section by formally
defining a recurrent interval and showing that – for the par-
ticular case k-MLSD – this structure exhibits two useful
properties: (a) any optimal solution can be (almost) de-
scribed as a concatenation of valid recurrent intervals for
each arm and (b) every such interval has a succinct repre-
sentation. Subsequently, by leveraging the above properties,
we construct an LP-based (approximate and asymptotic)
relaxation of slightly increased dimension which serves as
the starting point of our planning algorithm.

3.1. Recurrent Intervals and Aggregated Payoffs

The construction of a tight relaxation for k-MLSD requires
a change of perspective: instead of measuring the fraction
of time an arm is played under a specific state, we rather
consider the fraction of time the arm spends for completing
a specific (cyclic) pattern in the trajectory of its states. In
order to formalize the above idea, we introduce the notion of
recurrent intervals, which plays a central role in the design
of our relaxation and algorithm:

Definition 3.1 (Recurrent Intervals). For any arm and given
states u ∈ Z+ and l ∈ Z−, a recurrent interval, denoted
by I(u, l), is a sequence of distinct states (and associated
actions) during which the arm starts from state +1 and
moves back to the same state after a number of rounds. In
particular, starting from state +1, the arm is not played
until it reaches state u > 0, where it is played for the
first time (thus, transitioning to state −1). Then, the arm
is consecutively played for |l + 1| rounds (including state
l + 1). The recurrent interval is terminated by not playing
the arm at state l (thus, transitioning back to +1).

The above definition allows us to study the problem from
a perspective of cyclic sub-sequences instead of individual
actions. In the following definition, we summarize several
characteristics of any recurrent interval that are useful for
the description and design of our algorithm:

Definition 3.2. The characteristic trajectory of a recurrent
interval I = I(u, l) is a function βI : Sul → {•,⊥}, such
that βI(τ) = • for every τ ∈ S−1

l+1 ∪{u} and βI(τ) = ⊥
for every τ ∈ Su−1

1 ∪{l}, where • and ⊥ represent the
play and non-play of the arm, respectively. The transition
function of a recurrent interval I = I(u, l) is a function
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δI : Sul → S
u
l , such that,

δI(τ) =


τ − 1 if βI(τ) = • and τ < 0
1 if βI(τ) = ⊥ and τ < 0
−1 if βI(τ) = • and τ > 0
τ + 1 if βI(τ) = ⊥ and τ > 0

.

Finally, the length of a recurrent interval I(u, l), namely, the
number of consecutive rounds it occupies (including those
where the arm is not played), is given by ‖I‖ri = u − l.
Notice that an arm is actually pulled−l times during I(u, l).

The characteristic trajectory of a recurrent interval I =
I(u, l) satisfies the following property: if one starts an arm
from any state in the interval, namely τ ∈ S ∩[l, u], then
by repeatedly playing the arm if and only if βI(τ) = •,
the trajectory of its states will follow the periodic pattern
indicated by I . The transition function of I , on the other
hand, gives the state to which an arm must transition from
a given state τ , when it follows the actions indicated by its
characteristic trajectory. Note that every recurrent interval
can be mapped to a distinct characteristic trajectory (resp.,
transition function) and the opposite. Hence, Definition 3.2
can also serve as an alternative and equivalent definition of
recurrent intervals.

Another important characteristic of a recurrent interval rel-
ative to a specific arm is the total expected payoff of the
involved states.

Definition 3.3 (Aggregated Payoff). The aggregated (ex-
pected) payoff of a recurrent interval I(u, l) for an arm i ∈
A is given by the function qi(u, l) = pi(u)+

∑−1
τ=l+1 pi(τ).

From the perspective of each single arm any feasible arm-
pulling schedule can be decomposed into a sequence of
(potentially varying) recurrent intervals. The only excep-
tions to the above rule are limiting scenarios where an arm
is either never or constantly played until time horizon ends
(thus, the last recurrent interval is interrupted).

The following lemma evaluates the loss from restricting the
set of recurrent intervals of each arm to only I(u, l) with
l ≥ τL for some τL ≤ −1:

Lemma 3.1. For any instance of k-MLSD and any τL ≤
−1, there exists a (deterministic) near-optimal solution,
where the sequence of plays and non-plays of every arm
consists of a concatenation of recurrent intervals of the form
I(u, l) with l ≥ τL, potentially followed by a sequence of
non-plays until the end of the time horizon. The total payoff
collected by this solution, denoted by OPT(T ), satisfies

OPT(T ) ≥
(

1− 1

1− τL

)
·OPT(T )− n,

where OPT(T ) is the optimal payoff in T rounds.

We remark that, by applying Lemma 3.1 for τL = −1, one
can reduce the problem to an instance of recharging bandits.
Specifically, any γ-approximation algorithm for the latter
(e.g., any of (Simchi-Levi et al., 2021; Papadigenopoulos
et al., 2022)) implies a long-run γ/2-approximation algo-
rithm for k-MLSD. This approach, however, would cost an
additional 1/2-factor in the approximation compared to the
algorithm we develop in Section 4.

3.2. Definition and Properties of LP Relaxation

For any instance of k-MLSD and integer τL ≤ −1, we
consider the following LP relaxation:

max
x�0

∑
i∈A

∑
u∈Sτmax

1

∑
l∈S−1

τL

qi(u, l) · xi,u,l (LP)

s.t.
∑
i∈A

∑
u∈Sτmax

1

∑
l∈S−1

τL

−l · xi,u,l ≤ k, (C.1)

∑
u∈Sτmax

1

∑
l∈S−1

τL

(u− l) · xi,u,l ≤ 1,∀i ∈ A . (C.2)

In the above formulation each variable xi,u,l represents
the fraction of time where arm i participates in a recurrent
interval I(u, l) in a feasible solution. Constraints (C.1)
originate from the fact that, when at most k arms can be
played at each round, the (total) fraction of time any arm
is pulled during any recurrent interval cannot be more than
k (recall, an arm is played exactly −l times during I(u, l)).
Constraints (C.2) hold due to the fact that, for every arm i ∈
A, the various recurrent intervals it participates in cannot be
overlapping in any feasible solution, by definition.

As we show in the following result, (LP) (approximately
and asymptotically) yields an upper bound on the optimal
average expected payoff:

Lemma 3.2. For any instance of k-MLSD, let OPT(T ) be
the optimal payoff collected in T rounds. For the optimal
value of (LP), denoted by LP∗, it holds

T · LP∗ ≥
(

1− 1

1− τL

)
OPT(T )− n.

4. Design and Analysis of the Planning
Algorithm

Recall that each variable of our LP relaxation represents
the fraction of time a specific pair of arm and recurrent
interval occurs in an optimal solution and, hence, it has
a higher dimension compared to the relaxations used in
(Immorlica & Kleinberg, 2018; Simchi-Levi et al., 2021;
Papadigenopoulos et al., 2022). However, this increased
dimension comes with a loss of any useful structure in the
fractional solution returned, which makes its interpretation
significantly harder compared to (Papadigenopoulos et al.,
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2022) (there, the sparsity pattern of extreme point solutions
almost reveals the “optimal” frequencies).

In this section, we show how to overcome the above issue
by proposing a novel planning algorithm and analyzing its
approximation guarantees. We remark that in the planning
setting we can assume w.l.o.g. that payoffs are deterministic,
since their realizations do not affect the trajectory of the
algorithm in any way.

4.1. Description of the Algorithm and Main Result

At a high-level, the algorithm starts by sampling a unique re-
current interval for each arm using the information obtained
by the relaxation. This is achieved by generalizing the round-
ing in (Papadigenopoulos et al., 2022) and selecting each
recurrent interval with marginal probability proportional
to its corresponding LP variable and its length (number of
distinct states). After sampling a unique recurrent interval
for each arm, our algorithm constructs a fictitious copy of
its state (called “virtual” state) which periodically evolves
over the sampled interval. Notice, of course, that every such
evolution implies a unique trajectory of actions (plays or
non-plays) for each arm. Critically, the algorithm initiates
the evolution of the virtual state over the corresponding
recurrent interval from state chosen uniformly at random.
At each round, our algorithm first selects the arms whose
virtual state indicates that they must be played in order to
remain within their virtual periodic trajectory. Among these
arms, the algorithm plays the k (or less) which maximize
the total expected payoff collected, evaluated at the corre-
sponding virtual states.

Let x∗ be an optimal solution to (LP), for some parameter
τL. Notice that, due to the fact that the payoff functions
are provided explicitly as part of the problem instance, such
a solution can be computed efficiently. Given that the pro-
duced solution x∗ is generally fractional, our algorithm then
proceeds in two main phases: the initialization (a.k.a. of-
fline) phase, which in turn includes the steps of randomized
rounding and mirroring, and the online phase. Each of these
steps are described below in more detail.

Randomized rounding. Given an optimal fractional solu-
tion x∗ = {x∗i,u,l} to (LP), the first step of our algorithm –
as part of its initialization – is to select a (unique) recurrent
interval for every arm. This is achieved via randomized
rounding and is performed once and offline (i.e., before any
arm-pulling). Specifically, for every arm i ∈ A, the algo-
rithm randomly samples a unique recurrent interval I(u, l),
with marginal probability (u − l) · x∗i,u,l or no recurrent
interval at all with probability 1−

∑
u∈Sτmax

1

∑
l∈S−1

τL
(u−

l) · x∗i,u,l. By constraints (C.2) of (LP), for each arm i it
holds that

∑
u∈Sτmax

1

∑
l∈S−1

τL
(u−l)·x∗i,u,l ≤ 1 and, hence,

the above sampling procedure is well-defined. In case no

recurrent interval is sampled for some arm, then the arm
is never played by the algorithm. At the end of this phase,
each arm i ∈ A is associated with at most one recurrent
interval, which we denote by Ii = I(ui, li).

Mirroring virtual evolutions. Let A′ ⊆ A be the subset
of arms for which a recurrent interval is sampled during
the rounding phase. For every arm i ∈ A′, the algorithm
defines an evolution of a “virtual” state, as a function of its
sampled interval Ii. In particular, the virtual state of each
arm evolves (periodically) over an infinite concatenation of
copies of Ii. Notice that, by definition of a recurrent interval,
the produced sequence of states is periodic and corresponds
to a unique periodic sequence of actions (plays or non-plays)
that can implement it. Afterwards, the algorithm randomly
interleaves the sequences of virtual states of the arms by
forcing each one to start a random number of steps into
the future. Critically, this random number (called offset) is
uniformly chosen from ri ∼ {0, . . . , ‖Ii‖ri − 1}, in a way
that the virtual state can start (at time t = 1) from any state
involved in Ii, equiprobably. Let νi(t) ∈ Suili denote the
virtual state of arm i ∈ A′ at time t.

Online phase. Algorithm 1 then proceeds to its online
phase. At any round t, the algorithm first constructs a set Ct
of candidate arms, which contains the set of arms i ∈ A′
that satisfy βIi (νi(t)) = •, where νi(t) denotes its virtual
state for the same round. In other words, the algorithm
considers an arm i ∈ A′ a candidate, if its virtual state
would require a play in order to remain in the periodic
trajectory induced by Ii. Then, the algorithm plays the (at
most) k arms of highest mean payoffs evaluated at their
virtual states.

As we describe in Algorithm 1, all the above steps (including
the simulation of the evolution of the virtual states) can
be performed online and, hence, the algorithm does not
require knowledge of the time horizon. Moreover, by setting
τL = −d1/εe, it is easy to verify that the running-time
of the algorithm is poly(n, τmax, 1

ε ). The approximation
guarantee of Algorithm 1 is summarized in the following
Theorem, which is the main result of this work:

Theorem 4.1. For any instance of k-MLSD and any fixed
ε ∈ (0, 1), the total expected payoff collected by Algorithm 1
in T rounds is at least

(1− ε)
(

1− kk

ekk!

)
OPT(T )−O (n+ τmax · k) ,

where OPT(T ) is the optimal expected payoff that can be
collected.

Notice that using Stirling’s formula the multiplicative factor
in the guarantee of Theorem 4.1 can be closely approxi-
mated by (1− ε)

(
1− 1√

2πk

)
, for large enough k. Finally,
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before we proceed to the proof of Theorem 4.1, we remark
that the approximation guarantees we provide are tight for
any k (modulo the (1− ε)-factor):

Remark. For any k, there exists an instance of k-MLSD
where the approximation guarantee of Algorithm 1 is asymp-
totically equal to 1− kk

ek·k!
. This implies that our analysis in

Theorem 4.1 is tight (up to the (1− ε)-factor). We address
the reader to Appendix E.1 for additional details.

Algorithm 1: Planning k-MLSD bandits.
Compute an optimal solution x∗ to (LP) with

parameters τmax and τL = −d1/εe for ε ∈ (0, 1).
Set A′ ← ∅.
for each arm i ∈ A do

Sample a unique recurrent interval Ii = I(ui, li)
with marginal probability (ui − li) · x∗i,ui,li .

if a recurrent interval is sampled then
Draw ri ∼ U{0, 1, . . . , ‖Ii‖ri − 1}.
Initialize the virtual state νi(0)← 1.
for ` = 1, 2, . . . , ri do

νi(0)← δIi(νi(0)).
Add i to A′.

for t = 1, 2, . . . do
for each arm i ∈ A′ do

νi(t)← δIi(νi(t− 1)).
Let Ct ⊆ A′ be the subset of candidate arms,

defined as Ct =
{
i ∈ A′ | βIi (νi(t)) = •

}
.

Play the subset of k arms in Ct of maximum total
expected payoff evaluated at the virtual states:

At = argmax
S⊆Ct,|S|≤k

∑
i∈S

pi(νi(t)).

4.2. Analysis of the Approximation Guarantee

Before we present the analysis of Algorithm 1 – which
leads to the proof of Theorem 4.1 – we remark that the
correctness of the algorithm follows immediately from the
fact that at most k arms are played at each round. In order
to lower-bound the total expected payoff of Algorithm 1,
we focus on analyzing the expected payoff collected at any
fixed round. Our goal is to show that the latter consists a
constant fraction of the average optimal expected payoff,
that is, OPT(T )/T . Having established that, the proof simply
follows by linearity of expectation.

Reduction to virtual states. Let us fix any time step t ∈
[T ] with t ≥ τmax and let us denote by A′ be the subset of
arms for which a recurrent interval has been sampled during
the randomized rounding step of our algorithm. Recall that,
at time t, the algorithm plays the k arms in the candidate
set Ct (or fewer, if |Ct| < k) with the highest expected

payoff, evaluated at their virtual states. The first step of our
proof is to show that the actual expected payoff collected,
i.e., the one evaluated at the actual states, is at least as much
as the one evaluated at the virtual ones. This is implied
immediately by the following stronger result:

Lemma 4.1. For every round t ≥ τmax and arm i ∈ A′, it
deterministically holds that τi(t) ≥ νi(t). By monotonicity
of the payoff functions, this further implies that pi(τi(t)) ≥
pi(νi(t)).

By applying the above Lemma, we can lower-bound the
expected payoff collected at round t as follows:

E

[
max

S⊆Ct,|S|≤k

∑
i∈S

pi(τi(t))

]
≥

E

[
max

S⊆Ct,|S|≤k

∑
i∈S

pi(νi(t))

]
, (2)

where the expectation above is taken over the randomness
of sampling recurrent intervals and the offsets.

Candidate triples and their distribution. Inequality (2)
allows us to reduce the analysis to studying the evolution
of only the virtual states of the arms. For any fixed time
step t ≥ τmax, the set of candidate arms Ct contains the
subset of arms i ∈ A′ that are played at their virtual state
νi(t), namely, those which satisfy βIi(νi(t)) = •. This set,
however, does not give any information regarding the actual
recurrent interval sampled nor the virtual state under which
an arm is a candidate.

For this reason, we extend the notation by introducing the
following more expressive set, which we refer to as the set
of candidate triples:

Tt = {(i, I(u, l), ν) | i ∈ Ct, I(u, l) = Ii, ν = νi(t)}.

Further, for every arm i ∈ A, let

U i =
{

(i, I(u, l), ν) | u ∈ Sτ
max

1 , l ∈ S−1
τL , βI(u,l)(ν) = •

}
denote the set of all possible candidate triples involving
arm i, and let U =

⋃
i∈A U

i denote the set of all possible
candidate triples for all arms. Finally, let, T it = Tt ∩ U i
denote the set of candidate triples of time t involving arm i.

At this point, we observe that the set T it , for any arm i ∈ A,
is distributed independently of other arms. This is because
each T it is a function of the sampled recurrent interval Ii
and the choice of the random offset ri, and each of these
quantities is drawn independently for every arm. In addition,
we observe that the event that a specific triple (i, I(u, l), ν)
belongs to T it is mutually-exclusive to that of any other
triple corresponding to the same arm. Indeed, at most one
recurrent interval Ii can be sampled for arm i in the offline
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phase and – assuming one was indeed sampled – the arm
can be in exactly one virtual state at each time.

The above discussion motivates the definition of the follow-
ing class of distributions:
Definition 4.1 (Block-Mutually-Exclusive). Consider a
ground set [m] of elements and a given partition into sub-
sets V 1, . . . , V n, such that V i ∩ V j = ∅, for every i 6= j,
and

⋃
j∈[n] V

j = [m]. A distribution D over 2[m] is called
block-mutually-exclusive, if it first samples at most one ele-
ment from each subset V i (independently of other subsets),
using a marginal distribution Di over the subsets of 2V

i

of
at most one element (i.e., the singletons and the empty set),
and then return the union of the sampled elements. We refer
to the distributions D1, . . . ,Dn as block-marginals.

In other words, in a block-mutually-exclusive distribution,
the sampling of elements across different subsets V i and V j

for i 6= j is independent, but within each set it is mutually-
exclusive.

The following lemma characterizes the distribution of the
set of candidate triples Tt:
Lemma 4.2. For any fixed time step t, the distribution
of Tt, denoted by C(x∗), is block-mutually-exclusive with
block-marginals C1(x∗), . . . , Cn(x∗) where, for every i ∈
A, Ci(x∗) is a distribution over singletons of 2U

i

and the
empty set. Further, for every i ∈ A and (i, I(u, l), ν) ∈
U i, it holds P

S∼Ci(x∗)
[S = {(i, I(u, l), ν)}] = x∗i,u,l and

P
S∼Ci(x∗)

[S = ∅] = 1−
∑

(i,I(u,l),τ)∈Ui x
∗
i,u,l.

Due to Lemma 4.2, the RHS in (2) can be thus written as a
function of C(x∗) as follows:

E

[
max

S⊆Ct,|S|≤k

∑
i∈S

pi(νi(t))

]
=

E
C∼C(x∗)

 max
S⊆C,|S|≤k

∑
(i,I(u,l),ν)∈S

pi(ν)

 . (3)

Reaching the LP upper bound via the correlation gap.
The next step in our analysis is to associate the RHS in
the equality (3) with the optimal solution of (LP). In this
direction and following the paradigm of (Papadigenopoulos
et al., 2022), we first observe that the function gk : 2U →
[0,∞), defined as

gk(C) = max
S⊆C,|S|≤k

∑
(i,I(u,l),ν)∈S

pi(ν),

is monotone non-decreasing submodular2. In particular,
gk(C) can be thought of as an instance of the weighted rank

2A function f : 2[n] → [0,∞) is submodular if for every
S, T ⊆ [n] it holds that f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

function of the (rank-k) uniform matroid, defined as follows:
given a weight vector w ∈ [0,∞)m over a ground set [m]
of elements, the weighted rank function of the k-uniform
matroid is given by fw,k(S) = max I⊆S

|I|≤k

∑
i∈I wi.

For any set function f : 2[m] → [0,∞) and vector
y ∈ [0, 1]m, one can define the following standard continu-
ous extensions: (a) the multilinear extension F : [0, 1]m →
[0,+∞) given by F (y) = E

S∼I(y)
[f(S)], and (b) the con-

cave closure f+ : [0, 1]m → [0,∞) given by f+(y) :=
supD(y) E

S∼D(y)
[f(S)] .

Let us denote γk =
(

1− kk

ekk!

)
. For the particular case of

fw,k, the following result is known:

Lemma 4.3 (Correlation Gap (Yan, 2011)). Let fw,k :
2[m] → [0,+∞) be the weighted rank function of the rank-k
uniform matroid. Then, for any y ∈ [0, 1]m, we have

f+
w,k(y) ≥ Fw,k(y) ≥ γk · f+

w,k(y).

Using the above, one could potentially associate the RHS
of equality (3) with the concave closure of gk, denoted by
g+
k (x∗), thus moving a step closer to the end goal of recov-

ering the optimal value of the LP. However, the definition of
multilinear extension assumes that expectations are taken by
including each element independently to a random set with
marginals given by x∗, which is not the case in our setting.

We resolve the above issue by showing that, for the particu-
lar case of block-mutually-exclusive distributions, as C(x∗),
the expectation of gk(C), can only decrease if the elements
were instead added to C independently, but with the same
marginals.

Lemma 4.4. Let f : 2[m] → [0,+∞) be a submodular set
function. For any y ∈ [0, 1]m and block-mutually-exclusive
distribution C(y) with marginals y, we have

E
S∼C(y)

[f(S)] ≥ E
S∼I(y)

[f(S)] .

We remark that the above result allows us to leverage any
known correlation gap result for (not necessarily monotone)
submodular functions for settings where the underlying dis-
tribution is block-mutually-exclusive.

The final step is to relate the concave closure g+
k (x∗) to the

optimal value of (LP).

Lemma 4.5. Let LP∗ denote the optimal value of (LP).
Then, we have g+

k (x∗) ≥ LP∗ .

By combining the above elements, we can now complete
the proof of Theorem 4.1 (see Appendix C).
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5. Online Learning Adaptation with Sublinear
Regret

We now consider the online learning variant of k-MLSD
where the mean payoff functions are unknown and need to
be learned online. In particular, the payoff from playing
arm i at state τ is now drawn independently from a distri-
bution with unknown mean pi(τ) and bounded values in
[0, 1]. We assume that the player observes the payoff realiza-
tion of each individual arm played (semi-bandit feedback).
The goal is to design a bandit algorithm with sublinear re-
gret measured against (1− ε) · γk ·OPT(T ), namely, the
total expected payoff guaranteed (asymptotically) by Algo-
rithm 1. More formally, we seek to minimize the following
approximate regret:

Reg(T ) = (1− ε) · γk ·OPT(T )−R(T ),

where R(T ) is the total expected payoff collected by the
online learning algorithm over the whole time horizon.

We develop a bandit adaptation of Algorithm 1 based on
Explore-then-Commit, assuming that the time horizon is
known. By a standard application of the doubling trick, this
assumption only comes at a cost of an additional polylog-
arithmic factor in the regret. Our main theorem is summa-
rized below and its proof can be found in Appendix D:
Theorem 5.1. There exists a bandit adaptation of Algo-
rithm 1 for k-MLSD with regret upper-bounded as

O

(
n

1
3 k

2
3

(
(τmax)2 +

1

ε

) 1
3

ln
1
3

((
τmax +

1

ε

)
T

)
T

2
3

)
.

Conclusion and Further Directions
In this work, we consider the model of last switch dependent
bandits, recently introduced in (Laforgue et al., 2022). We
provide the first polynomial-time constant approximation
algorithm for the planning problem under the additional as-
sumption of monotonic payoffs, which already generalizes
several studied models (Basu et al., 2019; Simchi-Levi et al.,
2021; Papadigenopoulos et al., 2022). Our algorithm relies
on novel techniques and insights that might be of indepen-
dent interest including a novel relaxation, the concept of
recurrent intervals, and the technique of mirroring virtual
evolutions. This work leaves a number of interesting future
directions: (a) we conjecture that the monotonicity of the
payoff functions is necessary for the problem to accept con-
stant approximations. Thus, an immediate direction would
be to provide inapproximability results for the problem in
the absence of this assumption. (b) The LP-based and time-
correlated nature of our algorithm significantly complicates
its adaptation into a dynamic online learning policy (e.g.,
based on UCB (Auer et al., 2002a)). Providing a learning
adaptation of improved (order-optimal) regret is, hence, an-
other interesting direction. Finally, (c) we believe that the

“mirroring” technique we develop in this work could be used
for tackling even richer subclasses of restless bandits which
satisfy some analogous form of monotonicity.
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A. Background and Related Work
In their original work on recharging bandits, Immorlica & Kleinberg (2018) construct a (1− ε)-PTAS for the setting where –
in addition to monotone non-decreasing – the payoffs are concave and Lipschitz functions of the delay. This is achieved
through an elegant combination of partial enumeration and the novel technique of (randomized time-correlated) interleaved
rounding of a concave relaxation. More related to our work, Simchi-Levi et al. (2021) drop the assumptions of concavity
and Lipschitzness and replace it with the conceptually weaker assumption of finite recovery (i.e., after a specific delay
threshold the payoffs stabilize). They provide a 1/4-approximation algorithm by defining and searching over the space of
purely periodic policies; the guarantees of their algorithm improve when more than one arms can be played per round.
Additional variations of the problem have been studied (Cella & Cesa-Bianchi, 2020; Pike-Burke & Grunewalder, 2019)
with the special case of blocking bandits receiving particular attention (Basu et al., 2019; Bishop et al., 2020; Atsidakou
et al., 2021; Papadigenopoulos & Caramanis, 2021; Basu et al., 2021). In blocking bandits each arm has a fixed mean payoff,
yet becomes unavailable for a known number of rounds after each play.

The state-of-the-art planning algorithm for recharging bandits (under the assumptions made in (Simchi-Levi et al., 2021)) is
due to Papadigenopoulos et al. (2022). In their work, the authors construct a

(
1− kk/ekk!

)
-approximation for the case where

at most k arms can be pulled at each round. Their algorithm is based on rounding the solution of a natural linear-programming
(LP) relaxation of the problem, through a combination of randomized rounding and the technique of interleaved scheduling.
The idea of the algorithm we develop in this paper is based on abstracting and extending the above techniques.

Beyond introducing the model of LSD bandits, Laforgue et al. (2022) provide an additive approximation to the optimal
solution with sublinear regret, for the case where at most one arm can be played per round. At a high-level, their approach is
based on partitioning the time horizon into blocks of reasonable size and then finding an optimal arm-playing sequence
within each block. However, due to the interaction between consecutive blocks (through the arms’ states), one has to
increase the size of each block in order to shrink the (additive) error, which makes the computation of this optimal sequence
computationally hard.

B. LP Relaxation Based on Recurrent Intervals: Omitted Proofs
Lemma 3.1. For any instance of k-MLSD and any τL ≤ −1, there exists a (deterministic) near-optimal solution, where
the sequence of plays and non-plays of every arm consists of a concatenation of recurrent intervals of the form I(u, l) with
l ≥ τL, potentially followed by a sequence of non-plays until the end of the time horizon. The total payoff collected by this
solution, denoted by OPT(T ), satisfies

OPT(T ) ≥
(

1− 1

1− τL

)
·OPT(T )− n,

where OPT(T ) is the optimal payoff in T rounds.

Proof. Consider an instance I of k-MLSD. A deterministic solution π(I) for I consists of a schedule of plays and non-plays
of each arm i over the time horizon T , such that the total number of plays at each time step is at most k. We denote by πi(I)
the sequence of plays and non-plays of arm i under the solution π(I). Note that I always has an optimal solution that is
deterministic, and let π∗(I) be one such solution.

Consider now a feasible solution π̄(I) such that for every arm i, the sequence π̄i(I) is produced using π∗i (I) as follows:
starting from t = 1, each time we encounter a sequence of 1− τL consecutive plays, we omit the (1− τL)-th play (i.e., we
turn it to a non-play). Further, we omit the last play of π∗i (I), if such a play exists. Clearly, π̄(I) is a feasible solution, since
the total number of played arms at each time step remains at most k.

By construction of π̄(I), for every arm i the sequence π̄i(I) consists of a concatenation of recurrent intervals I(u, l) such
that l ≥ τL, potentially followed by a sequence of non-plays. In fact, any other recurrent interval I(u, l) with l < τL must
contain a sequence of 1 − τL consecutive plays for arm i and, thus, cannot be contained in π̄i(I). Further, π̄i(I) ends
with a non-play which implies that it can be split into recurrent intervals starting from t = 1 and ending each one when a
play/non-play switch is encountered. To conclude the proof, we show that π̄(I) has an expected payoff

OPT(T ) ≥ (1− 1

1− τL
) ·OPT(T )− n.
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Fix an arm i and let OPTi(T ) denote the payoff that the optimal solution collects from arm i. Let t1, . . . , tR, tR+1 denote
the time steps of the omitted plays from π∗i (I) with tR+1 being the time step of the last play of π∗i (I) (assuming one exists).
Let ∆i =

∑R+1
r=1 pi(τ

∗
i (tr)) denote the total payoff of the omitted steps, where τ∗i (t) is the state of arm i at time t in

schedule π∗i (I). Apart from the play tR+1, every other omitted play is preceded by −τL plays in π∗i (I). By monotonicity
of the payoff functions, for every r ∈ {1, . . . , R} we have

pi(τ
∗
i (tr)) ≤

1

−τL
tr−1∑

t=tr+τL

pi(τ
∗
i (t)).

By construction, the sets of time steps {t1 + τL, . . . , t1 − 1}, . . . , {tR + τL, . . . , tR − 1} which are the sets of −τL time
steps preceding t1, . . . , tR respectively are disjoint. Hence

∆i =

R+1∑
r=1

pi(τ
∗
i (tr)) ≤

1

−τL
R∑
r=1

tr−1∑
t=tr+τL

pi(τ
∗
i (t)) + 1 ≤ 1

−τL
(OPTi(T )−∆i) + 1,

which implies that

∆i ≤
1

1− τL
OPTi(T ) +

−τL
1− τL

≤ 1

1− τL
OPTi(T ) + 1.

Finally, since omitting a play can only make the state of the arm (and hence the payoff) higher in subsequent rounds, the
gain from following the schedule π̄i(I) is at least OPT(T )−

∑n
i=1 ∆i. Hence

OPT(T ) ≥ OPT(T )−
n∑
i=1

∆i

≥ OPT(T )− 1

1− τL
n∑
i=1

OPTi(T )− n

= (1− 1

1− τL
) OPT(T )− n.

Lemma 3.2. For any instance of k-MLSD, let OPT(T ) be the optimal payoff collected in T rounds. For the optimal value
of (LP), denoted by LP∗, it holds

T · LP∗ ≥
(

1− 1

1− τL

)
OPT(T )− n.

Proof. Consider an instance I of k-MLSD and let π̄(I) be some deterministic solution such that, for every arm i, the
schedule π̄i(I) consists of a concatenation of only recurrent intervals I(u, l) with l ≥ τL, potentially followed by a sequence
of non-plays. Let OPT(T ) denote the total payoff of π̄(I) over T rounds. In order to prove the Lemma, it suffices to
construct a feasible solution to (LP) with objective value (at least) OPT(T )

T ; indeed, by Lemma 3.1, this would imply that

T · LP∗ ≥
(

1− 1

1− τL

)
OPT(T )− n.

Let N̄i(u, l) be the number of times the recurrent interval I(u, l) appears in the schedule π̄i(I) starting from t = 1. Consider
x̄ ∈ A×Sτ

max

1 ×S−1
τL such that for every i ∈ A, u ∈ Sτ

max

1 and l ∈ S−1
τL we have

x̄i,u,l :=

{
N̄i(u,l)
T u < τmax∑
u′≥u

N̄i(u
′,l)

T u = τmax
.

Since an arm is pulled exactly −l times during an interval I(u, l), the total number of plays of arm i under the solution π̄(I)
is
∑
u>0

∑
l∈S−1

τL
−l · N̄i(u, l) and, hence, the total number of plays of all arms over the whole time horizon satisfies∑

i∈A

∑
u>0

∑
l∈S−1

τL

−l · N̄i(u, l) ≤ kT,

12
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by feasibility of π̄(I). Therefore, we have that

∑
i∈A

∑
u∈Sτmax

1

∑
l∈S−1

τL

−l · x̄i,u,l =
∑
i∈A

∑
u∈Sτmax−1

1

∑
l∈S−1

τL

−l · N̄i(u, l)
T

+
∑
i∈A

∑
l∈S−1

τL

∑
u≥τmax

−l · N̄i(u, l)
T

=
1

T

∑
i∈A

∑
u>0

∑
l∈S−1

τL

−l · N̄i(u, l) ≤ k,

which implies the feasibility of x̄ w.r.t. constraints (C.1).

Notice that the length of the recurrent interval I(u, l) is ‖I‖ri = u− l and, thus, for every arm i the total number of steps
occupied by all the recurrent intervals in π̄i(I) is given by

∑
u>0

∑
l∈S−1

τL
(u− l)N̄i(u, l), which is less or equal to T by

construction. Therefore, for every arm i, we have

∑
u∈Sτmax

1

∑
l∈S−1

τL

(u− l) · x̄i,u,l =
∑

u∈Sτmax−1
1

∑
l∈S−1

τL

(u− l) · N̄i(u, l)
T

+
∑
l∈S−1

τL

∑
u≥τmax

(τmax − l) · N̄i(u, l)
T

≤
∑

u∈Sτmax−1
1

∑
l∈S−1

τL

(u− l) · N̄i(u, l)
T

+
∑
l∈S−1

τL

∑
u≥τmax

(u− l) · N̄i(u, l)
T

=
1

T

∑
u>0

∑
l∈S−1

τL

(u− l) · N̄i(u, l) ≤ 1,

which implies the feasibility of x̄ w.r.t. constraints (C.2).

Finally, since the aggregated payoff of the recurrent interval I(u, l) for any arm i is given by qi(u, l), the total collected
payoff from all arms is

OPT(T ) =
∑
i∈A

∑
u>0

∑
l∈S−1

τL

qi(u, l)N̄i(u, l).

In order to conclude the proof, we notice that the objective value of x̄ in (LP) becomes

∑
i∈A

∑
u∈Sτmax

1

∑
l∈S−1

τL

qi(u, l) · x̄i,u,l =
∑
i∈A

∑
u∈Sτmax−1

1

∑
l∈S−1

τL

qi(u, l)
N̄i(u, l)

T
+
∑
i∈A

∑
l∈S−1

τL

∑
u≥τmax

qi(τ
max, l)

N̄i(u, l)

T

=
∑
i∈A

∑
u∈Sτmax−1

1

∑
l∈S−1

τL

qi(u, l)
N̄i(u, l)

T
+
∑
i∈A

∑
l∈S−1

τL

∑
u≥τmax

qi(u, l)
N̄i(u, l)

T

=
1

T

∑
i∈A

∑
u>0

∑
l∈S−1

τL

qi(u, l)N̄i(u, l)

=
OPT(T )

T
,

where the second equality above follows by the finite recovery assumption.

C. Analysis of the Approximation Guarantee: Omitted Proofs
Lemma 4.1. For every round t ≥ τmax and arm i ∈ A′, it deterministically holds that τi(t) ≥ νi(t). By monotonicity of
the payoff functions, this further implies that pi(τi(t)) ≥ pi(νi(t)).

Proof. Let us fix any arm i ∈ A′, a sampled recurrent interval Ii = I(ui, li), and a sampled offset ri. Recall that arm i
is a candidate at any round t (and, hence, can potentially be played) if and only if its virtual state satisfies βIi(νi(t)) = •.
Recall, also, that the initial state of any arm (including i) is 1, namely, τi(1) = 1. We now prove by induction that for any

13
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round t ≥ τmax, it holds τi(t) ≥ νi(t). In particular, we prove the statement for any round t ≥ t0, where t0 (defined below)
satisfies t0 ≤ τmax.

For the base case, we first notice that if τmax = 1, then by setting t0 = τmax = 1 we get that τi(t0) = τi(1) = 1 ≥ νi(t0),
by our assumption that all arms are initialized at state 1. Let us now assume that τmax ≥ 2 and distinguish between two
cases: (i) in the case where νi(1) ≤ 1 (i.e., the virtual state at round t = 1 is either negative or 1), by setting t0 = 1 ≤ τmax

we immediately get that τi(t0) = 1 > νi(t0), by assumption. (ii) In the case where νi(1) ≥ 2, then notice that the first time
where βIi(νi(t

′)) = • (and, hence, arm i becomes a candidate) happens at t′ = ui − νi(1) + 1 ≤ τmax − 1, by definition of
a recurrent interval. Thus, by setting t0 = t′ + 1 ≤ τmax, we have that τi(t0) is either ui + 1 or −1 (depending on whether
or not it is played at round t′); in both cases, it holds τi(t0) ≥ −1 = νi(t0). Thus, we have established that τi(t0) ≥ νi(t0)
for some round t0 ≤ τmax.

Let us now assume that τi(t) ≥ νi(t) for some round t ≥ τmax and prove the inductive step for round t+ 1. Clearly, in the
case where −li < νi(t) < 0 (i.e., the negative state corresponds to a consecutive play), then νi(t+ 1) = νi(t)− 1 and the
actual state either ends up at τi(t+ 1) = τi(t)− 1 ≥ νi(t)− 1 = νi(t+ 1) if τi(t) < 0, or at τi(t+ 1) = −1 if τi(t) > 0.
In the case where νi(t) = −li (and, hence, the arm is not played at t), then it holds that νi(t+ 1) = 1 and the actual state
either ends up at τi(t + 1) = 1 = νi(t + 1) if τi(t) < 0, or at τi(t + 1) = τi(t) + 1 ≥ 1 = νi(t + 1) if τi(t) > 0. In the
case where 0 < νi(t) < ui then, clearly, νi(t+ 1) = νi(t) + 1 ≤ τi(t) + 1 = τi(t+ 1), since the arm does not become a
candidate at round t. Finally, for the case where νi(t) = ui, then it must be that either νi(t+ 1) = τi(t+ 1) = −1 if arm is
played at round t, or τi(t+ 1) > τi(t) ≥ ui > −1 = νi(t+ 1), otherwise.

Lemma 4.2. For any fixed time step t, the distribution of Tt, denoted by C(x∗), is block-mutually-exclusive with block-
marginals C1(x∗), . . . , Cn(x∗) where, for every i ∈ A, Ci(x∗) is a distribution over singletons of 2U

i

and the empty set.
Further, for every i ∈ A and (i, I(u, l), ν) ∈ U i, it holds P

S∼Ci(x∗)
[S = {(i, I(u, l), ν)}] = x∗i,u,l and P

S∼Ci(x∗)
[S = ∅] =

1−
∑

(i,I(u,l),τ)∈Ui x
∗
i,u,l.

Proof. We first notice that, since the sampling of the recurrent intervals and offsets is performed independently for each arm,
the random sets T 1

t , . . . , T nt must be independent. Further, by definition of our algorithm, for every (i, I(u, l), ν) ∈ U i, we
have that

P
[
T it = {(i, I(u, l), ν)}

]
= P [νi(t) = ν | Ii = I(u, l)] ·P [Ii = I(u, l)] =

1

u− l
· (u− l)x∗i,u,l = x∗i,u,l,

and also

P
[
T it = ∅

]
= 1−

∑
(i,I(u,l),τ)∈Ui

x∗i,u,l.

Note that for each arm i ∈ [n], the distribution of the set T it is identical for every t, and let us denote it by Ci(x∗).
Given the above, the distribution of Tt denoted by C(x∗) is independent of the time step t and is equivalent to sampling
n sets from the independent distributions C1(x∗), . . . , Cn(x∗) and taking their union; this satisfies the definition of a
block-mutually-exclusive distribution.

Lemma 4.4. Let f : 2[m] → [0,+∞) be a submodular set function. For any y ∈ [0, 1]m and block-mutually-exclusive
distribution C(y) with marginals y, we have

E
S∼C(y)

[f(S)] ≥ E
S∼I(y)

[f(S)] .

Proof. Let V 1, . . . , V n be the partition of [m] defining the blocks of C(y). Let C1(y), . . . , Cn(y) be the block-marginals of
C(y) where for every i ∈ [n], Ci(y) is defined over the singletons of 2Vi and the empty set. Recall that sampling S ∼ C(y)
is equivalent to sampling independently n sets S1, . . . , Sn from the distributions C1(y), . . . , Cn(y), respectively, and taking
their union. Similarly, sampling S ∼ I(y) is equivalent to sampling independently n sets S1, . . . , Sn from the distributions
I1(y), . . . , In(y), respectively, and taking their union, where for every i ∈ [n], Ii(y) is the element-wise independent
distribution over V i with marginals P

S∼Ii(y)
[j ∈ S] = yj for every j ∈ V i.

Consider now n sets S1, . . . , Sn randomly sampled from n independent distributions D1, . . . ,Dn such that for each i ∈ [n],
the distribution Di is either the mutually exclusive distribution Ci(y) or the independent one Ii(y). Consider i ∈ [n]
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such that Di ∼ Ci(y) (if one exists), we show that switching Di to Ii(y) decreases the expected value of f(∪nj=1S
j).

This implies the lemma by iteratively switching the mutually exclusive distributions to independent ones starting from
D1 ∼ C1(y), . . . ,Dn ∼ Cn(y). Note that it is sufficient to show that for every fixed values of the rest of the sets Sj for
j 6= i, it holds that

E
S∼Ci(y)

[
f(∪nj=1S

j)
]
≥ E
S∼Ii(y)

[
f(∪nj=1S

j)
]
.

Let us begin by proving the following result on subadditive functions3.

Lemma C.1. Let g : 2V → R be a subadditive function over a ground set V such that g(∅) = 0. Consider a distribution
D over the singletons of 2V and the empty set, and let I be the element-wise independent distribution over V with same
marginals, i.e., such that P

S∼I
[e ∈ S] = P

D
[{e}] for every e ∈ V . Then,

E
S∼D

[g(S)] ≥ E
S∼I

[g(S)] .

Proof. Notice that since g(∅) = 0, then for any set S ⊆ V , the subadditivity of g implies that

g(S) ≤
∑
e∈S

g({e}) =
∑
e∈V

g({e}) · X (e ∈ S),

where X (E) is the indicator function such that X (E) = 1, if E holds true, and X (E) = 0, otherwise. By taking
expectation over I on the above expression and using the fact that I and D have the same marginals, we can conclude that

E
S∼I

[g(S)] ≤
∑
e∈V

g({e}) · P
S∼I

[e ∈ S] = E
S∼D

[g(S)] .

Now for every A ⊆ U , let us denote f(·|A) : 2U → R such that

f(S | A) = f(S ∪A)− f(A) ∀S ⊆ U,

denote the marginal function of f and note that and f(∅|A) = 0. It is known that since f is submodular then f(·|A) has to
be subadditive. Hence, for every fixed values of Sj for j 6= i, by Lemma C.1, it holds that

E
S∼Ci(y)

[
f(Si| ∪j 6=i Sj)

]
≥ E
S∼Ii(y)

[
f(Si| ∪j 6=i Sj)

]
.

which implies that
E

S∼Ci(y)

[
f(∪nj=1S

j)
]
≥ E
S∼Ii(y)

[
f(∪nj=1S

j)
]
,

which concludes the proof.

Lemma 4.5. Let LP∗ denote the optimal value of (LP). Then, we have g+
k (x∗) ≥ LP∗ .

Proof. We prove the lemma by explicitly constructing a distribution L(x∗) under which the expectation of g(C) is equal to
LP∗. In particular, consider the vector

v :=
(
−lx∗i,u,l

)
i∈A , u∈Sτmax

1 , l∈S−1

τL

.

Constraints (C.1) of (LP) imply that the sum of the coordinates of v is at most k, while constraints (C.2) suggest that v lies
in the unit hypercube. Therefore, vector v may be written as a convex combination of m boolean vectors v1,v2, . . . ,vm ∈
{0, 1}n×τmax×(−τL) such that for every j ∈ [m] the vector vj has at most k ones. Let λ1, . . . , λm ≥ 0 such that∑m
j=1 λj = 1 and v =

∑m
j=1 λjv

j . We construct the following distribution L(x∗) over 2U : to sample a set S ∼ L(x∗), we
first sample a vector w ∈ {v1, . . . ,vm}where for every j ∈ [m], the probability of sampling vj is λj . Next, for each positive

3A set function g : 2V → R is subadditive if and only if for every S, T ⊆ V , we have g(S ∪ T ) ≤ g(S) + g(T ).
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coordinate (i, u, l) of w (i.e., such that wi,u,l = 1), we sample a triple Ti,u,l from the set {(i, I(u, l), τ) | βI(u,l) = •}
uniformly at random and add Ti,u,l to S. Notice that the set S is by construction a subset of U (the set of all possible triples).
Note, further, that because w has at most k ones, S contains at most k triples.

We now claim that the distribution L(x∗) constructed above has marginals (x∗i,u,l)i,u,l. Indeed, fix a triple (i, I(u, l), ν).
The probability that (i, I(u, l), ν) belongs to S is given by

P
S∼L(x∗)

[(i, I(u, l), ν) ∈ S] =

m∑
j=1

P
[
(i, I(u, l), ν) ∈ S|w = vj

]
P
[
w = vj

]
=

∑
j∈[m]:vji,u,l=1

P
[
(i, I(u, l), ν) ∈ S|w = vj

]
P
[
w = vj

]
=

∑
j∈[m]:vji,u,l=1

P
[
Ti,u,l = (i, I(u, l), ν)|w = vj

]
·λj

=
∑

j∈[m]:vji,u,l=1

λj
−l

= −1

l

m∑
j=1

λjv
j
i,u,l

= x∗i,u,l.

In order to see why the second equality above holds, note that S only contains triples (i′, I(u′, l′), τ ′) such that wi′,u′,l′ = 1.
Hence, for every j ∈ [m] such that vji,u,l = 0 and conditioned on w = vj , the triple (i, I(u, l), ν) does not belong to S
and, thus, P

[
(i, I(u, l), ν) ∈ S) | w = vj

]
= 0. For the third equality, note that conditioned on w = vj , the only way

that (i, I(u, l), ν) can belong to S is if the triple Ti,u,l sampled for the coordinate i, u, l of w is (i, I(u, l), ν). Finally, the
fourth equality holds because |{(i, I(u, l), τ) | βI(u,l) = •}| = −l and Ti,u,l is sampled uniformly at random, while the last
follows by definition of v1, . . . ,vm.

It remains to show that the expected value of g(C) when C ∼ L(x∗) is indeed LP∗. In fact,

E
C∼L(x∗)

[g(C)] = E
C∼L(x∗)

 max
S⊆C,|S|≤k

∑
(i,I(u,l),τ)∈S

pi(τ)


= E
C∼L(x∗)

 ∑
(i,I(u,l),τ)∈C

pi(τ)


=

∑
(i,I(u,l),τ)∈U

pi(τ) P
C∼L(x∗)

[(i, I(u, l), τ) ∈ C]

=
∑

(i,I(u,l),τ)∈U

pi(τ)x∗i,u,l

= LP∗,

where the second equality follows from the fact that any set C ∼ L(x∗) has at most k elements (triples).

Theorem 4.1. For any instance of k-MLSD and any fixed ε ∈ (0, 1), the total expected payoff collected by Algorithm 1 in
T rounds is at least

(1− ε)
(

1− kk

ekk!

)
OPT(T )−O (n+ τmax · k) ,

where OPT(T ) is the optimal expected payoff that can be collected.

Proof. Consider a time step t ≥ τmax and let γk =
(

1− kk

ekk!

)
. Inequality (2) and identity (3) imply that the expected
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payoff collected by Algorithm 1 at round t is at least

E
C∼C(x∗)

 max
S⊆C,|S|≤k

∑
(i,I(u,l),ν)∈S

pi(ν)

 = E
C∼C(x∗)

[gk(C)] .

By combining the correlation gap lemma (see Lemma 4.3) with Lemma 4.4, we can conclude that the above quantity is at
least

γk · sup
D(x)

E
C∼D(x∗)

 max
S⊆C,|S|≤k

∑
(i,I(u,l),ν)∈S

pi(ν)

,
which, by using Lemma 4.5, can be further lower-bounded by γk · LP∗. Finally, by Lemma 3.2 and noting that −τL ≥ ε,
the algorithm collects an average payoff at time t of at least

γk · LP∗ ≥
(

1− 1

1− τL

)
· γk ·

OPT(T )

T
− γk ·

n

T

≥ (1− ε) · γk ·
OPT(T )

T
−O

( n
T

)
.

Therefore, the payoff collected by the algorithm during time steps t ≥ τmax (where the above inequality holds) can be
lower-bounded as

(1− ε) · γk ·OPT(T )

(
1− τmax

T

)
−O

(
n ·
(

1− τmax

T

))
,

which can be further bounded as

(1− ε) · γk ·OPT(T )−O (n+ τmax · k) ,

using the fact that OPT(T ) ≤ kT . This completes the proof.

D. Online Learning Adaptation: Omitted Proofs
Our online learning adaptation is based on an Explore-Then-Commit scheme, where we first learn the unknown mean
payoffs up to a certain precision η and then run Algorithm 1 using the estimated payoffs.

Robustness of Algorithm 1 to perturbations in the mean payoffs. Recall that Algorithm 1 first computes an optimal
solution x∗ to (LP) and then uses x∗ to compute a feasible arm-playing schedule. It is not hard to verify that the algorithm
does not require the monotonicity of the payoff functions in order to produce a feasible solution, since this assumption is
only required for proving its approximation guarantee.

The following lemma bounds the regret of Algorithm 1 when it runs on approximate (not necessarily monotone) values of
the mean payoff functions:

Lemma D.1. Let (p̂i(τ))i,τ be η-estimates of the mean payoffs (pi(τ))i,τ such that |p̂i(τ)− pi(τ)| ≤ η for every i ∈ A
and τ ∈ Sτ

max

1 ∪S−1
τL for some η ∈ (0, 1). Let R̂(T ) denote the total payoff collected by the algorithm when it runs with

the estimates (p̂i(τ))i,τ . Then the regret suffered by Algorithm 1 over T rounds, given by (1− ε) γk OPT(T )− R̂(T ), is at
most O (ηkT + kτmax + n).

Proof. Assuming that Algorithm 1 has access to η-estimates (p̂i(τ))i of the payoff function of the arms, the algorithm
computes an optimal solution x̂∗ to (LP) with expected aggregated payoffs q̂i(u, l) = p̂i(u) +

∑−1
τ=l+1 p̂i(τ). Let x∗ be the

optimal solution of (LP) with respect to the true expected aggregated payoffs qi(u, l). Note that for every i ∈ A, u ∈ Sτ
max

1

and l ∈ S−1
τL , it holds that q̂i(u, l) ≥ qi(u, l) + lη. The expected gain of the algorithm at any time t ≥ τmax running with
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the η-estimates, denoted by R̂(t), is such that

R̂(t) = E

 max
S⊆Ct,|S|≤k

∑
(i,I(u,l),τ)∈S

p̂i(τi(t))


≥ E

 max
S⊆Ct,|S|≤k

∑
(i,I(u,l),τ)∈S

pi(τi(t))

−ηk
≥ E

 max
S⊆Ct,|S|≤k

∑
(i,I(u,l),τ)∈S

pi(νi(t))

−ηk
= E
C∼C(x̂∗)

 max
S⊆C,|S|≤k

∑
(i,I(u,l),τ)∈S

pi(τ)

−ηk
≥ E
C∼C(x̂∗)

 max
S⊆C,|S|≤k

∑
(i,I(u,l),τ)∈S

p̂i(τ)

−2ηk,

where the first inequality holds because p̂i(τ) ≥ pi(τ)− η for all i ∈ A and τ ∈ Sτ
max

1 ∪S−1
τL , the second inequality holds

by Lemma 4.1, and the last inequality follows from pi(τ) ≥ p̂i(τ)− η for all i ∈ A and τ ∈ Sτ
max

1 ∪S−1
τL . At this point,

we can simply follow the lines of the proof of Theorem 4.1, given that the rest of the proof does not rely on the monotonicity
of the payoff functions. Thus, we get

R̂(t) ≥ E
C∼C(x̂∗)

 max
S⊆C,|S|≤k

∑
(i,I(u,l),τ)∈S

p̂i(τ)

−2ηk

≥ γk
∑
i∈A

∑
u∈Sτmax

1

∑
l∈S−1

τL

q̂i(u, l) · x̂i,u,l − 2ηk

≥ γk
∑
i∈A

∑
u∈Sτmax

1

∑
l∈S−1

τL

q̂i(u, l) · x∗i,u,l − 2ηk

≥ γk
∑
i∈A

∑
u∈Sτmax

1

∑
l∈S−1

τL

qi(u, l) · x∗i,u,l − γkη
∑
i∈A

∑
u∈Sτmax

1

∑
l∈S−1

τL

−lx∗i,u,l − 2ηk

= γk LP∗−(2 + γk)ηk

≥ (1− ε) γk
OPT(T )

T
− γk

n

T
−O (ηk) ,

where the second inequality holds by following the lines of the proof for Theorem 4.1 and the third by optimality of x̂∗

for (LP) with the aggregated payoffs q̂i(u, l). The penultimate inequality holds because q̂i(u, l) ≥ qi(u, l) + lη for all
i ∈ A, u ∈ Sτ

max

1 and l ∈ S−1
τL and the last using Lemma 3.2. The proof of the lemma follows from summing the above

inequality over all t ≥ τmax.

Sample complexity of the collecting η-estimates. We now upper-bound the number of time steps required to get η-
estimates of the mean payoffs pi(τ) for every arm i and state τ , with high probability. In particular, we prove the following
lemma:

Lemma D.2. For any η, δ ∈ (0, 1), let p̂i(τ) be the empirical mean of m samples drawn from pi(τ) for every arm

i ∈ A and τ ∈ Sτ
max

1 ∪S−1
τL . By setting m = 1

2η2 ln
(

2n(τmax−τL)
δ

)
then, with probability at least 1 − δ, it holds that

|p̂i(τ)− pi(τ)| ≤ η for all i and τ . Moreover, it is possible to collect m samples from each pair of arm and state within
nm((τmax)2−τL+2)

k consecutive time steps.
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Proof. The first part of the lemma is a direct consequence of Hoeffding inequality applied to the bounded i.i.d. samples of
pi(τ). In particular, for every i and τ and after m samples, it holds that,

P [|p̂i(τ)− pi(τ)| > η] ≤ 2e−2mη2 =
δ

n(τmax − τL)
.

The result follows by a union bound over all arms i ∈ A and states τ ∈ Sτ
max

1 ∪S−1
τL .

In order to collect m samples out of every pi(τ) for every i ∈ A and τ ∈ Sτ
max

1 ∪S−1
τL , we do the following: consider the

arms {1, . . . , k}, for each arm i ∈ {1, . . . , k} and starting from the beginning of the time horizon, sample arm i repeatedly
m times at state τ = τmax, then m times at state τ = τmax − 1 and so on. After the last sample at state τ = 1, repeat for m
times a sequence of −τL + 1 plays followed by a non-play. Note that this allows to collect m samples of arm i at every
state τ ∈ Sτ

max

1 ∪S−1
τL . The total number of steps needed to collect all of these samples is

∆ = m

τmax∑
j=1

j +m(−τL + 2) =
mτmax(τmax + 1)

2
+m(−τL + 2).

Similarly, use the next ∆ time steps to collect m samples out of every pi(τ) for the arms i ∈ {k + 1, . . . , 2k} and so on.
This above process yields a feasible schedule (as no more than k arms are sampled at every time step t) which collects (at
least) m samples for each pair of arm and state in at most n∆

k ≤
nm((τmax)2−τL+2)

k time steps.

Online algorithm for the bandit problem. By combining the above results, we are now ready to state our algorithm for
the bandit setting of k-MLSD. We remark that, by a standard application of the doubling trick (which comes at the small
cost of a polylogarithmic factor in the regret), we can assume w.l.o.g. that the time horizon is known to the player a priori.

Let η, δ ∈ (0, 1) and let m = 1
2η2 ln

(
2n(τmax−τL)

δ

)
. Our algorithm is an Explore-Then-Commit variant of Algorithm 1.

The first nm((τmax)2−τL+2)
k rounds of the algorithm are used to collect m i.i.d. samples from pi(τ) for every arm i and state

τ , as described in Lemma D.2. Then, again by Lemma D.2, the empirical means of these samples (p̂i(τ))i,τ are η-estimates
of the mean payoffs (pi(τ))i,τ with probability at least 1 − δ. In the remainder of the rounds, the online algorithm runs
Algorithm 1 with the estimates (p̂i(τ))i,τ as input. By a proper tuning of the parameters η and δ, we recover the regret
bounds of Theorem 5.1.

Proof of Theorem 5.1. Let η, δ ∈ (0, 1) to be specified later, and let m = 1
2η2 ln( 2n(τmax−τL)

δ ). The exploration phase

consists of collectingm samples from each arm i and state τ , which, by Lemma D.2 can be done in the first nm((τmax)2−τL+2)
k

time steps. At each time step, a payoff of at most 1 is collected by the optimal solution from each arm, which implies
a total accumulated regret of nm((τmax)2 − τL + 2) in the exploration phase. At the end of the exploration phase, the
empirical means of the collected samples p̂i(τ) give η-estimates of the true mean payoffs pi(τ) with probability at least
1− δ. The exploitation phase consists of running Algorithm 1 using the η-estimates p̂i(τ). This implies, by Lemma D.1,
that with probability at least 1− δ, the algorithm suffers a regret of at most O(kTη + kτmax + n) in the exploitation phase.
Finally, the regret accumulated from the sample paths of the algorithm where the concentration bounds do not hold is at
most O(kTδ). Therefore, the total regret accumulated by the algorithm over the whole time horizon is such that,

Reg(T ) = O
(
nm((τmax)2 − τL + 2) + (kTη + kτmax + n) + kTδ

)
.

By setting η = 3

√
n((τmax)2−τL+2) ln(2n(τmax−τL)T )

2kT and δ = 1
T , we can upper-bound the above regret as,

Reg(T ) = O
(
n

1
3 k

2
3 ((τmax)2 − τL)

1
3 ln

1
3 ((τmax − τL)T ) · T 2

3 + kτmax + n
)

= O

(
n

1
3 k

2
3

(
(τmax)2 +

1

ε

) 1
3

ln
1
3

((
τmax +

1

ε

)
T

)
· T 2

3 + kτmax + n

)
.
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E. Additional Remarks
E.1. Tightness of the Approximation Analysis

We now provide an example to show that the long-run approximation guarantee of Algorithm 1, provided in Theorem 4.1, is
tight (up to the (1− ε)-factor).

Consider an instance of k-MLSD with n = m · k arms for some large integer m. We assume that all arms have the same
payoff function, defined as follows: the payoff is 0 for every state τ ≤ m− 1 and becomes 1 for every state τ ≥ m. It can
be easily verified that the asymptotically optimal solution to the above instance it to partition the arms into m “batches”,
each containing k arms, and then play a different batch at each round in a round-robin manner. Notice that this leads to a
periodic arm-pulling schedule with period m (the number of batches). Independently of the initial state of each arm and
after at least m time steps, there always exist exactly k arms at each round (contained in a single batch) which are at state
τ = m and thus have payoff 1. Playing these arms at each round gives a long-run optimal average payoff of k.

Let us now focus on the behavior of Algorithm 1 on the above instance. By analyzing the optimal solution to (LP) in that
case and by construction our sampling procedure for recurrent intervals and offsets, it can be verified that, at any round, an
arm is a candidate with probability equal to 1

m . Given that all arms are identical and assuming w.l.o.g. that all arms are
initialized at state τ = m, at each round t our algorithm collects the minimum between the number of candidate arms and k
(breaking ties arbitrarily in the case where |Ct| > k). Hence, the associated payoff at each round is given by E[min{X, k}],
where X is a binomial random variable with parameters n (number of arms) and 1

m = k
n (the probability an arm is a

candidate). By taking the limit n → ∞, it can be proved (see, e.g., Lemma 4.2. in (Yan, 2011)) that the average payoff
collected by our algorithm over the optimal one becomes

lim
n→∞

E[min{X, k}]
k

=
k − kk+1

ek·k!

k
= 1− kk

ek · k!
,

which matches exactly the guarantee of our algorithm (modulo the 1− ε factor).

E.2. Continuous Relaxations Based on States

The existing algorithms from the recharging bandits literature construct relaxations based on the fraction of time an arm
is played under a specific state (or “delay”, using the terminology of these works). Simchi-Levi et al. (2021) use such a
relaxation to construct purely periodic policies, namely, policies where each arm is repeatedly played only under a specific
delay. Similarly, the randomized algorithm of Papadigenopoulos et al. (2022) allows each arm to be played only in rounds
that are integer multiples of a unique arm-specific delay (which they call “critical”). In the k-MLSD setting, however, it is
impossible to repeatedly play an arm under (and only under) a state τ for τ < 0. Indeed, between two plays of under a
state τ < 0, any algorithm must necessarily play the arm under at least one positive state τ ′ > 0 and all the negative states
in {τ + 1, . . . ,−1}, assuming that τ < −1. This begs the question of whether a restriction to positive states (that can be
periodically played) is sufficient in the case of k-MLSD bandits. The following example shows that this is not the case:

Example E.1. Consider an instance of 1-MLSD with a single arm i = 1 and an infinite time horizon. The payoff function
of the arm is given by

p1(τ) =

{
1 τ ≥ −1,
0 τ < −1.

It is not hard to verify that the unique optimal strategy in the above instance is to periodically repeat the sequence (play,
play, non-play), starting from t = 1. Notice that this strategy collects an average payoff of 2/3 and consists of playing the
arm under both positive (+1) and negative (-1) states.
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