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Abstract
Efficient exploration is a challenging topic in rein-
forcement learning, especially for sparse reward
tasks. To deal with the reward sparsity, people
commonly apply intrinsic rewards to motivate
agents to explore the state space efficiently. In
this paper, we introduce a new intrinsic reward
design called GoBI - Go Beyond Imagination,
which combines the traditional lifelong novelty
motivation with an episodic intrinsic reward that
is designed to maximize the stepwise reachability
expansion. More specifically, we apply learned
world models to generate predicted future states
with random actions. States with more unique
predictions that are not in episodic memory are as-
signed high intrinsic rewards. Our method greatly
outperforms previous state-of-the-art methods on
12 of the most challenging Minigrid navigation
tasks and improves the sample efficiency on loco-
motion tasks from DeepMind Control Suite.

1. Introduction
Efficient exploration in state space is a fundamental chal-
lenge in reinforcement learning (RL) (Hazan et al., 2019;
Lee et al., 2019), especially when the environment rewards
are sparse (Mnih et al., 2013; 2016; Schulman et al., 2017)
or absent (Liu & Abbeel, 2021; Parisi et al., 2021). Such
reward sparsity makes RL algorithms easy to fail due to the
lack of useful signals for policy update (Riedmiller et al.,
2018; Florensa et al., 2018; Sekar et al., 2020). A com-
mon approach for exploration is to introduce self-motivated
intrinsic rewards such as state visitation counts (Strehl
& Littman, 2008; Kolter & Ng, 2009) and prediction er-
rors (Stadie et al., 2015; Pathak et al., 2017; Burda et al.,
2018). Most of these intrinsic reward designs measure life-
long state novelty and prioritize visiting states that are less
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visited starting from the beginning of training.

While the above methods achieves great improvement on
hard-exploration tasks like Montezuma’s Revenge (Burda
et al., 2018), they generally only work well on “single-
ton” environments, where training and evaluation environ-
ments are the same. However, due to the poor generalization
performance of reinforcement learning in unseen environ-
ments (Kirk et al., 2021), nowadays researchers have been
paying more attention on procedurally-generated environ-
ments (Cobbe et al., 2019; 2020; Flet-Berliac et al., 2021),
where the nature of task remains the same but the environ-
ment is randomly constructed for each new episode. For
example, a maze-like environment will have different maze
structures, making it rare for the agent to encounter the
same observations across different episodes. Therefore,
lifelong novelty intrinsic motivations usually fail in hard
procedurally-generated environments of this kind (Raileanu
& Rocktäschel, 2020; Zha et al., 2021) because an agent
will be trapped around newly-generated states.

Inspired by human’s frequent use of short-term memory (An-
dersen et al., 2006; Eichenbaum, 2017) to avoid repeatedly
visiting the same space, recent work propose to derive intrin-
sic rewards on episodic level (Savinov et al., 2018; Badia
et al., 2020; Raileanu & Rocktäschel, 2020; Zha et al., 2021;
Zhang et al., 2021). The episodic intrinsic rewards gener-
ally give bonus to large episodic-level state space visitation
coverage, therefore encourage visiting as many states as
possible in the same episode. However, does visiting more
states necessarily mean efficient episodic-level exploration?
We notice that some state visitations are unnecessary and
can be avoided if they are predictable from episodic mem-
ory. For example, when navigating through a house to find
a fridge, if you open a door and find an empty room, you
do not need to go into it anymore because you can easily
predict what the states are like in the room (i.e., intuitively
speaking, you would be moving around in an empty room).
With this inspiration, we propose to design the episodic in-
trinsic reward to not only maximize the number of visited
states in an episode, but also consider those states that are
not visited but can be predicted from episodic memory.

More precisely, we maintain an episodic buffer to store all
the visited states as well as states reachable from the visited
states within a few time steps. To get the reachable states,
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Figure 1. Illustration of how GoBI works on Minigrid. For the environment in the upper-left corner, the red triangle indicates the position
and orientation of the agent. It has a 7× 7 partially-observable view (highlighted). During pre-training (Stage 1), we collect data using
a random policy to train a forward dynamics model f̂ϕ(panot, at) = ot+1, where panot denotes the panoramic view as is defined in
Section 3.1. For policy training (Stage 2), we apply f̂ to predict observations in the future k time steps with n random actions for each
step. We add the new ones to an episodic bufferM and take the change of size ofM as the episodic intrinsic reward repi. The lifelong
intrinsic reward is COUNT-based. Our intrinsic reward GoBI is rlifelong ∗ repi.

we train a world model with forward dynamics function and
apply random actions to the learned dynamics model to pre-
dict future states. The predictions are added to the episodic
buffer if they are not there already. We use the change of
size of this episodic buffer as the episodic intrinsic reward.
Following many previous work, we weight the episodic in-
trinsic reward by a lifelong intrinsic reward (Badia et al.,
2020; Zhang et al., 2021) like the COUNT-based rewards.
With this newly proposed intrinsic reward design GoBI - Go
Beyond Imagination, the agent is expected to both explore
the most of the state space throughout training to discover
extrinsic rewards, and learn to act in an efficient manner
within a single episode to avoid being trapped by seemingly
novel states.

The contributions of this work can be highlighted as fol-
lows: (i) We propose a novel way to combine world models
with episodic memory to formulate an effective episodic
intrinsic reward design. (ii) In sparse-reward procedurally-
generated Minigrid environments (Chevalier-Boisvert et al.,
2018b), GoBI greatly improves the training sample effi-
ciency in comparison with prior state-of-the-art intrinsic
reward functions. (iii) GoBI extends well to DeepMind
Control Suite (Tunyasuvunakool et al., 2020) with high-
dimensional visual inputs and shows promising results on
sparse-reward continuous control tasks. (iv) We analyze the
design of GoBI and present extensive ablations to show the
contribution of each component.

2. Method
We consider reinforcement learning problems framed as
Markov Decision Process (MDP) M = (S,A, T,R, γ),
where S and A denote the state space and action space.
T : S × A × S → [0, 1] is the state transition function.
R : S × A × S → R is the reward function. γ is the
reward discount factor. At each step t, the state of the
environment is denoted as st ∈ S. The agent generates
an action at ∈ A to interact with the environment. The
environment then transits to the next underlying state st+1 ∈
S. Apart from the new state st+1, the environment also
returns an extrinsic reward rext that describes how well the
agent reacts to st. In sparse-reward tasks, rext is usually
0. In this work, we follow the previous work to train RL
algorithms with rext+λ∗rintt , where rintt is a self-motivated
intrinsic reward and λ is a hyper-parameter that controls the
relative importance between intrinsic and extrinsic rewards.

2.1. Go Beyond Imagination

Reachable States and Episodic Buffer Our intrinsic re-
ward design aims to exploit the information hidden inside
the neighbourhood of states. We define a state A to be k-
step reachable from state B if the agent can reach A from
B within k time steps. During the training process, for each
new episode, we initialize an empty episodic memory buffer
M. At time step t, we hash st as well as all the states
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Figure 2. An illustration of how our episodic buffer updates. We consider reachable states that are k = 2 time steps away from st. After
the agent moves from s1 to s2, the episodic bufferM (shaded in green) expands by 3 new reachable states (shaded in yellow). More
formally,M←M∪MR(s2), whereMR(s2) indicates a set of all the states 2-step reachable from s2. Notice that all the states in the
trajectory, i.e., s0, s1, s2 are also added to the buffer.

reachable from st. We denote the set containing all the hash
codes of st and its reachable states asMR(st). Then we
updateM byM←M∪MR(st). Storing the hash codes
instead of directly storing the states may alleviate the poten-
tial memory issue of the buffer. We illustrate this process in
Figure 2. When the agent reaches state s2, we add 3 more
states that are reachable from s2 but not inM.

Forward Dynamics In real environments, it is common
that we do not have access to the neighbourhood relationship
between states. However, we can learn a world model by
training a forward dynamics model f̂ϕ(st, at) = st+1 to
predict the states reachable from st. This forward dynamics
can be pre-trained using data collected by a random policy or
trained online together with policy training. When training
the policy, for each time step t, we generate k · n random
actions and use the learned dynamics f̂ϕ to predict states in
the future k steps. We hash the current state st as well as the
predicted future states ŝ1t+1, ..., ŝ

n
t+1, ..., ŝ

1
t+k, ..., ŝ

n
t+k and

add the hash codes to the episodic bufferM if they are not
in the buffer. Apart from alleviating potential memory issue
as is mentioned in the last paragraph, using a hash function
may also mitigate the noise introduced by f̂ . With a learned
dynamics model, the predictions of reachable states are
usually not perfect. However, in the experiment section we
show that even with imperfect predictions, our method can
improve the training sample efficiency a lot.

Episodic Novelty We aim to design an episodic-level nov-
elty reward that guides the agent to extend the frontier of its
predicted reachable space efficiently to discover states not
visited and not predictable within the same episode. More
specifically, we denote the size of the episodic bufferM
as mt at time step t and design a reachability-based bonus
repi = mt+1 −mt that encourages the agent to find unex-
plored regions. For each time step, the agent is expected to
reach the state that is reachable to more new states in the
current episode.

Intrinsic Reward Formulation We further weight our
episodic intrinsic reward by a lifelong intrinsic reward to
encourage the agent to explore the regions that are not well
explored in the past. More formally, the proposed intrinsic
reward GoBI is defined as:

rintt = (mt+1 −mt) ∗ rlifelongt (1)

Here, rlifelongt denotes lifelong intrinsic reward. We note
that our framework is compatible with any choice of lifelong
intrinsic reward. Specifically, we use the simple COUNT-
based reward 1/

√
N(st+1) for the navigation experiments

on Minigrid environments (Chevalier-Boisvert et al., 2018b),
where N denotes the count of st+1 from the start of train-
ing.1 For the experiments on DeepMind Control Suite (Tun-
yasuvunakool et al., 2020) we use the state-of-the-art in-
trinsic reward RE3 (Seo et al., 2021), which estimates state
entropy by a random encoder.

Intrinsic Decay Intrinsic rewards are expected to be
asymptotically consistent so that it will not influence the
policy learning at later stage of training and result in a
sub-optimal policy. To guarantee that the policy learning
focuses more on extrinsic rewards as training proceeds, in
RE3 (Seo et al., 2021), the authors apply exponential decay
schedule for the intrinsic rewards to decrease over time. Al-
though COUNT-based reward theoretically converges to
0 with enough exploration, it decreases quite slowly in
procedurally-generated environments. Therefore, we also
apply intrinsic reward decay when calculating GoBI by de-
creasing the intrinsic reward coefficient λ during training.
We summarize our method in Algorithm 1 and illustrate the
training process on Minigrid navigation tasks in Figure 1.

1For environments that are partially observable (e.g., in Mini-
grid, the agent observes a 7×7 pixel local view of the environment),
we substitute state st with observation ot when calculating the in-
trinsic rewards.
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Algorithm 1 Go Beyond Imagination

Input: Intrinsic Reward Coefficient λ0, Forward Pre-
diction Step k, Number of Random Actions n, Intrinsic
Reward Decay Parameter ρ
Initialize policy πθ, dynamics model f̂ϕ, replay buffer B.
(Optional) Collect episodes with πθ and train f̂ϕ with
prediction loss
for episode e = 1, 2, ... until convergence do

Initialize episodic bufferM.
λ← λ0 ∗ (1− ρ)(e−1)∗T

for t = 1 to T do
Execute πθ in the environment to get a transition
pair (st, at, st+1, r

ext
t ).

mt ← size(M)
M←M∪ {hash(st)})
for t′ = 1 to k do

generate n random actions a1t′ , ..., a
n
t′

M←M∪ {hash(f̂ϕ(ŝit+t′ , a
i
t′)|i = 1, ..., n})

end for
rintt = (size(M)−mt) ∗ rlifelong
B ← B ∪ {(st, at, st+1, r

ext
t + λ ∗ rintt )}

end for
update πθ with RL objective
update f̂ϕ with prediction loss

end for

2.2. Conceptual Advantage of GoBI over Prior Works

Previous works including RIDE (Raileanu & Rocktäschel,
2020) and NovelD (Zhang et al., 2021) also combine
episodic intrinsic reward with lifelong novelty as we do.
However, most of them focus on episodic-level state vis-
itation. For example, NovelD only assigns non-zero re-
wards to a state when it is visited for the first time in the
episode. However, we notice that not all state visitations
are necessary. The agent’s goal for exploration is to gather
information about the states. Therefore for states that are
easily predictable from episodic memory, visiting them may
not really help to acquire more information about the en-
vironment. In Figure 4, we plot the visitation heatmap of
GoBI and NovelD to demonstrate the different exploration
behaviours of the two methods.

Our method is closely related to another work that mea-
sures episodic curiosity (EC) (Savinov et al., 2018). In EC,
the authors train a reachability network that takes in two
arbitrary states and outputs a similarity score between 0
and 1, where 1 indicates the two states are the same and 0
indicates they are totally different. The network is trained
using collected episodes by marking temporally close states
as positive examples and temporally far ones as negative
samples. Meanwhile, they also maintain an episodic buffer.
A state st is compared with all the states in the buffer and

gets a high intrinsic reward if the corresponding similarity
scores are low. Only with low enough similarity scores do
they add st to the buffer. Although their method and ours
are similar at high level, they are different by design. For ex-
ample, for an agent standing in front of an empty blind alley
with dead end, agent trained with GoBI does not benefit in
going deep into the blind alley because everything there can
be predicted as reachable and added to the episodic buffer
already. However, EC encourages going to the very end of
the blind alley to reach the state with low similarity score
and high intrinsic reward, even though going into an empty
blind alley is not beneficial for exploration and wastes time
that can be used to explore other parts of the environment.
In Appendix C, we present the visitation heatmaps of poli-
cies learned by EC and find that it prefers going to the room
corners, which well matches our explanation above.

(a) MiniGrid (b) Deepmind Control

Figure 3. Rendering of the environments used in this work. Left:
2D grid world navigation tasks that require object interactions.
Right: DeepMind Control tasks with visual observations.

3. Experiments
In this section, we evaluate GoBI in two domains: 2D
procedurally-generated Minigrid environments (Chevalier-
Boisvert et al., 2018a) with hard-exploration tasks and lo-
comotion tasks from DeepMind Control Suite (Tunyasu-
vunakool et al., 2020). The experiments are designed to
answer the following research questions: (1) How does
GoBI perform against previous state-of-the-art intrinsic re-
ward designs in terms of training-time sample efficiency on
challenging procedurally-generated environments? (2) Can
GoBI successfully extend to complex continuous domains
with high-dimensional observations, for example control
tasks with visual observations? (3) How does each compo-
nent of our intrinsic reward contribute to the performance?
(4) What is the influence of the accuracy of the learned
world models to our method?

3.1. Minigrid Navigation Tasks

Minigrid Environments MiniGrid (Chevalier-Boisvert
et al., 2018a) is a set of partially-observable procedurally-
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Figure 4. Visitation heatmaps on KeyCorridorS5R3 at different training stages. This figure compares the policy behaviour of GoBI and
NovelD. A dark red color means plentiful visitations, white means the agent has seen the space but did not step on it, and black means
space that are not discovered. It is worth noticing that early in the training (3.5M and 7M time steps), our policy already learns not to go
into an empty room, likely because states in an empty room are easily predictable. On the contrary, even after 11M steps, an agent trained
with NovelD still goes into an empty room (bottom-right corner) for more state visitations.

generated grid world navigation tasks. The agent is expected
to interact with objects such as keys, balls, doors, and boxes
to navigate through rooms and find the goal that is randomly
placed in one of the rooms. The tasks only provide one
sparse reward at the end of each episode, which indicates if
the agent successfully finds the goal or not and how many
steps it takes to reach the goal. In this work, we consider
3 types of tasks including MultiRoom, KeyCorridor, and
ObstructedMaze. Some environments that we experiment
on in this paper are shown in Figure 3a. The upper-right is
a KeyCorridor-S4R3 environment, where the agent should
learn to open the doors to find a key, use it to open the locked
blue door, and pick up the green ball. The bottom-left fig-
ure shows an ObstructedMaze-Full environment, which is
similar to KeyCorridor but more challenging. The rooms
are larger, the doors are blocked by balls, and the keys are
hidden in boxes. The upper-left and bottom-right environ-
ments are MultiRoom environments, in which the agent has
to navigate through connected rooms to reach the goal in
the last room.

Baselines We compare with state-of-the-art intrinsic re-
ward designs that work well on Minigrid including Nov-
elD (Zhang et al., 2021), RIDE (Raileanu & Rocktäschel,
2020), and RND (Burda et al., 2018). For a fair compari-
son, we follow the same basic RL algorithm and network
architectures used in the official codebase of NovelD and
only change the intrinsic rewards rint for all the methods.
We also compare our method with EC (Savinov et al., 2018)
because of the similarity of the high-level idea between
the two methods. However, the original paper of EC does
not include experiments on Minigrid. Therefore, we im-
plement our own version to adapt to Minigrid. We follow
their implementation suggestions in the paper and tune the
hyper-parameters such as novelty threshold by grid search.

Dynamics Model Training For each experiment on Min-
igrid, we first run a random policy for 1e5 steps to collect
data and use them to train a forward dynamics model as the
world model. Among the pairs collected, there are about
5e4 different transition pairs. During our experiments, we
observe that fine-tuning the pre-trained dynamics model
during policy training has no significant influence on the
performance. Similar to (Parisi et al., 2021), we use the
360◦ panoramic views as the input to predict the future
observations. This is a rotation-invariant representation of
the observed state. We consider this still a fair compari-
son with the previous state-of-the-arts because both NovelD
and RIDE rely on using the state information instead of
observations for the episodic count calculation.

Due to the limited field of view of the agent, we only forward
the learned dynamics by k = 1 step when predicting. We
predict the next observations produced by all 7 discrete
actions in the Minigrid tasks including turn left, turn right,
forward, toggle, pick up, drop, and done. We directly apply
the default Python hashing function to hash the observations
and predicted future observations. We do not expect the
hashing function to mitigate the prediction error on Minigrid,
but only use it to reduce the dimension of observations and
predictions.

Training Performance on Minigrid Figure 5 shows
the learning curves of GoBI and state-of-the-art explo-
ration baselines NovelD, RIDE, RND, and EC on 12 most
challenging Minigrid navigation tasks, including Multi-
Room, KeyCorridor, and ObstructedMaze. Our curves
are shifted towards right by the number of random explo-
ration environment steps used to train the world model.
In all 12 environments, GoBI significantly outperforms
previous methods in terms of sample efficiency. For in-
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Figure 5. Training performance of GoBI and the baselines on 12 MiniGrid environments. The x-axis shows the number of environment
steps. We shift the training curves towards right by the number of environment steps we use to pre-train the dynamics model, i.e. 1e5 time
steps. Results are averaged across 4 seeds.

stance, on ObstructedMaze-2Dlhb, GoBI is about three
times more sample efficient than NovelD. On the hard-
est ObstructedMaze-Full environment, GoBI achieves near-
optimal performance within 70M steps. Lastly, although we
try to tune the hyper-parameters of EC, our implementation
of EC still does not learn well on the Minigrid environments.

Qualitative Results To clearly present the exploration be-
havior learned by GoBI, we show the visitation heatmaps
of GoBI and NovelD on a KeyCorridorS5R3 environment
in Figure 4. Not only does our method converge to an opti-
mal policy faster, the exploration behaviour is very different
from NovelD. GoBI quickly learns not to visit easily pre-
dictable states like an empty room, making it more efficient
to explore interesting parts of the environment, for example,
the room with a key in it.

3.2. Experiments on Control Tasks

We further test GoBI on DeepMind Control Suite, which
are a set of image-based continuous control tasks. These
tasks are more challenging than Minigrid because of its high-
dimensional observations and stochastic transitions. Notice
that these environments are not procedurally-generated. The
experiments in this section are to show the generality of
our method by experimentally showing that GoBI extends
well to sparse-reward tasks with continuous action space
and high-dimensional observation space.

Dynamics Model Training We follow the world model
structure in Dreamer (Hafner et al., 2019) and directly apply
their encoder, transition model, and observation model to
predict future observations. However, compared to Mini-
grid, it requires way more data to train a decent dynamics
model on DeepMind Control to generate visually-reasonable
predictions. Therefore, different from the experiments on
Minigrid, we do not pre-train the dynamics models. Instead
we train the dynamics model together with the policy as is
shown in Algorithm 1. We find that the number of sampled
random actions n = 5 works well across all 4 environments.
For the number of forward prediction steps k, we set it to be
3 for Pendulum Swingup and 1 for the other 3 environments.

For the hashing function, we find that a simple SimHash as is
suggested in (Tang et al., 2017) works well in capturing the
similarities between similar observations. We use SimHash
to hash the image observations to 50 bits.

Training Performance on DeepMind Control We com-
pare with the state-of-the-art intrinsic motivation on Deepm-
Mind Control tasks - RE3 (Seo et al., 2021), which applies a
k-nearest neighbor entropy estimator in the low-dimensional
representation space of a randomly initialized encoder to
maximize state entropy. RE3 is also what we use for the life-
long intrinsic reward part rlifelong of GoBI in Eq 1. Another
two intrinsic reward baselines we consider are ICM (Pathak
et al., 2017) and RND (Burda et al., 2018). For a fair com-
parison, all the experiments use the same basic RL algorithm
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Figure 6. Training curves of GoBI and the baselines on DeepMind
Control Suite. The curves are averaged across 5 seeds.

RAD (Laskin et al., 2020). The results are shown in Figure
6. The additional episodic-level intrinsic reward term im-
proves the sample efficiency a lot compared to only using
lifelong intrinsic reward, especially on Hopper Hop and
Walker Run Sparse.

3.3. Ablation Study

GoBI Variations In this section, we analyze how each
component of our intrinsic reward contributes to the final
performance. We ablate each component of GoBI and run
experiments on Minigrid environments with the following:

• R1: only episodic intrinsic reward mt+1 −mt

• R2: indicator of whether new states are added to the
episodic buffer (1{mt+1 −mt > 0})/

√
N(ot+1)

• R3: only lifelong intrinsic reward 1/
√
N(ot+1)
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Figure 7. Training performance comparison among GoBI, R1, R2,
and R3 on 3 Minigrid environments.

Training performance of GoBI as well as R1, R2, and R3 are
shown in Figure 7. Although R1 works on MultiRoom, it
suffers on Obstructed Maze and large KeyCorridor environ-
ments. The underlying reason may be that in Key Corridor
and Obstructed Maze the room structures change less across

episodes than MultiRoom (all generated rooms are squares
with fixed sizes), therefore the COUNT-based rewards con-
tribute more in such environments than in MultiRoom. At
the same time, R2 performs way worse than GoBI. Agents
trained with R2 prefer actions that only increase the size of
the episodic buffer a bit therefore getting positive score more
often. We provide an illustrative example in Appendix E
to explain why R2 does not work well compared to GoBI.
Using only lifelong intrinsic reward R3 performs the worst
and struggles to learn efficiently on large Multiroom, Key
Corridor, and Obstructed Maze environments.

Real Dynamics vs Learned Dynamics A learned dynam-
ics model is generally not perfect, especially for partially-
observable environments like Minigrid. In many cases the
predictions can never be accurate. For example, when the
agent first opens the door of a new room, usually it will
not accurately predict everything behind the door. Figure 8
shows the training curves between using the real dynamics
model vs a learned dynamics model. Not surprisingly, with
the same intrinsic reward function, using the real dynamics
converges faster to a near-optimal policy. However, even
with imperfect dynamics model, our method still greatly
surpasses previous state-of-the-arts.
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Figure 8. Comparison between using the real dynamics model of
the environments vs using a learned one on Minigrid environments.
In both MultiRoom and KeyCorridor, using a real dynamics model
to derive intrinsic reward makes the policy converge faster, espe-
cially on KeyCorridor.

Multi-Step Predictions Figure 9 shows the learning per-
formance of GoBI on Minigrid with a varying choices of
the number of future steps to do predictions k = 1, 2, 3. For
k > 1, our dynamics model outputs panot+1 instead of ot+1

and we hash and store the observations from panoramas in
each future time step. With a real forward dynamics model,
a larger k generally accelerates exploration more, because it
prioritizes actions that lead to the states that are reachable
to more states in the long run. However, due to the limited
field of view of the agent and the model inaccuracy, this is
not the case if we use a learned model. Forwarding 2 steps
is still faster than only 1 step, but more steps than that does
not really make exploration faster.
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namics model. The plots above show the training performance on
Minigrid MultiRoom-N7-S8.

4. Related Work
4.1. Exploration in Reinforcement Learning
Efficient exploration in reinforcement learning, especially
for sparse-reward reinforcement learning problems is chal-
lenging. A natural and popular solution is to design some
metric to evaluate state novelty and assign high intrinsic re-
ward to novel states. For example, COUNT-based intrinsic
reward (Strehl & Littman, 2008; Kolter & Ng, 2009; Tang
et al., 2017) and curiosity-based intrinsic motivation (Stadie
et al., 2015; Pathak et al., 2017; Burda et al., 2018). An-
other popular way is to do state space entropy maximization
(Hazan et al., 2019; Lee et al., 2019). Recently, nearest
neighbor entropy estimation methods (Yarats et al., 2021a;
Liu & Abbeel, 2021) have shown great performance im-
provements in challenging visual domains. Our method is
compatible with all these successful exploration intrinsic re-
ward designs by using them as rlifelong, but we additionally
encourage the episodic-level reachable space expansion to
achieve large state space coverage within a single episode.

4.2. Episodic Memory
Deriving useful information from episodic buffer have
shown great success in improving the training sample ef-
ficiency in RL on navigation, control, and Atari games.
Episodic memory buffers are applied to mimic hippocampal
episodic control and rapidly assimilate recent experience
(Blundell et al., 2016; Pritzel et al., 2017). As is men-
tioned in the previous sections, (Savinov et al., 2018) keeps
an episodic buffer to store observations and introduce an
episodic curiosity module to determine if a new observation
is reachable from previous observations or not. RAPID (Zha
et al., 2021) proposes a novel way to do behaviour cloning
on episodes with high episodic coverage. NGU (Badia et al.,
2020) combines an episodic novelty module and a lifelong
novelty module to generate intrinsic rewards. However,
in NGU, the episodic novelty is a measurement of differ-
ence between the current observations from the previous
observations, while ours focus on how much the reachable
space is expanded from the new state. RIDE (Raileanu &

Rocktäschel, 2020) and NovelD (Zhang et al., 2021) both
count the episodic state visitations, while we claim that apart
from visited states, we should also consider states that can
be predicted from short-term episodic memory.

4.3. Learning World Models with Forward Dynamics
Learning dynamics function from a set of observed data is a
widely-studied topic in reinforcement learning, especially
due to the rapid growth of model-based reinforcement learn-
ing (Wang et al., 2019). Existing work show that an agent’s
world model is implicitly a forward model that predict future
states (Ha & Schmidhuber, 2018a; Freeman et al., 2019).
Recently, people have proposed latent dynamics models
that work well on high-dimensional inputs (Okada et al.,
2020). These latent dynamics models encode image obser-
vations and predict future states in the latent space (Ha &
Schmidhuber, 2018b; Hafner et al., 2019; 2023), outputting
realistic future observations on visually complex domains
including DeepMind Control Suite (Tunyasuvunakool et al.,
2020), VizDoom (Kempka et al., 2016), Atari Games, and
DeepMind Lab (Beattie et al., 2016). The learned dynamics
models can be used to guide exploration by prediction error
(Stadie et al., 2015; Pathak et al., 2017; Burda et al., 2018),
surprise (Achiam & Sastry, 2017), or information gain by
variance of model ensemble means (Sekar et al., 2020). Our
method differ from the previous methods by directly gener-
ating and hashing the predicted states and add them to an
episodic reachable state buffer. With the advanced world
model structures, our method can be extended to diverse
domains with complex observations.

5. Discussions and Future Work
This paper shows an effective way to combine learned world
models with episodic memory to intrinsically guide efficient
exploration. Our method achieves state-of-the-art perfor-
mance on procedurally-generated hard exploration tasks
and also works well on singleton continuous control do-
mains. However, it still has certain limitations. First of all,
the dynamics model we use for the Minigrid experiments
is deterministic, making it possible to generate less accu-
rate predictions and making the performance of our method
worse than using the real dynamics. A possible way to make
improvement on this is to make the prediction model gen-
erative and sample possible future states. Secondly, for the
control tasks with complex visual inputs, we hash the im-
ages with static hashing to make them discrete hash codes.
However, to better capture the semantic similarities between
the image observations, it would be beneficial to learn hash
functions, for example, by using an autoencoder (AE) to
learn meaningful hash codes (Tang et al., 2017). We leave
these investigations as future work.
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6. Conclusion
In this work, we introduce Go Beyond Imagination- GoBI,
a novel episodic intrinsic reward design that encourages
efficient episodic-level exploration by expanding reachable
space. While most previous episodic intrinsic rewards use a
naive episodic state count or state visitation coverage, our
method exploits learned world models to predict reachable
states and motivates the agent to seek for the states with
more unexplored neighbors. Combined with lifelong intrin-
sic rewards, our method shows great training time sample
efficiency improvement on hard procedurally-generated en-
vironments. At the same time, it can be extended to guide
exploration on continuous control tasks with visual inputs,
both indicating a promising future in this direction.
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A. Implementation Details
A.1. Experiments on Minigrid

Baselines Implementations of GoBI, NovelD (Zhang
et al., 2021), RIDE (Raileanu & Rocktäschel, 2020),
RND (Burda et al., 2018), and EC (Savinov et al., 2018) are
built on the official codebase of NovelD. For fair compar-
isons, only the intrinsic reward rint differs among the meth-
ods and they all use the same base algorithm IMPALA (Es-
peholt et al., 2018). At the same time, all the experiments
are run with the same compute resource with Nvidia TI-
TAN X GPU and 40 CPUs. For NovelD, we rerun their
official code to get the results of Minigrid MultiRoom and
KeyCorridor. For the experiments on ObstructedMaze, we
did not find the proper hyper-parameters to fully reproduce
their results. Therefore, we directly take the results reported
in their paper. For RIDE and RND, we run the code in
the official codebase of NovelD. For EC (Savinov et al.,
2018), their original paper does not include experiments
on Minigrid environments. Therefore, we implement our
own version and tune the hyper-parameters with grid search.
The intrinsic reward functions of GoBI and the baselines
are listed below:

• GoBI: (mt+1−mt)/
√

N(ot+1), where mt is the size
of the episodic bufferM and N(ot+1) is the lifelong
count of the observation ot+1 starting from the begin-
ning of training.

• RND: ∥ϕ(ot+1)− ϕ̂(ot+1)∥2, which is the difference
between a fixed random network ϕ̂ and a trained state
embedding network ϕ. Here, ϕ is trained to minimize
the same error.

• NovelD: max[novelty(ot+1) − α · novelty(ot), 0] ∗
1{Nepi(st+1 = 1)}. They apply RND to measure the
novelty of ot, i.e., novelty(ot) = ∥ϕ(ot) − ϕ̂(ot)∥2.
Nepi(st+1 = 1) checks if the agent visits state st+1

for the first time in an episode. Notice that they use
the full environment information, i.e. everything in the
grid world instead of only the 7×7 partially-observable
view. Therefore Nepi counts st+1 instead of ot+1.

• RIDE: ∥ϕ(ot)−ϕ(ot+1)∥2/
√

Nepi(st+1), where ϕ is
the state embedding network trained to minimize the
prediction error of an inverse and a forward dynamics.
Nepi indicates the episodic counts. Same as NovelD,
in RIDE, they also use the state information st+1 for
episodic count.

• EC: β −C(M, ot+1), where C(M, ot+1) is the 90-th
percentile similarity scores between ot+1 and all the
observations in the episodic buffer M. The similar-
ity scores are calculated using a pre-trained episodic
curiosity module. β is a hyper-parameter.

Policy and Value Function Training For fair compar-
isons, the policy network and value function network are
the same for all approaches. The input observations of di-
mension 7× 7× 3 are put into a shared feature extraction
network, which includes three convolutional layers of ker-
nel size= 3 × 3, padding= 1, channel=32, 128, 512, and
stride= 1, 2, 2 respectively with ELU activation. The fea-
tures are then flattened and put through 2 linear layers with
1024 units and ReLU activation, and an LSTM layer with
1024 units. This shared feature is passed separately to 2
fully-connected layers with 1024 units to output action dis-
tribution and value estimation.

Dynamics model For our implementation of the dynamics
model, our input is the panorama of the current step. To get
the panorama, we let the agent rotate for 3 times and con-
catenate the 4 observations to get inputs of size 28× 7× 3.
It is then passed to a feature extraction module that has the
same structure as our policy and value function networks,
except that the input to the first linear layer is 4 × 1024.
We then concatenate it with actions and put it through a de-
coder with 2 linear layers of sizes 256 and 512, and reshape
back to 7 × 7 × 3 to get a predicted observation. We pre-
train the dynamics model using 1e5 (panot, at, ot+1) pairs
collected by a random policy. RIDE also requires training
dynamics models for the state embedding network ϕ. The
input of their dynamics model is the state embedding and
action. The forward model contains two fully-connected
layers with 256 and 128 units activated by ReLU. The in-
verse dynamics model contains two fully-connected layers
with 256 units and a ReLU activation function. Its input is
the state embeddings of two consecutive steps.

Hash Functions We directly apply the default Python
hashing function to hash the 7 × 7 × 3 observations and
predicted future observations before adding them to the
episodic buffer.

State embedding NovelD, RIDE, and RND all require
training a state embedding network ϕ. The input is the
observation in MiniGrid with dimension 7×7×3. It contains
three convolutional layers with kernel size= 3× 3, padding
= 1, stride = 1, 2, 2, number of channels = 32, 128, 512
respectively. The activation function is ELU. Following the
convolutional layers are two linear layers of 2048 and 1024
units with ReLU activation.

Visitation Count For GoBI, N(o) stores the flattened 7×
7× 3 observations of each step. And for NovelD and RIDE,
they count the full states at episodic level, whose shape
varies from environment to environment. For example, the
shape is 25× 25× 3 for MultiRoom environments.
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Hyper-parameters Table 1 shows the values of hyper-
parameters shared across different methods.

Parameter name Value

Batch Size 32
Optimizer RMSProp

Learning Rate 0.0001
LSTM Steps 100

Discount Factor γ 0.99
Weight of Policy Entropy Loss 0.0005
Weight of Value Function Loss 0.5

Table 1. Hyper-parameters for experiments on Minigrid. These
hyper-parameters are shared across all the methods

For all of our experiments using GoBI on Minigrid, we set
the intrinsic reward coefficient λ = 0.01 and k = 1, which
means only forwarding the dynamics model by 1 step. At
the same time, as the action space is small and discrete,
instead of randomly sampling some actions, we directly
predict the future observations using all 7 possible actions.
We list the hyper-parameter choices of intrinsic decay factor
in Table 2. The value of ρ is chosen to make the intrinsic
reward large at the beginning of training and near-zero at
the end of the training.

Parameters Value

Forward Step k 1
Intrinsic Decay ρ 6e-7 for MR-N7S8;

8e-7 for MR-N12S10, MR-N6;
1.5e-6 for KC-S3R3;

5e-7 for KC-S4R3, KC-S5R3
3e-7 for KC-S6R3, OM-2Dlh

2e-7 for OM-1Q, OM-2Dlhb, OM-2Q
5e-8 for OM-Full

f̂ϕ Optimizer Adam
f̂ϕ Learning Rate 5e-4

Table 2. The hyper-parameters of GoBI for experiments on Mini-
grid.

For NovelD, we set λ = 0.05 for all the environments
as is suggested in their official codebase. For RIDE, we
use λ = 0.1 on KeyCorridor-S3R3 and λ = 0.5 on all
other environments. For RND, we set λ = 0.1 on all the
environments. For EC, we make λ = 0.01 so that the initial
average intrinsic reward of EC is similar to ours.

A.2. Experiments on Deepmind Control Suites

Baselines Implementations of GoBI, RE3 (Seo et al.,
2021), ICM (Pathak et al., 2017), and RND (Burda et al.,
2018) are built on the official codebase of RE3. All the

experiments apply the same base reinforcement learning
algorithm RAD (Laskin et al., 2020). For RE3, we rerun
their official code to get the results on all four environments.
For ICM and RND, we follow the implementation details
listed in RE3 to implement them to be compatible with
DeepMind Control tasks. For a fair comparison, only the
intrinsic reward design differs among the methods. The in-
trinsic reward functions of GoBI and the baselines are listed
below:

• GoBI: (mt+1−mt)×log(||yi−yk−NN
i ||2+1), where

mt is the size of the episodic bufferM. The latter part
is the RE3 intrinsic reward which we introduce below.

• RE3: log(||yi − yk−NN
i ||2 + 1), where yi = fθ(si) is

a fixed representation outputs from a randomly initial-
ized encoder and yk−NN

i is a set of k-nearest neighbors
of yi among all the collected y’s from the beginning of
training.

• ICM: η
2 ||ϕ̂(ot+1) − ϕ(ot+1)||22, where η is a scaling

factor. ϕ(o) is a feature vector that is jointly optimized
with a forward prediction model and an inverse dynam-
ics model and ϕ̂(o) predicts the feature encoding at
time step t+ 1.

• RND: ∥ϕ(ot+1)− ϕ̂(ot+1)∥2, which is the difference
between a fixed random network ϕ̂ and a trained state
embedding network ϕ. Here, ϕ is trained to minimize
∥ϕ(ot+1)− ϕ̂(ot+1)∥2.

Architecture The observation size of all the environments
is 84×84×3. The encoder architecture follows the same one
as in (Yarats et al., 2021b), which contains 4 convolutional
layers of 3 × 3 kernels, channel=32, and stride=2, 1, 1, 1
with ReLU activations. The output is then passed to a fully-
connected layer and normalized by LayerNorm.

Dynamics Model For the forward dynamics model that
we use to generate future predictions, we apply the same
world model structure as in Dreamer (Hafner et al., 2019).
The input size of Dreamer is 64× 64× 3. We down-sample
the input observations to 64×64 instead of tuning the world
model layers. We train the dynamics model together with
the RL policy in an online manner instead of pre-train it
because it takes many episodes for the predictions to be
visually reasonable. Therefore it does not add extra effort to
determine how many data should we collect to pre-train the
dynamics model.

Image hashing As the observations are images in high-
dimensional space and the predictions are usually not accu-
rate, we hash the images to lower dimension to avoid taking
too much space and to collapse similar observations and
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predictions. Following (Tang et al., 2017), we use the sim-
ple SimHash function to map the images to 50 bits. More
specifically, we project the flattened images to a random
initialized vector and use the signs of output vector values
as the hash code.

Hyper-parameters Table 3 shows the values of hyper-
parameters shared across different methods.

Parameter name Value

Augmentation Crop
Observation Size (84, 84)

Action Repeat 2
Replay Buffer Size 100000

Initial Random Exploration Steps 1000
Frame Stack 3

Actor Learning Rate 0.0002
Critic Learning Rate 0.0002

Batch Size 512
# Nearest Neighbors 3

Critic Target Update Freq 2

Table 3. Hyper-parameters for experiments on DeepMind Control
Suites. These hyper-parameters are shared across all the methods

For the intrinsic reward coefficients, we follow the best
choices reported in RE3. For GoBI, we apply the same
intrinsic reward coefficient λ and intrinsic reward decay ρ
as the ones in RE3 for fair comparison. The intrinsic rewards
that are specific to our method is shown in Table 4. For the
number of random actions n, we perform hyper-parameter
search over {3, 5, 10, 20} and find that n = 5 perform well
across all the tasks. For the number of forward steps k, we
perform hyper-parameter search over {1, 2, 3, 5} and report
the ones with the best results.

Parameter name Value

# Forward Step k 3 for pendulum-swingup;
1 for others

# Random Actions n 5

Table 4. Hyper-parameters for experiments on DeepMind Control
Suites. These hyper-parameters are specific to our method.

B. Hyper-Parameters
B.1. Intrinsic reward decay

In Figure 10, we show the training performance with differ-
ent intrinsic reward decay ρ. The choice of ρ is to balance
between the relative importance of the extrinsic and intrinsic
reward. If ρ is too large, for example when ρ = 1e − 6,
before the agent finds any goal, the intrinsic reward already

decreases to very small. Therefore sometimes it is hard for
the agent to learn anything useful, resulting in unsatisfac-
tory performance. Meanwhile, if ρ is too small, for example
when ρ = 5e − 7, the intrinsic reward will be too large at
later stage of training and make the agent focus less on the
extrinsic reward. Therefore the policy may converge slower.

0.0 0.2 0.3 0.5 0.6 0.8
environment steps (1e7)

0.0

0.2

0.4

0.6

Av
er

ag
e 

R
et

ur
n

MultiRoom-N12-S10

 = 1e-6
 = 9e-7

 = 8e-7
 = 7e-7

 = 6e-7
 = 5e-7

Figure 10. Training performance of GoBI on Minigrid Multiroom-
N12-S10 with different intrinsic reward decay ρ.

An effective way to tune this hyper-parameter is to also
record the number of (x, y) positions that the agent visits.
If the visited area is large but the average return is low, we
know that the intrinsic reward is too large and the agent
ignores the extrinsic reward.
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Figure 11. Training performance of GoBI on Minigrid Multiroom-
N7-S8 with different n randomly sampled actions per step.

B.2. Number of randomly sampled actions

In the Minigrid experiments reported in Section 3, we do
not randomly sample actions because Minigrid has a small
discrete action space with only 7 actions. Therefore we
directly predict future observations of all 7 actions. How-
ever, we also report the results with n = 3, 5, 10, 15 random
actions in Figure 11. To summarize, n = 5, 10, 15 all have
similar performance on Minigrid, while a larger n makes
the wallclock training time longer. n = 3 is slightly slower
at the early stage, but still outperforms the previous state-
of-the-arts. Overall, n = 5 would be a good choice for the
Minigrid environments.
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Figure 12. Heatmaps of example trajectories at different training steps in Minigrid-Multiroom-N7-S8 environment.

C. Exploration Behaviour Comparison
between GoBI and EC

In Figure 12, we visualize the policy visitation heatmaps
of GoBI and EC (Savinov et al., 2018) on a MultiRoom
environment from Minigrid. Although EC fails to learn an
optimal policy, we can still capture its preference from the
heatmaps. An agent trained with EC prefers going to the
corners of the room, which generally have lower similarity
scores than the states in the middle of the room. However,
if the similarity scores are not low enough for the states
to be added to the episodic buffer, it will continue staying
at the states to maximize its intrinsic reward. We tried to
tune the similarity score threshold using grid search but still
have not find a good hyper-parameter choice for it because
the similarity score at different corners does not share a
consistent value. Unlike EC, we can see from the figure
that GoBI chooses not to visit the border of the room early
on in training, as the information on the border are easily
predictable from the information in the middle of the room.

D. Wallclock Training Time
Table 5 shows the wallclock time needed to train NovelD
and our method for 10M Minigrid environment steps. GoBI
requires about 2x the wallclock time needed to train NovelD
for the same number of environment steps.

Algorithm Wallclock Time (hours)

NovelD 5.46(±0.058)
GoBI(ours) 10.65(±0.082)

Table 5. Wallclock training time comparison in hours between
NovelD and GoBI.

E. Ablation Study Illustration
In this section, we provide an illustrative example of why
only considering whether new states are added to the

episodic buffer or not, i.e., R2 in Section 3.3, works way
worse than our method. The example is shown in Figure 14.
If these 9 states are only a small part of the environment, we
want a policy that explore this part as quickly as possible -
mark all the states as reachable as quickly as possible. How-
ever, in order to maximize its step-wise intrinsic reward, an
agent trained with R2 will go along the border to only add a
few new states to the episodic buffer at a time, which wastes
many unnecessary steps so is not beneficial for exploration.
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Figure 13. Training performance comparison on MultiRoom-N7-
S8 environment among 1) use a fixed pre-trained dynamics model,
2) use a pre-trained dynamics model, and fine-tune it online, 3)
no pre-training, directly train the dynamics model together with
policy training.

F. Dynamics Training
In the experiment section 3, we report the results of apply-
ing a pre-trained forward dynamics for GoBI on Minigrid.
However, the forward dynamics model can also be trained
together with policy training. In Figure 13, we report the
results of an ablation study on a Minigrid environment of
3 settings: 1) use a pre-trained dynamics model, and keep
it fixed when training the policy, 2) pre-train a dynamics
model, and fine-tune it when training the policy, 3) no pre-
training, directly train the dynamics model in an online
manner. In summary, all 3 versions work similarly, but due
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Figure 14. An illustrative example of why R2 does not work well
to encourage efficient exploration. In this example, our goal is
to include all the states into the episodic buffer quickly. GoBI
can move directly to the center in one step for maximum intrinsic
reward, while R2 may choose to take extra steps for exploration
since it mainly focuses on whether the episodic buffer expands or
not.

to the fact that training the dynamics model online will add
extra wall clock training time, we use option 1 in our main
experiments.
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