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Abstract
Non-convex optimization plays a key role in a
growing number of machine learning applications.
This motivates the identification of specialized
structure that enables sharper theoretical analysis.
One such identified structure is quasar-convexity,
a non-convex generalization of convexity that
subsumes convex functions. Existing algorithms
for minimizing quasar-convex functions in the
stochastic setting have either high complexity or
slow convergence, which prompts us to derive a
new class of stochastic methods for optimizing
smooth quasar-convex functions. We demonstrate
that our algorithms have fast convergence and out-
perform existing algorithms on several examples,
including the classical problem of learning lin-
ear dynamical systems. We also present a unified
analysis of our newly proposed algorithms and a
previously studied deterministic algorithm.

1. Introduction
Momentum is one of the most widely used techniques for
speeding up the convergence rate of optimization methods.
Many deterministic and stochastic momentum based algo-
rithms have been proposed for optimizing (strongly) convex
functions, e.g. accelerated gradient descent (AGD) (Nes-
terov, 1983; 2003; Beck & Teboulle, 2009), accelerated
stochastic gradient descent (ASGD) (Ghadimi & Lan, 2012;
2016; Kulunchakov & Mairal, 2020), accelerated stochas-
tic variance reduced gradient (ASVRG) methods and their
related variants (Nitanda, 2016; Allen-Zhu, 2017; Kulun-
chakov & Mairal, 2020).

While much of our understanding of modern optimization
algorithms relies on the ability to leverage the convexity of
the objective function, a growing number of modern ma-
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chine learning applications rely on non-convex optimization.
Unfortunately, the theoretically guaranteed improvement
for convex functions that accelerated algorithms have do
not apply to many real-world scenarios. For many smooth
non-convex optimization problems, we only have guaran-
tees for finding stationary points instead of the global min-
imizer. However, some non-convex functions involved in
several popular optimization problems such as low-rank
matrix problems, deep learning and reinforcement learning,
have special structure and exhibit convex-like properties (Ge
et al., 2016; Bartlett et al., 2018; Mei et al., 2020), which
makes it possible to find approximate global minimizers of
these structured non-convex functions.

In this paper, we develop two accelerated stochastic opti-
mization methods for optimizing quasar-convex functions.
A quasar-convex function is parameterized by a constant γ ∈
(0, 1]. γ = 1 implies the function is star-convex, which is a
relaxation of convexity (Nesterov & Polyak, 2006). Quasar-
convexity was first proposed in Hardt et al. (2016). They
prove that the objective of learning linear dynamical systems
is quasar-convex under several mild assumptions. Zhou et al.
(2019) and Kleinberg et al. (2018) also provide evidence to
suggest that loss function of neural networks may conform
to star-convexity in large neighborhoods of the minimiz-
ers. Several recent papers propose effective deterministic
methods for minimizing L-smooth and γ-quasar-convex
functions. While gradient descent (GD) and stochastic gra-
dient descent (SGD) need O(γ−1ϵ−1) and O(γ−2ϵ−2) iter-
ations to yield an ϵ-approximate solution Guminov & Gas-
nikov 2017; Gower et al. 2021, the algorithms developed
by Guminov & Gasnikov (2017) and Hinder et al. (2020)
need O(γ−1ϵ−1/2) iterations and the algorithm developed
by Nesterov et al. (2018) needs O(γ−3/2ϵ−1/2) iterations.
Hinder et al. (2020) also introduce a new metric in terms
of the total number of function and gradient evaluations. In
order to compute an ϵ-approximate solution, the method
of Hinder et al. (2020) requires O(γ−1ϵ−1/2 log(γ−1ϵ−1))
total evaluations for γ-quasar-convex functions and
O(γ−1κ1/2 log(γ−1κ) log(γ−1ϵ−1))1 total evaluations for
µ-strongly γ-quasar-convex functions.

Many optimization problems in machine learning can be

1κ ≜ L/µ is the condition number.
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expressed in the following format

min
x∈Rd

[
f(x) =

1

n

n∑
i=1

fi(x)

]
, (1)

which makes them particularly well-suited for stochastic
optimization methods. When n is large, applying determin-
istic algorithms will lead to high computational cost due
to the full gradient and function value access required per
iteration. Therefore, motivated by ASGD, ASVRG in the
convex setting as well as the contributions of Hinder et al.
(2020), we propose both a quasar-accelerated stochastic gra-
dient descent (QASGD) method and a quasar-accelerated
stochastic variance reduced gradient (QASVRG) method for
solving (1), where the objective function f is L-smooth and
(strongly) quasar-convex. We also present a unified energy-
based framework to analyze the convergence of these newly
proposed accelerated algorithms, drawing inspiration from
the unified analyses developed by Wilson et al. (2021) and
Kulunchakov & Mairal (2020).

Our principal contributions are three-fold.

• QASGD: We introduce QASGD with momentum as the
acceleration technique. Under a bounded gradient as-
sumption 2.4, we prove that QASGD achieves conver-
gence rates of O

(
L
t2 + σ

γ
√
t
+ ϵ

2

)
for general quasar-

convex functions and O
(
(1 + γ2/16)−t + σ2

γ2t

)
for

strongly quasar-convex functions, where ϵ comes from
a binary line search. We empirically demonstrate that
on learning time-invariant dynamical systems, QASGD
outperforms several existing proposed methods.

• QASVRG: We introduce QASVRG in a mini-batch
setting, which is an extension of Nitanda (2016) to
quasar-convexity with momentum as the acceleration
technique. Variance reduction and mini-batches are
employed to compute the stochastic gradient per iter-
ation. Under an interpolation assumption 2.7 and a
compactness assumption 2.5, QASVRG achieves an
overall complexity2 of Õ

(
n+min

{
κ
γ2 ,

n
√
κ

γ

})
and

Õ
(
n+min

{
LR2

γϵ , nR
γ

√
L
ϵ

})
for strongly quasar-

convex functions and general quasar-convex func-
tions. We also propose an alternative scheme for
strongly quasar-convex functions with different param-
eter choice (Option II in Table 4), whose precise con-
vergence rates are postponed to Theorem 3.6. These
two schemes have different dependency on κ and ϵ
and thus are suitable to different application scenarios.
When n is large, our complexity is significantly lower
than the complexity of AGD in Hinder et al. (2020).

2Here we use overall complexity to denote the total number of
function and gradient evaluations

• Lyapunov analysis: We present a unified analysis for
our proposed algorithms under quasar-convexity and
smoothness using a standard Lyapunov argument. Ad-
ditionally, we incorporate the AGD method proposed
in Hinder et al. (2020) in our energy-based framework,
which we rename QAGD (quasar-accelerated gradient
descent). Different from AGD in Hinder et al. (2020),
QAGD admits the Bregman divergence which is more
general than the Euclidean distance.

The remainder of this paper is organized as follows. Sec-
tion 2 presents more details about quasar-convexity, related
assumptions, and previously proposed methods. Section
3 presents the main algorithms of QAGD, QASGD and
QASVRG for (strongly) quasar-convex functions and their
convergence analysis. Section 4 describes our simulations
verifying the effectiveness of our proposed algorithms.

Notation The following notation is used throughout the
paper: Dh(x, y) ≜ h(x)− h(y)− ⟨∇h(y), x− y⟩ denotes
the Bregman divergence between x, y ∈ Rd, where h is an
arbitrary µ̄-strongly convex function. [n] ≜ {1, 2, ..., n}
log+() ≜ max{log(), 1}, ∥ · ∥ ≜ ∥ · ∥2, āk ≜ Ak+1 − Ak,
b̄k ≜ Bk+1 −Bk, κ ≜ L/µ̄µ, Ek ≜ f(yk)− f(x∗). a ≃ b
signifies a = O(b). ⟨, ⟩ represents the inner product. X ∗ is
the solution set of (1) which we assume is not empty, and a
point x is an ϵ-approximate solution if f(x)−f(x∗) ≤ ϵ for
x∗ ∈ X ∗. R denotes the upper bound of the initial distance
such that Dh(x

∗, x0) ≤ R2. We assume f(x∗) ≥ 0 without
loss of generality. f is L-smooth, if ∥∇f(x)−∇f(y)∥ ≤
L∥x − y∥ for all x, y ∈ Rd. Qµγ ,FL respectively denote
the set of µ-strongly γ-quasar-convex functions and the set
of L-smooth functions, and Qµγ reduces to the set of γ-
quasar-convex functions when µ = 0. We use O(·) to hide
constants and Õ(·) to hide logarithmic factors and constants.

2. Background
There has been growing interest in exploiting structure
present in large classes of non-convex functions. One such
structure is quasar-convexity and strong quasar-convexity,
defined as follows.

Definition 2.1 (Quasar-convexity). Let γ ∈ (0, 1] and let x∗

be a minimizer of the differentiable function f : Rd → R.
A function is γ-quasar-convex with respect to x∗ if for all
x ∈ Rd,

f(x∗) ≥ f(x) +
1

γ
⟨∇f(x), x∗ − x⟩. (2)

For µ > 0, a function is µ-strongly γ-quasar-convex with
respect to x∗ if for all x ∈ Rd,

f(x∗) ≥ f(x) +
1

γ
⟨∇f(x), x∗ − x⟩+ µ

2
∥x∗ − x∥2. (3)
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2.1. Examples

We introduce a classical example in Hardt et al. (2016)
of learning linear dynamical systems (LDS). Consider the
following time-invariant linear dynamical system

ht+1 = Aht +Bxt (4a)
yt = Cht +Dxt + ξt, (4b)

where xt ∈ R, yt ∈ R are the input and output of time t;
ξt is a random perturbation sampled i.i.d from a distribu-
tion; ht ∈ Rd is the hidden state and Θ ≜ (A,B,C,D) ∈
Rd×d × Rd×1 × R1×d × R is the true parameter that we
aim to learn. Assuming we have N pairs of training exam-
ples S = {(x(1), y(1)), ..., (x(N), y(N))} where each input
sequence x ∈ RT is sampled from a distribution and y is
the corresponding output of the system above, we fit these
training examples to the following model

ĥt+1 = Âĥt + B̂xt (5a)

ŷt = Ĉĥt + D̂xt, (5b)

which is governed by Θ ≜ (Â, B̂, Ĉ, D̂). According to the
training examples and the model system, we consider the
following optimization problem

min

{
F (Θ̂) = E{xt},{ξt}

[
1

T

T∑
t=1

∥ŷt − yt∥2
]}

. (6)

Hardt et al. (2016) demonstrate that the objective function
F (Θ̂) is weakly smooth and quasar-convex with respect to
Θ under some mild conditions.

We introduce another example of generalized linear models
(GLM). Consider the following square loss minimization
problem

min

{
f(w) := Ex∼D

[
1

2
(σ(wTx)− y)2

]}
(7)

where σ(·) : R → R is the link function; x ∈ Rd is i.i.d
from D and there exists w∗ ∈ Rd such that y = σ(w∗

Tx).
The quasar-convex structure of f(w) has been exploited in
several literature (Foster et al., 2018; Ma, 2020; Wang &
Wibisono, 2023).

2.2. Prior Deterministic Methods

Several deterministic first-order methods have been devel-
oped to minimize L-smooth γ-quasar-convex functions.

Guminov & Gasnikov (2017) prove that gradient descent
achieves a convergence rate of O(L/γt). They also propose
an accelerated algorithm achieving a convergence rate of
O(L/γ2t2). This algorithm, however, depends on a low-
dimensional subspace optimization method at each iteration,
which is possibly prohibitively expensive to perform.

Hinder et al. (2020) propose a novel accelerated gradient
method achieving a convergence rate of O((1− γ/

√
2κ)t)

for strongly quasar-convex functions. Notably, when γ = 1,
this rate matches the convergence rate achieved by Nes-
terov’s AGD for strongly convex functions. The method in-
troduced by Hinder et al. (2020) also achieves a convergence
rate of O(L/γ2t2 + ϵ/2) for general quasar-convex func-
tions, which nearly matches the convergence rate achieved
by Nesterov’s AGD for convex functions when γ = 1. An
additional factor ϵ (which can be made arbitrarily small)
appears in the convergence rate due to a binary line search
subroutine introduced in order to search for the appropri-
ate momentum parameters. Notably, the momentum pa-
rameters classically chosen in accelerated gradient descent
(Nesterov 1983) are not guaranteed to perform well under
quasar-convexity. Compared with the low-dimensional sub-
space method in Guminov & Gasnikov (2017), the binary
line search in Hinder et al. (2020)’s AGD achieves at most
O(log(γ−1ϵ−1)) function and gradient evaluations, which
can be considerably cheaper. Analogously, Bu & Mesbahi
(2020) propose momentum-based accelerated algorithms
relying on a subroutine but without complexity analysis
of the subroutine. Hinder et al. (2020) also establishes a
worst case complexity lower bound of Ω(γ−1ϵ−1/2) for any
deterministic first-order methods applied to quasar-convex
functions, and their methods are optimal up to a logarithmic
factor. The complexity of methods in Guminov & Gasnikov
(2017) conditionally matches this lower bound.

2.3. Prior Stochastic Methods

While deterministic accelerated methods for quasar-convex
functions achieve fast convergence rates and near-optimal
complexity, we focus on the development of stochastic
methods to reduce the computational complexity when solv-
ing (1). When the objective f is γ-quasar-convex, Hardt
et al. 2016 show that SGD achieves a convergence rate of
O(Γ/γ2t+ σ̄/γ

√
t) under the assumptions of σ̄2-bounded

variance and Γ-weak-smoothness.

Assumption 2.2 (Bounded Variance). Suppose i is sam-
pled i.i.d from [n]. For some constant σ̄, we have

Ei

[
∥∇fi(x)−∇f(x)∥2

]
≤ σ̄2.

The weak-smoothness assumption is milder than L-
smoothness. Gower et al. (2021) propose a stochastic gra-
dient method achieving a convergence rate of O(λ2/γ

√
t)

under L-smoothness and Assumption 2.3.

Assumption 2.3 (ER Condition). Suppose i is sampled
i.i.d from [n]. For some constants ρ and λ, we have

Ei

[
∥∇fi(x)∥2

]
≤ 4ρ(f(x)−f(x∗))+∥∇f(x)∥2+2λ2.
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Method Assumptions Complexity
GD (Guminov & Gasnikov, 2017) f ∈ FL Õ

(
nLR2

γϵ

)
SGD (Gower et al., 2021)

f ∈ FL & ER Condition

fi ∈ FL & Interpolation

Õ
(

(R2+γ2λ2)2

γ2ϵ2

)
Õ
(

LR2

γ2ϵ

)
SGD (Jin, 2020) f ∈ FL & Bounded Variance Õ

(
LR2

γϵ + σ̄2R2

γ2ϵ2

)
QAGD (Hinder et al., 2020) f ∈ FL Õ

(
nR
γ

√
L
ϵ

)
QASGD (Ours) fi ∈ FL & Bounded Gradient Õ

(
R
√

L
ϵ + σ2R2

γ2ϵ2

)
QASVRG (Ours) fi ∈ FL & Interpolation & Compactness Õ

(
n+min

{
LR2

γϵ , nR
γ

√
L
ϵ

})
Table 1. Comparison between some existing methods and our methods when f ∈ Q0γ

Compared with Hardt et al. (2016), the smoothness assump-
tion in Gower et al. (2021) is stronger, but the assumption on
the gradient estimate is weaker in a sense. Moreover, Gower
et al. (2021) demonstrate that this rate can be improved to
O(L/γ2t) under Assumption 2.7. Under smoothness and
bounded variance, Jin (2020) provides a sharper analysis of
SGD compared with Gower et al. (2021) and extends the
analysis to the non-smooth setting.

There are several accelerated stochastic methods that can
theoretically achieve better worst-case convergence rates
than SGD when the objective is convex. In the convex
setting, the objective function usually includes a regular-
izer term, which is convex lower semi-continuous and
not necessarily smooth. Ghadimi & Lan (2016) and
Kulunchakov & Mairal (2020) propose proximal ASGD
which achieves convergence rates of O(L/t2 + σ/

√
t) and

O((1−1/
√
κ)t+σ2/t) for general convex and strongly con-

vex functions respectively under L-smoothness and the σ2-
bounded variance assumption. Variance reduction is a pow-
erful technique to achieve a better convergence rate. Allen-
Zhu (2017) and Kulunchakov & Mairal (2020) propose
accelerated proximal SVRG with a convergence rate guaran-
tee of O((1−min{1/

√
3κn, 1/

√
2n})t) and O(Ln/t2) for

L-smooth (strongly) convex functions. Nitanda (2016) pro-
poses accelerated mini-batch SVRG methods for minimiz-
ing (strongly) convex finite sum without regularizer. This al-
gorithm is a multi-stage scheme achieving convergence rates
of Õ(n + min{κ, n

√
κ}) and Õ(n + min{L/ϵ, n

√
L/ϵ})

for L-smooth (strongly) convex functions. By contrast, the
methods they use to update the fixed anchor point of SVRG
and control the variance are different.

2.4. Motivation

Inspired by the accelerated stochastic methods discussed
above, we extend ASGD of Kulunchakov & Mairal (2020)
and AMSVRG of Nitanda (2016) to the (strongly) quasar-
convex setting under different assumptions. In this subsec-

tion we will discuss these assumptions and how they are
compared to prior sets of assumptions. Different from Ku-
lunchakov & Mairal (2020), we do not consider random
perturbations of the function value and gradient given x∗

may not be the global minimizer after perturbation. Further-
more, binary line search (Hinder et al., 2020) is incorporated
into each of our proposed methods for finding the appropri-
ate momentum parameters.

For QASGD, our key assumption is the bounded gradient
assumption, which is a frequently used assumption in the
standard convergence analysis of SGD in the non-convex set-
ting (Hazan & Kale, 2014; Rakhlin et al., 2011; Recht et al.,
2011; Nemirovski et al., 2009). Due to the special structure
of strongly quasar-convex functions whose gradient is not
bounded, we generalize this assumption as follows.

Assumption 2.4 (Bounded Gradient). Suppose f ∈
Qµγ and i is sampled i.i.d from [n]. For some σ ≥ 0
and x∗ ∈ X ∗, we have

Ei

[
∥∇fi(x)∥2

]
≤ σ2 + 2µ2∥x∗ − x∥2.

This assumption will reduce to the standard bounded gra-
dient assumption under general quasar-convexity. Com-
pared with ER condition, the bounded gradient assumption
is stronger. Example (7) satisfies this assumption (µ = 0)
if we choose the link functions to be logistic. For µ > 0,
we consider a quasar-convex finite sum f =

∑n
i=1 fi where

x∗ is the minimizer of f and Ei[∥∇fi∥2] ≤ σ2. Then
g(x) = f(x) + µ

2 ∥x− x∗∥2 is strongly quasar-convex and
satisfies this assumption. While some quasar-convex func-
tions intrinsically do not satisfy Assumption 2.4, it will hold
in practice under Assumption 2.5, which was also proposed
in Bottou & Le Cun (2005), Gürbüzbalaban et al. (2015) and
Nitanda (2016) to analyze the incremental and stochastic
methods. We summarize the relation of four assumptions
above in Remark 2.6.
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Assumption 2.5 (Compactness). There exists a com-
pact set C ⊆ Rd containing iterates generated by some
optimization algorithm.

Remark 2.6. The relation of Assumption 2.3 (ER), As-
sumption 2.2 (BV), Assumption 2.4 (BG) and Assump-
tion 2.5 (Compactness) is illustrated as follows.
Compactness BG BV ER

For QASVRG, we will prove in the next section that the
upper bound of the gradient variance introduced by Nitanda
(2016) also upper bounds the gradient variance of quasar-
convex functions (Proposition 3.4) provided that each fi
in problem (1) is Li-smooth and satisfies the following
interpolation assumption.

Assumption 2.7 (Interpolation). There exists x∗ ∈ X ∗

such that for all i ∈ [n]

min
x∈Rd

fi(x) = fi(x
∗).

The interpolation assumption is commonly observed in the
over-parameterized machine learning models and has at-
tracted much attention recently (Zhou et al., 2019; Ma et al.,
2018; Vaswani et al., 2019; Gower et al., 2021). If the model
is sufficiently over-parameterized, it can interpolate the la-
belled training data completely. Particularly, example (6)
satisfies the interpolation assumption when ξt = 0, as Θ is
also the global minimizer of the objective function generated
by each training example. Example (7) also satisfies this
assumption given that y = σ(wT

∗ x) for each x ∼ D. Let
L = maxi{Li}; we assume throughout that each fi is L-
smooth for brevity. Moreover, Nitanda (2016) only presents
one parameter choice for both convex and strongly convex
functions. In this paper, we provide two parameter choices
(Option I and II) under strong quasar-convexity. Similarly,
Option II in Table 4 is identical to the parameter choice of
general quasar-convex functions. Option I is a slightly dif-
ferent method from the direct extension of Nitanda (2016)’s
AMSVRG. More technical comparison between these two
parameter choices are provided in subsection 3.2.

3. Algorithms
In order to solve (1), QAGD, QASGD and QASVRG need
to access the gradient or the gradient estimate from the
oracle, which we denote∇k. In this paper, we consider the
following gradient (estimates):

• Full Gradient: ∇k = ∇f(xk+1). Problem (1) be-
comes deterministic.

• Stochastic Gradient: ∇k = ∇fi(xk+1) with the

index i sampled i.i.d from [n]. We have Ei[∇k] =
∇f(xk+1), where Ei denotes the expectation with re-
spect to the index i.

• Mini-batch SVRG:∇k = ∇fIk(xk+1)−∇fIk(x̃) +
∇f(x̃), where x̃ is the anchor point fixed per stage;
Ik = {i1, i2, ..., ibk} is sampled i.i.d from [n] with
fIk ≜ 1

bk

∑bk
j=1 fij . Batchsize |Ik| = bk. We have

EIk [∇k] = ∇f(xk+1), where EIk denotes the expec-
tation with respect to the mini-batch Ik.

3.1. Quasar-accelerated Algorithms

We introduce Algorithm 1 as a general framework incor-
porating QAGD, QASGD and a single stage of QASVRG
with different parameter choices. Based on Algorithm 1,
we also introduce the multi-stage QASVRG as described in
Algorithm 2. Notably, we provide more information about
Bisearch (line 3 of Algorithm 1) in the Appendix includ-
ing the whole algorithm and the corresponding complexity
analysis obtained from Hinder et al. (2020) (Algorithm 3,
Lemma A.5). The guaranteed performance of our methods
relies on the internal assumption 3.1. Relation (8) requires
h is µ̄-strongly convex; relation (9) is a generalization of
µ-strongly γ-quasar-convexity using Bregman divergence
as the distance, which we will substitute (3) with in the
following analysis. When h = 1

2∥ · ∥
2, this relation will be

identical to (3). Relation (10) holds in the Euclidean setting
given that f is µ-strongly γ-quasar-convex with respect to
x∗ (Hinder et al. (2020), Corollary 1).

Assumption 3.1. Suppose fi is differentiable for each
i ∈ [n]. For some µ̄ > 0, 0 < γ ≤ 1 and µ ≥ 0, and for
all x, y ∈ Rd, require

Dh(x, y) ≥
µ̄

2
∥x− y∥2, (8)

f(x∗) ≥ f(x)+
1

γ
⟨∇f(x), x∗−x⟩+µDh(x

∗, x), (9)

f(x) ≥ f(x∗) +
γµ

2− γ
Dh(x

∗, x). (10)

3.2. Convergence Analysis

We develop a unified analysis of QAGD, QASGD and
QASVRG using the following Lyapunov function:

Ek ≜ Ak(f(yk)− f(x∗)) +BkDh(x
∗, zk), (11)

where Ak and Bk are positive non-decreasing sequences
that the parameter choices shown in Table 2, Table 3 and
Table 4 are highly related to. Based on the convergence
rates derived by Lyapunov analysis, we deduce the complex-
ity upper bound of each method in the Euclidean setting
(h = 1

2∥ · ∥
2). Since the convergence results of QAGD have
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Algorithm 1 (Ak, Bk, ỹ0, t, ϵ)

Require: h satisfies Dh(x, y) ≥ µ̄
2 ∥x− y∥2; f̃ ∈ FL; f ∈ Qµγ .

1: Initialize x0 = z0 = y0 = ỹ0 and specify θk ≜ (∇k, αk, βk, ρk, f̃ , b, c, ϵ̃)
2: for k = 0, ..., t− 1 do
3: τk ← Bisearch(f̃ , yk, zk, b, c, ϵ̃) (search τk ∈ [0, 1] satisfying τk⟨∇f̃(dk), yk−zk⟩− b∥dk−zk∥2 ≤ c(f̃(yk)−

f̃(dk)) + ϵ̃ with dk := τkyk + (1− τk)zk; see Algorithm 3 for more details)
4: xk+1 ← (1− τk)zk + τkyk (coupling step)
5: zk+1 ← arg min

z∈Rd
{⟨∇k, z − zk⟩+ βkDh(z, zk) + αkDh(z, xk+1)} (mirror descent step)

6: yk+1 ← arg min
y∈Rd

{
ρk⟨∇k, y − xk+1⟩+ 1

2∥y − xk+1∥2
}

(gradient descent step)

7: end for
output yt

Algorithm 2 (Ak, Bk, bk, ỹ0, p, q, ϵ)

Require: Dh(x, y) ≥ µ̄
2 ∥x− y∥2; fi ∈ FL; f ∈ Qµγ ; q ≤ 1

4 ; p ≤ γµ̄
16

1: Initialize y0 = ỹ0
2: for s=0,1,... do

3: t←


√

17LDh(x∗,ys)
γ2µ̄qf(ys)

, µ = 0 or µ > 0 (Opt II)

log1+ γ√
8κ

(
2
γq

)
, µ > 0 (Opt I)

4: ys ← Algorithm 1 (Ak, Bk, y0, ⌈t⌉, ϵ) (specify∇k = ∇fIk(xk+1)−∇fIk(y0)+∇f(y0) where |Ik| = bk)
5: y0 ← ys
6: end for

output ys

already been established in Hinder et al. (2020), we will not
provide the convergence analysis of QAGD in this subsec-
tion. Instead, we make convergence analysis of QAGD in
Lyapunov framework and obtain results matching Hinder
et al. (2020). Relevant proofs and parameter choices are
provided in Appendix C and D.

Theorem 3.2 (QASGD). Suppose Assumption 3.1 and As-
sumption 2.4 hold, Dh(x

∗, z0) ≤ R2, fi ∈ FL for all
i ∈ [n] and choose any ỹ0 ∈ Rd. Then Algorithm 1 with
the choices of ∇k = ∇fi(xk+1) and Ak, Bk, θk specified
in Table 3 satisfies

E [Et] ≃


LR2

t2
+

σR

γ
√
t
+

ϵ

2
, µ = 0,(

1 + min

{
γ2µ̄2

16
,
1

2

})−t

E0 +
σ2

γ2t
, µ > 0.

Corollary 3.3. Consider QASGD under the same assump-
tion in Theorem 3.2. Then the overall complexity of QASGD
to achieve E [f(yt)− f(x∗)] ≤ ϵ is upper bounded by

O

(
R

√
L

ϵ
log+

(
LR2

γϵ

)
+

σ2R2

γ2ϵ2
log+

(
LR2

γϵ

))
,

O

(
1

γ2
log+

(
κ3/4

γ

)
log

(
E0
γϵ

)
+

σ2

γ2ϵ
log+

(
κ2/3

γϵ1/6

))
for µ = 0 and µ > 0 respectively.

The following proposition shows the variance of the gradient
estimate of QASVRG reduces as fast as the objective, which
is a key technique in our proof to control the stochastic
gradient variance. This proposition is also proposed in
Nitanda (2016) where they assume fi is convex and smooth.
In this paper, we circumvent the convexity of fi by using
Assumption 2.7. The proof of Proposition 3.4 is postponed
to Appendix B.

Proposition 3.4 (Variance upper bound). Suppose Assump-
tion 2.7 holds,∇k = ∇fIk(xk+1)−∇fIk(x̃)+∇f(x̃) and
fi ∈ FL for each i ∈ [n], then we obtain the following
inequality

EIk∥∇k −∇f(xk+1)∥2

≤ 4L
n− bk

bk(n− 1)
(f(xk+1)− f(x∗) + f(x̃)− f(x∗)) ,

where |Ik| = bk and EIk denotes the expectation with re-
spect to the mini-batch Ik.

Theorem 3.5 (QASVRG (Single-stage)). Suppose Assump-
tion 3.1 and Assumption 2.7 hold, Dh(x

∗, z0) ≤ R2,
fi ∈ FL for each i ∈ [n] and choose any ỹ0 ∈ Rd.
Then Algorithm 1 with the choices of ∇k = ∇fIk(xk+1)−
∇fIk(y0) +∇f(y0) and Ak, Bk, bk, θk specified in Table

6
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4 satisfies

E [Et] ≃



LR2

γ2t2
+

(
p

γ
+ ϵ

)
f(y0), µ = 0,(

1 +
γ√
8κ

)−t

E0 +
E0
2
, µ > 0 (Opt I),

LR2

γ2t2
+

(
p

γ
+ ϵ

)
f(y0), µ > 0 (Opt II),

where p ≤ γµ̄
16 is user specified.

Under Assumption 2.5, {Dh(x
∗, ys)} can be uniformly

bounded by some constant if {ys} generated by Algorithm
2 are restricted to a compact set. Thus we can hide the
Bregman divergence inside O(·) and Õ(·). Note that we
only need this assumption when µ = 0. According to Theo-
rem 3.5, single-stage QASVRG is biased which means that
an ϵ-approximate solution can not be generated via single-
stage QASVRG. For instance, the bias is upper bounded
by O

((
p
γ + ϵ

)
f(y0)

)
when µ = 0, but the expectation of

the optimality gap Et can shrink at each stage with small
p and q when t = Ω

(√
LR2

γ2f(y0)

)
. Consequently we need

O(log(1/ϵ)) stages to generate an ϵ-approximate solution.

Corollary 3.6. Under Assumption 2.5 and the same as-
sumptions in Theorem 3.5, the overall complexity required
for Algorithm 2 to achieve E [f(ys)− f(x∗)] ≤ ϵ is upper
bounded by

O

((
n+

nLR2

γϵn+ γ
√
ϵLR2

log+
(

L1/2R

q1/2γϵ9/14

))
log

(
1

ϵ

))
,

O

((
n+

nκ

γ2n+ γ
√
κ
log

(
2

γq

)
log+

(
κ7/6

γ

))
log

(
1

ϵ

))
,

O

((
n+

nκ

γ2n+ γ3/2
√
κ
log+

(
L1/2R

q1/2γϵ9/14

))
log

(
1

ϵ

))
for µ = 0 and µ > 0 (the last two bounds) respectively,
where q ∈ (0, 1/4].

Proof Sketch The method we use to derive the conver-
gence rates and complexity for each algorithm is unified. We
take the difference between each Lyapunov stage, and then
take the conditional expectation to obtain the upper bound
on E[Ek+1 − Ek]. Finally we sum over k to conclude the
convergence rates and a subsequent iteration complexity
for each algorithm. Combining this complexity with that
of Bisearch, we conclude the overall complexity in each
corollary. For more details, see Appendix C and D.

The last two bounds of QASVRG correspond to two differ-
ent choices of parameters in Table 4 (Option I and II). The
complexity bound derived with Option I has a more unfavor-
able dependency on κ while the complexity bound derived
with Option II has a more unfavorable dependency on ϵ.

This suggests Option I performs better on well-conditioned
problems e.g. κϵ < 1 and Option II performs better on
ill-conditioned problems e.g. κϵ≫ 1.

In the complexity bounds of QASGD and QASVRG, ex-
tra logarithmic factors are included, which comes from
Bisearch. Hinder et al. (2020) prove that the complexity
of Bisearch is at most a logarithmic factor given that the
function involved in this subroutine is L-smooth. In the
stochastic setting, where the functions involved are single
fi or a mini-batch of fIk , we need to assume fi ∈ FL for
all i due to the uniform sampling.

We summarize our methods and some existing methods
in Table 1, including their corresponding assumptions and
complexity upper bounds. To summarize, both QASGD
and QASVRG achieve better complexity upper bounds than
QAGD when n is large, and QASGD enjoys a faster conver-
gence rate and lower complexity than SGD under a stronger
assumption. While QASVRG has the potential to be more
computationally expensive than SGD due to the full gra-
dient and function value access once a stage, it enjoys a
theoretically faster convergence rate than SGD.

4. Simulations
In this section, we evaluate our methods on example (6) in
the Euclidean setting using synthetic dataset where each
input sequence x(i) ∼ N (0, 1) coordinate-wise. Different
from Hardt et al. (2016), we generate N training examples
and random perturbations ξt before training instead of gen-
erating fresh data and random perturbations at each iteration.
Thus example (6) can be reformulated as

min

{
F (Θ̂) =

1

N

N∑
i=1

[
1

T

T∑
t=1

∥∥∥ŷ(i)t − y
(i)
t

∥∥∥2]} ,

where the superscript (i) represents that the output is gen-
erated using ith training data (x(i), y(i)). Similar to Hardt
et al. (2016), the actual objective in our experiments is
F (Θ̂) = 1

N

∑N
i=1

[
1

T−T1

∑
t>T1

∥ŷ(i)t − y
(i)
t ∥2

]
, where

T1 = T/4. We generate the true dynamical system and
data the same way as in Hardt et al. (2016) using param-
eters N = 5000, d = 20, T = 500. Following Hinder
et al. (2020), we generate the initial iterate (Â0, Ĉ0, D̂0) by
perturbing the parameters of the true system and keep the
spectral radius of Â0 strictly less than 1. We choose the
value of random seed to be in {0, 12, 24, 36, 48} for gener-
ating five true LDS instances and their initialization. We
only present simulation results of {0, 24, 48} in this sections
and the remaining results are provided in section F. Note
that B̂ is not a trainable parameter since B is known. As is
described in Hardt et al. (2016), it is intractable to calculate
the precise value of quasar-convexity parameter γ of LDS
objective or even estimate it. Thus we evaluate our methods

7
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Figure 1. Evaluation on three different LDS instances. We choose ϵ = 10−2, the stepsize to be 5× 10−5, 1× 10−6, 1× 10−4 for SGD,
L = 1× 106, 1× 108, 1× 105 for QASGD and L = 3× 104, 1× 106, 1× 104 for QASVRG in LDS1, LDS2 and LDS3. The flat line
in the third column means the loss blows up to infinity with this choice of stepsize.

with γ ∈ {0.5, 0.8}. We observe that the imprecise γ does
not affect the performance of all methods involved. As is
shown in Table 3, η is involved in the parameter choice of
QASGD, which we choose to be min

{
1
L ,

√
2γ∥z0∥

σ(t+1)3/2

}
in our

simulations. While σ in Assumption 2.4 relies on the com-
pact set and initialization, we observe that choosing σ = 1
is a robust choice for all of our simulations by evaluating
QASGD on three LDS instances with σ ∈ {1, 10, 102, 103}
(See Figure 3 in Appendix F for more details). According
to the analysis in Hardt et al. (2016), F (Θ̂) is L-weakly
smooth, and it is still unknown whether F (Θ̂) is L-smooth.
Given that the parameter choice of our methods involves L,
we fine-tune the value of L for QASGD and QASVRG and
choose the best stepsize for SGD by extensive grid search in
each instance. We use the adaptive stepsize for QAGD and
GD the same way as in Hinder et al. (2020). We consider
the random noise ξt ∼ N (0, 10−2) or ξt = 0 perturbing the
output of the true systems. If ξt ∼ N (0, 10−2), the inter-
polation assumption will be violated since Θ is no longer
the global minimizer of the objective generated by each
training example. Thus we only evaluate SGD and QASGD
in this case. In Algorithm 2, it may be difficult to calculate
t especially when L is unknown. Therefore we can spec-

ify t to be relatively large (we choose t = 104) and use
an appropriate restart scheme in Algorithm 1 to boost the
performance of QASVRG. Following Nitanda (2016), when
the relation ⟨∇k, yk+1−yk⟩ > 0 holds, we break Algorithm
1 to return ys and start the next stage. Since we generate
the initial iterate with ρ(Â0) < 1, we don’t use gradient
clipping or projection proposed in Hardt et al. (2016) during
training. We generate the error bar in Figure 1 by averaging
the results obtained from running each stochastic algorithm
three times and choose the maximum and minimum value
pointwise to be the upper bar and lower bar.

The simulation results in Figure 1 validate our methods
and show the superiority of our methods in terms of the
convergence speed and the overall complexity. In addi-
tion, both QASGD and QASVRG are robust to the ran-
dom sampling of the stochastic gradient. Code is available
at https://github.com/QiangFu09/Stochastic-quasar-convex-
acceleration. There is an interesting phenomenon in our sim-
ulations. While the convergence rate of QASGD matches
the rate of SGD when t is large, Figure 1 still shows the
substantial superiority of QASGD over QASVRG. In fact,
QASGD enjoys a convergence rate of O

(
1
t2 + 1√

t
+ ϵ

2

)
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indicating rapid initial phase where O
(

1
t2

)
dominates the

convergence. We speculate that QASGD in most of our
simulations does not escape the initial phase and thus en-
joys a fast convergence. The simulation results above lead
to a reconsideration about whether we need the bounded
gradient assumption in QASGD or not, as the objective of
LDS does not satisfy this assumption but the performance
of QASGD on LDS is still favorable and robust. We believe
that this assumption is used in the theoretical analysis but
may not be necessary.

5. Disscussion
In this paper, we propose QASGD and QASVRG achieving
fast convergence and low complexity under their correspond-
ing assumptions. We present our algorithms in a unified
framework using a single energy-based analysis to establish
the convergence rates and complexity of QAGD, QASGD
and QASVRG. We close with a brief discussion of some
possible future work.

First, we introduced the bounded gradient assumption for
QASGD, but it remains to be seen whether we can weaken
this assumption to some extent. Given that Gower et al.
(2021) and Jin (2020) establish the convergence of SGD
for quasar-convex functions under the ER condition and
bounded variance assumption respectively, it would be of
interest to see whether it is possible to apply these weaker
assumptions in QASGD.

Second, QAGD are proven near-optimal in Hinder et al.
(2020) based on the lower bound they establish for first-
order deterministic methods. In future work we hope to
establish a worst case complexity lower bound for first-order
stochastic methods applied to quasar-convex functions under
different assumptions. We expect such bounds will prove
that our methods are nearly optimal as well.

Moreover, a higher order method usually leads to a better
convergence rate. Nesterov & Polyak (2006) propose the
cubic regularized Newton method to optimize star-convex
functions (γ = 1). Therefore, we are also interested in
whether it is possible to use higher order methods to improve
the convergence of our methods.

Finally, we hope to exploit more applications of quasar-
convex functions in machine learning.
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A. Helpful Lemmas and Assumptions
Lemma A.1 (Three-point identity). For all x ∈ dom h and y, z ∈ int(dom h)

Dh(x, y)−Dh(x, z) = −⟨∇h(y)−∇h(z), x− y⟩ −Dh(y, z), (12)

where Dh(x, y) = h(x)− h(y)− ⟨∇h(y), x− y⟩.
Lemma A.2 (Fenchel-Young inequality). For all x, y ∈ Rd and p ̸= 0, we have

⟨x, y⟩+ 1

p
∥y∥p ≥ −p− 1

p
∥x∥

p
p−1
∗ , (13)

where ∥ · ∥∗ denotes the conjugate norm of ∥ · ∥.
Lemma A.3 (Hinder et al. (2020), Lemma 2). Let f : Rd → R be differentiable and let y, z ∈ Rd. For τ ∈ R define
xτ ≜ τy + (1− τ)z. For any c ≥ 0 there exists τ ∈ [0, 1] such that

τ⟨∇f(xτ ), y − z⟩ ≤ c (f(y)− f(xτ )) . (14)

In fact, we can slacken condition (14) to some extent, and we can find an appropriate momentum parameter τ satisfying

τ⟨∇f(xτ ), y − z⟩ − τ2b∥y − z∥2 ≤ c (f(y)− f(xτ )) + ϵ̃, (15)

for b, c, ϵ̃ ≥ 0. Existence of τ satisfying condition (14) implies the existence of τ satisfying condition (15).

Lemma A.4. If f : Rd → R is L-smooth, then for any x, y ∈ Rd

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2. (16)

Now We introduce an algorithm to effectively search the ”good” τ for any L-smooth functions.

Lemma A.5 (Hinder et al. (2020), C.2). For L-smooth f : Rd → R, x, v ∈ Rn and scalars b, c, ϵ̃ ≥ 0, Algorithm (3)
computes α ∈ [0, 1] satisfying (15) with at most

6 + 3

⌈
log+2

(
(4 + c)min

{
2L3

b3
,
L∥y − z∥2

2ϵ̃

})⌉
function and gradient evaluations, where log+(·) ∆

= max{log(·), 1}.

Algorithm 3 Bisearch(f, y, z, b, c, ϵ̃,[guess])
Require: f is L-smooth; z, y ∈ Rd; c ≥ 0; ”guess” ∈ [0, 1] if provided. ”guess” can be the momentum parameter under

convexity or other.
1: Define g(α)

∆
= f(τy + (1− τ)z) and p

∆
= b∥z − y∥2

2: if guess provided and cg(guess) + guess · (g′(guess)− guess · p) ≤ cg(1) then return guess
3: if g′(1) ≤ p+ ϵ̃ then return 1;
4: else if c = 0 or g(0) ≤ g(1) + ϵ̃/c then return 0;
5: δ ← 1− g′(1)/L∥z − y∥2
6: lo← 0, hi← δ, τ ← δ
7: while cg(τ) + τ(g′(τ)− τp) > cg(1) + ϵ̃ do
8: τ ← (lo + hi)/2
9: if g(τ) ≤ g(δ) then hi← τ

10: else lo← τ
11: end while
output τ

Proposition A.6. Based on Assumption 3.1, we have κ ≥ γ
2−γ , where κ = L

µ̄µ and µ > 0.

11
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Proof.
γµ

2− γ
Dh(x

∗, x) ≤ f(x)− f(x∗) ≤ L

2
∥x∗ − x∥2 ≤ L

µ̄
Dh(x

∗, x)

Thus, we have γµ
2−γ ≤

L
µ̄ . Furthermore, we have

√
κ ≥

√
γ

2−γ ≥
√

γ2 = γ.

Lemma A.7. Suppose Assumption 2.7 holds, and each fi ∈ FL. If∇k = ∇fi(xk+1)−∇fi(yk) + 1
n

∑n
i=1 fi(yk), we can

obtain
Ei

[
∥∇k −∇f(xk+1)∥2

]
≤ 4L (f(xk+1)− f(x∗) + f(yk)− f(x∗)) (17)

Proof. Since f is L-smooth, for any x, y ∈ Rd we have

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ L

2
∥x− y∥2 ≜ g(x)

Let ∇g(x̃) = 0, and x̃ = y − 1
L∇f(y) is the minimizer of g(x). And we have

f(x∗) ≤ f(x) ≤ g(x̃) = f(y)− 1

2L
∥∇f(y)∥2 ⇒ ∥∇f(y)∥2 ≤ 2L(f(y)− f(x∗))

Since ∇f(x∗) = 0, we have
∥∇f(y)−∇f(x∗)∥ ≤ 2L(f(y)− f(x∗)) (18)

By (18), we can upper bound E
[
∥∇k −∇f(xk+1)∥2

]
as follows

Ei

[
∥∇k −∇f(xk+1)∥2

]
= Ei

[
∥∇fi(xk+1)−∇fi(yk)− Ei[∇fi(xk+1)−∇fi(yk)]∥2

]
≤ Ei

[
∥∇fi(xk+1)−∇fi(yk)∥2

]
= Ei

[
∥∇fi(xk+1)−∇f(x∗) +∇f(x∗)−∇fi(yk)∥2

]
≤ 2Ei

[
∥∇fi(xk+1)−∇f(x∗)∥2

]
+ 2Ei

[
∥∇f(x∗)−∇fi(yk)∥2

]
≤ 4LEi[fi(xk+1)− fi(x

∗)] + 4LEi[fi(yk)− fi(x
∗)]

= 4L (f(xk+1)− f(x∗) + f(yk)− f(x∗)) ,

where the first inequality uses the relation E
[
∥X − E[X]∥2

]
≤ E

[
∥X∥2

]
for all random variable X; the second inequaity

uses the relation ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2.

Lemma A.8. Let {ξi}ni=1 be a set of vectors in Rd and ξ̄ denote an average of {ξi}ni=1. Let I denote a uniform random
variable representing a subset of {1, 2, ..., n} with its size equal to b. Then, it follows that,

EI

∥∥∥∥∥1b∑
i∈I

ξi − ξ̄

∥∥∥∥∥
2

=
n− b

b(n− 1)
Ei∥ξi − ξ̄∥2.

We orient our readers to the supplementary materials of Nitanda (2016) for proof details of the above lemma.

B. Proof of Proposition 3.4
Based on Lemma A.7 and Lemma A.8, we prove 3.4.

Proof. Let∇i
k = ∇fi(xk+1)−∇fi(x̃) +∇f(x̃) and ∇k = 1

bk

∑
i∈Ik

∇i
k. Using Lemma (A.8), we have

EIk∥∇k −∇f(xk+1)∥2 =
1

b

n− bk
n− 1

Ei

[
∥∇i

k −∇f(xk+1)∥2
]
≤ 4L

n− bk
bk(n− 1)

(f(xk+1)− f(x∗) + f(x̃)− f(x∗)) ,

(19)
where the inequality follows from Lemma (A.7).

12
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C. Proofs of Convergence Rates
C.1. Proof of QAGD

QAGD

γ-quasar-convex (µ = 0)

Ak = µ̄γ2

4L (k + 1)2, Bk = 1

(αk, βk, ρk, f̃ , b, c, ϵ̃)←
(
0, γ

āk
, 1
L , f, 0,

γAk

āk
, γϵ

2

)
µ-strongly γ-quasar-convex (µ > 0)

Ak = (1 + γ/2
√
κ)k, Bk = µAk

(αk, βk, ρk, f̃ , b, c, ϵ̃)←
(
γµ, γµBk

b̄k
, 1
L , f,

γµ̄µ
2 , γAk

āk
, 0
)

Table 2. Parameter choices for QAGD

we begin with Algorithm 1,∇k = ∇f(xk+1) and parameters specified in Table 2 using Lyapunov function (11):

Case 1: µ = 0 For∇k = ∇f(xk+1), we begin with Algorithm 1 using Lyapunov function (11):

Ek+1 − Ek
(12)
= −⟨∇h(zk+1)−∇h(zk), x∗ − zk+1⟩ −Dh(zk+1, zk) +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

=
1

βk
⟨∇f(xk+1), x

∗ − zk+1⟩ −Dh(zk+1, zk) +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

(8)
≤ 1

βk
⟨∇f(xk+1), x

∗ − zk⟩+
1

βk
⟨∇f(xk+1), zk − zk+1⟩ −

µ̄

2
∥zk+1 − zk∥2

+Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

(13)
≤ 1

βk
⟨∇f(xk+1), x

∗ − zk⟩+
1

2µ̄β2
k

∥∇f(xk+1)∥2 +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

=
1

βk
⟨∇f(xk+1), x

∗ − xk+1⟩+
τk
βk
⟨∇f(xk+1), yk − zk⟩+

1

2µ̄β2
k

∥∇f(xk+1)∥2 +Ak+1(f(yk+1)− f(xk+1))

+ (Ak+1 −Ak)(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(yk))

≤ γ

βk
(f(x∗)− f(xk+1)) +

1

βk
(c(f(yk)− f(xk+1)) + ϵ̃) +

1

2µ̄β2
k

∥∇f(xk+1)∥2 +Ak+1(f(yk+1)− f(xk+1))

+ (Ak+1 −Ak)(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(yk))

The second inequality follows from the Fenchel-Young inequality, and the last inequality follows from the quasar-convexity
of f and (15) (Lemma A.3). With the choice of parameter summarized in Table 2, we obtain the following bound:

Ek+1 − Ek ≤
γ

βk
(f(x∗)− f(xk+1)) +

1

βk
(c(f(yk)− f(xk+1)) + ϵ̃) +

1

2µ̄β2
k

∥∇f(xk+1)∥2 +Ak+1(f(yk+1)− f(xk+1))

+ (Ak+1 −Ak)(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(yk))

=
1

2µ̄β2
k

∥∇f(xk+1)∥2 +Ak+1(f(yk+1)− f(xk+1)) +
(Ak+1 −Ak)

2
ϵ

(16)
≤
(

1

2µ̄β2
k

− Ak+1

2L

)
∥∇f(xk+1)∥2 +

(Ak+1 −Ak)

2
ϵ

The last inequality follows from (16). In fact, (20) is implied by the gradient descent with ρk = 1/L and L-smoothness.

f(yk+1)− f(xk+1) ≤ ⟨∇f(xk+1), yk+1 − xk+1⟩+
L

2
∥yk+1 − xk+1∥2 = − 1

2L
∥∇f(xk+1)∥2 (20)

13
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With the choice of βk and Ak, we have

1

2µ̄β2
k

=
ā2k

2µ̄γ2
=

µ̄γ2

32L2
(2k + 3)2 ≤ µ̄γ2

8L2
(k + 2)2 =

Ak+1

2L

Thus, we obtain the final bound:

Ek+1 − Ek ≤
(

1

2µ̄β2
k

− Ak+1

2L

)
∥∇f(xk+1)∥2 +

(Ak+1 −Ak)

2
ϵ ≤ (Ak+1 −Ak)

2
ϵ

By summing both sides of the inequality above, we obtain

f(yt)− f(x∗) ≤ A−1
t (A0(f(y0)− f(x∗)) +Dh(x

∗, z0)) +
ϵ

2
(16)
≤ A−1

t

(
µ̄γ2

8
∥y0 − x∗∥2 +Dh(x

∗, z0)

)
+

ϵ

2

(8)
≤ A−1

t

((
γ2

4
+ 1

)
Dh(x

∗, z0)

)
+

ϵ

2

≤ 8LDh(x
∗, z0)

γ2µ̄(t+ 1)2
+

ϵ

2
≤ 8LR2

γ2µ̄(t+ 1)2
+

ϵ

2

Case 2: µ > 0

Ek+1 − Ek
(12)
= b̄kDh(x

∗, zk+1)−Bk⟨∇h(zk+1)−∇h(zk), x∗ − zk+1⟩ −BkDh(zk+1, zk)

+Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

= b̄kDh(x
∗, zk+1) +

αkBk

βk
⟨∇h(zk+1)−∇h(xk+1), x

∗ − zk+1⟩+
Bk

βk
⟨∇f(xk+1), x

∗ − zk+1⟩

−BkDh(zk+1, zk) +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

(12)
=

(
b̄k −

αkBk

βk

)
Dh(x

∗, zk+1) +
αkBk

βk
(Dh(x

∗, xk+1)−Dh(zk+1, xk+1)) +
Bk

βk
⟨∇f(xk+1), x

∗ − zk⟩

+
Bk

βk
⟨∇f(xk+1), zk − zk+1⟩ −BkDh(zk+1, zk) +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

(8)
≤ αkBk

βk
Dh(x

∗, xk+1)−
µ̄αkBk

2βk
∥zk+1 − xk+1∥2 +

Bk

βk
⟨∇f(xk+1), x

∗ − zk⟩

+
Bk

βk
⟨∇f(xk+1), zk − zk+1⟩ −

µ̄Bk

2
∥zk+1 − zk∥2 +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

≤ αkBk

βk
Dh(x

∗, xk+1)−
µ̄αkBk

2βk
∥zk+1 − xk+1∥2 +

Bk

βk
⟨∇f(xk+1), x

∗ − xk+1⟩

+
Bk

βk

(
c(f(yk)− f(xk+1)) + b∥xk+1 − zk∥2

)
+

Bk

βk
⟨∇f(xk+1), zk − zk+1⟩ −

µ̄Bk

2
∥zk+1 − zk∥2

+Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

≤ αkBk

βk
Dh(x

∗, xk+1) +
Bk

βk
⟨∇f(xk+1), zk − zk+1⟩+

(
µ̄αkBk

2βk
− µ̄Bk

2

)
∥zk+1 − zk∥2

+
Bk

βk
⟨∇f(xk+1), x

∗ − xk+1⟩+Ak(f(yk)− f(xk+1)) +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

The first equality and the third equality follows from Lemma A.1; the second equality follows from mirror descent. The
first inequality follows from the strong convexity of h, and the second inequality follows from (15) (Lemma A.3). With the
choice of αk and βk, we have αkBk/βk = b̄k, which explains the first inequality. Moreover, with the choice of Bk and
Observation A.6, we have

αk

βk
=

b̄k
Bk

=
γ

2
√
κ
≤ γ

2

√
2− γ

γ
≤ γ

2

√
1

γ2
=

1

2
.

14
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Combined with the initial bound and the relation above, we obtain the following bound:

Ek+1 − Ek ≤
αkBk

βk
Dh(x

∗, xk+1) +
Bk

βk
⟨∇f(xk+1), zk − zk+1⟩+

(
µ̄αkBk

2βk
− µ̄Bk

2

)
∥zk+1 − zk∥2

+
Bk

βk
⟨∇f(xk+1), x

∗ − xk+1⟩+Ak(f(yk)− f(xk+1)) +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

≤ αkBk

βk
Dh(x

∗, xk+1) +
Bk

βk
⟨∇f(xk+1), zk − zk+1⟩ −

µ̄Bk

4
∥zk+1 − zk∥2 +

Bk

βk
⟨∇f(xk+1), x

∗ − xk+1⟩

+Ak+1(f(yk+1)− f(xk+1)) + āk(f(xk+1)− f(x∗))

(13)(9)
≤ αkBk

βk
Dh(x

∗, xk+1) +
Bk

µ̄β2
k

∥∇f(xk+1)∥2 +
γBk

βk
(f(x∗)− f(xk+1)− µDh(x

∗, xk+1))

+Ak+1(f(yk+1)− f(xk+1)) + āk(f(xk+1)− f(x∗))

≤ Bk

µ̄β2
k

∥∇f(xk+1)∥2 +Ak+1(f(yk+1)− f(xk+1))

(20)
≤
(

Bk

µ̄β2
k

− Ak+1

2L

)
∥∇f(xk+1)∥2

≤ 0

The third inequality follows from the Fenchel-Young inequality of h and the strong quasar-convexity of f . The fifth
inequality follows from L-smoothness of f . With the choice of Bk, βk and Ak, we have

Bk

µ̄β2
k

=
(γ/2
√
κ)2Ak

γ2µ̄µ
=

Ak

4L
≤ Ak+1

2L
,

which explains the last inequality. Therefore, we obtain

f(yt)− f(x∗) ≤
(
1 +

γ

2
√
κ

)−t

(f(y0)− f(x∗) + µDh(x
∗, z0)) =

(
1 +

γ

2
√
κ

)−t

E0

C.2. Proof of Theorem 3.2

QASGD

γ-quasar-convex (µ = 0)

Ak = η(k + 1)2, η = min

(
µ̄
L ,
√

4Dh(x∗,z0)
σ2

γ
(t+1)3/2

)
, Bk = 1

(αk, βk, ρk, f̃ , b, c, ϵ̃)←
(
0, γ

āk
, 0, fi, 0,

γAk

āk
, γϵ

2

)
µ-strongly γ-quasar-convex (µ > 0)

Step 1: Choose Ak, Bk, θk as follows until convergence

Ak =
(
1 + min

{
γ2µ̄2/16, 1/2

})k
, Bk = µAk

(αk, βk, ρk, f̃ , b, c, ϵ̃)←
(

γµ
2 , γµBk

2b̄k
, 0, fi,

γµ̄µ
4 , γAk

2āk
, 0
)

Step 2: Restart and choose Ak, Bk, θk as follows

Ak = γ2µ̄2

36

(
k +max{48/γ2µ̄2, 5}

)2
, Bk = µAk

(αk, βk, ρk, f̃ , b, c, ϵ̃)←
(

γµ
2 , γµBk

2b̄k
, 0, fi,

γµ̄µ
4 , γAk

2āk
, 0
)

Table 3. Parameter choices for QASGD

Note that yk is identical to xk since ρk = 0. Thus we can substitute yk in Lyapunov functions (11) with xk. We begin with
Algorithm 1,∇k = ∇fi(xk+1) and parameters specified in Table 3 using Lyapunov function (11):
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Case 1: µ = 0

Ek+1 − Ek = −⟨∇h(zk+1)−∇h(zk), x∗ − zk+1⟩ −Dh(zk+1, zk) +Ak+1(f(xk+1)− f(x∗))−Ak(f(xk)− f(x∗))

=
1

βk
⟨∇k, x

∗ − zk+1⟩ −Dh(zk+1, zk) +Ak+1(f(xk+1)− f(x∗))−Ak(f(xk)− f(x∗))

(8)
≤ 1

βk
⟨∇k, x

∗ − zk⟩+
1

βk
⟨∇k, zk − zk+1⟩ −

µ̄

2
∥zk+1 − zk∥2 +Ak+1(f(xk+1)− f(x∗))

−Ak(f(xk)− f(x∗))

≤ 1

βk
⟨∇k, x

∗ − zk⟩+
1

2µ̄β2
k

∥∇k∥2 +Ak+1(f(xk+1)− f(x∗))−Ak(f(xk)− f(x∗))

=
1

βk
⟨∇k, x

∗ − xk+1⟩+
τk
βk
⟨∇k, xk − zk⟩+

1

2µ̄β2
k

∥∇k∥2 +Ak

≤ 1

βk
⟨∇k, x

∗ − xk+1⟩+
1

βk
(c(fi(xk)− fi(xk+1)) + ϵ̃) +

1

2µ̄β2
k

∥∇k∥2 +Ak

where Ak ≜ āk(f(xk+1)− f(x∗)) + Ak(f(xk+1)− f(xk)). The second equality follows from mirror descent; the first
inequality follows from the strong convexity of h; the second inequality follows from the Fenchel-Young inequality, and the
last inequality follows from (15) (Lemma A.3). We take the expectation of both sides of the initial bound and obtain

E[Ek+1 − Ek] ≤
1

βk
⟨∇f(xk+1), x

∗ − xk+1⟩+
c

βk
(f(xk)− f(xk+1)) +

1

2µ̄β2
k

E
[
∥∇k∥2

]
+

āk
2
ϵ

+ āk(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(xk))

≤ γ

βk
(f(x∗)− f(xk+1)) +Ak(f(xk)− f(xk+1)) +

1

2µ̄β2
k

E
[
∥∇k∥2

]
+

āk
2
ϵ

+ āk(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(xk))

≤ 1

2µ̄β2
k

E
[
∥∇k∥2

]
+

āk
2
ϵ

By summing both sides of the inequality above, we obtain

E[f(xt)− f(x∗)] ≤ A−1
t

(
A0(f(x0)− f(x∗)) +Dh(x

∗, z0) +

t−1∑
k=0

1

2µ̄β2
k

E
[
∥∇k∥2

])
+

ϵ

2

≤ A−1
t

(
2Dh(x

∗, z0) +

t−1∑
k=0

1

2µ̄β2
k

E
[
∥∇k∥2

])
+

ϵ

2

≤ 2Dh(x
∗, z0)

η(t+ 1)2
+

σ2η

γ2µ̄
(t+ 1) +

ϵ

2

≤ 2LDh(x
∗, z0)

µ̄(t+ 1)2
+

2σ

γµ̄

√
Dh(x∗, z0)

t+ 1
+

ϵ

2
≤ 2LR2

µ̄(t+ 1)2
+

2σR

γµ̄
√
t+ 1

+
ϵ

2

Case 2: µ > 0

Ek+1 − Ek = b̄kDh(x
∗, zk+1)−Bk⟨∇h(zk+1)−∇h(zk), x∗ − zk+1⟩ −BkDh(zk+1, zk)

+ āk(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(xk))

= b̄kDh(x
∗, zk+1) +

αkBk

βk
⟨∇h(zk+1)−∇h(xk+1), x

∗ − zk+1⟩+
Bk

βk
⟨∇k, x

∗ − zk+1⟩

−BkDh(zk+1, zk) + āk(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(xk))

(12)
=

(
b̄k −

αkBk

βk

)
Dh(x

∗, zk+1) +
αkBk

βk
(Dh(x

∗, xk+1)−Dh(zk+1, xk+1)) +
Bk

βk
⟨∇k, x

∗ − zk⟩

+
Bk

βk
⟨∇k, zk − zk+1⟩ −BkDh(zk+1, zk) + āk(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(xk))
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The second equality follows from mirror descent. With the choice of βk, αk and Observation A.6, we have b̄k = αkBk/βk

and αk/βk ≤ 1/2. Therefore, We obtain the following bound:

Ek+1 − Ek ≤
αkBk

βk
Dh(x

∗, xk+1)−
µ̄αkBk

2βk
∥zk+1 − xk+1∥2 +

Bk

βk
⟨∇k, x

∗ − xk+1⟩+
τkBk

βk
⟨∇k, xk − zk⟩

+
Bk

βk
⟨∇k, zk − zk+1⟩ −

µ̄Bk

2
∥zk+1 − zk∥2 +Ak

≤ αkBk

βk
Dh(x

∗, xk+1)−
µ̄αkBk

2βk
∥zk+1 − xk+1∥2 +

Bk

βk
⟨∇k, x

∗ − xk+1⟩+
Bk

βk
(c(fi(xk)− fi(xk+1))

+ b∥zk − xk+1∥2) +
Bk

βk
⟨∇k, zk − zk+1⟩ −

µ̄Bk

2
∥zk+1 − zk∥2 +Ak

≤ αkBk

βk
Dh(x

∗, xk+1)−
µ̄Bk

4
∥zk+1 − zk∥2 +

Bk

βk
⟨∇k, zk − zk+1⟩+

Bk

βk
⟨∇k, x

∗ − xk+1⟩

+Ak(fi(xk)− fi(xk+1)) +Ak

≤ αkBk

βk
Dh(x

∗, xk+1) +
Bk

µ̄β2
k

∥∇k∥2 +
Bk

βk
⟨∇k, x

∗ − xk+1⟩+Ak +Ak(fi(xk)− fi(xk+1))

where Ak ≜ āk(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(xk)). The second inequality follows from (15) (Lemma A.3); the
second inequality follows from the triangle inequality and the last inequality follows from the Fenchel-Young inequality. We
take the expectation of both sides of the inequality above and obtain

E[Ek+1 − Ek] ≤
αkBk

βk
Dh(x

∗, xk+1) +
Bk

µ̄β2
k

E
[
∥∇k∥2

]
+

Bk

βk
⟨∇f(xk+1), x

∗ − xk+1⟩+ āk(f(xk+1)− f(x∗))

≤ αkBk

βk
Dh(x

∗, xk+1) +
Bk

µ̄β2
k

E
[
∥∇k∥2

]
+

γBk

βk
(f(x∗)− f(xk+1)− µDh(x

∗, xk+1))

+ āk(f(xk+1)− f(x∗))

≤ −γµBk

2βk
Dh(x

∗, xk+1) +
2µ2Bk

µ̄β2
k

∥x∗ − xk+1∥2 +
σ2Bk

µ̄β2
k

≤
(
4µ2Bk

µ̄2β2
k

− γµBk

2βk

)
Dh(x

∗, xk+1) +
σ2Bk

µ̄β2
k

Next We prove that 4µ2Bk/µ̄
2β2

k ≤ γµBk/2βk. It suffices to prove that 4µ/µ̄2βk ≤ γ/2.

4µ

µ̄2βk
=

8āk
γµ̄2Ak

≤ 8

γµ̄2

γ2µ̄2

16
=

γ

2

Thus we obtain the final bound:

E[Ek+1 − Ek] ≤
σ2Bk

µ̄β2
k

By summing both sides of the inequality above and using the notation ⨿ ≜ min{γ2µ̄2/16, 1/2}, we obtain

E[f(xt)− f(x∗)] ≤ A−1
t

(
f(x0)− f(x∗) + µDh(x

∗, z0) +

t−1∑
k=0

σ2Bk

µ̄β2
k

)

≤ A−1
t

(
f(x0)− f(x∗) + µDh(x

∗, z0) +

t−1∑
k=0

4σ2(Ak+1 −Ak)
2

γ2µ̄µAk

)

≤ A−1
t

(
f(x0)− f(x∗) + µDh(x

∗, z0) +

t−1∑
k=0

4σ2q2Ak

γ2µ̄µ

)

≤ A−1
t

(
f(x0)− f(x∗) + µDh(x

∗, z0) +
4σ2qAt

γ2µ̄µ

)
= (1 +⨿)−tE0 +

µ̄σ2

4µ

17
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In Step 1, the algorithm is run until convergence and we let x0 be the last iterate of the Step 1. Assume E[f(x0)− f(x∗) +

µDh(x
∗, z0)] ≤ µ̄σ2

4µ , and we restart the algorithm using the parameters in Step 2 and the notation m = max
{

48
γ2µ̄2 , 5

}
.

Then We obtain

E[f(xt)− f(x∗)] ≤ A−1
t

(
f(x0)− f(x∗) + µDh(x

∗, z0) +

t−1∑
k=0

4σ2(Ak+1 −Ak)
2

γ2µ̄µAk

)

≤ A−1
t

(
µ̄σ2

4µ
+

t−1∑
k=0

µ̄σ2(2k + 2m+ 1)2

9γ2µ(k +m)2

)

≤ A−1
t

(
µ̄σ2

4µ
+

µ̄σ2t

γ2µ

)
≤ 9σ2

γ2µ̄µ(t+m)2
+

36σ2

γ2µ̄µ(t+m)

Additionally, we need to verify that the parameters in Step 2 satisfy two essential relations, αk/βk ≤ 1/2 and 4µ/µ̄2β2
k ≤

γ/2, which are key to obtaining the final bound of Ek+1 − Ek.

αk

βk
=

Ak+1 −Ak

Ak
=

2k + 2m+ 1

(k +m)2
≤ 2m+ 1

m2
≤ 11

25
≤ 1

2

4µ

µ̄2β2
k

≤ 8(Ak+1 −Ak)

γµ̄2Ak
≤ 8

γµ̄2

2m+ 1

m2
≤ 8

γµ̄2

3

m
≤ 8

γµ̄2

γ2µ̄2

16
=

γ

2

C.3. Proof of Theorem 3.5

QASVRG

γ-quasar-convex (µ = 0)

Ak = γ2µ̄
16L (k + 1)2, Bk = 1

Batchsize bk =
⌈

γµ̄n(2k+3)
2(n−1)p+γµ̄(2k+3)

⌉
, p ≤ γµ̄

16

(αk, βk, ρk, f̃ , b, c, ϵ̃)←
(
0, γ

2āk
, 1
L , fIk , 0,

γAk

2āk
, γϵf(y0)

2

)
µ-strongly γ-quasar-convex (µ > 0)

Option I

Ak = (1 + γ/
√
8κ)k, Bk = µAk

Batchsize bk =
⌈

8n(
√
8κ+γ)

γ(n−1)+8(
√
8κ+γ)

⌉
(αk, βk, ρk, f̃ , b, c, ϵ̃)←

(
γµ
2 , γµBk

2b̄k
, 1
L , fIk ,

γµ̄µ
4 , γAk

2āk
, 0
)

Option II

Ak = γ2µ̄
16L (k + 1)2, Bk = 1

Batchsize bk =
⌈

γµ̄n(2k+3)
2(n−1)p+γµ̄(2k+3)

⌉
, p ≤ γµ̄

16

(αk, βk, ρk, f̃ , b, c, ϵ̃)←
(
0, γ

2āk
, 1
L , fIk , 0,

γAk

2āk
, γϵf(y0)

2

)
Table 4. Parameter choices for QASVRG

We begin with Algorithm 1,∇k = ∇fIk(xk+1)−∇fIk(y0) +∇f(y0) and parameters specified in Table 4 using Lyapunov
function (11):

18
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case 1: µ = 0

Ek+1 − Ek = −⟨∇h(zk+1)−∇h(zk), x∗ − zk+1⟩ −Dh(zk+1, zk) +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

=
1

βk
⟨∇k, x

∗ − zk+1⟩ −Dh(zk+1, zk) +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

≤ 1

βk
⟨∇k, x

∗ − zk⟩+
1

2µ̄β2
k

∥∇k∥2 +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

=
1

βk
⟨∇k, x

∗ − xk+1⟩+
τk
βk
⟨∇k, yk − zk⟩+

1

2µ̄β2
k

∥∇k∥2 +Ak+1(f(yk+1)− f(xk+1))

+ (Ak+1 −Ak)(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(yk))

≤ 1

βk
⟨∇k, x

∗ − xk+1⟩+
1

βk
(c(fIk(yk)− fIk(xk+1)) + ϵ̃) +

1

2µ̄β2
k

∥∇k∥2 +Ak+1(f(yk+1)− f(xk+1))

+ (Ak+1 −Ak)(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(yk)) +
τk
βk
⟨∇f(y0)−∇fIk(y0), yk − zk⟩

The first equality follows from the mirror descent; the third equality follows from the momentum step; the first inequality
follows from the Fenchel-Young inequality, and the last inequality follows from (15) (Lemma A.3). Then we take the
expectation with respect to the history of random variable Iij with its size equal to bi, where i = 0, 1, ..., t − 1 and
j = 1, 2, ...,

(
n
bi

)
, and we obtain

E[Ek+1 − Ek] ≤
1

βk
⟨∇f(xk+1), x

∗ − xk+1⟩+
c

βk
(f(yk)− f(xk+1)) +

1

2µ̄β2
k

EIk

[
∥∇k∥2

]
+ āk(f(xk+1)− f(x∗))

+Ak+1E [f(yk+1)− f(xk+1)] +Ak(f(xk+1)− f(yk)) + ākf(y0)ϵ

≤ āk(f(x
∗)− f(xk+1)) +

1

2µ̄β2
k

EIk

[
∥∇k −∇f(xk+1)∥2

]
+Ak+1E [f(yk+1)− f(xk+1)]

+
1

2µ̄β2
k

∥∇f(xk+1)∥2 + ākf(y0)ϵ

The first inequality follows from E
[
∥∇k∥2

]
= EIk

[
∥∇k∥2

]
, as∇k corresponds to the mini-batch in the kth iteration; the

second inequality follows from the quasar-convexity of f and the relation EIk

[
∥∇k∥2

]
= EIk

[
∥∇k −∇f(xk+1)∥2

]
+

∥∇f(xk+1)∥2. By L-smoothness and the gradient descent in Algorithm 1, we have the following relation:

E[f(yk+1)− f(xk+1)] ≤ E[⟨∇f(xk+1), yk+1 − xk+1⟩] +
L

2
E
[
∥yk+1 − xk+1∥2

]
= − 1

L
∥∇f(xk+1)∥2 +

1

2L
E
[
∥∇k∥2

]
= − 1

2L
∥∇f(xk+1)∥2 +

1

2L
E
[
∥∇k −∇f(xk+1)∥2

] (21)

Using the relation above, we obtain the following bound:

E[Ek+1 − Ek] ≤ āk(f(x
∗)− f(xk+1)) +

1

2µ̄β2
k

EIk

[
∥∇k −∇f(xk+1)∥2

]
+Ak+1E [f(yk+1)− f(xk+1)]

+
1

2µ̄β2
k

∥∇f(xk+1)∥2 + ākf(y0)ϵ

≤ āk(f(x
∗)− f(xk+1)) +

(
1

2µ̄β2
k

+
Ak+1

2L

)
EIk

[
∥∇k −∇f(xk+1)∥2

]
+

(
1

2µ̄β2
k

− Ak+1

2L

)
∥∇f(xk+1)∥2 + ākf(y0)ϵ

≤ āk(f(x
∗)− f(xk+1)) +

Ak+1

L
EIk

[
∥∇k −∇f(xk+1)∥2

]
+ ākf(y0)ϵ

(19)
≤ āk(f(x

∗)− f(xk+1)) + 4Ak+1δk(f(xk+1)− f(x∗)) + 4Ak+1δk(f(y0)− f(x∗)) + ākf(y0)ϵ
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We use the notation δk ≜ n−bk
bk(n−1) . The third inequality follows from the relation 1/µ̄β2

k ≤ Ak+1/L. Actually, with the
choice of βk and Ak, we have

1

µ̄β2
k

=
4ā2k
µ̄γ2

=
4η2(2k + 3)2

µ̄γ2
≤ 16η2(k + 2)2

µ̄γ2
=

Ak+1

L
,

where η = γ2µ̄/16L. The last inequality follows from Proposition 3.1 (19). Next we prove the relation 4Lδk/βk ≤ p. It
suffices to prove δk ≤ γp/8Lāk.

δk =
n− bk

bk(n− 1)
≤ 2np

2(n− 1)p+ γµ̄(2k + 3)

2(n− 1)p+ γµ̄(2k + 3)

γµ̄n(2k + 3)
=

2p

γµ̄(2k + 3)
=

γp

8Lāk

Thus we have 4Ak+1δk ≤ pAk+1βk/L, by which we obtain the final bound of E[Ek+1 − Ek].

E[Ek+1 − Ek] ≤ āk(f(x
∗)− f(xk+1)) + 4Ak+1δk(f(xk+1)− f(x∗)) + 4Ak+1δk(f(y0)− f(x∗)) + ākf(y0)ϵ

≤
(
āk −

pAk+1βk

L

)
(f(x∗)− f(xk+1)) +

pAk+1βk

L
(f(y0)− f(x∗)) + ākf(y0)ϵ

≤ 8pāk
γµ̄

(f(y0)− f(x∗)) + ākf(y0)ϵ

≤ 8pāk
γµ̄

f(y0) + ākf(y0)ϵ

The third inequality follows from two relations, āk ≥ pAk+1βk/L and Ak+1βk/L ≤ 8āk/γµ̄ and the last inequality
follows from f(x∗) ≥ 0. With the choice of Ak and βk, we have

pAk+1βk

L
=

γpAk+1

2Lāk
≤ γ2µ̄(k + 2)2

32L(2k + 3)
≤ γ2µ̄(2k + 3)

32L
=

āk
2
≤ āk

Ak+1βk

L
=

γAk+1

2Lāk
=

γ(k + 2)2

2L(2k + 3)
≤ γ(2k + 3)

2L
=

8āk
γµ̄

Summing both sides of the inequality about the final bound, we obtain

E[f(yt)− f(x∗)] ≤ A−1
t (A0(f(y0)− f(x∗)) +Dh(x

∗, z0)) +A−1
t

t−1∑
k=0

8pāk
γµ̄

f(y0) + f(y0)ϵ

≤ 17LDh(x
∗, z0)

γ2µ̄(t+ 1)2
+

(
8p

γµ̄
+ ϵ

)
f(y0)

≤ 17LR2

γ2µ̄(t+ 1)2
+

(
8p

γµ̄
+ ϵ

)
f(y0)

When t ≥
⌈√

17LDh(x∗,z0)
γ2µ̄qf(y0)

⌉
, we have

E[f(yt)− f(x∗)] ≤
(
q +

8p

γµ̄
+ ϵ

)
f(y0),

where q + 8p/γµ̄+ ϵ < 1 with the choice of q and p. Next we conclude the convergence rate of global stages. Suppose ys

is the output of stage s. If t ≥
⌈√

17LDh(x∗,ys)
γ2µ̄qf(ys)

⌉
at each stage, we have

E[f(ys)− f(x∗)] ≤
(
q +

8p

γµ̄
+ ϵ

)s+1

f(y0)
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Case 2: µ > 0 (Option I) Using the notation dk+1 = Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗)), we obtain

Ek+1 − Ek = b̄kDh(x
∗, zk+1)−Bk⟨∇h(zk+1)−∇h(zk), x∗ − zk+1⟩ −BkDh(zk+1, zk) + dk+1

≤b̄kDh(x
∗, zk+1) +

αkBk

βk
⟨∇h(zk+1)−∇h(xk+1), x

∗ − zk+1⟩+
Bk

βk
⟨∇k, x

∗ − zk+1⟩

− µ̄Bk

2
∥zk+1 − zk∥2 + dk+1

=

(
b̄k −

αkBk

βk

)
Dh(x

∗, zk+1) +
αkBk

βk
(Dh(x

∗, xk+1)−Dh(zk+1, xk+1)) +
Bk

βk
⟨∇k, x

∗ − xk+1⟩

+
Bk(1− τk)

βk
⟨∇k, yk − zk⟩+

Bk

βk
⟨∇k, zk − zk+1⟩ −

µ̄Bk

2
∥zk+1 − zk∥2 + dk+1

≤ αkBk

βk
Dh(x

∗, xk+1)−
µ̄αkBk

2βk
∥zk+1 − xk+1∥2 +

Bk

βk
⟨∇k, x

∗ − xk+1⟩+
Bk

βk
⟨∇k, zk − zk+1⟩

− µ̄Bk

2
∥zk+1 − zk∥2 +

Bk

βk

(
c(fIk(yk)− fIk(xk+1)) + b∥xk+1 − zk∥2

)
+ dk+1 + ξk

≤ αkBk

βk
Dh(x

∗, xk+1) +
Bk

βk
⟨∇k, x

∗ − xk+1⟩+
Bk

µ̄β2
k

∥∇k∥2 +
cBk

βk
(fIk(yk)− fIk(xk+1)) + dk+1 + ξk

Note that ξk = Bk

βk
⟨∇f(y0) − ∇fIk(y0), xk+1 − zk⟩, and E [ξk] = 0. The first inequality follows from the µ-strong

convexity of function h; the second inequality follows from (15) (Lemma A.3), and the last inequality follows from the
triangle inequality with the relation αk/βk ≤ 1/2. Then we take the expectation with respect to the history of random
variable Iij with its size equal to bi, where i = 0, 1, ..., t− 1 and j = 1, 2, ...,

(
n
bi

)
.

E [Ek+1 − Ek] =
αkBk

βk
Dh(x

∗, xk+1) +
Bk

βk
⟨∇f(xk+1), x

∗ − xk+1⟩+
Bk

µ̄β2
k

EIk

[
∥∇k∥2

]
+

cBk

βk
(f(yk)− f(xk+1))

+ āk(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(yk)) +Ak+1E [f(yk+1)− f(xk+1)]

≤ (αk − γµ)Bk

βk
Dh(x

∗, xk+1) +
γBk

βk
(f(x∗)− f(xk+1)) +

cBk

βk
(f(yk)− f(xk+1))

+
Bk

µ̄β2
k

EIk

[
∥∇k∥2

]
+ āk(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(yk)) +Ak+1E [f(yk+1)− f(xk+1)]

≤
(
γBk

βk
− āk

)
(f(x∗)− f(xk+1)) +

Bk

µ̄β2
k

EIk

[
∥∇k −∇f(xk+1)∥2

]
+

Bk

µ̄β2
k

∥∇f(xk+1)∥2

+
Ak+1

2L
EIk

[
∥∇k −∇f(xk+1)∥2

]
− Ak+1

2L
∥∇f(xk+1)∥2

≤
(
γBk

βk
− āk

)
(f(x∗)− f(xk+1)) +

Ak+1

L
EIk

[
∥∇k −∇f(xk+1)∥2

]
≤ āk(f(x

∗)− f(xk+1)) + 4Ak+1δk(f(xk+1)− f(x∗)) + 4Ak+1δk(f(y0)− f(x∗))

The first inequality follows from the uniform quasar-convexity of function f ; the second inequality follows from (21); the
third inequality follows from the relation Bk/µ̄β

2
k ≤ Ak+1/2L, and the last inequality follows from Proposition 3.1 (19).

We testify the correctness of relations above. With the choice of Ak, Bk, αk, βk and Observation A.6, we have

αk

βk
=

b̄k
Bk

=
γ√
8κ
≤ γ√

8

√
2− γ

γ
≤ γ√

8

√
1

γ2
≤ 1

2
.

Bk

µ̄β2
k

=
4(Ak+1 −Ak)

2

γ2µ̄µAk
=

4Ak(γ/
√
8κ)2

γ2µ̄µ
=

Ak

2L
≤ Ak+1

2L

Next we prove 4Ak+1δk ≤ āk/2. It suffices to prove δk ≤ āk/8Ak+1.

δk =
n− bk

bk(n− 1)
≤ γ

8(
√
8κ+ γ)

=
āk

8Ak+1
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Thus we obtain the final bound of E[Ek+1 − Ek].

E[Ek+1 − Ek] ≤ āk(f(x
∗)− f(xk+1)) + 4Ak+1δk(f(xk+1)− f(x∗)) + 4Ak+1δk(f(y0)− f(x∗))

≤ āk
2
(f(y0)− f(x∗))

Summing both sides of the inequality above, we obtain

E[f(yt)− f(x∗)] ≤
(
1 +

γ√
8κ

)−t

(f(y0)− f(x∗) + µDh(x
∗, z0)) +

1

2
(f(y0)− f(x∗))

≤
(
1 +

γ√
8κ

)−t
2

γ
(f(y0)− f(x∗)) +

1

2
(f(y0)− f(x∗))

When t ≥ log1+γ/
√
8κ(2/γq), we have

E[f(yt)− f(x∗)] ≤
(
q +

1

2

)
(f(y0)− f(x∗)),

where q + 1/2 < 1 with the choice of q. Next we conclude the convergence rate of global stages. Suppose ys is the output
of stage s. If t ≥ log1+γ/

√
8κ(2/γq) at each stage, we have

E[f(ys)− f(x∗)] ≤
(
q +

1

2

)s+1

(f(y0)− f(x∗)) =

(
q +

1

2

)s+1

E0.

For µ > 0 (Option II), our analysis is identical to case 1.

D. Proofs of Complexity
In this section, we analyze the overall complexity of QASGD and QASVRG. As the complexity of QAGD has been analyzed
in Hinder et al. (2020), we will not provide the related proof. Analogously, we apply the same metric as Hinder et al. (2020)
propose, which is the total number of function and gradient evaluations. Roughly speaking, the overall complexity is the
multiplication of the number of iterations and the number of function and gradient evaluations per iteration. We consider the
worst case of Bisearch where 0, 1 and ”guess” do not meet our conditions, and we need to do line search at each iteration.
In this situation, we access the gradient (estimate) in Bisearch that can be directly used in the subsequent updates at each
iteration, i.e., no additional access to∇k is required in the mirror descent step and the gradient descent step. The number of
fi involved in Bisearch affects the complexity. While QAGD needs all fi in Bisearch, QASGD and QASVRG only need
a single fi and a mini-batch of fi respectively. Next we present the analysis of the complexity of Bisearch per iteration
for QASGD and QASVRG in the Euclidean setting where Dh(x, y) = 1

2∥x − y∥2, and present the proof of Theorem

3.5 and Theorem 3.6. Lemma A.5 implies that Bisearch needs O
(
log+

(
(1 + c)min

{
L∥yk−zk∥2

ϵ̃ , L3

b3

}))
function and

gradient evaluations per iteration for a single function. As ϵ̃ and b can not be simultaneously non-zero, we have two different
situations corresponding to different complexity.

O

(
log+

(
(1 + c)min

{
L∥yk − zk∥2

ϵ̃
,
L3

b3

}))
=

O
(
log+

(
(1 + c)L

3

b3

))
µ > 0,

O
(
log+

(
(1 + c)L∥yk−zk∥2

ϵ̃

))
µ = 0.

When µ = 0, the key to our proof is to bound ∥yk − zk∥.

D.1. Proof of Corollary 3.3

Case 1: µ = 0
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By the proof of 3.2, we have E[Ek+1 − Ek] ≤ σ2

2β2
k
+ ākϵ

2 . Assuming ∥x∗ − z0∥ ≤ R, we have the following relation.

1

2
E∥x∗ − zk∥2 ≤ A0(f(x0)− f(x∗)) +

1

2
∥x∗ − z0∥2 +

k−1∑
j=0

σ2

2β2
j

+
Akϵ

2

≤ ∥x∗ − z0∥2 +
k−1∑
j=0

σ2η2

2γ2
(2j + 3)2 +

ηϵ

2
(k + 1)2

≤ 5R2 +
(k + 1)2

2L
ϵ

The third inequality follows from η = min

(
1
L ,
√

2∥x∗−z0∥2

σ2
γ

(t+1)3/2

)
. Combining the analysis above, we have E∥x∗ −

zk∥2 ≤ 10R2 + (k+1)2

L ϵ and E∥x∗ − zk∥ ≤
√
E∥x∗ − zk∥2 ≤

√
10R2 + (k+1)2

L ϵ by Jensen’s inequality. Thus we obtain

E∥zk − zk−1∥ = E
∥∥∥∥ 1

βk−1
∇k−1

∥∥∥∥ ≤ E∥x∗ − zk∥+ E∥x∗ − zk−1∥ ≤ 2

√
10R2 +

(k + 1)2

L
ϵ.

As the stepsize of gradient descent is 0, yk is identical to xk, and we solely need to bound ∥xk − zk∥. By the definition of
zk and xk, we have

E∥xk − zk∥ = E
∥∥∥∥(1− τk−1)zk−1 + τk−1xk−1 − zk−1 +

1

βk−1
∇k−1

∥∥∥∥
= E

∥∥∥∥τk−1(xk−1 − zk−1) +
1

βk−1
∇k−1

∥∥∥∥
≤ τk−1E∥xk−1 − zk−1∥+ E

∥∥∥∥ 1

βk−1
∇k−1

∥∥∥∥
≤ E∥xk−1 − zk−1∥+ 2

√
10R2 +

(k + 1)2

L
ϵ

≤ E∥xk−1 − zk−1∥+ 2
√
10R+ 2(k + 1)

√
ϵ

L

The last inequality follows from the relation
√
a2 + b2 ≤ a+ b for a, b ≥ 0. By the proof of Theorem 3.2, we have

E[f(xt)− f(x∗)] ≤ LR2

(t+ 1)2
+

2σ

γ

R√
2(t+ 1)

≤
LR2 +

√
2σR
γ√

t+ 1
.

Suppose k ≤ kmax =

⌊
4
(
LR2+

√
2σR
γ

)2

ϵ2

⌋
, and we obtain

E∥xk − zk∥ ≤ 2
√
10Rk +

√
ϵ

L
k(k + 3)

≤ 2
√
10Rk + 4

√
ϵ

L
k2

≤ 8
√
10R

(
LR2 +

√
2σR
γ

)2
ϵ2

+
64
(
LR2 +

√
2σR
γ

)4
√
Lϵ

7
2

≤ 8
√
10R

(LR2 +
√
2σR)2

γ2ϵ2
+

64
(
LR2 +

√
2σR

)4
√
Lγ4ϵ

7
2

= O

(
L7/2R8

γ4ϵ7/2

)
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The first inequality follows from the relation k+ 3 ≤ 4k for k ≥ 1. By Markov’s inequality, Pr(∥xk − zk∥ ≥ kmaxE∥xk −
zk∥) ≤ 1

kmax
, which implies ∥xk − zk∥ ≤ kmaxE∥xk − zk∥ ≤ O

(
L11/2R12

γ6ϵ11/2

)
with probability at least 1− 1

kmax
. Thus we

have L∥xk−zk∥2

ϵ̃ ≤ O
(

L12R24

γ13ϵ12

)
. Besides, we have c + 1 = γ(k+1)2

2k+3 + 1 ≤ γk + 2 ≤ 4(LR2+
√
2σR)2

γϵ2 + 2 = O
(

L2R4

γϵ2

)
.

Then we obtain the following upper bound of the term inside log+():

(1 + c)min

{
L∥xk − zk∥2

ϵ̃
,
L3

b3

}
= (1 + c)

L∥xk − zk∥2

ϵ̃

≤ O

(
L14R28

γ14ϵ14

)
Thus we have O

(
log+

(
(1 + c)min

{
LE∥yk−zk∥2

ϵ̃ , L3

b3

}))
≤ O(log+(LR2γ−1ϵ−1)). In the case of µ = 0, QASGD

needs O

(√
LR2

ϵ + σ2R2

γ2ϵ2

)
iterations to generate an ϵ-approximate solution under expectation. Therefore, the overall

complexity of QASGD is upper bounded by (µ = 0) is O
((√

LR2

ϵ + σ2R2

γ2ϵ2

)
log+

(
LR2

γϵ

))
with high probability.

Case 2: µ > 0

As ϵ̃ = 0 and b > 0, we have O
(
log+

(
(1 + c)min

{
L∥yk−zk∥2

ϵ̃ , L3

b3

}))
= O

(
log+

(
(1 + c)L

3

b3

))
. In Step 1, b = γµ

4

and c = 8
γ . Then we have

(1 + c)
L3

b3
≤ 9

γ

64L3

γ3µ3
=

576κ3

γ4

Thus we have O
(
log+

(
(1 + c)min

{
LE∥yk−zk∥2

ϵ̃ , L3

b3

}))
= O

(
log+

(
κ3/4

γ

))
. By the proof of Theo-

rem 3.2, QASGD needs O
(

1
γ2 log

(
f(x0)−f(x∗))

γϵ

))
iterations in Step 1, and the complexity of Step 1 is

O
(

1
γ2 log

(
f(x0)−f(x∗))

γϵ

)
log+

(
κ3/4

γ

))
. In step 2, b = γµ

4 and c = γ(k+48/γ2)2

2(2k+96/γ2+1) ≤
γ(k+48/γ2)

2 ≤ k+48
2γ . We can

upper bound the convergence rate of Step 2:

E[f(xt)− f(x∗)] ≤ 9σ2

γ2µ(t+ 48/γ2)2
+

36σ2

γ2µ(t+ 48/γ2)
≤ 45σ2

γ2µ(t+ 48/γ2)
.

Suppose k ≤
⌊
90σ2

γ2µϵ

⌋
. We have c+ 1 ≤ C3

γ3ϵ , where C3 = 45σ2

µ + 25.

(1 + c)
L3

b3
≤ C3

γ3ϵ

64κ3

γ3
=

64C3κ
3

γ6ϵ

Thus O
(
log+

(
(1 + c)min

{
L∥yk−zk∥2

ϵ̃ , L3

b3

}))
= O

(
log+

(
κ2/3

γϵ1/6

))
. QASGD needs O

(
σ2

γ2ϵ

)
iterations in Step 2, and

the complexity of Step 2 is O
(

σ2

γ2ϵ log
+
(

κ2/3

γϵ1/6

))
. In summary, the overall complexity of QASGD (µ > 0) is upper

bounded by O
(

1
γ2 log

(
f(x0)−f(x∗))

γϵ

)
log+

(
κ3/4

γ

)
+ σ2

γ2ϵ log
+
(

κ2/3

γϵ1/6

))
.

D.2. Proof of Corollary 3.6

Case 1: µ = 0

By the proof of Theorem 3.3, we have E[Ek+1−Ek] ≤ āk
(
1
2 + ϵ

)
f(y0). Assuming ∥x∗−z0∥ ≤ R, we have the following

relation.
1

2
E∥x∗ − zk∥2 ≤ A0(f(y0)− f(x∗)) +

1

2
∥x∗ − z0∥2 +Ak

(
1

2
+ ϵ

)
f(y0)

≤ ∥z0 − x∗∥2 + 3γ2

32L
(k + 1)2f(y0) +

γ2

16L
(k + 1)2f(y0)ϵ

≤ R2 +
3γ2

32L
(k + 1)2f(y0) +

γ2

16L
(k + 1)2f(y0)ϵ
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Thus we have E∥x∗ − zk∥2 ≤ 2R2 + 3γ2

16L (k + 1)2f(y0) +
γ2

8L (k + 1)2f(y0)ϵ and by Jensen’s inequality

E∥∇k−1∥ = βk−1E∥zk − zk−1∥ ≤ βk−1E(∥x∗ − zk∥+ ∥x∗ − zk−1∥)

≤ 16L

γ(2k + 1)

√
2R2 +

3γ2

16L
(k + 1)2f(y0) +

γ2

8L
(k + 1)2f(y0)ϵ.

By the definition of yk and zk, we have

E∥yk − zk∥ = E
∥∥∥∥xk −

1

L
∇k−1 − zk−1 +

1

βk−1
∇k−1

∥∥∥∥
= E

∥∥∥∥(1− τk−1)zk−1 + τk−1yk−1 −
1

L
∇k−1 − zk−1 +

1

βk−1
∇k−1

∥∥∥∥
≤ τk−1E∥yk−1 − zk−1∥+

∣∣∣∣ 1

βk−1
− 1

L

∣∣∣∣E∥∇k−1∥

≤ E∥yk−1 − zk−1∥+
(

1

βk−1
+

1

L

)
E∥∇k−1∥

≤ E∥yk−1 − zk−1∥+
2k + 9

8L
E∥∇k−1∥

≤ E∥yk−1 − zk−1∥+
8

γ

√
2R2 +

3γ2

16L
(k + 1)2f(y0) +

γ2

8L
(k + 1)2f(y0)ϵ

≤ E∥yk−1 − zk−1∥+
8
√
2R

γ
+ 2
√
3(k + 1)

√
f(y0)

L
+ 2
√
2(k + 1)

√
f(y0)ϵ

L

Suppose f(y0) ≥ ϵ and k ≤
⌊√

17LR2

2γ2qf(y0)

⌋
≤ kmax =

⌊√
17LR2

2γ2qϵ

⌋
, and we obtain

E∥yk − zk∥ ≤
8
√
2Rk

γ
+
√
3k(k + 3)

√
f(y0)

L
+
√
2k(k + 3)

√
f(y0)ϵ

L

≤ 8
√
2Rk

γ
+ 4
√
3k2
√

f(y0)

L
+ 4
√
2k2
√

f(y0)ϵ

L

≤ 8
√
17qR2

γ2q

√
L

f(y0)
+

34
√
3R2

γ2q

√
L

f(y0)
+

34
√
2R2

γ2q

√
Lϵ

f(y0)

≤ 108R2L1/2

γ2ϵ1/2q
+

34
√
2R2L1/2

γ2q

≤ 176R2L1/2

γ2ϵ1/2q
= O

(
L1/2R2

qγ2ϵ1/2

)

By Markov’s inequality, Pr(∥yk − zk∥ ≥ kmaxE∥yk − zk∥) ≤ 1
kmax

, which implies ∥yk − zk∥ ≤ kmaxE∥xk − zk∥ ≤
O
(

LR3

q3/2γ3ϵ

)
with probability at least 1 − 1

kmax
. Thus we have L∥yk−zk∥2

ϵ̃ ≤ O
(

L3R6

q3γ7ϵ4

)
. Besides, we have c + 1 =

γ(k+1)2

2(2k+3) + 1 ≤ γk
2 + 3

2 ≤
R
2

√
17L
2qϵ + 3

2 = O
(

L1/2R
q1/2ϵ1/2

)
. Then we obtain the following upper bound of the term inside

log+():

(1 + c)min

{
L∥yk − zk∥2

ϵ̃
,
L3

b3

}
= (1 + c)

L∥yk − zk∥2

ϵ̃
≤ O

(
L7/2R7

q7/2γ7ϵ9/2

)

Thus we have O
(
log+

(
(1 + c)min

{
L∥yk−zk∥2

ϵ̃ , L3

b3

}))
≤ O

(
log+

(
L1/2R

q1/2γϵ9/14

))
with high probability. As we need to

access the full gradient and function value evaluated at y0 per stage and the gradient and function value of mini-batch to
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calculate SVRG and ϵ̃, the overall complexity of QASVRG (µ = 0) to generate an ϵ-approximate solution is

O

((
2n+

t−1∑
k=0

bk log
+

(
L1/2R

q1/2γϵ9/14

))
log

(
1

ϵ

))

= O

((
2n+

t−1∑
k=0

γn(2k + 3)

2(n− 1)p+ γ(2k + 3)
log+

(
L1/2R

q1/2γϵ9/14

))
log

(
1

ϵ

))

≤ O

((
2n+

γnt(2t+ 1)

2(n− 1)p+ γ(2t+ 1)
log+

(
L1/2R

q1/2γϵ9/14

))
log

(
1

ϵ

))
≤ O

((
n+

nLR2

γϵn+ γ
√
ϵLR2

log+
(

L1/2R

q1/2γϵ9/14

))
log

(
1

ϵ

))

where t =
⌈√

17L∥x∗−z0∥2

2γ2qf(y0)

⌉
≤
√

17LR2

2γ2qf(y0)
is the maximum number of iterations per stage, and O(log(ϵ−1)) is the number

of stages. Note that Dh(x
∗, ys) is uniformly bounded by R2 under Assumption 2.5, which is in the bound above.

Case 2: µ > 0

For Option II, we have t =
⌈√

17L∥x∗−z0∥2

2γ2qf(y0)

⌉
≤
⌈√

17L∥x∗−z0∥2

2γ2qE0

⌉
≤
√

17L(2−γ)
γ3qµ ≤

√
34κ
γ3q using the last relation in

Assumption 3.1. Thus the overall complexity of QASVRG (Option II) to generate an ϵ-approximate solution is

O

((
2n+

t−1∑
k=0

bk log
+

(
L1/2R

q1/2γϵ9/14

))
log

(
1

ϵ

))

= O

((
2n+

t−1∑
k=0

γn(2k + 3)

2(n− 1)p+ γ(2k + 3)
log+

(
L1/2R

q1/2γϵ9/14

))
log

(
1

ϵ

))

≤ O

((
2n+

γnt(2t+ 1)

2(n− 1)p+ γ(2t+ 1)
log+

(
L1/2R

q1/2γϵ9/14

))
log

(
1

ϵ

))
≤ O

((
n+

nκ

γ2n+ γ3/2
√
κ
log+

(
L1/2R

q1/2γϵ9/14

))
log

(
1

ϵ

))
where O(log(ϵ−1)) is the number of stages. For Option I, ϵ̃ = 0, b = γµ

4 and c =
√
2κ. Then we obtain the following

relation:

(1 + c)min

{
L∥yk − zk∥2

ϵ̃
,
L3

b3

}
= (1 + c)

L3

b3
= (1 +

√
2κ)

64L3

γ3µ3
= (1 +

√
2κ)

64κ3

γ3
.

Thus we have O
(
log+

(
(1 + c)min

{
L∥yk−zk∥2

ϵ̃ , L3

b3

}))
= O(log+(κ7/6γ−1)). At each stage, QASVRG (Option II)

is run until (1 + γ/
√
8κ)−t ≤ γq

2 . Let (1 + γ/
√
8κ)−t ≤ e

− γt√
8κ+γ ≤ γq

2 , and we have t ≥
√
8κ+γ
γ log

(
2
γq

)
, and

t =
⌈
log1+ γ√

8κ

(
2
γq

)⌉
≤

√
8κ+γ
γ log

(
2
γq

)
≤ 5

√
κ

γ log
(

2
γq

)
. Thus the overall complexity of QASVRG (Option I) to

generate an ϵ-approximate solution is

O

((
n+

t−1∑
k=0

bk log
+

(
κ7/6

γ

))
log

(
1

ϵ

))
= O

((
n+

t−1∑
k=0

8n(
√
8κ+ γ)

γ(n− 1) + 8(
√
8κ+ γ)

log+
(
κ7/6

γ

))
log

(
1

ϵ

))

= O

((
n+

40nt
√
κ

γ(n− 1) + 8(
√
8κ+ γ)

log+
(
κ7/6

γ

))
log

(
1

ϵ

))
≤ O

((
n+

nκ

γ2n+ γ
√
κ
log

(
2

γq

)
log+

(
κ7/6

γ

))
log

(
1

ϵ

))
where O(log(ϵ−1)) is the number of stages.
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E. Theoretical Extension
We analyze QASGD under a restrictive condition: strong growth condition (SGC), which is formally formulated in the
following. This condition has been proposed in Schmidt & Roux (2013), Vaswani et al. (2019), and Gower et al. (2021).
Schmidt & Roux (2013) derive optimal convergence rates for SGD under SGC for convex and strongly convex functions.

Assumption E.1 (SGC). Suppose i is sampled i.i.d from [n]. For some constant ρ and x∗ ∈ X ∗, we have

Ei

[
∥∇fi(x)∥2

]
≤ ρ∥∇f(x)∥2.

If ∇f(x) = 0, then ∇fi(x) = 0 under SGC, which implies the interpolation assumption. We derive better convergence
rates for QASGD under SGC for f ∈ Qµγ .

Theorem E.2 (QASGD under SGC). Suppose Assumption 3.1 and Assumption E.1 hold, Dh(x
∗, z0) ≤ R2, f ∈ FL, and

choose any ỹ0 ∈ Rd. Then Algorithm 1 with the choices of∇k = ∇fi(xk+1) and Ak, Bk, θk specified in Table 5 satisfies

E[Ek+1 − Ek] ≤


ākϵ

2
, µ = 0,

0, µ > 0.
(22)

Summing both sides of (22), we conclude the convergence rate as follows:

E[f(yt)− f(x∗)] ≃


LρR2

γ2t2
+

ϵ

2
, µ = 0,(

1 +
γ

2ρ
√
κ

)−t

E0, µ > 0.

(23)

QASGD under SGC

γ-quasar-convex (µ = 0)

Ak = µ̄γ2

4ρL (k + 1)2, Bk = 1

(αk, βk, ρk, f̃ , b, c, ϵ̃)←
(
0, γ

āk
, 1
ρL , f, 0,

γAk

āk
, γϵ

2

)
µ-strongly γ-quasar-convex (µ > 0)

Ak = (1 + γ/2ρ
√
κ)k, Bk = µAk

(αk, βk, ρk, f̃ , b, c, ϵ̃)←
(
γµ, γµBk

b̄k
, 1
ρL , f,

γµ̄µ
2 , γAk

āk
, 0
)

Table 5. Parameter choices for QASGD under SGC

Proof.

Ek+1 − Ek
(12)
= −⟨∇h(zk+1)−∇h(zk), x∗ − zk+1⟩ −Dh(zk+1, zk) +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

=
1

βk
⟨∇k, x

∗ − zk+1⟩ −Dh(zk+1, zk) +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

(8)
≤ 1

βk
⟨∇k, x

∗ − zk⟩+
1

βk
⟨∇k, zk − zk+1⟩ −

µ̄

2
∥zk+1 − zk∥2

+Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

(13)
≤ 1

βk
⟨∇k, x

∗ − zk⟩+
1

2µ̄β2
k

∥∇k∥2 +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

=
1

βk
⟨∇k, x

∗ − xk+1⟩+
τk
βk
⟨∇k, yk − zk⟩+

1

2µ̄β2
k

∥∇k∥2 +Ak+1(f(yk+1)− f(xk+1))

+ (Ak+1 −Ak)(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(yk))
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E[Ek+1 − Ek] ≤
γ

βk
(f(x∗)− f(xk+1)) +

1

βk
(c(f(yk)− f(xk+1)) + ϵ̃) +

1

2µ̄β2
k

E
[
∥∇k∥2

]
+Ak+1E[f(yk+1)− f(xk+1)] + (Ak+1 −Ak)(f(xk+1)− f(x∗)) +Ak(f(xk+1)− f(yk))

≤ ρ

2µ̄β2
k

∥∇f(xk+1)∥2 +Ak+1E[f(yk+1)− f(xk+1)] +
(Ak+1 −Ak)

2
ϵ

(16)
≤
(

ρ

2µ̄β2
k

− Ak+1

2ρL

)
∥∇f(xk+1)∥2 +

(Ak+1 −Ak)

2
ϵ ≤ Ak+1 −Ak

2
ϵ

Case 2: µ > 0

Ek+1 − Ek
(12)
= b̄kDh(x

∗, zk+1)−Bk⟨∇h(zk+1)−∇h(zk), x∗ − zk+1⟩ −BkDh(zk+1, zk) +Ak+1(f(yk+1)− f(x∗))

−Ak(f(yk)− f(x∗))

= b̄kDh(x
∗, zk+1) +

αkBk

βk
⟨∇h(zk+1)−∇h(xk+1), x

∗ − zk+1⟩+
Bk

βk
⟨∇k, x

∗ − zk+1⟩ −BkDh(zk+1, zk)

+Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

(12)
=

(
b̄k −

αkBk

βk

)
Dh(x

∗, zk+1) +
αkBk

βk
(Dh(x

∗, xk+1)−Dh(zk+1, xk+1)) +
Bk

βk
⟨∇k, x

∗ − zk⟩

+
Bk

βk
⟨∇k, zk − zk+1⟩ −BkDh(zk+1, zk) +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

(8)
≤
(
b̄k −

αkBk

βk

)
Dh(x

∗, zk+1) +
αkBk

βk
Dh(x

∗, xk+1)−
µ̄αkBk

2βk
∥zk+1 − xk+1∥2 +

Bk

βk
⟨∇k, x

∗ − zk⟩

+
Bk

βk
⟨∇k, zk − zk+1⟩ −

µ̄Bk

2
∥zk+1 − zk∥2 +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

≤
(
b̄k −

αkBk

βk

)
Dh(x

∗, zk+1) +
αkBk

βk
Dh(x

∗, xk+1)−
µ̄αkBk

2βk
∥zk+1 − xk+1∥2 +

Bk

βk
⟨∇k, x

∗ − xk+1⟩

+
Bk

βk

(
c(fi(yk)− fi(xk+1)) + b∥xk+1 − zk∥2

)
+

Bk

βk
⟨∇k, zk − zk+1⟩ −

µ̄Bk

2
∥zk+1 − zk∥2

+Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

≤ αkBk

βk
Dh(x

∗, xk+1) +
Bk

βk
⟨∇k, zk − zk+1⟩+

(
µ̄αkBk

2βk
− µ̄Bk

2

)
∥zk+1 − zk∥2 +

Bk

βk
⟨∇k, x

∗ − xk+1⟩

+Ak(f(yk)− f(xk+1)) +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

The first equality and the third equality follows from Lemma A.1; the second equality follows from mirror descent. The
first inequality follows from the strong convexity of h, and the second inequality follows from (15) (Lemma A.3). With
the choice of αk and βk, we have αkBk/βk = b̄k, which explains the last inequality. Moreover, with the choice of Bk and
Observation A.6, we have

αk

βk
=

b̄k
Bk

=
γ

2
√
κ
≤ γ

2

√
2− γ

γ
≤ γ

2

√
1

γ2
=

1

2
.

Combined with the initial bound and the relation above, we obtain the following bound:

Ek+1 − Ek ≤
αkBk

βk
Dh(x

∗, xk+1) +
Bk

βk
⟨∇k, zk − zk+1⟩+

(
µ̄αkBk

2βk
− µ̄Bk

2

)
∥zk+1 − zk∥2 +

Bk

βk
⟨∇k, x

∗ − xk+1⟩

+Ak(f(yk)− f(xk+1)) +Ak+1(f(yk+1)− f(x∗))−Ak(f(yk)− f(x∗))

≤ αkBk

βk
Dh(x

∗, xk+1) +
Bk

βk
⟨∇k, zk − zk+1⟩ −

µ̄Bk

4
∥zk+1 − zk∥2 +

Bk

βk
⟨∇k, x

∗ − xk+1⟩

+Ak+1(f(yk+1)− f(xk+1)) + āk(f(xk+1)− f(x∗))

(13)(9)
≤ αkBk

βk
Dh(x

∗, xk+1) +
Bk

µ̄β2
k

∥∇k∥2 +
γBk

βk
(fi(x

∗)− fi(xk+1)− µDh(x
∗, xk+1))

+Ak+1(f(yk+1)− f(xk+1)) + āk(f(xk+1)− f(x∗))

28



Accelerated Stochastic Optimization Methods under Quasar-convexity

Taking the expectation, we obtain

E[Ek+1 − Ek] ≤
αkBk

βk
Dh(x

∗, xk+1) +
Bk

µ̄β2
k

E
[
∥∇k∥2

]
+

γBk

βk
(f(x∗)− f(xk+1)− µDh(x

∗, xk+1)))

+Ak+1E[f(yk+1)− f(xk+1)] + āk(f(xk+1)− f(x∗))

≤ Bk

µ̄β2
k

E
[
∥∇k∥2

]
+Ak+1E[f(yk+1)− f(xk+1)]

≤
(
ρBk

µ̄β2
k

− Ak+1

2ρL

)
E
[
∥∇k∥2

]
≤ 0

F. Additional Simulation Results

Figure 2. Evaluation on two different LDS instances with random seed in {12, 36}. We choose ϵ = 10−2, the stepsize to be 1×10−6, 1×
10−5 for SGD, L = 1× 107, 5× 106 for QASGD and L = 3× 106, 1× 105 for QASVRG in LDS4 and LDS5. The flat line in the third
column means the loss blows up to infinity with this choice of stepsize.

We provide a contrived experiment by constructing an objective satisfying all the assumptions required. Consider the
following optimization problem

min
x∈Rd

[
f(x) =

1

n

n∑
i=1

gγ(bia
T
i x) +

µ

2
∥x∥2

]
, gγ(x) =


xγ−1

γ + 1
2 , x ≥ 1,

x2

2 , 0 ≤ x ≤ 1,

0, x ≤ 0,

(24)

where (ai, bi)i=1,...,n is training data with ai ∈ Rd and bi ∈ {+1,−1}; µ ≥ 0, and f(x) satisfies Assumption 2.4. f(x) is
µ-strongly γ-quasar-convex and L-smooth by properties of quasar-convex functions introduced in (Hinder et al. (2020), D.3),
where L =

∑n
i=1 ∥ai∥/n + 0.5µ. We choose γ ∈ {0.5, 0.8} and normalize each ai for simplicity so that L = 1 + 0.5µ.

Note that each gγ(bia
T
i x) has at least one common minimizer. Therefore, Assumption 2.7 is also satisfied by f . We use

the following multi-classification dataset from Dua & Graff (2017), which we treat as binary classification datasets. We
have n = 1372 and d = 4 according to the dataset. We set ϵ = 10−2 when µ = 0, and set ϵ = 10−3 when µ > 0. We
generate the error bar the same way as simulations in section 4. Figure 4 shows that QASGD enjoys faster convergence
than SGD while QASVRG enjoys fast convergence and lower complexity than QAGD and GD. When µ = 0.002, Figure
4 also shows the superiority of QASVRG (Option I) in terms of convergence speed and complexity given κϵ ≈ 0.5 < 1.
We also compare our methods with GD, QAGD and SGD on solving empirical risks of GLM with logistic link function

29



Accelerated Stochastic Optimization Methods under Quasar-convexity

Figure 3. Evaluation of QASGD with different σ on three LDS instances

Figure 4. Evaluation of each algorithm on problem (24)

σ(z) = (1 + exp(−z))−1. Consider the following optimization problem

min

{
f(w) =

1

n

n∑
i=1

[(
σ
(
wTxi

)
− yi

)2]}
, (25)

where xi ∼ N (0, I), w∗ ∼ N (0, I) and yi = σ
(
wT

∗ xi

)
for each i ∈ [n]. In our experiment, we choose n = 5000,

d = 50 and the initial iterate w0 ∼ N (0, 100I). Since it is intractable to compute the parameter of quasar-convexity γ and
smoothness L, we evaluate our methods with γ = 0.5 and L = 105 by extensive grid search.

Figure 5. Evaluation of each algorithm on problem (25)
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