
DDGR: Continual Learning with Deep Diffusion-based Generative Replay

Rui Gao 1 Weiwei Liu 1

Abstract
Popular deep-learning models in the field of
image classification suffer from catastrophic
forgetting—models will forget previously ac-
quired skills when learning new ones. Generative
replay (GR), which typically consists of a genera-
tor and a classifier, is an efficient way to mitigate
catastrophic forgetting. However, conventional
GR methods only focus on a single instruction
relationship (generator-to-classifier), where the
generator synthesizes samples for previous tasks
to instruct the training of the classifier, while ig-
noring the ways in which the classifier can benefit
the generator. In addition, most generative replay
methods typically reuse the generated samples to
update the generator, which causes the samples
regenerated by the generator deviating from the
distribution of previous tasks. To overcome these
two issues, we propose a novel approach, called
deep diffusion-based generative replay (DDGR),
which adopts a diffusion model as the generator
and calculates an instruction-operator through
the classifier to instruct the generation of samples.
Extensive experiments in class incremental (CI)
and class incremental with repetition (CIR) set-
tings demonstrate the advantages of DDGR. Our
code is available at https://github.com/
xiaocangshengGR/DDGR.

1. Introduction
In the digital world, the number of new tasks is increas-
ing overwhelmingly as huge amounts of data are produced
(Liu & Tsang, 2015; Liu et al., 2017; Liu & Tsang, 2017;
Liu et al., 2019). This continuous generation of emerging
learning tasks requires learning systems to adapt quickly to
changing environments. Recently, many studies have shown

1School of Computer Science, National Engineering Research
Center for Multimedia Software, Institute of Artificial Intelligence
and Hubei Key Laboratory of Multimedia and Network Communi-
cation Engineering, Wuhan University, Wuhan, China. Correspon-
dence to: Weiwei Liu <liuweiwei863@gmail.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

that existing standard deep learning methods quickly forget
their previously acquired experiences when learning new
tasks (Kirkpatrick et al., 2017). This phenomenon, referred
to as catastrophic forgetting (Kumaran et al., 2016), repre-
sents a significant challenge for scenarios in which tasks are
learned in sequence and previous training data cannot be
obtained.

Continual learning (CL)—also referred to as lifelong learn-
ing (Chen & Liu, 2018), sequential learning (Aljundi et al.,
2019), and incremental learning (Aljundi et al., 2018)—has
emerged as an efficient way to mitigate catastrophic for-
getting in deep learning models. Classical CL works have
explored a range of approaches to help the model remember
previous knowledge. Among them, the generative replay
(GR) model is one of the most popular methods due to its
promising experimental results (Hayes et al., 2021). In the
field of image classification, GR methods usually consist
of two components: a generator and a classifier. The gen-
erator aims to generate or synthesize samples containing
previous task knowledge and feeds these samples to the
classifier. The classifier then trains with new data as well as
generated samples to mitigate catastrophic forgetting. For
example, Kemker & Kanan (2018) propose FearNet, which
is a generator that employs a brain-inspired dual-memory
system to instruct the classifier training; Wu et al. (2018)
propose MeRGANs, which can generate images without
forgetting; Ye & Bors (2020) propose L-VAEGAN, which
induces generative replay samples and learns informative
latent representations.

However, most GR methods suffer from two disadvantages:
the adoption of instruction in a single direction (generator-
to-classifier) and the reuse of generated samples. In CL,
the classifier, which is trained on new data and previous
samples, is able to help the generator adjust to the changing
tasks. In contrast, most GR methods ignore the benefit
offered by the classifier to the generator. Moreover, reusing
generated samples may produce low-quality samples for
previous tasks. For example, DGR (Shin et al., 2017) trains
a new generator on a mixed data distribution of new samples
and reused samples. Figure 1 shows that DGR generates
fuzzy samples for previous tasks. This paper proposes to use
a diffusion probabilistic model (referred to here for brevity
as a diffusion model) (Sohl-Dickstein et al., 2015; Ho et al.,
2020) to address these two issues.

1

https://github.com/xiaocangshengGR/DDGR
https://github.com/xiaocangshengGR/DDGR

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

0
1
2

40
41
42

76
77
78

Batch
(Task)

Updating the generator by
original previous samples

Updating the generator by
reusing generated samples

Clear sample Fuzzy sample

Figure 1. We use DGR as an example to demonstrate that reusing generated samples will lead to the generation of low-quality samples for
previous tasks. We conduct experiments on CORe50. Further details of these experiments are provided in Section 3.2.

Diffusion models are motivated by non-equilibrium thermo-
dynamics (Sohl-Dickstein et al., 2015), and are proven to be
able to synthesize high-quality images or audio (Ho et al.,
2020; Chen et al., 2021; Ho et al., 2022a; Kong et al., 2021).
As illustrated in Figure 2, a diffusion model maintains a
Markov chain of diffusion steps to gradually add Gaussian
noise to data, and learns to reverse the diffusion process
in order to generate the desired samples from the noise.
Different from VAE (Kingma & Welling, 2014) or GAN
(Goodfellow et al., 2014), diffusion models are learned ac-
cording to a fixed procedure and constructed by latent high-
dimensional variables, which are scaled to be the same size
as the original data.

In this paper, we propose a novel approach, called deep
diffusion-based generative replay (DDGR), which uses a
diffusion model as the generator to synthesize samples for
previous tasks. DDGR concentrates on a bi-directional in-
structional relationship between the generator and the clas-
sifier. When learning new tasks, DDGR uses the classifier,
which is pretrained on previous tasks, to instruct the sam-
pling process of the diffusion model at each time step. New
data is combined with the generated samples and used to
train the classifier. The diffusion model is also trained on
the combined data to enable it to adjust to the changing
tasks. Meanwhile, the instruction provided by the classifier
to the diffusion model guarantees a high quality of synthetic
samples that will not decrease as the tasks change. Our main
contributions can be summarized as follows:

• We focus on sampling process of a diffusion model and
explore how this process might be instructed by a pre-
trained classifier. Specifically, we calculate instruction-
operator through classifier at each time step of diffu-

sion model to guide the generation of samples.

• The novel DDGR is proposed based on a diffu-
sion model, where the classifier uses the instruction-
operator to instruct the sampling process of the diffu-
sion model. Benefiting from the instruction-operator,
DDGR significantly improves the quality of generated
samples for previous tasks.

• Extensive experimental results under class incremen-
tal (CI) and class incremental with repetition (CIR)
settings demonstrate the advantages of DDGR.

2. Related Work
Continual learning. Existing researches in CL mainly
focus on how to solve the catastrophic forgetting. Some
surveys (Parisi et al., 2019; Lesort et al., 2019; Pfülb &
Gepperth, 2019; Farquhar & Gal, 2018) have shown that
existing CL works can be broadly divided into three cat-
egories: (i) regularization-based methods, (ii) parameter
isolation methods and (ii) replay methods.

Classical regularization-based methods add an extra regular-
ization term to the loss function. These methods penalize
changes to important parameters of model for previous tasks
(Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al.,
2018; Lee et al., 2017). There are also other regularization-
based methods that are based on functional regularization
(Pan et al., 2020; Benjamin et al., 2019), uncertainty regular-
ization (Ahn et al., 2019), classifier projection regularization
(Cha et al., 2021) and node importance (Jung et al., 2020).

Parameter isolation methods dedicate different model pa-
rameters to each task to prevent any possible forgetting.

2

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

Forward process: adding Gaussian noise

Reverse process: constructing samples from the noise

is unknown
×

Learning to approximate

Input samplesNoise

Figure 2. An illustration of diffusion models. Here, we present a DDPM structure (Ho et al., 2020) upon which our work is based. DDPM
is a typical diffusion model based on (i) a forward process, in which Gaussian noise is gradually added to the input samples, and (ii) a
reverse process, in which the diffusion model aims to recover the original input samples from the noisy data.

When no architectural size constraints apply, it is possible
to grow new branches for new tasks while freezing previ-
ous task parameters (Xu & Zhu, 2018; Mallya & Lazebnik,
2018; Serrà et al., 2018).

Replay methods generally have two ways to replay in arti-
ficial neural networks: partial replay and generative replay
(GR)(Hayes et al., 2021). Partial replay stores either all
or a subset of previously learned inputs in a replay buffer,
and mixes these inputs with new samples to train the clas-
sifier (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017;
Rolnick et al., 2019; Ayub & Wagner, 2021). In contrast
to storing previous examples, GR generates synthetic sam-
ples for previous tasks. Classical GR methods use VAE or
GAN as the generator for CL (Wu et al., 2018; Achille et al.,
2018; Zhai et al., 2019; Wu et al., 2019; Ramapuram et al.,
2020; Mundt et al., 2022). For example, DGR (Shin et al.,
2017) uses GAN to to generate previous samples for data
replaying. Wu et al. (2018) propose MeRGANs to solve the
problem of forgetting in generative models (GAN in partic-
ular), and achieve great performance in CL. In addition, Liu
et al. (2020) propose a mnemonics training framework to
generate exemplars which are optimizable. Most of these
methods perform a single instruction and reuse the gener-
ated samples, which we try to solve in this paper. In addition,
graph-based replay (Tang & Matteson, 2021) and gradient
projection memory (Saha et al., 2021) have also been proven
to be efficient.

Diffusion model. A diffusion model is a parameterized
Markov chain trained using variational inference to produce
samples matching the data after finite time. Diffusion mod-
els are based on two components: (i) a forward diffusion
stage, in which the input data is gradually perturbed over
several steps by adding Gaussian noise; (ii) a reverse diffu-
sion stage, in which a generative model learns to gradually
reverse the diffusion process to recover the input data from
the diffused (noisy) data. Croitoru et al. (2022) provide
a categorization of diffusion models based on the denois-

ing condition: unconditional image generation and condi-
tional image generation. Unconditional image generation do
not require supervision signals, being completely unsuper-
vised. For example, denoising diffusion probabilistic model
(DDPM) (Ho et al., 2020), which learns the reverse process
by estimating the noise in the image at each step, is a typical
unconditional diffusion model; On top of DDPM, Nichol &
Dhariwal (2021) propose a unconditional diffusion model
which shows that it is required to learn the variance in terms
of log-likelihood; the work of Nachmani et al. (2021) is
also unconditional where they replace the Gaussian noise
distributions with two other distributions, a mixture of two
Gaussians and the Gamma distribution. Conditional image
generation is commonly based on various source signals,
in most cases some class labels being used. For example,
Pandey et al. (2021) build a generator-refiner framework,
where the generator is a VAE and the refiner is a DDPM con-
ditioned by the output of the VAE; Ho & Salimans (2022)
introduce a guidance method whose idea is based on the
implicit classifier derived from the Bayes rule; Singh et al.
(2022) propose a novel method for conditional image gen-
eration which conditions the noise signal (from where the
sampling starts) instead of conditioning the signal through-
out the sampling process. More details can be found in the
work of Croitoru et al. (2022). Recently, diffusion models
have shown their exquisite potential in the field of computer
vision (Dhariwal & Nichol, 2021; Ho et al., 2022b; Li et al.,
2022; Luo & Hu, 2021), audio processing (Chen et al., 2021;
Popov et al., 2021; Kim et al., 2022), and AI for science
(Luo et al., 2021; Xu et al., 2022; Jing et al., 2022). In this
paper, we show the advantages of diffusion models in CL.

3. Preliminaries
3.1. Denoising diffusion probabilistic model

Our work is based on DDPM (Ho et al., 2020) which is a
typical diffusion model architecture. As shown in Figure 2,
DDPM consists of a forward and a reverse processes.

3

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

Forward process. Given a data point sampled from a real
data distribution x0 ∼ q(x0), the forward process is fixed to
a Markov chain, which gradually adds Gaussian noise to the
data according to a variance schedule {βn ∈ (0, 1)}Nn=1:

q (x1:N | x0) =

N∏
n=1

q (xn | xn−1) (1)

q (xn | xn−1) = N
(
xn;

√
1− βnxn−1, βnI

)
(2)

where
√
1− βnxn−1 and βnI are the mean and variance

of the Gaussian distribution respectively, while xn is the
noisy sample at time step n. It is noteworthy that the mean,
variance, and noisy sample have the same dimensionality
as x0. This process produces a sequence of noisy samples
x1, ...,xN in N steps. Based on reparameterization trick,
xn at any time step n can be derived by x0 as follows:

xn =
√
ᾱnx0 +

√
1− ᾱnϵ (3)

q (xn | x0) = N
(
xn;

√
ᾱnx0, (1− ᾱn) I

)
(4)

where ϵ ∼ N (0, I), αn = 1− βn and ᾱn =
∏n

i=1 αi (see
Appendix B for details of Equations (3) and (4)).

Reverse process. If we can reverse the above process and
generate samples from q (xn−1 | xn), it is possible to con-
struct the original input from the Gaussian noise. However,
the conditional probability q (xn−1 | xn) is unknown. An
alternative is to train a model with parameter θ to learn a
conditional probability pθ (xn−1 | xn) that approximates
q (xn−1 | xn). The reverse process can be expressed as
follows:

pθ (x0:N) = p (xN)

N∏
n=1

pθ (xn−1 | xn) (5)

pθ (xn−1 | xn) = N (xn−1;µθ (xn, n) ,Σθ (xn, n)) (6)

Training objective. The setup above is similar to VAE.
To formulate this minimization problem, a variational lower
bound is used to optimize the negative log-likelihood:

− log pθ (x0) ≤ − log pθ (x0)

+DKL (q (x1:N | x0) ∥pθ (x1:N | x0))

= Eq(x1:N |x0)

[
log

q (x1:N | x0)

pθ (x0:N)

] (7)

−Eq(x0)log pθ(x0)≤Eq(x0:N)

[
log

q (x1:N |x0)

pθ (x0:N)

]
=:LLB (8)

Sohl-Dickstein et al. (2015) split the objective LLB into sev-
eral KL-divergence terms, where each term in the objective

is analytically computable:

LLB = Eq(x0:N)

[
log

q (x1:N | x0)

pθ (x0:N)

]
= Eq[DKL (q (xN | x0) ∥p (xN))︸ ︷︷ ︸

LN

+
∑
n≥1

DKL (q (xn | xn+1,x0) ∥pθ (xn | xn+1))︸ ︷︷ ︸
Ln

− log pθ (x0 | x1)︸ ︷︷ ︸
L0

].

(9)
DDPM fixes βn to constants, and LN can be ignored be-
cause it is also constant. L0 is modelled by a separate dis-
crete decoder derived from N (x0;µθ (x1, 1) ,Σθ (x1, 1)).
As for Ln, it is noteworthy that q (xn | xn+1,x0) of Ln is
traceable:

q (xn | xn+1,x0) = N
(
xn; µ̃n+1, Σ̃n+1

)
(10)

µ̃n+1 =
1

√
αn+1

(
xn+1 −

1− αn+1√
1− ᾱn+1

ϵ

)
(11)

Σ̃n+1 =
1− ᾱn

1− ᾱn+1
· βn+1I (12)

In DDPM, Σ̃n+1 are set to σ2
n+1I, which are time depen-

dent constants. As for µ̃n+1, it is only necessary to train
ϵθ(xn+1, n+ 1) to predict ϵ, because xn+1 can be derived
at training time. Therefore, the objective is:

Ln = Ex0,ϵ

[
ω ∥ϵ− ϵθ(xn+1, n+ 1)∥2

]
+ C (13)

where ω = (1−αn+1)
2

2σ2
n+1αn+1(1−ᾱn+1)

is the weighting term, while

C is a constant term that does not depend on θ. ϵθ(xn+1, n+
1) is a model with parameter θ, which takes xn+1 and n+1
as inputs. Ho et al. (2020) find that it is better to train
the diffusion model without the weighting term. The final
objective can be expressed as follows:

En∼[1,N−1],x0,ϵ

[∥∥∥ϵ−ϵθ

(√
ᾱn+1x0+

√
1−ᾱn+1ϵ,n+1

)∥∥∥2] (14)

where xn+1 in Equation (13) is replaced according to Equa-
tion (3). Further details regarding the training objective can
be found in Appendix C.

Sampling. After training the model ϵθ(xn+1, n+ 1), the
conditional probability, the mean and variance of which are

1√
αn+1

(
xn+1 − 1−αn+1√

1−ᾱn+1

ϵθ (xn+1, n+ 1)

)
and σ2

n+1I

respectively, is known. Starting at xN ∼ N (0, I), the com-
plete sampling process can be run according to the following
equation:

xn=
1

√
αn+1

(
xn+1−

1−αn+1√
1−ᾱn+1

ϵθ(xn+1,n+1)

)
+σn+1z (15)

where z ∼ N (0, I) and n = N − 1, · · · , 0.

4

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

3.2. Preliminary experiments

To demonstrate that reusing generated samples will lead
to low-quality generated samples for previous tasks, we
conduct preliminary experiments on CORe50 (Lomonaco
& Maltoni, 2017). Details of the setup on CORe50 can be
found in Section 5.1. We take DGR as an example and run
DGR twice on CORe50. In the first run, we assume that the
generator has access to the previous task data, and use the
original data of the previous tasks to update the generator.
In the second run, we reuse the generated samples to update
the DGR generator. We investigate the generated samples at
each task over the two runs. Partial samples are presented
in Figure 1. We find that the samples in the second run (in
which the generated samples are reused) become blurred
as new tasks are learned. In contrast, the samples in the
first run can still be clearly distinguished as new tasks are
learned. These results indicate that reusing the generated
samples will decrease the quality of the generated samples
when learning new tasks.

4. Deep diffusion-based generative replay
In this section, we present our proposed method—DDGR.
We adopt DDPM as the generator. Moreover, we utilize
a bi-direction relationship between the generator and the
classifier. Similar to most GR methods, DDGR uses the
generator to generate samples for use in training the clas-
sifier for previous tasks. In addition, DDGR also uses the
classifier, which is pretrained on previous tasks, to instruct
the generator to synthesize high-quality samples of previ-
ous tasks. Specifically, we calculate an instruction-operator,
which affects the noisy sample, through the classifier at each
time step of the diffusion model.

4.1. Instruction-operator

In classifier-to-generator instruction, we focus primarily
on the sampling process of the diffusion model. Dhariwal
& Nichol (2021) inspire us to achieve this by a classifier.
We assume that the classifier f(x) is pretrained on previous
sample set X (drawn from Dpre, which is the mixed distribu-
tion of previous tasks) with label set Y = {y1, y2, · · · , ym}.
To mitigate catastrophic forgetting, the classifier requires
high-quality generated samples whose labels belong to Y .
Therefore, we need to consider how to condition the sample
process of DDPM on a specific label y.

We first condition the entire Markov process of DDPM on
label y, and define conditional Markov process as q̂ (to dis-
tinguish it from unconditional Markov process q, which cor-
responds to DDPM). The key role of conditional sampling
on y is to track the conditional probability q̂ (xn | xn+1, y).
It is noteworthy that we have the following theorem:

Theorem 4.1. q̂ (xn | xn+1, y) is proportional to

q (xn | xn+1) q̂ (y | xn), where q (xn | xn+1) is the
conditional probability in the reverse process of q, and
q̂ (y | xn) is the label distribution given xn.

See Appendix D for more details. We assume that q̂ (y | xn)
in Theorem 4.1 is approximated by pζ (y | xn) with param-
eter ζ. As introduced in Section 3.1, we use pθ (xn | xn+1)
to approximate q (xn | xn+1) after training the diffusion
model. By plugging pζ (y | xn) and pθ (xn | xn+1) into
Theorem 4.1, we can derive the following:

q̂ (xn | xn+1, y) = Cnorpθ (xn | xn+1) pζ (y | xn) (16)

where Cnor is a normalizing constant term. Recalling
that the conditional probability in sampling process is
pθ (xn | xn+1) = N

(
xn;µθ (xn+1, n+ 1) , σ2

n+1I
)
, ac-

cording to the Gaussian density function, we can then derive
log pθ (xn | xn+1) as follows:

log pθ (xn | xn+1)=C−(xn − µθ)
2

2σ2
n+1I

=C−(xn−µθ)
⊤
(2σ2

n+1I)
−1(xn−µθ)

(17)

where C is a constant term independent from xn, while
µθ represents µθ (xn+1, n+ 1) for convenience. We also
use C to represent all constant terms that are indepen-
dent from xn in the following steps for convenience.
As for log pζ (y | xn), we use the Taylor expansion of
log pζ (y | xn) at xn = µθ as an approximation of itself.

log pζ (y | xn) ≈ log pζ (y | xn)|xn=µθ
+

(xn−µθ)∇xn log pζ (y |xn)|xn=µθ

= C+ (xn − µθ)G

(18)

where G = ∇xn
log pζ (y |xn)|xn=µθ

. We can derive
log q̂ (xn | xn+1, y) by Equations (16), (17) and (18):

log q̂ (xn | xn+1, y) (19)
=log(p0(xn|xn+1)p0(g|xn)) +C (20)

≈− (xn − µθ)
2

2σ2
n+1I

+ (xn − µθ)G+C (21)

=−
(
xn − µθ − σ2

n+1G
)2

2σ2
n+1I

+
σ2
n+1

2
G2 +C (22)

=−
(
xn − µθ − σ2

n+1G
)2

2σ2
n+1I

+C (23)

=C−
(
xn−µθ−σ2

n+1G
)⊤
(2σ2

n+1I)
−1(xn−µθ−σ2

n+1G
)

(24)

where the constant term C can be ignored due to the
normalizing constant Cnor in Equation (16). Recall-
ing the Gaussian density distribution, Equation (24)
means that q̂ (xn | xn+1, y) can be approximated by

5

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

Diffusion
model

Classifier

Generated
sample

New data

Diffusion
model

Classifier

Sampling process

Combination

Classifier

Forward processDiffusion model

Task t-1 Task t Task t+1

Classifier instructs the sampling
process of the diffusion model

Steps (1) and (2)

Figure 3. An illustration of how the instruction-operator works in the sampling process of the diffusion model. At each time step, we
perform steps (1) and (2) to calculate an instruction-operator through the classifier. We plug the instruction-operator into the sample
transition at step (3) and derive the next noisy sample xn.

N
(
xn;µθ + σ2

n+1G, σ2
n+1I

)
. The condition of the sam-

pling process given label y is as presented below:

xn = µθ + σ2
n+1G+σn+1z (25)

where µθ = 1√
αn+1

(
xn+1− 1−αn+1√

1−ᾱn+1

ϵθ(xn+1,n+1)

)
and

z ∼ N (0, I).

Let us now turn our attention to the operator G =
∇xn

log pζ (y | xn)|xn=µθ
. In the operator, pζ (y | xn) is

essentially a classifier that takes xn as input and approxi-
mates q̂ (y | xn) with parameter ζ. We assume that xn is
able to be drawn from Dpre, which indicates that pζ (y | xn)
and the pretrained classifier f(·) have similar input do-
mains. Therefore, we regard the pretrained classifier f(·)
as pζ (y | xn); this means that we can utilize the pretrained
classifier f(·) to instruct the sampling process of the diffu-
sion model by the operator, as follows:

G=∇xn
log pζ(y |xn)|xn=µθ

=∇xn
ℓ(f ζ(xn), y)

∣∣
xn=µθ

(26)

where ℓ(·) is the loss function. We refer to this operator
(26) as the instruction-operator, which plays an important
role in classifier-to-generator instruction. An illustration of
how the instruction-operator works in the sample process
of the diffusion model can be found in Figure 3. When the
diffusion model generates samples from Gaussian noise, we
calculate the instruction-operator through the pretrained
classifier f ζ(·) and plug it into the sample transition (i.e.
Equation (25)). This instruction-operator affects the noisy
sample at each time step, enabling the diffusion model to
generate the desirable samples for the classifiers.

4.2. Generative replay with instruction-operator

Overview. Here, we provide an overview of our proposed
method DDGR in Algorithm 1. DDGR uses DDPM as the
generator and adopts a bi-directional instruction relationship
between the generator and the classifier. It is noteworthy
that the previous classifier f ζ̂t−1 was trained in sequence
on tasks 1, 2, . . . , t− 1, which indicates that f ζ̂t−1 can be
regarded as the pretrained classifier f ζ(·). When learning a
new task, DDGR first uses a classifier pretrained on previ-
ous tasks to instruct the diffusion model to generate samples
with previous labels (Line 4 of Algorithm 1). Specifically,
we calculate an instruction-operator through the classifier
at each time step of the diffusion model and plug it into the
sample transition (details provided in Algorithm 2). After
several iterations, the diffusion model generates the desir-
able samples with previous labels for the classifier. DDGR
then trains the classifier with a combination of generated
samples and new data (Line 9 of Algorithm 1). Finally,
DDGR updates the diffusion model according to Equa-
tion (14) (Lines 10 to 17 of Algorithm 1).

Generated sample reuse issue. As shown in line 12 of
Algorithm 1, DDGR also reuses the generated samples to
update the diffusion model as the tasks change. However,
benefiting from the instruction of the classifier, DDGR sig-
nificantly improves the quality of the samples of previous
tasks produced by the generator. When learning a new task,
the classifier is a pretrained model, which means that the
classifier contains rich knowledge of previous tasks. The
instruction-operator can be intuitively regarded as a type of

6

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

Algorithm 1 Deep Diffusion-based Generative Replay

Input: (τ1, τ2, ..., τT): all training tasks; T : total number
of tasks; St: the sample set of task τt; ϵθ: the training
model of the diffusion model with parameter θ; N :
number of diffusion model steps; NS: the number of
generated samples; fζ : the classifier with parameter ζ.

1: Y = {}
2: for t = 1, . . . , T do
3: if t ≥ 2 then
4: St=InstructionProcess(ϵθ̂t−1 ,fζ̂t−1 , N,NS,Y)

5: St=St ∪ St

6: else
7: St=St

8: end if
9: ζ̂t = argminζ ℓ(f ζ(S

t))

10: θ̂t = θ̂t−1

11: repeat
12: x0 = a random sample in St

13: n ∼ Uniform({1, . . . , N}) and ϵ ∼ N (0, I)
14: xn =

√
ᾱnx0 +

√
1− ᾱnϵ Equation (3)

15: Update θ̂t by∇θ∥ϵ−ϵθ(xn, n)∥2 Equation (14)
16: until converged
17: Update Y
18: end for
Output: ζ̂T

distillation of previous knowledge to classifier. At each time
step of the sampling process, DDGR adds the instruction-
operator to the sample transition, which means that DDGR
continuously adds previous knowledge to the noisy sample
xn. This sampling process significantly strengthens the gen-
erated samples, which prevents the generated samples from
deviating from the distribution of previous tasks. Therefore,
DDGR is not impacted by the problems that typically result
from generated sample reuse. We provide the samples gen-
erated by DDGR at the last three batches of CORe50 (see
details of the experimental settings in Section 5.1). The sam-
ples generated by DDGR can still be clearly distinguished.
Details can be found in Appendix E.

5. Experiments
We conduct extensive experiments to verify the superior
performance of our proposed DDGR. In this paper, we con-
sider two scenarios commonly encountered in CL, namely
CI (van der Ven & Tolias, 2018; van de Ven & Tolias, 2019)
and CIR (Lomonaco & Maltoni, 2017; Cossu et al., 2022).

5.1. Experimental setup

Baselines: In order to verify the superiority of our pro-
posed method, we select eight baselines for comparison:

Algorithm 2 InstructionProcess

Input: ϵθ: the training model of the diffusion model with
parameter θ; fζ : the classifier with parameter ζ; N :
number of diffusion model steps; NS: the number of
generated samples; Y: label set.

1: counter = 0 and St = {}
2: repeat
3: y = a random label in Y
4: xN ∼ N (0, I)
5: for n = N − 1, . . . , 0 do
6: z ∼ N (0, I)

7: µ= 1√
αn+1

(
xn+1− 1−αn+1√

1−ᾱn+1

ϵθ̂t−1(xn+1,n+1)

)
8: G=∇xnℓ(fζ̂t−1(xn), y)

∣∣∣
xn=µ

Equation (26)

9: xn = µ+ σ2
n+1G+σn+1z Equation (25)

10: end for
11: St = St ∪ {(x0, y)}
12: counter = counter + 1
13: until counter ≥ NS
Output: St

SI (Zenke et al., 2017), MAS (Aljundi et al., 2018), EWC
(Kirkpatrick et al., 2017), IMM (Lee et al., 2017), DGR
(Shin et al., 2017), MeRGAN (Wu et al., 2018), PASS (Zhu
et al., 2021) and Finetuning. SI, MAS, EWC, and IMM
can be considered as the prior-focused methods, which esti-
mate a distribution of model parameters as the prior when
learning from new data. These methods typically estimate
the importance of all neural network parameters, with pa-
rameters assumed to be independent to ensure feasibility.
DGR and MeRGAN use GAN to generate previous sam-
ples for data replaying. PASS is a simple non- exemplar
based method. See Appendix A for details.

Datasets: In CI scenario, we conduct experiments on two
widely used datasets: CIFAR-100 and ImageNet (Deng
et al., 2009). For this scenario, we follow Liu et al. (2020)
and utilize a similar division of datasets, which has one ini-
tial task and four incremental tasks. For CIFAR-100, initial
task consists of 50 random classes, and all incremental tasks
have the same number of classes: specifically, the number
of classes in one incremental task is set to either 5 or 10.
ImageNet contains around 1.3 million samples of 224×224
color images from 1000 classes. In ImageNet, initial task
consists of 500 random classes, and the number of classes
in one incremental task is set to either 50 or 100. Moreover,
in CIR scenario, we use CORe50 (Lomonaco & Maltoni,
2017) to conduct experiments. The data in CORe50 was col-
lected during eleven distinct sessions (eight indoor and three
outdoor) characterized by different backgrounds and light-
ing conditions. The dataset consists of 50 domestic objects
belonging to 10 categories. Classification in this paper is

7

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

Table 1. All results on two datasets in the CI scenario. We present the final average accuracy AT and forgetting rate F avg
T .

AT = accT,0:T F avg
T =

∑
c∈CT

F c
T/|CT |

CIFAR-100 ImageNet CIFAR-100 ImageNet

Method AlexNet ResNet AlexNet ResNet AlexNet ResNet AlexNet ResNet

NC=5 10 5 10 50 100 50 100 5 10 5 10 50 100 50 100

Finetuning 6.11 5.12 18.08 17.50 5.33 3.24 12.95 10.28 60.45 59.87 61.65 62.79 56.55 57.83 58.58 59.71
SI 16.96 13.57 26.45 23.15 19.38 14.38 28.88 24.38 48.58 50.18 52.27 56.65 41.18 45.94 41.93 44.56
EWC 15.29 9.71 25.49 18.82 15.22 13.03 23.51 22.03 50.38 54.27 52.83 60.47 45.65 47.01 46.98 46.96
MAS 20.13 18.94 29.94 28.28 16.35 14.51 31.25 25.51 45.75 45.37 49.38 51.31 44.85 45.70 39.55 44.34
IMM 11.26 9.87 21.02 19.79 13.68 11.13 23.19 19.73 54.60 54.57 58.12 59.89 46.65 49.31 47.70 49.62
DGR 42.49 38.16 52.96 48.94 43.94 38.81 53.32 47.56 24.08 26.52 26.36 31.14 17.31 22.52 17.96 21.84
MeRGAN 46.03 43.23 57.19 55.69 — — — — 36.95 26.49 20.12 22.55 — — — —
PASS 53.21 48.65 62.30 60.63 — — — — 27.35 19.43 16.97 21.21 — — — —
DDGR 59.20 52.22 63.40 60.04 53.86 52.21 64.83 61.26 23.00 16.86 15.34 19.25 6.98 7.82 5.65 7.73

performed at object level (50 classes). We follow Lomonaco
& Maltoni (2017), which generates 79 tasks from CORe50.
The first task includes ten classes, and each subsequent task
contains five classes. See Appendix A for details.

Models: For the classifier, we follow the work of Rebuffi
et al. (2017); Liu et al. (2020); Delange et al. (2021) and use
a 32-layer ResNet and AlexNet (Krizhevsky et al., 2012)
for all experiments. Moreover, following the work of Ho
et al. (2020), we use the UNet architecture for the diffusion
model. The UNet model uses a stack of residual layers and
downsampling convolutions, followed by a stack of residual
layers with upsampling colvolutions, with skip connections
connecting layers with the same spatial size.

Evaluation: In the CI scenario, we use two evaluation
metrics which are similar to the work of Liu et al. (2020);
Choi et al. (2021) . The average accuracy at task i is defined
as Ai = acci,0:i, where the learned model Mi is evaluated
on the test dataset S0:i

test. S
0:i
test denotes all data (classes) seen

so far. The forgetting rate of the previous class c at task i
is defined as F c

i = accj,c − acci,c, where accj,c and acci,c
are the accuracies of models Mj and Mi on the test dataset
Sc
test, respectively. Mj is the first model to see class c, and

Sc
test is the dataset with only one label c. The average for-

getting rate at task i is defined as F avg
i =

∑
c∈Ci

F c
i /|Ci|,

where Ci is the set of all seen classes. In the CIR scenario,
we follow the work of Lomonaco & Maltoni (2017) and
evaluate the learned model Mi by the average accuracy
AFTS

i = acci,FTS which is the accuracy of Mi on a Full
Test Set (Lomonaco & Maltoni, 2017). The Full Test Set is
fixed and includes the patterns of all classes.

5.2. Results in CI scenario

We gather the final average accuracies and average forget-
ting rates of all experiments in the CI scenario in Table 1; for
convenience, we refer to them as accuracy and forgetting,
respectively. Moreover, to maintain consistency with (Liu

et al., 2020), we refer to each task as a “phase” in the CI
scenario. On CIFAR-100, DDGR achieves the best perfor-
mance in almost all experiments. For example, when NC is
5 and the model is AlexNet, we observe that DDGR reduces
the forgetting from 24.08% to 23.00% compared with the
best baseline, representing an improvement of 1.08%, while
DDGR outperforms the best baseline by 5.99% in terms of
accuracy. We also track the performance of each baseline
on CIFAR-100 in Figures 4(a) to 4(d). As the figures clearly
show, our proposed DDGR outperforms the other baselines.
For example, when NC is 5 and the model is AlexNet, the
accuracy of DDGR is 0.05% to 10.04% higher than that of
the best baseline at each phase; here, the accuracy of DDGR
at each phase ranges from 58.57% to 66.13%.

Table 1 further presents the results of all experiments on Im-
ageNet. As is evident, DDGR performs better than all seven
baselines. For example, when NC is 50 and the model is
AlexNet, we find that DDGR improves the forgetting from
17.31% to 6.98% compared with the best baseline, repre-
senting an improvement of 10.33%. In the same experiment,
DDGR outperforms the best baseline by 9.92% in terms
of accuracy, achieving an overall accuracy of 53.86%. Fig-
ures 4(e) to 4(h) present the performance of all baselines on
ImageNet. DDGR outperforms all baselines at every phase
in all experiments. For example, when NC is 50 and the
model is AlexNet, the accuracy of DDGR is 0.20% to 9.92%
higher than that of the best baseline at each phase; here, the
accuracy of DDGR at each phase ranges from 53.68% to
62.49%.

5.3. Results in CIR scenario

To maintain consistency with related works (Lomonaco &
Maltoni, 2017), we refer to each task as a “batch” in this
scenario. As illustrated in Figure 5, the performance of
the model trained by each baseline is not stable, but the
accuracy acci,FTS tends to increase with new batches. This
means that the model can accumulate the knowledge of

8

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

0 1 2 3 4
#phase (i.e. task. NC=5)

10
20
30
40
50
60
70
80
90

Av
er

ag
e

Ac
cu

ra
cy

 %
SI
EWC
MAS

IMM
DGR

MeRGAN
PASS

DDGR
Finetuning

(a) CIFAR-100 AlexNet NC=5

0 1 2 3 4
#phase (i.e. task. NC=10)

10
20
30
40
50
60
70
80
90

Av
er

ag
e

Ac
cu

ra
cy

 %

SI
EWC
MAS

IMM
DGR

MeRGAN
PASS

DDGR
Finetuning

(b) CIFAR-100 AlexNet NC=10

0 1 2 3 4
#phase (i.e. task. NC=5)

10
20
30
40
50
60
70
80
90

Av
er

ag
e

Ac
cu

ra
cy

 %

SI
EWC
MAS

IMM
DGR

MeRGAN
PASS

DDGR
Finetuning

(c) CIFAR-100 ResNet NC=5

0 1 2 3 4
#phase (i.e. task. NC=10)

10
20
30
40
50
60
70
80
90

Av
er

ag
e

Ac
cu

ra
cy

 %

SI
EWC
MAS

IMM
DGR

MeRGAN
PASS

DDGR
Finetuning

(d) CIFAR-100 ResNet NC=10

0 1 2 3 4
#phase (i.e. task. NC=50)

10
20
30
40
50
60
70
80
90

Av
er

ag
e

Ac
cu

ra
cy

 %

SI
EWC
MAS

IMM
DGR

MeRGAN
PASS

DDGR
Finetuning

(e) ImageNet AlexNet NC=50

0 1 2 3 4
#phase (i.e. task. NC=100)

10
20
30
40
50
60
70
80
90

Av
er

ag
e

Ac
cu

ra
cy

 %
SI
EWC
MAS

IMM
DGR

MeRGAN
PASS

DDGR
Finetuning

(f) ImageNet AlexNet NC=100

0 1 2 3 4
#phase (i.e. task. NC=50)

10
20
30
40
50
60
70
80
90

Av
er

ag
e

Ac
cu

ra
cy

 %

SI
EWC
MAS

IMM
DGR

MeRGAN
PASS

DDGR
Finetuning

(g) ImageNet ResNet NC=50

0 1 2 3 4
#phase (i.e. task. NC=100)

10
20
30
40
50
60
70
80
90

Av
er

ag
e

Ac
cu

ra
cy

 %

SI
EWC
MAS

IMM
DGR

MeRGAN
PASS

DDGR
Finetuning

(h) ImageNet ResNet NC=100

Figure 4. The curve of each baseline with different classifiers on CIFAR-100 and ImageNet. On CIFAR-100, there are 50 classes in the
0–th phase, and the number of classes (NC) of each subsequent phase is set to either 5 or 10. On ImageNet, there are 500 classes in the
0–th phase, and the number of classes (NC) of each subsequent phase is set to either 50 or 100.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
#batch (i.e. task)

5
10
15
20
25
30
35
40
45
50
55
60
65
70

Av
er

ag
e

Ac
cu

ra
cy

 %

SI
EWC
MAS
IMM

DGR
DDGR
Finetuning

(a) AlexNet

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
#batch (i.e. task)

5
10
15
20
25
30
35
40
45
50
55
60
65
70

Av
er

ag
e

Ac
cu

ra
cy

 %

SI
EWC
MAS
IMM

DGR
DDGR
Finetuning

(b) ResNet

Figure 5. The results of using AlexNet and ResNet on CORe50
in CIR scenario. There are ten classes in the 0–th batch, and five
classes in each subsequent phase.

classes in the CIR scenario. By checking the ending points
of the curves in Figures 5(a) and 5(b), we can determine
that the model trained by DDGR accumulates more knowl-
edge about classes than those trained by other baselines.
For example, the final accuracy acc78,FTS of DDGR using
ResNet is 40.66%, which is 7.66% higher than that of the
best baseline. Therefore, DDGR performs better than other
baselines in the CIR scenario.

In addition, we demonstrate the advantages of DDGR in the
experiments without a large first task (see more details in
Appendix F). We present the effect of diffusion steps for
DDGR in Appendix G. We also show that DDGR should be
improved in terms of time cost in Appendix H.

6. Conclusion
In this paper, we propose a novel GR method called
deep diffusion-based generative replay (DDGR). DDGR
uses a diffusion model as the generator and proposes the
instruction-operator to instruct the diffusion model, thereby
generating high-quality samples for previous tasks. We
demonstrate the advantages of DDGR by means of exten-
sive experiments on CIFAR-100, ImageNet, and CORe50.

Acknowledgements
This work is supported by the National Natural Science
Foundation of China under Grant 61976161, the Fundamen-
tal Research Funds for the Central Universities under Grant
2042022rc0016.

9

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

References
Achille, A., Eccles, T., Matthey, L., Burgess, C. P., Watters,

N., Lerchner, A., and Higgins, I. Life-long disentangled
representation learning with cross-domain latent homolo-
gies. In NeurIPS, pp. 9895–9905, 2018.

Ahn, H., Cha, S., Lee, D., and Moon, T. Uncertainty-
based continual learning with adaptive regularization. In
NeurIPS, pp. 4394–4404, 2019.

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and
Tuytelaars, T. Memory aware synapses: Learning what
(not) to forget. In ECCV, volume 11207, pp. 144–161,
2018.

Aljundi, R., Rohrbach, M., and Tuytelaars, T. Selfless
sequential learning. In ICLR, 2019.

Ayub, A. and Wagner, A. R. EEC: learning to encode and
regenerate images for continual learning. In ICLR, 2021.

Benjamin, A. S., Rolnick, D., and Körding, K. P. Measuring
and regularizing networks in function space. In ICLR,
2019.

Cha, S., Hsu, H., Hwang, T., Calmon, F. P., and Moon,
T. CPR: classifier-projection regularization for continual
learning. In ICLR, 2021.

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and
Chan, W. Wavegrad: Estimating gradients for waveform
generation. In ICLR, 2021.

Chen, Z. and Liu, B. Lifelong Machine Learning, Second
Edition. 2018.

Choi, Y., El-Khamy, M., and Lee, J. Dual-teacher class-
incremental learning with data-free generative replay. In
CVPR, pp. 3543–3552, 2021.

Cossu, A., Graffieti, G., Pellegrini, L., Maltoni, D., Bacciu,
D., Carta, A., and Lomonaco, V. Is class-incremental
enough for continual learning? Frontiers Artif. Intell., 5:
829842, 2022.

Croitoru, F., Hondru, V., Ionescu, R. T., and Shah, M. Diffu-
sion models in vision: A survey. CoRR, abs/2209.04747,
2022.

Delange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X.,
Leonardis, A., Slabaugh, G., and Tuytelaars, T. A contin-
ual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2021.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In CVPR, pp. 248–255, 2009.

Dhariwal, P. and Nichol, A. Q. Diffusion models beat gans
on image synthesis. In NeurIPS, pp. 8780–8794, 2021.

Farquhar, S. and Gal, Y. Towards robust evaluations of
continual learning. CoRR, abs/1805.09733, 2018.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A. C., and Bengio,
Y. Generative adversarial nets. In NeurIPS, pp. 2672–
2680, 2014.

Hayes, T. L., Krishnan, G. P., Bazhenov, M., Siegelmann,
H. T., Sejnowski, T. J., and Kanan, C. Replay in deep
learning: Current approaches and missing biological ele-
ments. Neural Comput., 33(11):2908–2950, 2021.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
CoRR, abs/2207.12598, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In NeurIPS, 2020.

Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M., and
Salimans, T. Cascaded diffusion models for high fidelity
image generation. J. Mach. Learn. Res., 23:47:1–47:33,
2022a.

Ho, J., Salimans, T., Gritsenko, A. A., Chan, W., Norouzi,
M., and Fleet, D. J. Video diffusion models. CoRR,
abs/2204.03458, 2022b.

Jing, B., Corso, G., Chang, J., Barzilay, R., and Jaakkola,
T. S. Torsional diffusion for molecular conformer genera-
tion. CoRR, abs/2206.01729, 2022.

Jung, S., Ahn, H., Cha, S., and Moon, T. Continual learn-
ing with node-importance based adaptive group sparse
regularization. In NeurIPS, 2020.

Kemker, R. and Kanan, C. Fearnet: Brain-inspired model
for incremental learning. In ICLR, 2018.

Kim, H., Kim, S., and Yoon, S. Guided-tts: A diffusion
model for text-to-speech via classifier guidance. In ICML,
volume 162, pp. 11119–11133, 2022.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In ICLR, 2014.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N. C., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ra-
malho, T., Grabska-Barwinska, A., Hassabis, D., Clopath,
C., Kumaran, D., and Hadsell, R. Overcoming catas-
trophic forgetting in neural networks. Proceedings of the
national academy of sciences, 114(13):3521–3526, 2017.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.
Diffwave: A versatile diffusion model for audio synthesis.
In ICLR, 2021.

10

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In NeurIPS, 2012.

Kumaran, D., Hassabis, D., and McClelland, J. L. What
learning systems do intelligent agents need? complemen-
tary learning systems theory updated. Trends in cognitive
sciences, 20(7):512–534, 2016.

Lee, S., Kim, J., Jun, J., Ha, J., and Zhang, B. Overcoming
catastrophic forgetting by incremental moment matching.
In NeurIPS, pp. 4652–4662, 2017.

Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat,
D., and Rodrı́guez, N. D. Continual learning for robotics.
CoRR, abs/1907.00182, 2019.

Li, H., Yang, Y., Chang, M., Chen, S., Feng, H., Xu, Z., Li,
Q., and Chen, Y. Srdiff: Single image super-resolution
with diffusion probabilistic models. Neurocomputing,
479:47–59, 2022.

Liu, W. and Tsang, I. W. Large margin metric learning for
multi-label prediction. In AAAI, pp. 2800–2806, 2015.

Liu, W. and Tsang, I. W. Making decision trees feasible in
ultrahigh feature and label dimensions. J. Mach. Learn.
Res., 18:81:1–81:36, 2017.

Liu, W., Tsang, I. W., and Müller, K. An easy-to-hard
learning paradigm for multiple classes and multiple labels.
J. Mach. Learn. Res., 18:94:1–94:38, 2017.

Liu, W., Xu, D., Tsang, I. W., and Zhang, W. Metric learning
for multi-output tasks. IEEE Trans. Pattern Anal. Mach.
Intell., 41(2):408–422, 2019.

Liu, Y., Su, Y., Liu, A., Schiele, B., and Sun, Q. Mnemon-
ics training: Multi-class incremental learning without
forgetting. In CVPR, pp. 12242–12251, 2020.

Lomonaco, V. and Maltoni, D. Core50: a new dataset and
benchmark for continuous object recognition. In CoRL,
2017.

Lopez-Paz, D. and Ranzato, M. Gradient episodic memory
for continual learning. In NeurIPS, pp. 6467–6476, 2017.

Luo, S. and Hu, W. Diffusion probabilistic models for 3d
point cloud generation. In CVPR, pp. 2837–2845, 2021.

Luo, S., Shi, C., Xu, M., and Tang, J. Predicting molecu-
lar conformation via dynamic graph score matching. In
NeurIPS, pp. 19784–19795, 2021.

Mallya, A. and Lazebnik, S. Packnet: Adding multiple tasks
to a single network by iterative pruning. In CVPR, pp.
7765–7773, 2018.

Mundt, M., Pliushch, I., Majumder, S., Hong, Y. W., and
Ramesh, V. Unified probabilistic deep continual learning
through generative replay and open set recognition. J.
Imaging, 8(4):93, 2022.

Nachmani, E., San-Roman, R., and Wolf, L. Non gaus-
sian denoising diffusion models. CoRR, abs/2106.07582,
2021.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffusion
probabilistic models. In ICML, volume 139, pp. 8162–
8171, 2021.

Pan, P., Swaroop, S., Immer, A., Eschenhagen, R., Turner,
R. E., and Khan, M. E. Continual deep learning by func-
tional regularisation of memorable past. In NeurIPS,
2020.

Pandey, K., Mukherjee, A., Rai, P., and Kumar, A. Vaes
meet diffusion models: Efficient and high-fidelity genera-
tion. In NeurIPS, 2021.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter,
S. Continual lifelong learning with neural networks: A
review. Neural Networks, 113:54–71, 2019.

Pfülb, B. and Gepperth, A. A comprehensive, application-
oriented study of catastrophic forgetting in dnns. In ICLR,
2019.

Popov, V., Vovk, I., Gogoryan, V., Sadekova, T., and Kudi-
nov, M. A. Grad-tts: A diffusion probabilistic model for
text-to-speech. In ICML, volume 139, pp. 8599–8608,
2021.

Ramapuram, J., Gregorova, M., and Kalousis, A. Lifelong
generative modeling. Neurocomputing, 404:381–400,
2020.

Rebuffi, S., Kolesnikov, A., Sperl, G., and Lampert, C. H.
icarl: Incremental classifier and representation learning.
In CVPR, pp. 5533–5542, 2017.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. P., and
Wayne, G. Experience replay for continual learning. In
NeurIPS, pp. 348–358, 2019.

Saha, G., Garg, I., and Roy, K. Gradient projection memory
for continual learning. In ICLR, 2021.

Serrà, J., Suris, D., Miron, M., and Karatzoglou, A. Over-
coming catastrophic forgetting with hard attention to the
task. In ICML, volume 80, pp. 4555–4564, 2018.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning
with deep generative replay. In NeurIPS, pp. 2990–2999,
2017.

11

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

Singh, V., Jandial, S., Chopra, A., Ramesh, S., Krishna-
murthy, B., and Balasubramanian, V. N. On conditioning
the input noise for controlled image generation with dif-
fusion models. CoRR, abs/2205.03859, 2022.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In ICML, volume 37, pp. 2256–
2265, 2015.

Tang, B. and Matteson, D. S. Graph-based continual learn-
ing. In ICLR, 2021.

van de Ven, G. M. and Tolias, A. S. Three scenarios for
continual learning. CoRR, abs/1904.07734, 2019.

van der Ven, M. and Tolias, A. S. Generative replay with
feedback connections as a general strategy for continual
learning. CoRR, abs/1809.10635, 2018.

Wu, C., Herranz, L., Liu, X., Wang, Y., van de Weijer, J., and
Raducanu, B. Memory replay gans: learning to generate
images from new categories without forgetting. CoRR,
abs/1809.02058, 2018.

Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., and
Fu, Y. Large scale incremental learning. In CVPR, pp.
374–382, 2019.

Xu, J. and Zhu, Z. Reinforced continual learning. In
NeurIPS, pp. 907–916, 2018.

Xu, M., Yu, L., Song, Y., Shi, C., Ermon, S., and Tang,
J. Geodiff: A geometric diffusion model for molecular
conformation generation. In ICLR, 2022.

Ye, F. and Bors, A. G. Learning latent representations
across multiple data domains using lifelong VAEGAN.
In ECCV, volume 12365, pp. 777–795, 2020.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In ICML, volume 70, pp.
3987–3995, 2017.

Zhai, M., Chen, L., Tung, F., He, J., Nawhal, M., and Mori,
G. Lifelong GAN: continual learning for conditional
image generation. In ICCV, pp. 2759–2768, 2019.

Zhu, F., Zhang, X., Wang, C., Yin, F., and Liu, C. Proto-
type augmentation and self-supervision for incremental
learning. In CVPR, pp. 5871–5880, 2021.

12

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

A. Additional experimental setting
Here, we provide more information about baselines and datasets. There are 7 baselines in our paper. We give some
descriptions of these baselines and introduce the datasets.

SI: The synaptic state tracks the past and current parameter value, and maintains an online estimate of the synapse’s
importance toward solving problems encountered in the past.

MAS: Redefines the parameter importance measure to an unsupervised setting and obtains gradients of the squared L2-norm
of the learned network output function.

EWC: EWC introduces network parameter uncertainty in the Bayesian framework; the true posterior is estimated using a
Laplace approximation with precision, determined by the Fisher Information Matrix (FIM), which shows equivalence to the
positive semi-definite second order derivative of the loss near a minimum.

IMM: IMM estimates Gaussian posteriors for task parameters, in the same vein as EWC, but inherently differs in its use of
model merging. In the merging step, the mixture of Gaussian posteriors is approximated by a single Gaussian distribution
and corresponding covariances.

DGR: DGR consists of a deep generative model (“generator”) and a task solving model (“solver”). DGR trains a deep
generative model in the generative adversarial networks (GANs) framework to mimic previous data. Generated data are
then paired with corresponding response from the previous task solver to represent old tasks. Called the scholar model, the
generator-solver pair can produce fake data and desired target pairs as much as needed, and when presented with a new task,
these produced pairs are interleaved with new data to update the generator and solver networks.

MeRGAN: MeRGAN is a conditional GAN framework that integrates a memory replay generator. it contains two methods
to prevent forgetting by leveraging replays, namely joint training with replay and replay alignment. In these paper, we use
replay alignment.

PASS: PASS mainly consists of Prototype Augmentation and Self-Supervision. On the one hand, prototype augmentation
(protoAug) memorizes one class representative prototype (typically the class mean in the deep feature space) for each
old class, and augments the memorized prototypes via Gaussian noise when learning new classes. Then, the augmented
prototypes and deep features of new data are jointly classified to maintain the discrimination and balance between old and
new classes.

Finetuning: Finetuning greedily trains each task without considering previous task performance—hence introducing
catastrophic forgetting—and represents the minimum desired performance.

Table A.1. Details of datasets
Tasks Classes/task Train data/task Task selection

CIFAR-100 5
{50, 5} or
{50, 10}

{25000, 2500} or
{25000, 5000} random class

ImageNet 5
{500, 50} or
{500, 100}

{650000, 65000} or
{650000, 130000} random class

CORe50 79 {10, 5} {3000, 1500} random class

Datasets: There are three datasets in our work, we divide them into several tasks which can be found in Table A.1. In CI, we
divide the datasets into 5 tasks where there are 1 initial task and 4 incremental tasks. For CIFAR-100, the initial task consist
of 50 random classes, and all incremental tasks have same numbers of classes. The number of classes in one incremental
task is set to be 5 or 10. For ImageNet, the initial task consist of 500 random classes, and the number of classes in one
incremental task is set to be 50 or 100. In CIR, CORe50 is a collection of 50 domestic objects belonging to 10 categories.
Classification in this paper is performed at object level (50 classes). We follow up the work of (Lomonaco & Maltoni, 2017)
which generates 79 tasks from CORe50. The first task includes 10 classes, and each subsequent task contains 5 classes.

13

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

B. Reparameterization trick
In this section, we provide details of reparameterization trick in forward process of DDPM. A nice property of the forward
process is that we can sample xn at any time step n in a closed form using reparameterization trick:

xn =
√
αnxn−1 +

√
1− αnϵn−1 (B.1)

xn−1 =
√
αn−1xn−2 +

√
1− αn−1ϵn−2 (B.2)

where αn = 1− βn and ϵn−1, ϵn−2 ∼ N (0, I). Pluging (B.2) into (B.1), we derive that:

xn =
√
αnαn−1xn−2 +

√
αn(1− αn−1)ϵn−2 +

√
1− αnϵn−1 (B.3)

where
√

αn(1− αn−1)ϵn−2 corresponds to N (0, αn(1− αn−1)I) and
√
1− αnϵn−1 corresponds to N (0, 1− αnI).

By merging these two distributions, we have the new distribution N (0, 1− αnαn−1I) with merged standard deviation√
αn(1− αn−1) + (1− αn) =

√
1− αnαn−1. (B.3) can be rewritten as:

xn =
√
αnαn−1xn−2 +

√
1− αnαn−1ϵn−2 (B.4)

where
√
1− αnαn−1ϵn−2 merges two Gaussians N (0, αn(1− αn−1)I) and N (0, 1− αnI). After n iterations, we can

use x0 to represent xn:
xn =

√
ᾱnx0 +

√
1− ᾱnϵ (B.5)

where ᾱn =
∏n

i=1 αi. These also indicate that:

q (xn | x0) = N
(
xn;

√
ᾱnx0, (1− ᾱn) I

)
(B.6)

C. Additional derivation of training objective
There are two ways to derive the lower bound LLB . First, as shown in the main file, we can leverage the variational lower
bound to optimize the negative log-likelihood:

− log pθ (x0) ≤ − log pθ (x0) +DKL (q (x1:N | x0) ∥pθ (x1:N | x0)) (C.7)

= − log pθ (x0) + Ex1:N∼q(x1:N |x0)

[
log

q (x1:N | x0)

pθ (x0:N) /pθ (x0)

]
(C.8)

= − log pθ (x0) + Eq(x1:N |x0)

[
log

q (x1:N | x0)

pθ (x0:N)
+ log pθ (x0)

]
(C.9)

= Eq(x1:N |x0)

[
log

q (x1:N | x0)

pθ (x0:N)

]
(C.10)

− Eq(x0) log pθ (x0) ≤ Eq(x0:N)

[
log

q (x1:N | x0)

pθ (x0:N)

]
=: LLB (C.11)

The other way to derive LLB is to minimize the cross entropy as the training objective:

LCE = −Eq(x0) log pθ (x0) (C.12)

= −Eq(x0) log

(∫
pθ (x0:N) dx1:N

)
(C.13)

= −Eq(x0) log

(∫
q (x1:N | x0)

pθ (x0:N)

q (x1:N | x0)
dx1:N

)
(C.14)

= −Eq(x0) log

(
Eq(x1:N |x0)

pθ (x0:N)

q (x1:N | x0)

)
(C.15)

≤ −Eq(x0:N) log
pθ (x0:N)

q (x1:N | x0)
(C.16)

= Eq(x0:N)

[
log

q (x1:N | x0)

pθ (x0:N)

]
= LLB (C.17)

14

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

where (C.16) uses the Jensen’s inequality directly. Sohl-Dickstein et al. (2015) split the objective LLB into several
KL-divergence terms where each term in the objective is analytically computable:

LLB = Eq(x0:N)

[
log

q (x1:N | x0)

pθ (x0:N)

]
(C.18)

= Eq

[
log

∏N−1
n=0 q (xn+1 | xn)

pθ (xN)
∏N−1

n=0 pθ (xn | xn+1)

]
(C.19)

= Eq

[
− log pθ (xN) +

N−1∑
n=0

log
q (xn+1 | xn)

pθ (xn | xn+1)

]
(C.20)

= Eq

− log pθ (xN) +
∑
n≥1

log
q (xn+1 | xn)

pθ (xn | xn+1)
+ log

q (x1 | x0)

pθ (x0 | x1)

 (C.21)

= Eq

− log pθ (xN) +
∑
n≥1

log

(
q (xn | xn+1,x0)

pθ (xn | xn+1)
· q (xn+1 | x0)

q (xn | x0)

)
+ log

q (x1 | x0)

pθ (x0 | x1)

 (C.22)

= Eq

− log pθ (xN) +
∑
n≥1

log
q (xn | xn+1,x0)

pθ (xn | xn+1)
+
∑
n≥1

log
q (xn+1 | x0)

q (xn | x0)
+ log

q (x1 | x0)

pθ (x0 | x1)

 (C.23)

= Eq

− log pθ (xN) +
∑
n≥1

log
q (xn | xn+1,x0)

pθ (xn | xn+1)
+ log

q (xN | x0)

q (x1 | x0)
+ log

q (x1 | x0)

pθ (x0 | x1)

 (C.24)

= Eq

log q (xN | x0)

pθ (xN)
+
∑
n≥1

log
q (xn | xn+1,x0)

pθ (xn | xn+1)
− log pθ (x0 | x1)

 (C.25)

= Eq[DKL (q (xN | x0) ∥p (xN))︸ ︷︷ ︸
LN

+
∑
n≥1

DKL (q (xn | xn+1,x0) ∥pθ (xn | xn+1))︸ ︷︷ ︸
Ln

− log pθ (x0 | x1)︸ ︷︷ ︸
L0

]. (C.26)

DDPM fixes βn to constants. LN can be ignored because LN is also constant—no learnable parameters. In the work of
Ho et al. (2020), L0 is modelled by a separate discrete decoder derived from N (x0;µθ (x1, 1) ,Σθ (x1, 1)). As for Ln

(n = 1, · · · , N − 1), it is worth noting that q (xn | xn+1,x0) of Ln is traceable:

q (xn | xn+1,x0) = N
(
xn; µ̃n+1, Σ̃n+1I

)
(C.27)

According to Bayes’ rule, we can derive that:

q (xn | xn+1,x0) (C.28)

= q (xn+1 | xn,x0)
q (xn | x0)

q (xn+1 | x0)
(C.29)

∝ exp

(
−1

2

((
xn+1 −

√
αn+1xn

)2
βn+1

+
(xn −

√
ᾱnx0)

2

1− ᾱn
− (xn+1 −

√
ᾱn+1x0)

2

1− ᾱn+1

))
(C.30)

= exp

(
−1

2

(
x2
n+1 − 2

√
αn+1xn+1xn + αn+1x

2
n

βn+1
+

x2
n − 2

√
ᾱnx0xn + ᾱnx

2
0

1− ᾱn
− (xn+1 −

√
ᾱn+1x0)

2

1− ᾱn+1

))
(C.31)

= exp

−1

2

(
αn+1

βn+1
+

1

1− ᾱn

)
︸ ︷︷ ︸

1/Σ̃n+1

x2
n −

(
2
√
αn+1

βn+1
xn+1 +

2
√
ᾱn

1− ᾱn
x0

)
︸ ︷︷ ︸

2µ̃n+1/Σ̃n+1

xn + C (xn+1,x0)

 (C.32)

15

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

where C (xn+1,x0) is not involved with xn and can be ignored. According to the standard Gaussian density function, we
can achieve the mean:

µ̃n+1 =

(√
αn+1

βn+1
xn+1 +

√
ᾱn

1− ᾱn
x0

)
/

(
αn+1

βn+1
+

1

1− ᾱn

)
(C.33)

=

(√
αn+1

βn+1
xn+1 +

√
ᾱn

1− ᾱn
x0

)
1− ᾱn

1− ᾱn+1
· βn+1 (C.34)

=

√
αn+1 (1− ᾱn)

1− ᾱn+1
xn+1 +

√
ᾱnβn+1

1− ᾱn+1
x0 (C.35)

Recall that xn+1 =
√
ᾱn+1x0 +

√
1− ᾱn+1ϵ, we have x0 = 1√

ᾱn+1
(xn+1 −

√
1− ᾱn+1ϵ). Pluging it in (C.35), we

derive that:

µ̃n+1 =

√
αn+1 (1− ᾱn)

1− ᾱn+1
xn+1 +

√
ᾱnβn+1

1− ᾱn+1

1
√
ᾱn+1

(
xn+1 −

√
1− ᾱn+1ϵ

)
(C.36)

=
1

√
αn+1

(
xn+1 −

1− αn+1√
1− ᾱn+1

ϵ

)
(C.37)

The variance can also be achieved:

Σ̃n+1 = 1/

(
αn+1

βn+1
+

1

1− ᾱn

)
=

1− ᾱn

1− ᾱn+1
· βn+1 (C.38)

In DDPM, Σ̃n+1 is set to σ2
n+1I which are untrained time dependent constants. These mean that it only needs to train

µθ (xn+1, n+ 1) to predict µ̃n+1. As xn+1 can be achieved at training time, it only needs to train ϵθ(xn+1, n + 1) to
predict ϵ. By using a specific parameterization, we achieve:

Ln (C.39)

= Eq

[
1

2σ2
n+1

∥∥µ̃n+1 − µθ (xn+1, n+ 1)
∥∥2]+ C (C.40)

= Ex0,ϵ

[
1

2σ2
n+1

∥∥∥∥ 1
√
αn+1

(
xn+1 −

1− αn+1√
1− ᾱn+1

ϵ

)
− 1

√
αn+1

(
xn+1 −

1− αn+1√
1− ᾱn+1

ϵθ(xn+1, n+ 1)

)∥∥∥∥2
]
+ C

(C.41)

= Ex0,ϵ

[
(1− αn+1)

2

2σ2
n+1αn+1 (1− ᾱn+1)

∥∥∥ϵ− ϵθ

(√
ᾱn+1x0 +

√
1− ᾱn+1ϵ, n+ 1

)∥∥∥2]+ C (C.42)

where C is a constant that does not depend on θ. Ho et al. (2020) find that it is better to train the diffusion model without the
weighting term. The final objective is:

En∼[1,N−1],x0,ϵ

[∥∥∥ϵ− ϵθ

(√
ᾱn+1x0 +

√
1− ᾱn+1ϵ, n+ 1

)∥∥∥2] (C.43)

D. Proof of proportionality
Here we provide the proof of Theorem 4.1 that q̂ (xn | xn+1, y) is proportional to q (xn | xn+1) q̂ (y | xn). We first define
the Markov process q̂ which is conditioned on label y:

q̂ (x0) := q (x0) , q̂ (x1:N | x0, y) :=

N∏
n=1

q̂ (xn | xn−1, y) ,

q̂ (xn+1 | xn, y) := N
(
xn;

√
1− βnxn−1, βnI

)
= q (xn+1 | xn) ,

q̂ (y | x0) := a label distribution on x0 which is known.

(D.44)

Next, we prove that the conditional process q̂ has the following properties.

16

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

Lemma D.1. The conditional process q̂ has the following properties:

q̂ (xn+1 | xn) = q (xn+1 | xn) (D.45)
q̂ (x1:N | x0) = q (x1:N | x0) (D.46)
q̂ (xn) = q (xn) (D.47)
q̂ (xn | xn+1) = q (xn | xn+1) (D.48)
q̂ (y | xn,xn+1) = q̂ (y | xn) (D.49)

Proof. We first prove Equation (D.45):

q̂ (xn+1 | xn) =

∫
y

q̂ (xn+1, y | xn) dy (D.50)

=

∫
y

q̂ (xn+1 | xn, y) q̂ (y | xn) dy (D.51)

=

∫
y

q (xn+1 | xn) q̂ (y | xn) dy (D.52)

= q (xn+1 | xn)

∫
y

q̂ (y | xn) dy (D.53)

= q (xn+1 | xn) (D.54)

Following the similar proof with (D.45), we can prove Equation (D.46):

q̂ (x1:N | x0) =

∫
y

q̂ (x1:N , y | x0) dy (D.55)

=

∫
y

q̂ (y | x0) q̂ (x1:N | x0, y) dy (D.56)

=

∫
y

q̂ (y | x0)

N∏
n=1

q̂ (xn | xn−1, y) dy (D.57)

=

∫
y

q̂ (y | x0)

N∏
n=1

q (xn | xn−1) dy (D.58)

=

N∏
n=1

q (xn | xn−1)

∫
y

q̂ (y | x0) dy (D.59)

=

N∏
n=1

q (xn | xn−1) (D.60)

= q (x1:N | x0) (D.61)

where Equation (D.57) uses the definition in (D.44) to derive Equation (D.58). By using Equation (D.46), we can prove
Equation (D.47):

q̂ (xn) =

∫
x0:n−1

q̂ (x0, . . . ,xn) dx0:n−1 (D.62)

=

∫
x0:n−1

q̂ (x0) q̂ (x1, . . . ,xn | x0) dx0:n−1 (D.63)

=

∫
x0:n−1

q (x0) q (x1, . . . ,xn | x0) dx0:n−1 (D.64)

=

∫
x0:n−1

q (x0, . . . ,xn) dx0:n−1 (D.65)

= q (xn) (D.66)

17

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

Combining (D.45) with (D.47), we can directly use Bayes’ rule to prove Equation (D.48):

q̂ (xn | xn+1) = q̂ (xn+1 | xn) q̂ (xn) /q̂ (xn+1) (D.67)
= q (xn+1 | xn) q (xn) /q (xn+1) (D.68)
= q (xn | xn+1) (D.69)

By using the definition q̂ (xn+1 | xn, y) = q (xn+1 | xn) in (D.44) and Equation (D.48), we can prove Equation (D.49):

q̂ (y | xn,xn+1) = q̂ (xn+1 | xn, y)
q̂ (y | xn)

q̂ (xn+1 | xn)
(D.70)

= q (xn+1 | xn)
q̂ (y | xn)

q̂ (xn+1 | xn)
(D.71)

= q̂ (xn+1 | xn)
q̂ (y | xn)

q̂ (xn+1 | xn)
(D.72)

= q̂ (y | xn) (D.73)

Finally, by combining (D.48) and (D.49) in Lemma D.1, we can track the conditional probability q̂ (xn | xn+1, y):

q̂ (xn | xn+1, y) =
q̂ (xn,xn+1, y)

q̂ (xn+1, y)
(D.74)

=
q̂ (xn,xn+1, y)

q̂ (y | xn+1) q̂ (xn+1)
(D.75)

=
q̂ (xn | xn+1) q̂ (y | xn,xn+1) q̂ (xn+1)

q̂ (y | xn+1) q̂ (xn+1)
(D.76)

=
q̂ (xn | xn+1) q̂ (y | xn,xn+1)

q̂ (y | xn+1)
(D.77)

=
q̂ (xn | xn+1) q̂ (y | xn)

q̂ (y | xn+1)
(D.78)

=
q (xn | xn+1) q̂ (y | xn)

q̂ (y | xn+1)
(D.79)

As q̂ (y | xn+1) is independent from xn, it can be regarded as a constant. Therefore, q̂ (xn | xn+1, y) is proportional to
q (xn | xn+1) q̂ (y | xn). Dhariwal & Nichol (2021) also provide a similar proof which can also be referred to.

18

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

E. Samples generated by DDGR
Here we present the samples generated by DDGR at the last three batches. As illustrated in Figure E.1, the samples generated
by DGR are still clear.

Figure E.1. The samples generated by DDGR at the last three batches.

F. Experiments without a large first task
To further demonstrate the advantages of DDGR, we try to conduct experiments on CIFAR100 without a large first task by
AlexNet. We split CIFAR100 into five tasks, and each task has 20 classes. The chosen baseline is PASS which outputs other
baselines in Section 5.2. The results are presented in Table F.2.

Table F.2. The average accuracy Ai of each phase on CIFAR100 where all tasks have the same number (20) of classes.

Ai

Phase 0 Phase 1 Phase 2 Phase 3 Phase 4

PASS 70.51 52.17 50.41 47.39 44.32
DDGR 70.65 54.33 53.35 51.16 49.03

As shown in Table F.2, DDGR also achieves the best performance in all experiments. For example, DDGR outperforms the
best baseline by 4.71% in terms of the final average accuracy. The average accuracy of DDGR is 0.14% to 4.71% higher
than that of the best baseline at each phase. Therefore, DDGR still works without a large first task.

G. The effect of diffusion steps
To figure out the effect of diffusion steps, we conduct experiments and present the results with numbers of different diffusion
steps in Table G.3. Overall, the gap of the final average accuracy and forgetting rate between different N is small. For
example, when NC (number of classes in the incremental tasks) is 5, the final average accuracy ranges from 56.66% to
59.20%, representing a 2.54% difference.

19

DDGR: Continual Learning with Deep Diffusion-based Generative Replay

Table G.3. We present the final average accuracy AT and forgetting rate F avg
T on CIFAR100 with different numbers of diffusion model

steps. The classifier is AlexNet.

AT F avg
T

N NC=5 10 5 10
1000 56.66 50.20 24.83 19.43
2000 59.02 52.78 22.78 15.10
3000 56.80 51.10 24.30 19.52
4000 59.20 52.22 23.00 16.86

H. Time cost of DDGR
We present the time cost in Table H.4, which indicates that DDGR should be improved in terms of the time cost.

Table H.4. The total time cost (s) of baselines on CIFAR100.

Time cost (s)

method NC=5 10

Finetuning 2421.40 3541.63
SI 3638.51 5167.41
EWC 5229.43 7114.12
MAS 6923.60 8491.71
IMM 8054.56 10324.09
DGR 69532.44 72543.57
DDGR 75692.41 87514.23

We count the time cost of all experiments on CIFAR100. Generally speaking, DDGR spends more time than other baselines.
In Table H.5, we further analyse the time cost of DDGR, and find that the training and sampling process of diffusion
model cost too much time while the calculation of instruction-operator only spends a little time. These indicate that DDGR
spends a lot of time due to the training and sampling process of diffusion model rather than the calculation of our proposed
instruction-operator.

Table H.5. The every part of time cost (s) of DDGR on CIFAR100.
Time cost (s)

NC=5 NC=10

Phase 0 Phase 1 Phase 2 Phase 3 Phase 4 Phase 0 Phase 1 Phase 2 Phase 3 Phase 4

Instruction-operator (IO) 0.00 872.13 901.54 1024.11 957.55 0.00 949.41 834.19 1064.48 950.40
Sampling (except IO) 0.00 8589.24 8891.10 10539.16 9433.80 0.00 9448.09 8658.69 10937.98 9679.87
Classifier training 223.93 109.23 104.16 155.62 139.16 1029.84 478.96 760.62 752.82 1149.98
Diffusion model training 12776.03 4943.12 4033.18 6130.99 5868.34 13396.11 5903.28 6940.05 7519.57 7059.89
Sum 12999.96 14513.72 13929.98 17849.88 16398.86 14425.95 16779.74 17193.55 20274.85 18840.14

20

