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Abstract
We demonstrate the potential of few-shot trans-
lation systems, trained with unpaired language
data, for both high and low-resource language
pairs. We show that with only 5 examples of
high-quality translation data shown at inference,
a transformer decoder-only model trained solely
with self-supervised learning is able to match spe-
cialized supervised state-of-the-art models as well
as more general commercial translation systems.
In particular, we outperform the best performing
system on the WMT’21 English−Chinese news
translation task by only using five examples of
English−Chinese parallel data at inference. Fur-
thermore, the resulting models are two orders of
magnitude smaller than state-of-the-art language
models. We then analyze the factors which im-
pact the performance of few-shot translation sys-
tems, and highlight that the quality of the few-shot
demonstrations heavily determines the quality of
the translations generated by our models. Finally,
we show that the few-shot paradigm also provides
a way to control certain attributes of the transla-
tion — we show that we are able to control for
regional varieties and formality using only five
examples at inference, paving the way towards
controllable machine translation systems.

1. Introduction
Current state-of-the-art machine translation systems are typi-
cally built by leveraging vast amounts of parallel data mined
from the web. While this is practical for high-resource lan-
guage pairs, it is unfeasible to obtain corpora of such sizes
for the majority of languages in the world. Moreover, the re-
liance of mined parallel data has many potential downsides,
such as allowing for poisoning attacks (Xu et al., 2021;
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Wang et al., 2021a), memorization of low-quality examples
(Raunak & Menezes, 2022), and biases towards generating
text in language registers over-represented in the parallel
data, such as language varieties (Lakew et al., 2018; Riley
et al., 2022) or formality (Rippeth et al., 2022).

As an alternative, researchers began exploring the task of un-
supervised translation (Ravi & Knight, 2011) i.e. building
translation models without any parallel data at all. Unsu-
pervised translation systems have demonstrated promising
performance in recent years, able to match strong super-
vised baselines on academic benchmarks (Song et al., 2019;
Garcia et al., 2020b; Han et al., 2021) by relying on a col-
lection of tricks and techniques, such as multilinguality
(Conneau et al., 2019; Garcia et al., 2020b;a; Lin et al.,
2021), back-translation (Lample et al., 2017), and most re-
cently through large-scale models with parameters in the
hundreds of billions (Chowdhery et al., 2022; Vilar et al.,
2022; Han et al., 2021). Despite such results, these systems
are rarely compared to state-of-the-art supervised models
which also leverage their own bag of tricks to improve per-
formance.1 Moreover, these models trained on large-scale
monolingual data also suffer from similar issues as models
trained on large-scale parallel data: variance in the quality
of monolingual data and generation being biased towards
the over-represented registers in the monolingual data.

It thus remains to explore what lies between these two re-
search streams: few-shot learning (Brown et al., 2020). Re-
cently, large language models have been shown capable of
performing arbitrary tasks by exposing a few demonstra-
tions of the task at inference time. The dependence of these
models on demonstrations to perform the task allows us to
overcome the aforementioned issues by carefully selecting
a small set of high-quality translation pairs in the language
register of interest as demonstrations.

In this work, we demonstrate that the few-shot translation
paradigm allows us to build high-fidelity translation mod-
els at a smaller scale (8B parameters) than traditional large
language models (> 100B parameters) without the need for

1For example, Tran et al. (2021) applies model ensembling,
reranking strategies, language-specific post-processing and fine-
tuning on in-domain data for all language pairs, as well as iterative
back-translation for the Icelandic language pairs.
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Language Examples

English 69,813,325
German 69,813,325
Chinese 33,172,846
Icelandic 250,416

Table 1. Number of processed examples per language. Here by
example, we mean the tokenized inputs that are being passed to
the model. We describe the process used to create these examples
in Section 2.2.

back-translation or large-scale parallel text mining. We eval-
uate these models on the WMT’21 English−German and
English−Chinese news translation task and show that they
outperform commercial baselines, and show performance
competitive with WMT’21 submissions, which themselves
rely on many of the aforementioned techniques. We then ver-
ify that our approach works in low-resource scenarios by per-
forming a similar study on the WMT’21 English−Icelandic
language pair, where the amount of Icelandic monolingual
data is two orders of magnitude smaller than Chinese or Ger-
man. Furthermore, we show that constraining the demon-
strations to be in a desired language register generally re-
sults in the output translation being part of the register.
We show that this results in quantitative gains in transla-
tion benchmarks which account for language registers: the
region-aware benchmark FRMT (Riley et al., 2022) and the
IWSLT’22 Special Task on Formality Control for Spoken
Language Translation (Anastasopoulos et al., 2022).

2. Experiments on high-resource languages &
results

In this section, we outline the datasets, models, and initial
set of experiments we perform in this work. We first discuss
the composition of our monolingual data, as well as the
evaluation datasets considered. Next, we describe the exact
architecture we use for these studies, and how we train
our models in terms of the particular objective being used
and batching choice. Finally, we evaluate our few-shot
translation models and compare their performance against a
suite of state-of-the-art models.

All the experiments in this work were conducted using JAX
(Bradbury et al., 2021), using the T5X framework (Roberts
et al., 2022) and FLAX (Heek et al., 2020).

2.1. Datasets

Monolingual datasets Our training data consists of a col-
lection of language-specific corpora. For English, we use a
similar mix of filtered web pages, Wikipedia, and books as
done in Chowdhery et al. (2022). For every other language,
we restricted ourselves to only high-quality webpages, us-
ing similar filters as the English data. The amount of data

Language Pair Forward Backward

English-German 0.9% 1.5%
English-Chinese 3.0% 1.5%
English-Icelandic 0.3% 1.7%

Table 2. Percent overlap between the references of each lan-
guage pair and and the monolingual data. We follow the same
15-gram protocol as Chowdhery et al. (2022).

obtained by this approach varies by language. We list the
final number of examples after processing in Table 1. We
provide an explicit description of the processing in Section
2.2. Collecting data in this process leads to much more
English data than reported in our table. For simplicity, we
artificially restricted the amount of data to be as much as
the next highest-resource language, German.

Evaluation datasets Most work in the unsupervised trans-
lation literature tends to focus on older WMT datasets e.g.
WMT’14 English−French. This is problematic for us for
a number of reasons: 1) the quality of WMT submissions
has increased dramatically in recent years; 2) the quality
of test sets has improved over the years; 3) because our
pretraining data is derived from recent web crawls, there is
a possibility of train / test overlap with previous years. For
these reasons, we follow the recommendations outlined in
Vilar et al. (2022) and use only recent test sets, coming from
the WMT’21 news translation task. We primarily focus on
English−German and English−Chinese language pairs, as
these are typically high-resource language pairs, and thus
we believe should have strong WMT submissions.

Train-test overlap To account for potential train-test over-
lap, we follow the strategy used in previous work (Chowd-
hery et al., 2022; Vilar et al., 2022) to measure target-side
test overlap based on n-gram matching. We use 15-grams,
with the understanding that test sequences shorter than 15
tokens will count as a match if they are found as a substring
in the training data. We report the degree of overlap in Table
2 and note that we do not see much overlap with the newer
test sets.

2.2. Architecture and Training Procedure

Architecture We use a Transformer (Vaswani et al., 2017)
decoder-only architecture, using the same architecture mod-
ifications as in Chowdhery et al. (2022). We use the exact
hyperparameter configurations as their 8 billion parameter
model for our main experiments. In particular, we use 32
Transformer layers, with 16 heads, a hidden dimension of
4096, and multi-query attention. The feed-forward size is
16384 and the attention head size is 256.
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Vocabulary We use a Sentencepiece (Kudo & Richardson,
2018) model that was built in a similar fashion to the one
used in Chowdhery et al. (2022), with the notable difference
that we use 128,000 Sentencepieces instead 256,000. In
particular, we use the same Sentencepiece model for all the
models trained in this paper.

Data pre-processing and training objective In this
work, we use a variant of the UL2 objective (Tay et al.,
2022) that has been specialized for decoder-only models.
The original UL2 objective relies on a mixture of 6 differ-
ence instances of the span corruption objective (Raffel et al.,
2020) using different hyperparameter configurations, cou-
pled with a prefix language modeling (Raffel et al., 2020).
The span corruption instances are completely determined
by two hyperparameters: noise density, which controls how
much of the input is corrupted and mean noise span length,
which controls the average number of tokens corrupted per
span. In this work, we use 2 (instead of 6) separate span
corruption instances with (noise density, mean noise span
length) given by (0.15, 3) and (0.5, 32) respectively. In ad-
dition to these two objectives and the prefix language mod-
eling objective, we also include a standard causal language
modeling objective. We mix these objectives randomly,
sampling prefix language modeling 20% of the time, causal
language modeling 60% of the time, and the remaining span
corruption instances 20% of the time.2

Trilingual models We will be primarily focused on mod-
els exclusively supporting two languages at a time. However,
to access the potential value of multilinguality in a more
controlled setting, we will also consider trilingual models,
supporting three languages at a time. To establish a fair
comparison between our trilingual and bilingual models, we
need to enforce some constraints which should match prac-
tical use-cases. We enforce the constraint that the trilingual
models must see the same amount of data per-language as
the bilingual models i.e. the only difference in training data
between the trilingual and bilingual models will be the addi-
tional data from the third language. While this choice results
in more compute spent on training the trilingual models, it
does not see any more data in any two languages compared
to the analogous bilingual counterpart.

Training distribution For each set of languages consid-
ered, we perform one epoch over the combined corpus. This
results in longer training for the English−German model
than the English−Chinese model, due to the presence of
more German data than Chinese data. We will assess the

2The exact hyperparameter choices for this preprocessor were
chosen following recommendations from the authors of Tay et al.
(2022). Early experiments showed that it performed better than
just using causal language modeling and we did not explore the
choice of hyperparameters any further.

potential value of multi-epoch training in Section 2.4.

Training hyperparameters We use a maximum se-
quence length of 2048, with a batch size of 1024. We use
the Adafactor optimizer (Shazeer & Stern, 2018), without
using the factorizing option. We use a cosine learning rate
decay schedule (Hoffmann et al., 2022), starting at 0.01 and
ending at 0.001 at the end of training. This results in 98000
steps for the English-Chinese model, 135000 steps for the
English-German model, and 166000 steps for the trilingual
model.

Evaluation Our initial attempts at evaluating our models
using BLEU (Papineni et al., 2002) heavily underestimated
the performance of our models. Vilar et al. (2022) has
shown that translations generated from few-shot translation
through large language models produce qualitatively differ-
ent translations, with different kinds of errors from the ones
generated by traditional machine translations models. We
believe such errors are overly punished by the brittleness of
n-gram metrics such as BLEU. Recent work has shown that
such n-gram metrics are sub-optimal for evaluating high-
quality translations (Kocmi et al., 2021; Freitag et al., 2021).
For this reason, we use the learnt metric BLEURT (Sellam
et al., 2020) as our main metric to assess quality. We follow
the recommendations from the publicly-available Github
page and use the BLEURT-20 checkpoint.3 For complete-
ness and full transparency, we report BLEU scores in the
appendix, in Section 4.

Few-shot generation To condition the model to perform
translation, we use the relevant development set for each
language pair as a pool of demonstrations. For each source
example text in a given test set, we randomly sample 5
sentence pairs (x1, y1), ..., (x5, y5) from the development
set and we insert these objects into the following template,
where source language and target language are
the names of source and target languages for the given lan-
guage pair:

{source language} : {x1}
{target language} : {y1}

· · ·
{source language} : {x5}
{target language} : {y5}

{source language} : {text}
{target language} :

To generate the predictions, we use minimum Bayes risk
(MBR) decoding (Eikema & Aziz, 2020; Freitag et al.,

3https://github.com/google-research/bleurt#checkpoints
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Rank en→ zh zh→ en en→ de de→ en

1st Zeng et al. (2021) Wang et al. (2021b) Tran et al. (2021) Tran et al. (2021)
2nd Tran et al. (2021) Zhou et al. (2021) Qian et al. (2021) Online−W
3rd Zhou et al. (2021) Li et al. (2021) Online−W Subramanian et al. (2021)

Table 3. WMT baselines for the high-resource language pairs we consider in this paper. Note that although we cite the original paper,
we recompute the metrics from the their textual outputs, rather than rely on the numbers provided in the paper to ensure fair comparison.

Model en↔ zh
newstest21

en↔ de
newstest21

Supervised baselines
WMT’21 1st Place 70.0 66.6 76.9 76.9
WMT’21 2nd Place 69.7 66.3 76.3 76.7
WMT’21 3rd Place 69.7 65.8 76.0 76.4
Google Translate 69.5 65.0 76.4 75.7

Few-shot translation models
PaLM 67.7 64.1 75.9 74.8
Bilingual LMs (Beam) 62.6 67.0 74.9 74.1
Bilingual LMs (MBR) 68.4 67.8 75.5 76.5
Trilingual LM (Beam) 65.3 65.3 74.5 74.4
Trilingual LM (MBR) 68.9 68.3 75.5 76.8

Table 4. BLEURT scores from various models, both super-
vised and few-shot on some WMT newstest21 sets. We itali-
cized the name of our baselines, and bolded the best performing
results. We also underline the best performing few-shot results.
We use the suffix Beam when using beam search, and MBR when
using MBR decoding.

2022), using learnt metrics and 64 sampled predictions with
vanilla ancestral sampling. We use BLEURT for the utility
function in MBR. We also include results with beam search,
with beam size 4 and α=0.6.

2.3. Main results and discussion

Baselines We consider the top three performing systems
from WMT’21 for each language pair for comparisons. We
provide a reference for each such system considered in Ta-
ble 3. One potential pitfall of this approach is that WMT
submissions have been hyper-specialized for this particular
domain and evaluation procedure, and thus may overesti-
mate the performance of general-purpose translation sys-
tems built to handle all domains. Since we are not focusing
on making our translation models WMT-specific, we also
include strong baselines of more general-purpose systems:
PaLM (Chowdhery et al., 2022), a large multilingual (albeit
English-centric) language model; Google Translate, as an
example of a commercial system which was not fine-tuned
for WMT or any other such competition.4

We list the performance of our models (labelled as Bilingual

4We re-used the translations from (Vilar et al., 2022) when
available. For the Icelandic pair, we obtained the predictions using
the public API at translate.google.com in December 2022.

LMs and Trilingual LM) as well as the baselines on our
dataset in Table 4. To ensure fair comparison, we computed
the BLEURT score directly from the text predictions of
the baselines, as we did with our models. For PaLM, we
used the predictions with the best performing metrics from
Vilar et al. (2022).5 We first note that with the exception
of German-English, both our language models outperform
PaLM in this task when using MBR, despite having less
than 2% the number of parameters of PaLM. We believe this
is in great part due to the larger quantity of monolingual data
for the non-English languages seen by our models during
training. This is especially highlighted in the out of English
translation pairs (English−XX pairs.)

We also remark that most WMT baselines outperform the
commercial system. As we noted earlier, this is most likely
due to the fact that these baselines have been specialized for
this WMT competition, while the commercial systems have
to handle a more broader range of domains. When com-
paring the commercial system to our few-shot translation
models, we note that our models excel in the English−XX di-
rections despite also not being specialized for WMT. More-
over, our models are also able to outperform one of the
strongest WMT baselines: for example, the trilingual model
outperforms the best performing English−Chinese model
from WMT’21, while being 0.1 BLEURT away from the
best English−German system. The XX−English direction
tells a different story: in this setting, we see our few-shot
translations underperform against all our supervised base-
lines. Finally, we note that MBR consistently provides
improvements in BLEURT. As such, we default to MBR for
the remaining experiments.

2.4. Performance on a low-resource language

Finally, we consider whether this approach also yields
high-quality translation models for low-resource languages.
Building translation systems for such language pairs typi-
cally require leveraging data beyond the parallel data avail-
able for the language pair, whether in the form of mono-

5The PaLM numbers in Table 4 sometimes use different demon-
strations from the ones we used. All our results draw demonstra-
tions from the same development sets as in Vilar et al. (2022),
which they refer to as WMT-dev. We only report PaLM numbers
from Vilar et al. (2022) using different demonstrations if they are
better than the ones obtained using WMT-dev as the source of
demonstrations.
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Rank en→ is is→ en

1st Tran et al. (2021) Tran et al. (2021)
2nd Zhou et al. (2021) Online−B
3rd MANIFOLD Zhou et al. (2021)

Table 5. WMT baselines for the Icelandic language pairs. Note
that although we cite the original paper, we compute the metrics
from the their textual outputs, since many of these works do not
report BLEURT numbers.

lingual data or parallel data for other language pairs. It is
conceivable that the approach considered in this paper might
not be as successful for languages with smaller amounts of
monolingual data, as the value of parallel data could be
magnified in these resource-constrained settings (Kirstain
et al., 2021).

We could attempt to study this problem by artificially con-
straining the amount of monolingual data for German or Chi-
nese. However, previous works (Kim et al., 2020; Marchisio
et al., 2020) have shown that datasets for authentic low-
resource languages offer additional difficulties that do not
arise in datasets for high-resource languages, such as lower
quality of data available, limited domain coverage, little
language similarity with English, rich morphology, etc. To
avoid this pitfall, we consider Icelandic as our low-resource
language of study.6 Icelandic is also convenient for us since
it is one of the languages available in WMT’21, and thus
we have strong baselines available in the form of WMT sub-
missions. As can be seen from Table 1, Icelandic has two
orders of magnitude less data than German or Chinese and
hence poses a far more difficult challenge for our models.

Warm-starting Training models with low-resource lan-
guages can be a difficult endeavor due to issues regarding
overfitting and imbalanced datasets. Previous work on trans-
fer learning in language modeling shows that continued
training on a new distribution yields similar results to train-
ing from scratch, albeit at a much faster rate (Hernandez
et al., 2021). In this work, we follow this approach and fine-
tune our English−German model. This allows us to leverage
all the English knowledge our model has already accumu-
lated during its original training run, which is critical due to
the English-centric nature of our evaluation.

Multi-epoch training Previous literature on language
modeling has found some success with repeated epochs over
the training data (Taylor et al., 2022). We explore this ques-
tion by training on a equal mixture of English and Icelandic
until we go 8 epochs over the Icelandic dataset and evalu-

6Icelandic exhibits many of the properties typically associated
with low-resource languages. For example, Joshi et al. (2020)
places Icelandic in the same category as Hausa, which WMT’21
considers to be low-resource.

Model en↔ is
newstest21

Supervised models
WMT’21 1st Place 77.2 76.1
WMT’21 2nd Place 74.3 72.3
WMT’21 3rd Place 74.3 70.4
Google Translate 76.8 71.1

Few-shot translation models
PaLM 61.7 59.5
Bilingual LMs (MBR) 76.2 72.0

Table 6. BLEURT scores from various models, both super-
vised and fewshot on the WMT newstest21 test sets involving
Icelandic (is). To obtain these models, we fine-tuned the English-
German models from Section 2 on a mixture on English and Ice-
landic, for a few epochs over the Icelandic monolingual data.

ate the current checkpoint at the end of every epoch. We
evaluate both the English−Icelandic and Icelandic−English
directions on the Flores (Goyal et al., 2022) devtest sets for
Icelandic, average the two BLEURT scores, then take the
best-performing checkpoint and evaluate it on the WMT
newstest21 dataset. We select the optimal checkpoint occur-
ing after 6 epochs over the Icelandic dataset.

Training hyperparameters We re-use all the same hy-
perparameters as when training the high-resource language
models, with the exception of the learning rate: we set
it to constant at 0.001, following recommendations from
previous works (Xue et al., 2020).

Comparison with baselines We list our WMT baselines
in Table 5 and show the results on both directions in Table 6.
We see that for both directions, the results are competitive
with the WMT baselines, and in fact surpass the commercial
baseline for the English-Icelandic direction. Moreover, we
see that PaLM fails to provide high-quality translations as
measured by BLEURT.

Results of multi-epoch training We present the results
of evaluating at each epoch over the Icelandic datasets
in Figure 1. We see a few patterns emerge. First, for
both directions, doing a single-pass is suboptimal. Sec-
ond, the Icelandic-English direction doesn’t benefit beyond
two epochs over the Icelandic dataset, while the reverse
direction benefits for up to 6 epochs. This suggests that
models develop the ability to extract meaning from text
much earlier than when they can reliably generate fluent
text. Moreover, it also suggests that we may be underesti-
mating the potential performance of our bilingual models if
we had extended their training to include multiple epochs
over the non-English datasets. Finally, we note that our
models remain fairly competitive with the WMT’21 submis-
sions and in fact outperform the commercial system in the
English−Icelandic direction.
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Figure 1. BLEURT scores on the WMT’21 English−Icelandic and Icelandic−English task after several epochs over the Icelandic
monolingual data. We remark that while the Icelandic-English direction converges fairly quickly (after two epoch), the English-Icelandic
direction benefits from further training.

3. Influence of few-shot demonstrations
From previous experiments, it is clear that few-shot transla-
tion models can be competitive with state-of-the-art super-
vised models. In this section, we dissect which aspects of
the few-shot demonstrations impact the results. In this first
subsection, we claim that one of the most influential predic-
tors for the quality of our translations are the quality of the
few-shot demonstrations. Next, we demonstrate that style
of the few-shot demonstration also influence the style of
the translation, granting users the ability to output arbitrary
styles at inference by only requiring a few demonstrations
exhibiting that style and with no additional fine-tuning costs.
We additionally show that using the incorrect style can result
in a measurable regression in BLEURT, further highlighting
the need for such systems. To investigate this, we look at
two specific use-cases: controlling for Mandarin regional
varieties, and formality in German.

3.1. Quality of the demonstrations strongly influences
quality of generated translations

Concurrent work (Agrawal et al., 2022; Vilar et al., 2022)
has shown that the quality of the few-shot demonstration
impacts the quality of the output. We provide a similar
analysis of this claim, by using a direct quantitative signal
of the quality of the exemplar.

For this experiment, we diverge from our typical protocol of
using development sets as our source of exemplars. Instead,
we use an English−German translation dataset, prepared
in Bansal et al. (2022). This is a filtered version of the
Paracrawl English−German dataset (Bañón et al., 2020),

where de-duplication has been applied, with both length and
language identification filtering. This dataset also comes
equipped with normalized Contrastive Data Selection (CDS)
scores (Wang et al., 2018). These scores are at the example-
level, and are calculated by computing the difference in
cross-entropy scores between a translation model fine-tuned
on a trusted dataset and one that was not. We should expect
examples with higher CDS score to be increasingly differ-
ent from the trusted data, and as such potentially of lower
quality. The scores have been normalized to be between 0.0
and 1.0. We partition the examples into 3 buckets, where
an example with a CDS score between 0.0 and 0.33 gets
placed in the first bucket, an example with a CDS score
between 0.33 and 0.66 gets placed in the second bucket, and
the remaining examples go in the third bucket. By viewing
CDS scores as a proxy for quality, we can then examine the
impact of quality of the demonstrations by constraining our
demonstrations to come from a given bucket. We use the
same decoding strategy as in our previous experiments, and
report the BLEURT scores for each bucket in Figure 2. We
note a pattern emerges: in general, as we use demonstrations
with increasing CDS scores, the quality of the translations
produced by our model keeps degrading.

3.2. Controllability of output language variety through
few-shot demonstrations

We now show that example quality is not the only attribute of
the demonstrations which can heavily influence the quality
of the outputs. We now claim that the style of the demonstra-
tions also influences the output in a quantitively-measurable
way. This is exciting since it establishes the possibility of
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Figure 2. BLEURT scores on the WMT’21 English−German
task, using demonstrations drawn of varying quality. For
each CDS bucket, we evaluate the model on the WMT’21
English−German task.

generating translations in a given style, such as formality-
aware controlled translation (Niu et al., 2017; 2018; Garcia
et al., 2021) or targeting specific language varieties (Lakew
et al., 2018; Kumar et al., 2021). Moreover, since the style
is provided at inference, this allows us to condition the gen-
eration on arbitrary styles using only a very small set of
high-quality translations exhibiting this attribute.

For this analysis, we use the FRMT dataset (Riley et al.,
2022), which contains high-quality translations between
English and two Mandarin regional varieties: Mainland and
Taiwanese. We focus on two metrics: FRMT Score, which
consists of a geometric mean across regional varieties of the
arithmetic means of the bucket-level BLEURT scores. As
a proxy to measure whether the correct language variety is
being used, we use a metric introduced in Riley et al. (2022)
known as lexical accuracy. To compute lexical accuracy, we
follow the approach proposed by Riley et al. (2022) and use
a special subset of the data (denoted in Riley et al. (2022) as
the lexical bucket) which has examples containing English
terms that have different translations in the different regional
varieties and check how often do the translations match the
target language variety.

As in the previous experiments, we use the corresponding
development sets to draw demonstrations for the translation
task.7 To highlight the importance of using demonstrations
in the right language variety, we evaluate our models in
two ways: matched, in which we use the same language
variety for the demonstrations as the reference; mismatched,
where we use different regional varieties for the demonstra-
tions and the references. We compare against PaLM at vari-

7In addition to these demonstrations, we also use the names
Mainland Mandarin and Taiwanese Mandarin for the respective
regional varieties.

Model FRMT
Score

Lexical
Accuracy

FRMT Baselines
PaLM 8B 58.3 69.0
PaLM 62B 65.1 70.8
PaLM 540B 68.4 83.6
Gold − 94.4

Ours
Bilingual LM (mismatched) 66.0 13.8
Bilingual LM (matched) 71.0 86.2

Table 7. Performance of various models on the Mandarian re-
gional varieties datasets from FRMT. We use the term matched
and mismatched for the cases when we use demonstrations from
the same or different language variety as the references, respec-
tively. We bold the best results which do not include the reference.
Note that Gold has no FRMT score, since this score is computed
using the Gold predictions as references.

ous sizes, where the 540B model was the best-performing
models in Riley et al. (2022). We also include the lexical
accuracy as human performance, which we refer as Gold.

We report the results in Table 7. We first note that even in
the mismatched settings, our models still outperform the
PaLM-62B model in terms of FRMT score, confirming the
fidelity of the translations. However, we see that the lexical
accuracy for the mismatched setting is very low, suggesting
that the model is outputting valid translations but not in the
target language variety. Once we use demonstrations show-
casing the appropriate language variety, both the FRMT
score and lexical accuracy drastically improve, establishing
a new state-of-the-art, despite being two orders of magni-
tude smaller than the previous state-of-the-art.

3.3. Controllability of formality through few-shot
demonstrations

Finally, we consider the task of generating translations sat-
isfying a given formality level. While the formality of
text is in general a subjective matter in English, other lan-
guages have built-in rules for expressing formality. For
example, many languages exhibit a form of the T−V dis-
tinction (Brown & Gilman, 1960), where the second person
pronoun has two surface forms, an informal and a formal
one. These pronouns usually also induce different verb con-
jugations, so even if they are not explicitly present in the
sentence, one can still detect whether the intended style is
informal or formal.

In particular, we focus on the English−German language
pair of the IWSLT’22 Special Task on Formality Control
for Spoken Language Translation.8 We evaluate our models
using both BLEURT and accuracy on whether the correct

8https://iwslt.org/2022/formality
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formality was used. To eliminate any discrepancies between
our evaluation and the ones done by the organizers, we
use the same evaluation scripts used by the official task
for the formality accuracy.9 As in the language variety ex-
periments, we consider both the matched and mismatched
setting, where the demonstrations exhibit the same (respec-
tively, different) formality level as the target set. We draw
our demonstrations from the topical chat split of the train
set.10

Baselines We consider Google Translate, which has no
built-in feature for controlling formality. We also consider
the gold finetuned mBART-large UMD submis-
sion (Rippeth et al., 2022) for the task.11 We choose this
submission from UMD as it has the highest translation qual-
ity compared with UMD’s other submissions.12

We report the BLEURT scores and formality accuracy in
Table 8. We first note that even though we took UMD’s
submission with the highest translation quality, it still at-
tains lower quality than all the other models, including our
mismatched models. However, UMD’s submission exhibits
higher formality accuracy compared to the commercial base-
line, suggesting that there might be a trade-off in controlling
formality versus quality. Our few-shot translation models
achieve the best of both worlds: they exhibit high-quality
translations, outperforming all available models, as well as
achieving excellent formality control, obtaining higher accu-
racy than the UMD submission on the informal test set, de-
spite only seeing a five examples at inference. Moreover, we
do see increased BLEURT scores using the matched exem-
plars over the mismatched ones, suggesting that BLEURT
is sensitive to formality.

4. Limitations and Future Work
Despite our strong results, we note that there are a few
limitations of the approach described in this work which we
would like to address in future work.

Low performance on n-gram based metrics We list out
the BLEU scores for the WMT’21 language pairs, computed

9https://github.com/amazon-science/contrastive-controlled-
mt/blob/main/IWSLT2022/scorer.py

10The choice of using the topical chat split over telophony split
of the training set was arbitrary.

11The explicit text predictions can be found here:
https://github.com/amazon-science/contrastive-controlled-mt/
tree/main/IWSLT2022/submissions/formality-control UMD/EN-
DE/unconstrained/formality/blind-test

12There are other submissions with better formality control than
the submission we selected. However, we believe translation qual-
ity should be prioritized over control of stylistic features such as
formality and hence we selected this submission over the alterna-
tives.

Model BLEURT
Formal−Informal

Accuracy
Formal−Informal

External Baselines
Google Translate 72.2 72.5 62.7% 37.3%
UMD 69.4 69.3 93.6% 77.4%

Ours
Mismatched 72.1 72.2 15.1% 15.5%
Matched 73.5 74.7 84.9% 85.5%

Table 8. Performance of various models on the IWSLT2022
Formality Control for Spoken Language Translation. We use
the term matched (respectively, mismatched) for the cases when
we use demonstrations from the same (respectively, different) for-
mality as the references. We bold the best results and italicize the
name of our models.

using SacreBLEU, in Table 9.13 We note that there is a
big gap between the WMT models and our models. On
one hand, Freitag et al. (2022) reported that BLEU drops
sharply when using MBR. However, we also find this pattern
even when using beam search, suggesting that few-shot
translation models naturally produce translations which are
qualitatively different from traditional supervised models.
Future work should further study the style of the translations
obtained by few-shot models.

Model size While we were able to outperform large lan-
guage models like PaLM while using only a fraction of
the number of parameters, our resulting models are still an
order of magnitude larger than traditional machine transla-
tion systems, which usually have hundreds of millions of
parameters. Preliminary experiments at the 1 billion param-
eter scale yielded unsatisfactory results, which is why we
restricted our experiments to 8 billion parameter scale. Such
size limitations may inhibit adoption of these techniques and
future work should aim at lowering these size requirements.

Multilinguality Our initial trilingual experiments showed
that our models benefited from multilinguality. However,
previous work in the multilingual literature has shown that
adding more languages eventually leads to a decrease in per-
language performance, a phenomenon known as the curse of
multilinguality (Conneau et al., 2019). Future work should
explore how many languages can such systems support until
we encounter performance degradation.

Incorporating larger amounts of high-quality parallel
data In Section 3.1, we demonstrated that one of the criti-
cal properties of parallel data that we needed was quality,
in contrast to the current popular approaches used in su-
pervised models that mainly rely on quantity. However,
our approach only utilizes five examples at inference, even

13SacreBLEU signature: nrefs:1—case:mixed—eff:no—
tok:TOK—smooth:exp—version:2.1.0, where TOK is 13a or zh.
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Models zh↔ en
newstest21

de↔ en
newstest21

is↔ en
newstest21

Supervised models
WMT’21 1st Place 33.4 36.9 41.9 42 41.7 33.3
WMT’21 2nd Place 31.9 35.9 39.7 43.2 40 30.6
WMT’21 3rd Place 32.6 35.8 40 41.3 39.2 28.6
Google Translate 32.2 36.2 40.9 39.8 41.5 28.7

Few-shot translation models
PaLM 25.8 29.6 38.8 32.9 19.1 16.87
Bilingual LM (MBR) 21.6 25.6 37.1 29.4 33.52 17.7
Bilingual LM (Beam) 20.4 29.2 35.5 32.8 36.2 19.2
Trilingual LM (MBR) 22.2 26.8 36.1 28.5 − −
Trilingual LM (Beam) 20.45 25.5 36.2 31.8 − −

Table 9. BLEU scores from various models, both supervised and few-shot on some WMT newstest21 sets. We italicized the name
of our baselines. We use the suffix Beam when using beam search, and MBR when using MBR decoding. Note that we have no scores for
the trilingual models on the Icelandic pairs since we didn’t train any such models.

though one could potentially get several hundreds of high-
quality examples. If we were to obtain such a dataset and
fine-tune our models using traditional approaches, we might
obtain higher-quality translation models, but then we might
also lose the exciting controllability that we get through the
few-shot translation paradigm as shown in Sections 3.2 and
3.3. Future work should look into developing approaches
that can leverage larger sets of high-quality data while still
retaining the flexibility of the few-shot translation paradigm.

Better curation of the pre-training corpus Our current
models are able to perform translation in large part due to
the pre-training corpus. Such corpora, however, have poten-
tially many issues which could impact translation. While we
showed that we could mitigate the impact of many of these
factors through careful selection of the few-shot demonstra-
tions, future work should study more styles and domains to
ensure the robustness of this approach and potential failure
modes.

Decoding algorithm To get our best results, we relied on
MBR decoding rather than beam search. We believe this
to be a fair comparison with the WMT submissions, since
they also rely on various reranking strategies. On the other
hand, Vilar et al. (2022) did not rely on MBR decoding
for their results, and we should expect PaLM’s translation
quality to improve when using MBR. Moreover, using these
kind of decoding algorithms incurs a larger cost for serving
than beam search, further inhibiting adoption. Future work
should try to recover similar performance without the need
for expensive decoding algorithms.

5. Conclusion
In this work, we investigated the potential value of few-
shot translation models by examining their performance
against the strongest supervised baselines we could find on

traditionally high-resource language pairs. We show that
these systems can be competitive with supervised models un-
der the assumption that we have a small set of high-quality
demonstrations. We analyze how the quality of these demon-
strations heavily influences the quality of the translations
generated by our models. Finally, we demonstrate that this
paradigm also gives a way of controlling the style of the
translations generated by these models.
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K., Turchi, M., Virkar, Y., Waibel, A., Wang, C., and
Watanabe, S. Findings of the IWSLT 2022 evaluation
campaign. In Proceedings of the 19th International
Conference on Spoken Language Translation (IWSLT
2022), pp. 98–157, Dublin, Ireland (in-person and on-
line), May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.iwslt-1.10. URL https:
//aclanthology.org/2022.iwslt-1.10.
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