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Abstract
Motivated by real-life deployments of multi-
round federated analytics with secure aggregation,
we investigate the fundamental communication-
accuracy tradeoffs of the heavy hitter discovery
and approximate (open-domain) histogram prob-
lems under a linear sketching constraint. We pro-
pose efficient algorithms based on local subsam-
pling and invertible bloom look-up tables (IBLTs).
We also show that our algorithms are information-
theoretically optimal for a broad class of inter-
active schemes. The results show that the linear
sketching constraint does increase the communi-
cation cost for both tasks by introducing an extra
linear dependence on the number of users in a
round. Moreover, our results also establish a sepa-
ration between the communication cost for heavy
hitter discovery and approximate histogram in
the multi-round setting. The dependence on the
number of rounds R is at most logarithmic for
heavy hitter discovery whereas that of approxi-
mate histogram is Θ(

√
R). We also empirically

demonstrate our findings.

1. Motivation
Collecting and aggregating user data drives improvements in
the app and web ecosystems. For instance, learning popular
out-of-dictionary words can improve the auto-complete fea-
ture in a smart keyboard, and discovering malicious URLs
can enhance the security of a browser. However, sharing
user data directly with a service provider introduces several
privacy risks.

It is thus desirable to only make aggregated data avail-
able to the service provider, rather than directly sharing
(unanonymized) user data with them. This is typically
achieved via multi-party cryptographic primitives, such as
a secure vector summation protocol (Melis et al., 2016;
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Bonawitz et al., 2017; Corrigan-Gibbs et al., 2020; Bell
et al., 2020). For instance, for closed domain histogram
applications, the users can first “one-hot” encode their data
into a vector of length d (the size of the domain) and then
participate in a secure vector summation protocol to make
the aggregate histogram (but never the individual user con-
tributions) available to the service provider.

Federated heavy hitters recovery. The abovementioned
solution requires Ω(d) communication. However, in many
real life applications the domain size is very large or even
unknown a priori. For example, the set of new URLs can be
represented via 8-bit character strings of length 100, and can
thus take d = 256100 values, which is clearly impossible
to support in practice. In such settings, linear1 sketching
is often used to reduce the communication load. For exam-
ple, Melis et al. use secure count-min sketch aggregation
for privacy preserving training of recommender systems,
and Corrigan-Gibbs & Boneh rely on count-min sketches
for gathering browser statistics, i.e. aggregate histogram
queries. Similarly, Hu et al. rely on secure aggregation of
variants of Flajolet-Martin sketches for distributed cardinal-
ity estimation. Boneh et al. uses sketching to reduce the cost
for distributed subset-histogram queries. In the work closest
to ours, Chen et al. show that count-sketches can be used
to recover the heavy hitter items (i.e. frequently appearing
items) while reducing the communication overhead. All
these protocols operate in the single-round setting.

Sketching in multi-round aggregation schemes. Even
though count-sketches are great step towards solving the
heavy hitters problem, this approach has only been analyzed
in the single round data aggregation setting. However, most
commonly deployed systems for federated analytics employ
multi-round schemes for data aggregation (Bonawitz et al.,
2019). This is primarily because (a) not all users are avail-
able around the same time, (b) the population may be very
large (in the billions of devices) and therefore the server
has to aggregate data over batches for bandwidth/compute
reasons, and (c) running the cryptographic secure vector
summation protocol has compute and communication costs

1Linearity is necessary because non-linear compres-
sion/sketching schemes would not work under the secure vector
summation primitive which only makes the sum of client-held
vectors available to the server.
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that are super linear in the number of users we are aggregat-
ing over (Bell et al., 2020; Bonawitz et al., 2017). Further,
count sketch based approaches have a decoding runtime
that is linear in d, which is infeasible in the open domain
setting, and improving it to log d involves blowing up the
communication cost by the same factor.

Our contributions. Our paper thus takes a principled
approach towards uncovering the fundamental accuracy-
communication tradeoffs of the heavy hitters recovery prob-
lem under the linearity constraints imposed by secure vector
summation protocols. We show that linearity constraints in-
crease the per-user communication complexity. For a fixed
total number of users, as the number of rounds increases,
the required communication decreases due to less stringent
linearity constraint. Moreover, surprisingly, we show that
count-sketches are strictly sub-optimal for this application,
and we develop a novel provably optimal approach that com-
bines client-side (local) subsampling with inverse Bloom
lookup tables (IBLTs). Roughly speaking, we show (via
lower bounds) that in the R-round case, any approach that
solves an approximate histogram problem (with additive
error) will incur a

√
R factor penalty in the communication

cost, while our optimal approach incurs log(R). Hence,
even non-trivial modifications of count-sketches are strictly
sub-optimal.

We also empirically evaluate our proposed algorithms and
compare it with count-sketch baselines. Significant advan-
tage of our algorithm is observed, especially when R is
large. In the setting of Figure 1, to achieve an F1 score of
0.8, we see a 10x improvement in communication compared
to the baseline using Count-sketch.

Organization. We formally define the problem in Sec-
tion 2 and then discuss our results in Section 3. Algorithms
for heavy hitter recovery and approximate histogram are
presented in Section 4 and Section 5, respectively. We dis-
cuss a practical modification of our algorithm in Section 6
and present the experimental results in Section 7.

2. Problem setup and preliminaries
We consider heavy hitter discovery in the distributed setting
with multi-round communication between the users and a
central server. Suppose users come in R rounds. In round
r ∈ [R], there are n users, denoted by the set Br. We
assume the sets are pairwise disjoint, i.e., ∀r 6= r′, Br ∩
B′r = ∅. Each user i ∈ Br contributes mi samples with a
contribution bound mi ≤ m from a finite domain X of size
d. Let hi denote the user’s local histogram where ∀x ∈ X ,
hi(x) is the number of times element x appeared in user i’s
local samples. By assumption, we have ‖hi‖1 = mi ≤ m.

Let h(r) be the aggregated histogram in round r, i.e.,

∀x ∈ X : h(r)(x) =
∑
i∈Br

hi(x).

The aggregated histogram across all R rounds is denoted by
h[R] where

∀x ∈ X : h[R](x) =
∑
r∈[R]

h(r)(x).

The total number of users is denoted by N :=nR. We will
focus on cases where d � Nm, i.e., the case where the
support is large and the data is sparse.

The goal of the server is to learn useful information about
the aggregated histogram h[R]. More precisely, we consider
the two tasks described below.

τ -heavy hitter (ApproxHH). For a given threshold τ , the
goal of τ -heavy hitter recovery on the entire data stream is
to return a set H such that with probability 1− β,

1. If h[R](x) ≥ τ , x ∈ H .
2. If h[R](x) ≤ τ/10, x /∈ H .

τ -approximate histogram (ApproxHist). The goal is to
return an approximate histogram ĥ[R] such that with proba-
bility 1− β,

∀x ∈ X ,
∣∣∣ĥ[R](x)− h[R](x)

∣∣∣ ≤ τ.
It can be seen that τ/3-approximate histogram is a harder
problem than τ -heavy hitter (HH) since an τ/3-approximate
histogram would imply a set of approximate heavy hitters
by returning H to be the list of elements with approximate
frequency more than τ − τ/2. Previous work often solves
ApproxHH by reducing it to ApproxHist (e.g.,, in Chen
et al. (2022)). However, as we show in this paper, our work
establishes a seperation between the two tasks in terms of
the communication complexity in the multi-round setting.

Efficient decoding. Since d� Nm, we require efficient
encoding (run by users) and decoding (run by the server).
More precisely, the encoding/decoding time should be poly-
nomial in N,m,R, log d, log(1/β) and other parameters.

Per-user communication complexity. We focus on dis-
tributed settings where each user has limited uplink commu-
nication capacity. In particular, each user must compress
their local histogram hi to a message of bit length `, denoted
by Yi. And the server must solve the above tasks based on
the received messages. The communication complexity of
each task is the smallest bit length such that there exists a
communication protocol to solve the task.
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Task/Setting 1-round LinSketch R-round LinSketch Without LinSketch (R = N )

τ -ApproxHH Θ̃
(
mN
τ

)
Θ̃
(
mN
τR

)
Θ̃
(
m
τ

)
τ -ApproxHist Θ̃

(
mN
τ

)
Θ̃
(

min{ mN
τ
√
R
, mNR }

)
Õ
(

min{m
√
N

τ ,m}
)

Table 1. Per-user communication complexity. All described bounds can be acheived by a non-interactive protocol with server runtime
poly(m,n,R, log(d), log(1/β)). Recall N = nR denotes the total number of users. All bounds cannot be improved up to logarithmic
factors even under interactive protocols. Θ̃ omits factor that are logarithmic in τ, R,m and N .

Distributed estimation with linear sketching (LinS-
ketch). A even more stringent communication model is
the linear summation model. In each round r, each user
i ∈ Br can only send a message Yi from a finite ring Gr
based on their local histogram and shared randomness U .
For all i ∈ Br, let

Yi = fi(hi, U).

Under the linear aggregation model, the server only observes

Y (r) =
∑
i∈Br

Yi,

where the addition is the additive operation in the ring Gr
and by definition, Y (r) ∈ Gr. The reason why we restrict
ourselves to a finite ring is for compatibility with crypto-
graphic protocols for secure vector summation (Bonawitz
et al., 2017; Bell et al., 2020), which operate in over a finite
space. These protocols ensure that any additional infor-
mation observed by the server beyond Y (r) can in fact be
simulated given Y (r), under standard cryptographic assump-
tions. As mentioned above, we abstract away the specifics
of the underlying protocol and assume that the server ob-
serves exactly Y (r). For vector summation, it is convenient
to think of Gr as Z`qr , i.e. length-` vectors with integer
entries mod qr (we might chose qr to be prime when we
require division, e.g. in the IBLT construction).

If the protocol is interactive, for i ∈ Br, Yi is allowed to
depend on Y (1), . . . , Y (r−1). In this case, each fi is a func-
tion of Y (1), . . . , Y (r−1). If the protocol is non-interactive,
fi’s must be fixed independently from previous messages.

The server then must recover heavy hitters (and their fre-
quencies) based on the transcript of the protocol, denoted
by

Π = (Y (1), . . . , Y (R), U).

2.1. Connection to other constrained settings.

Below we discuss the connection between our stated setting
to other popular constrained settings including the streaming
setting, and the general communication constrained setting.

Connection to the streaming setting. When R = 1, the
setting is similar to the similar to the streaming setting

(e.g., in Cormode & Muthukrishnan (2005)) since they both
require that all information about the dataset must be “com-
pressed” into a small state. One important difference is that
in the distributed setting, the local data is processed inde-
pendently at each user and only linear operation on the state
is permitted due to the linear aggregation operation. For
the R-round case, our setting is different since the server
observes R states, each with bit length at most `. These
states couldn’t be viewed as a mega-state with bit length
R · ` since there is a further restriction that each sub-state
(corresponding to the aggregated message observed in a
round) can only contain information about data in the corre-
sponding round instead of the entire data stream. Another
naive way to reduce the problem to the streaming setting is
to sum over all R states and obtain a single state with ` bits.
However, our result implies that this reduction is strictly
sub-optimal (see Table 1). To the best of our knowledge,
similar settings have not been studied in either the federated
analytics literature or the streaming literature.

Connection to distributed estimation without linear
sketching. The general communication constrained set-
ting where linear sketching is not enforced could be viewed
as a special case of the proposed framework with n = 1
and R = N since in this case, the linear aggregation is
performed only over one user’s message and hence trivial.

We list comparisons to these settings for the considered
tasks in Table 1.

3. Results and technique
We consider both approximate heavy hitter recovery and
approximate histogram estimation in the linear aggregation
model. We establish tight (up to logarithmic factors) com-
munication complexity for both tasks in the single-round
and multi-round settings. The results are summarized in Ta-
ble 1. Our results have the following interesting implications
on the communication complexity of these problems.

Linear aggregation increases the communication cost.
As shown in Table 1, under LinSketch, for both tasks, the
per-user communication would incur a linear dependence on
n = N/R, the number of users in each round. On the other
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hand, without linear aggregation constraint, there won’t be
a linear dependence on n since each user can simply send
their m local samples losslessly using O(m log d) bits. The
result establishes the fundamental cost of linear aggregation
communication protocols for heavy hitter recovery.

ApproxHist is harder than ApproxHH. As mentioned
before, a natural way to obtain heavy hitters is to obtain an
approximate histogram and do proper thresholding to select
the heavy elements. Although in the single-round case, there
is at most a logarithmic gap between the communication
complexity for the two problems. In the R-round case, our
result shows that this is strictly sub-optimal. More precisely,
the communication cost for τ -ApproxHH increases by a
factor of

√
R while that of ApproxHist depends at most log-

arithmically in R. This implies a gap between the per-user
communication cost for τ -ApproxHist and τ -ApproxHH in
the multi-round case.

The impact of R. With a fixed total number of users N ,
our result shows that the per-user communication complex-
ity decreases as R increases. This is due to the fact that
as R increases, the linearity constraints are imposed over a
smaller group of users with size N/R, and hence less strin-
gent. However, this also comes at the cost that the privacy
implication from aggregation becomes weaker.

3.1. Our technique - IBLT with local subsampling

As discussed above, when solving the approximate heavy
hitter problem in the multi-round setting, algorithms that
rely on obtaining an approximate histogram and threshold-
ing won’t give the optimal communication complexity. In
the paper, we propose to use invertible bloom lookup tables
(IBLTs) (Goodrich & Mitzenmacher, 2011) and local sub-
sampling. At a high-level, IBLT is a bloom filter-type linear
data structure that supports efficient listing of the inserted
elements and their exact counts. The size of the table scales
linearly with the number of unique keys inserted. To reduce
the communication cost, we perform local threshold sam-
pling (Duffield et al., 2005a) on users’ local datasets. This
guarantees that the “light” elements will be discarded with
high probability and hence won’t take up the capacity of the
IBLT data structure. Compared to frequency-oracle based
approach, the noise introduced in our subsampling-based
approach for each item is proportional to its accumulative
count, which gives better estimates for elements with fre-
quencies near the threshold. For elements with counts way
above the threshold, the frequency estimate will have a
larger error but this won’t affect heavy hitter recovery since
only whether the count is above τ is crucial to our problem.
See detail of the algorithm in Section 4.

3.2. Related work

Linear dimensionality reduction techniques for frequency
estimation and heavy hitter recovery has been widely studied
to reduce storage or communication cost, such as Count-
sketch, Count-min sketch (Charikar et al., 2002; Cormode
& Muthukrishnan, 2005; Donoho, 2006; Minton & Price,
2014), and efficient decoding techniques have also been
proposed (Cormode & Muthukrishnan, 2006; Gilbert et al.,
2010).

The closest to our work is the independent work of (Chen
et al., 2022), which studies approximate histogram es-
timation under linear sketching constraint. The work
also establishes gap between communication complexities
with/without Secure Aggregation. However, their result is
in a more restricted setting of m = 1 and R = 1. Moreover,
our algorithm also has the advantage of being computation-
ally efficient (runtime only depends logartihmically in d),
which is important for applications with large support but
sparse data. Their work also considers algorithms that guar-
antee distributed differential privacy guarantees, which we
leave as interesting future directions.

4. Approximate heavy hitter under linear
aggregation

In this section, we study the approximate heavy hitter prob-
lem and show that the problem can be solved with per-user
communication complexity Õ

(
mn
τ log d

)
, stated in Theo-

rem 4.1.

A natural comparison to make is the heavy hitter recovery
algorithm obtained from getting a frequency oracle up to
accuracy Θ(τ). Since there are R rounds, the naive ap-
proach would require an accuracy of Θ(τ/R) in each round
and classic methods such as Count-min and Count-sketch
would require a per-user communication complexity of
Θ̃(mnR/τ). In the R-round case, our result improves upon
this by a factor of R. In fact, as we show in Theorem 5.2,
any frequency oracle-based approach would require per-user
communication complexity of at least Ω(mn

√
R/τ). Our

result improves upon these and show that the dependence
on R is at most logarithmic.

Theorem 4.1. There exists a non-interactive linear sketch-
ing protocol with communication cost Õ

(
mn
τ

)
bits per

user, which solves the τ -approximate heavy hitter problem.
Moreover, the running time of the algorithm is Õ

(
mn
τ

)
.

The next theorem shows that the above communication
complexity is minmax optimal up to logarithmic factors.

Theorem 4.2. For any τ and interactive linear sketching
protocol A with per-user communication cost o

(
mn
τ

)
, there

exists a dataset hi, i ∈ Br, r ∈ [R], such that A cannot
solve τ -heavy hitter (HH) with success probability at least
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4/5.

Next we will present the protocol that achieves Theorem 4.1
in Section 4 and discuss the proof of the lower bound Theo-
rem 4.2 in Appendix D.1.

At a high level, the protocol relies on two main components:
(i) a probabilistic data structure called Invertible Bloom
Look up Table (IBLT) introduced by Goodrich & Mitzen-
macher, and (ii) local subsampling. We start by introducing
IBLTs, starting from the more standard (counting) Bloom
filters.

IBLT: Bloom filters with efficient listing. Note that each
user’s local histogram hi can be viewed as a sequence of
key-value pairs (x, hi(x)). The Bloom filter data structure
is a standard linear data structure to representing a set of key-
value pairs with keys coming from a large domain. IBLT
is a version of Bloom filter that supports an efficient listing
operation – while preserving the other nice properties of
Bloom counting filters, namely linearity (and thus merge-
able by summation), and succintness (linear size in number
of indices it holds).2 These properties are summarized in
the following Lemma.

Lemma 4.3 ((Goodrich & Mitzenmacher, 2011)). Consider
a collection of local histograms (hi)i∈[n] over [d] such that
‖
∑
i∈[n] hi‖0 ≤ L0.

For any γ > 0, there exist local linear sketches {fi}i∈[n] of
length ` = Õ(γL0) and an O(`) time decoding procedure
Dec(·) such that

Dec(
∑
i∈[n]

fi(hi)) =
∑
i∈[n]

hi

succeeds except with probability at most O
(
L2−γ
0

)
.

For the purpose of this paper we can focus on the two main
operations supported by an IBLT instance B (see (Goodrich
& Mitzenmacher, 2011) for details on deletions and look-
ups):

• Insert(k, v), which inserts the pair (k, v) into B.
• ListEntries(), which enumerates the set of key-

value pairs in B.

Note that fi(hi) in Lemma 4.3 corresponds to the IBLT Bi
resulting from inserting the set {(x, hi(x)) | hi(x) > 0}
into an empty IBLT. Also, ListEntries() corresponds
to Dec in Lemma 4.3.

Finally,
∑n
i fi(hi) corresponds to the encoding of the IBLT

resulting from inserting the set {(x,
∑n
i hi(x)) | ∃i ∈ [n] :

hi(x) > 0} into an empty IBLT. In other words, each client

2In our algorithm, IBLT could be replaced by any data structure
with these properties.

i ∈ [n] computes local IBLT Bi := fi(hi), and the (se-
cure) aggregation of the Bi’s results in the global IBLT
B :=

∑n
i fi(hi). Further details on IBLT are stated in

Appendix C.

Reducing capacity via threshold sampling. The second
tool in our main protocol is threshold sampling. Note that
the guarantee in Lemma 4.3 relies on the number of unique
elements in

∑
i∈[n] hi, which can be at most mn in the

worst-case, leading to an O(mn) not matching our lower
bound in Lemma 4.2. For heavy hitter recovery, we re-
duce the communication cost by local subsampling. More
precisely, we use the threshold sampling algorithm from
(Duffield et al., 2005b), detailed in Algorithm 1 to achieve
the (optimal) dependency O(mn/τ).
Remark 4.4. Threshold sampling can be replaced by any
unbiased local subsampling method that offers sparsity, e.g.,
binomial sampling where h′(x) ∼ Binomial(h(x), p) for
some p ∈ (0, 1), and similar theoretical guarantee will
hold. In this work, we choose threshold sampling due to the
property that it minimizes the total variance of h′ under an
expected sparsity constraint (see Duffield et al. (2005b) for
details).

Algorithm 1 Threshold sampling.
1: Input: h : local histogram. t ∈ R+ : threshold.
2: for x ∈ supp(h) do
3: if h(x) ≥ t, then
4: h′(x) = h(x).
5: else
6:

h′(x) =

{
t with prob h(x)

t ,

0 otherwise.

7: end if
8: end for
9: Return: h′.

The protocol that achieves the desired communication com-
plexity in Theorem 4.1 is detailed in Algorithm 2.

The algorithm can be viewed as b:=d20 log( 40mnR
τβ )e inde-

pendent runs of a basic protocol, each of which returns a list
Hi of potential heavy hitters. And the repetition is to boost
the error probability.

In each basic protocol, users first apply Algorithm 1 to sub-
sample to the data, which reduces the number of unique ele-
ments while maintaining the heavy hitters upon aggregation.
Then the user encodes their samples using IBLTs, whose
aggregation is then sent to the server to decode. Since the
number of unique elements is reduced through subsampling,
the decoding of the aggregated IBLT will be successful
with high probabiltiy, hence recovering the aggregation of
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Algorithm 2 Subsampled IBLT with LinSketch.
1: Input: {hi}i∈Br,r∈[R] : local histograms; d : alphabet

size; R : number of rounds; m : per-user contribution
bound; n : number of users per round; τ : threshold for
heavy hitter recovery; β : failure probability.

2: Let t = max{τ/2, 1}, b = d10 log(4mnR
τβ )e and L0 =

20mnτ logR, γ = logR.
3: for r ∈ [R] do
4: for j ∈ [b] do
5: Each user i ∈ Br applies Algorithm 1 with thresh-

old t in to their local histogram with fresh random-
ness to get h′i,j .

6: Each user sends message Yi,j = fi,j(h
′
i,j) where

fi,j’s are mappings from Lemma 4.3 with parame-
ter L0, γ and fresh randomness.

7: Server observes
∑
i∈Br Yi,j and computes

ĥr,j = Dec(
∑
i∈Br

Yi,j).

If the decoding is not successful, we set ĥr,j be
the all-zero vector.

8: end for
9: end for

10: for j ∈ [b] do
11: Server computes ĥ[R]

j =
∑
r∈[R] ĥr,j , and obtain list

Hj = {x ∈ [d] | ĥ[R]
j > 0}.

12: end for
13: Return:

H = {x |
∑
j∈[b]

1 {x ∈ Hj} ≥
b

2
}.

subsampled local histograms. The detailed proof of Theo-
rem 4.1 is presented in Appendix A.

5. Approximate histogram under linear
aggregation

In this section, we study the task of obtaining an approxi-
mate histogram in the multi-round linear aggregation model.
The first observation we make is that using Algorithm 2 with
threshold τ , we are able to return a list H of heavy hitters
such that with high probability, the list contains all x’s with
frequency more than τ and no tail elements. The approx-
imate histogram algorithm builds on this and further asks
each user to send a linear sketching of the their unsampled
local data alongside the IBLT data structures in Algorithm 2.
The server would then use the aggregation of these linear

sketches as a frequency oracle to estimate the frequency of
elements in H .

The above protocol leads to near optimal performance in
the single-round case. However, the R-round case is trickier
since the error will build up along all R rounds and the
naive application of the sketching algorithm will lead to
an error that depends linearly in R. This can be solved by
carefully designing the correlation among hash functions in
all R rounds and we show that the dependence on R can be
reduced to

√
R. We further show that the

√
R dependence

is in fact optimal by proving a matching lower bound, stated
in Theorem 5.2.

At a high-level, to improve the dependence on R, we use
Count-sketches where the location hashes are fixed across
rounds while the sign hashes are generated with fresh ran-
domness. The details of the algorithm are described in
Algorithm 3. The proof follows from the guarantee in The-
orem 4.1 and standard analysis for the Count-sketch algo-
rithm. We defer the complete proof to Appendix B.

Theorem 5.1. In the R-round setting, there exists a
linear aggregation protocol with communication cost
Õ
(

min{mn
√
R

τ ,mn}
)

per user, which solves the τ -
approximate histogram problem. Moreover, the running
time of the algorithm is Õ

(
min{mn

√
R

τ ,mn}
)

.

Lower bound for ApproxHist We prove the following
lower bound on ApproxHist, which shows that the bound in
Theorem 5.1 is tight up to logarithmic factors, establishing
the seperation between the sample complexity for

Theorem 5.2. For any τ and R-round ApproxHist protocol
with per-user communication cost o

(
min{mn

√
R

τ ,mn}
)

,

there exists a dataset {hi}i∈Br,r∈[R], such that the protocol
cannot solve τ -approximate histogram with error probabil-
ity at most 1/5.

6. Practical adaptive tuning for
instance-specific bounds

In practical scenarios, the per-user communication cost `
is often determined by system constraints (e.g., delay tol-
erance, bandwidth constraint) and the goal is to recovery
heavy hitters with the small enough τ under a fixed commu-
nication cost `max. While we have shown in Theorem 4.2,
in the worst case, we can only reliably recover heavy hitters
with frequency at least Ω( mn`max

). However, since the success-
ful decoding of IBLTs only requires the number of unique
elements in a round to be small, when users’ data is more
favorable, it is possible to obtain better instance-specific
bounds when the data is more concentrated on “heavy” ele-
ments.
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Algorithm 3 R-round ApproxHist with LinSketch
1: Input: {hi}i∈Br,r∈[R] : local histograms; d : alphabet

size; R : number of rounds; m : per-user contribution
bound; n : number of users per round; τ : error for
approximate histogram; β : failure probability.

2: if τ ≤
√
R then

3: Users implement Algorithm 2 with τ = 1 and return
the histogram obtained in Line 11.

4: end if
5: Let w = d 10mn

√
R

τ e and b = dlog
(

4mnR
τβ

)
e.

6: Get the same set of location hash functions {gj : [d]→
[w]}j∈[w] for all rounds. And the independent sets of
sign hashes {sj,r : [d] → {±1}}j∈[w],r∈[R] across
rounds.

7: for r ∈ [R] do
8: (In Parallel) Each user i ∈ Br implements the proto-

col in Algorithm 2 and sends messages Yi.
9: (In Parallel) User i ∈ Br encode j ∈ [b] and k ∈ [w],

Ti(j, k) =
∑
x

1 {gj(x) = k} sj,r(x) · hi(x).

10: end for
11: Server obtains a list H of heavy hitters from the the

messages Yi’s.
12: Server obtains ∀r ∈ [R], T (r) =

∑
i∈Br Ti and con-

structs ĥ, where ∀x ∈ H

ĥ(x) = Median

{∑
r∈[R]

T (r)(j, gj(x)) · sj,r(x)}j∈[b]

,
and ∀x /∈ H, ĥ(x) = 0.

13: Return ĥ.

When interactivity across rounds is allowed, we give an
adaptive tuning algorithm for the subsampling parame-
ter, which can be implemented when interactivity is al-
lowed. The details of the algorithm are described in Al-
gorithm 4. At a high level, our algorithm is based on an
estimate for ‖

∑
i∈Br h

′
i‖0 where h′is are the subsampled

histograms. When the decoding is successful, we can com-
pute ‖

∑
i∈Br h

′
i‖0 exactly from the recovered histogram.

When the decoding is not successful, we rely on an analysis
based on the “core size” of a random hypergraph (Molloy,
2005) introduced by the hashing process to get an estimate
of ‖

∑
i∈Br h

′
i‖0. We discuss this in details in Appendix C.

Under the assumption that for a fixed subsampling parame-
ter t, ‖

∑
i∈Br h

′
i‖0 will be relatively stable across rounds,

we can then increase/decrease t based on past estimates of
the data process.

We will empirically demonstrate the effectiveness of our
tuning procedure. We leave proving rigorous guarantees

on the adaptive tuning algorithm as an interesting future
direction.

Algorithm 4 Adaptive subsampled IBLT
Input: Communication budget C, number of users n, user

contribution bound m.
Update: A tuning function that updates the subsam-
pling parameter based on past observations.

1: Set t0 = Θ
(
nB
C

)
.

2: for r = 0, 1, 2, . . . , R do
3: Each user i ∈ Br applies Algorithm 1 with threshold

t in to their local histogram with fresh randomness
to get h′i.

4: Each user sends message Yi = fi(h
′
i) where fi’s are

mappings from Lemma 4.3 with parameter L0, γ and
fresh randomness.

5: Server observes
∑
i∈Br Yi and computes

ĥr = Dec(
∑
i∈Br

Yi)

If the decoding is not successful, we let ĥr,j be the
all-zero vector.

6: if The decoding is successful, then
7: Set ŝr = ‖ĥr‖0.
8: else
9: Get an estimate ŝr for ‖

∑
i∈Br h

′
i‖0 based on∑

i∈Br Yi using (3) and (4) (Appendix C).
10: end if
11: Set

tr+1 = Update(tr, C, ŝr).

12: end for

7. Experiments
In this section, we empirically evaluate our proposed al-
gorithms (Algorithms 2 and 4) for the task of heavy hit-
ter recovery and compare it with baseline methods in-
cluding (1) Count-sketch based method; (2) IBLT-based
method without subsampling (Algorithm 2 with τ =
1). We measure communication cost in units of words
(denoted as C) and each word unit is an int16 ob-
ject (can be communicated with 2 bytes) in python and
C++ for implementation purposes. We will mainly fo-
cus on string data with characters from ROOT consist-
ing of lower-case letters, digits and special symbols in
{′ @ # − ; ∗ : . / }. Our code is available at https://
github.com/google-research/federated. Be-
low are the details of our implementation.

Count-median sketch. We use H hash functions, each
with domain size W and the total communication cost is

7
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C = H ·W words3. In theR-round setting, for each round r,
we loop over all x ∈ X and compute an estimate ĥr(x) and
the recovered heavy hitters are those with

∑
r ĥr(x) ≥ τ .

Note that in the open-domain setting, d = |X | can be large
and this decoding procedure can be computationally infea-
sible. There are more computationally feasible variants
including tree-based decoding but these come at the cost of
higher communication cost or lower utility. We stick to the
described version in this work and show that our proposed al-
gorithms outperform this computationally expensive version.
The advantage will be be at least as large when comparing
to the more computationally feasible versions.

IBLT-based method. In our experiment, each IBLT data
structure is of size 8L0, where L0 is the targeted capacity for
IBLT. We state more details about how the size is computed
in Appendix C.

We consider fixed subsampling and adaptive subsam-
pling. For fixed subsampling, when the max number of
items in each round is upper bounded by Mmax, we set
the subsampling parameter in Algorithm 1, to be t =
max{1,min{Mmax

L0
, τ2}}. In practice, Mmax can be ob-

tained by system parameters such as the number of users in
a round and the maximum contribution by a single user. Set-
ting t ≤ τ/2 guarantees that the heavy hitters will be kept
with high probability ( Lemma A.2). And setting t = Mmax

L0

guarantees that with high probability, the decoding of IBLT
in each round will succeed and we can obtain more informa-
tion. We set b = 1 in our experiments, the estimated and the
heavy hitters are defined as those with estimated frequency
at least τ . In the adaptive algorithm (Algorithm 4), for the
update rule, we use

tr+1 = 0.5tr + 0.5tr ×
ŝr
C

We leave designing better update rules as future work.

Client data simulation. We take the ground-truth distri-
bution of strings in the Stackoverflow dataset in Tensorflow
Federated and truncate them to the first 3 characters in set
ROOT. This is to make sure that the computation is feasible
for Count-median Sketch. And the data universe is of size
d = 97336. In each round, we take Mr ∼ N (M,M/10)
i.i.d. samples from the this distribution and encode them us-
ing the algorithms mentioned above. In the experiment, we
assume all samples come from different users (m = 1). For
Count-sketch, this won’t affect the performance. For IBLT
with threshold sampling, this will be equivalent to IBLT
with binomial sampling. And by (Duffield et al., 2005a),
this will only increase the variance of the noise introduced

3In our experiments, mn will be between ∼ 1000 and ∼
10, 000, and hence one word is enough to store an entry in the
sketch.

in the sampling process. The metric we use is the F1 score
of real heavy hitters (heavy hitters with true cumulative
frequency at least τ ) and the estimated heavy hitters.

We take R ∈ {10, 30, 50, 100}, τ ∈ {20, 50,
100, 200}, M ∈ {1000, 2000, 5000, 10000} and C ∈
{100, 200, 500, 1000, 2000, 5000, 8000, 10000, 20000,
30000, 40000}. For Count-median method, we take
the max F1 score over all H ∈ {5, 7, 9, 11} for each
communication cost. We run each experiment for 5 times
and compute the mean and standard deviation of the
obtained F1 score. Our proposed algorithms consistently
outperforms the sketching based method. Below we list and
analyze a few representative plots.

In Figure 1, we plot the F1 score comparison under different
communication costs when R = 30, τ = 50,M = 10000.
It can be seen that our proposed algorithms significantly
outperforms the Count-sketch method. Among the IBLT-
based methods, Subsampled IBLT with adaptive tuning is
performing the best. For non-interactive algorithms, sub-
sampled IBLT with fixed subsampling probability is better
compared to the unsampled counter part for a wide range of
small capacity.

Figure 1. F1 score comparison under different communication cost
(R = 30, τ = 50,M = 10000). Each F1 score is an average of 5
runs and the error bar represents 3x the standard deviation of the
runs.

In Figure 2, we plot the F1 score comparison under different
round numbers when C = 10000, τ = 200,M = 10000.
As we can see, the performance of Count-sketch decreases
significantly when the number of rounds increase while
the performance of IBLT-based methods remains relatively
flat, which is consistent with the theoretical results. The
slight increase in the F1 score when R increases might
be due to the i.i.d. generating process of the data in each
round. As R increases, we get more information about the
underlying distribution and this effect outweighs additional
noise introduced by multiple rounds. Better understanding
of this effect is an interesting further direction.
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Figure 2. F1 score comparison with different number of rounds
(τ = 200,M = 10000, C = 10000). Each F1 score is an average
of 5 runs and the error bar represents 3x the standard deviation of
the runs.

In Figure 3, we further demonstrate our adaptive tun-
ing method by showing that it is comparable with the
best possible subsampling parameter in a candidate set.
More specifically, we run subsampled IBLT with t ∈
{1, 1.25, 2, 5, 10, 20, 50, 100} for all communication costs.
And the F1 score for SubsampledIBLT (best fixed) is de-
fined as the best F1 score among these candidates. Our re-
sult shows that the performance of tha adaptive algorithm is
in-par with the best fixed subsampling parameter. It outper-
forms the best fixed subsampling parameter in certain cases
because the set of subsampling parameters we choose from
has limited granularity and hence the adaptive algorithm
might find better parameters for the underlying instance.

Figure 3. F1 score comparison (adaptive vs best fixed probability)
(τ = 200,M = 10000, C = 5000). Each F1 score is an average
of 5 runs and the error bar represents 3x the standard deviation of
the runs.

8. Conclusion
We provided lower bounds and matching upper bounds
for central tasks in multi-round distributed data analysis:

heavy hitters recovery and approximate histograms over
large domains. Our findings show how porting single-round
approaches based on standard sketching does not achieve
optimality, and how this can be cleverly achieved via sub-
sampled IBLTs. Several interesting and non-trivial questions
remain to be addressed, including (a) developing distributed
differential privacy schemes that are provably optimal for
this problem, and (b) developing (non-linear) cryptographic
(or other secure) primitives that allow us to extract heavy
hitters with smaller (sublinear in mn) communication.
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A. Proof of Theorem 4.1
Note that the algorithm can be viewed as b:=d20 log(40mnR

τβ )e independent runs of a basic protocol, each of which returns a
list Hi of potential heavy hitters. We assume b ≥ 260, else we take b′ = max{b, 260} and the result will change by at most
a constant factor.

The next lemma states that the probabilities of heavy elements and tail elements falling in the list.

Lemma A.1. All Hj defined in Algorithm 2 satisfy that, if h[R](x) ≥ τ ,

Pr (x ∈ Hj) ≥ 4/5.

Else if h[R](x) ≤ τ/10,

Pr (x ∈ Hj) ≤
2h[R](x)

τ
.

Before proving the lemma, we first show how Theorem 4.1 can be implied by Lemma A.1.

By Lemma A.1, for x with h[R](x) ≥ τ , we have

Pr (x ∈ H) ≥ Pr (Binom(b, 4/5) ≥ b/2) ≥ 1− βτ

40mnR
,

where the last inequality follows from standard concentration bounds for Binomial random variables (e.g., Chernoff bound
(Mitzenmacher & Upfal, 2017)).

Hence by union bound, we have

Pr
(
{x ∈ [d] | h[R](x) ≥ τ} ⊂ H

)
≥ 1− β

40
.

For any x, with h[R](x) ≤ τ/10, by Lemma A.1, we have

Pr (x ∈ H) ≤ Pr

(
Binom

(
b,

2h[R](x)

τ

)
≥ b/2

)
≤ b+ 1

2

(
8e

5
· 2h[R](x)

τ

)b/2
,

where the last inequality follows from Binomial tail bound (see Lemma E.1).

Hence by union bound we have

Pr
(
{x ∈ [d] | h[R](x) ≤ τ/10} ∩H 6= ∅

)
≤

∑
x:h[R](x)≤τ/10

b+ 1

2

(
16eh[R](x)

5τ

)b/2

≤ 20mnR

τ

b+ 1

2

(
8e

25

)b/2
(1)

≤ 20mnR

τ
e−

b
20 (2)

≤ β

2
,

where (1) follows from xb/2 + yb/2 ≤ (x + y)b/2, and hence we can combine symbols to increase the sum of tail
probability and end up with at most 20mnR

τ symbols with frequencies at most τ/10. (2) follows from the inequality
(x+ 1/2)(8e/25)x ≤ e−x/10 for x ≥ 130.

By union bound, we get the guarantee claimed in Theorem 4.1.

Proof of Lemma A.1: The proof mainly consists of two parts. We will first show that local subsampling will keep each
heavy hitter with a high probability and each tail element with a low probability, stated in Lemma A.2. We will then show
that after local subsampling, the number of unique elements in each round will decrease so that the decoding in Algorithm 2
will succeed with high probability.

11
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Lemma A.2. Let h
′[R]
j be the aggregation of locally subsampled histogram for run j, i.e.,

h
′[R]
j =

∑
r∈[R]

∑
i∈Br

hi,j .

Then if h[R](x) ≥ τ ,

Pr
(
h

′[R]
j (x) > 0

)
≥ 1− 1

e2
.

Else if h[R](x) ≤ τ/10,

Pr (x ∈ Hj) ≤
2h[R](x)

τ
.

Proof. When h[R](x) ≥ τ ,

Pr
(
h

′[R]
j (x) > 0

)
= 1−Πr∈[R],i∈Br min{1− 2hi,j(x)

τ
, 0} ≥ 1−Πr∈[R],i∈Bre

−
2hi,j(x)

τ = 1− e−
2h[R](x)

τ ≥ 1− 1

e2
.

When h[R](x) ≤ τ/10

Pr
(
h

′[R]
j (x) > 0

)
= 1−Πr∈[R],i∈Br

(
1− 2hi,j(x)

τ

)
≤ 1−

1−
∑

r∈[R],i∈Br

2hi,j(x)

τ

 =
2h[R](x)

τ
.

The next lemma shows that with high probability, the number of elements in each round will decrease by least a factor of τ .

Lemma A.3. With probability at least 1− 1/32, we have

max
r∈[R]

{‖h′r‖0} = O
(mn
τ

logR
)
.

Proof. Since all rounds are independent, it would be enough to show that ∀i, with probability at least 1− 1/32R, we have

‖h′r‖0 = O
(mn
τ

logR
)
.

To see this, we have

Pr

(
‖h′r‖0 ≥

2mn

τ
logR

)
≤ Pr

(
Binom

(
mn,

1

τ

)
≥ 2mn

τ
logR

)
≤ 1

32R
,

where the first step follows from that the left hand side is maximized when all mn elements in hr are distinct, and the second
step follows from standard binomial tail bound when mn > 4τ and R > 32.

Finally, it would be enough to show that when the condition in Lemma A.3 holds, the decoding of the aggregated IBLT will
succeed with high probability. This is true since by Lemma 4.3 and union bound, we have

Pr
(
∀j, ĥ[R]

j = h
′[R]
j

)
≥ 1−R · (mn

τ
logR)2−γ ≥ 1− 1/32,

where the last inequality holds when mn > 4τ and R > 32. Combining the above and Lemmas A.2 and A.3, we conclude
the proof since 1/e2 + 1/32 + 1/32 ≤ 1/5.
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B. Proof of Theorem 5.1
We start with the case when τ ≤

√
R. In this case, Algorithm 3 implements Algorithm 2 with τ = 1 and returns the obtained

histogram in Line 11. Notice that when τ = 1, the subsampling step is trivial and each user encodes their entire histogram.
Hence as long as long the decoding of IBLT succeeds (as promised in the performance analysis of Algorithm 2), we recover
the histogram perfectly, i.e., ĥ[R] = h[R]. And the communication cost will be Θ̃(mn).

Next we focus on the case when τ ≥
√
R. We will condition on the event that the list H obtained in Line 8 of Algorithm 3

is a τ approximate heavy hitter set and hence setting x̂ = 0 for x /∈ H won’t introduce error larger than τ .

The rest of the proof follows similarly as the standard proof for Count-sketch. Since b = dlog
(

4mnR
τβ

)
e, it would be enough

to prove that ∀x ∈ X , with probability at least 2/3, we have

|
∑
r∈[R]

Tr(j, gj(x)) · sj,r(x)− h[R](x)| = O(τ).

Let

ĥj(x):=
∑
r∈[R]

T (r)(j, gj(x)) · sj,r(x)

=
∑
r∈[R]

∑
x′

1 {gj(x′) = gj(x)} sj,r(x′)sj,r(x) · h(r)(x′)

=
∑
x′

1 {gj(x′) = gj(x)}
∑
r∈[R]

sj,r(x
′)sj,r(x) · h(r)(x′)

=h[R](x) +
∑
x′ 6=x

1 {gj(x′) = gj(x)}
∑
r∈[R]

sj,r(x
′)sj,r(x) · h(r)(x′)

Then we have E
[
ĥj(x) = h[R](x)

]
. Next we provide a bound on the variance. Let H10τ/

√
R be the set of elements with

frequency at least 10τ/
√
R, then we have |H10τ/

√
R| ≤

mn
√
R

10τ . Since w = d 10mn
√
R

τ e, we have with probability at least
5/6, ∑

x′∈H10τ/
√
R,x

′ 6=x

1 {gj(x′) = gj(x)} = 0.

Conditioned on this event, we have

E
[(
ĥj(x)− h[R](x)

)2]
= E


 ∑
x′ /∈H10τ/

√
R,x

′ 6=x

1 {gj(x′) = gj(x)}
∑
r∈[R]

sj,r(x
′)sj,r(x) · h(r)(x′)

2


≤
maxx′ /∈H10τ/

√
R
h[R](x)

∑
x′ /∈H10τ/

√
R
h[R](x)

w

≤ τ2.

Hence with probability at least 5/6, we have

E
[∣∣∣ĥj(x)− h[R](x)

∣∣∣] ≤ √6τ.

We conclude the proof by a union bound over the two events.

C. Additional details on IBLT
Intuition on ListEntries for IBLT. The intuition behind the IBLT construction is as follows: Start with an array B of
length ` containing 4-tuples of the form (0, 0, 0, 0). To insert pair (x, v) hash the tuple (x, x̃, v, 1) into k locations l1, . . . , lk
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in B based on the key x, where x̃ := G(x) is a hash of x into a sufficiently large domain so that collision probability is
sufficiently unlikely. Then add, using component-wise sum, (x, x̃, v, 1) to the contents of B in all locations l1, . . . , lk. The
ListEntries/Dec operation corresponds to the result of the following procedure: (1) find an entry (xsum, x̃sum, vsum,
j) such that G(xsum/j) = x̃sum/j holds, (2) add (xsum/j, vsum) to the output, and (3) remove the pair (xsum/j, vsum)
by subtracting (xsum, x̃sum, vsum, j) from the entries l′1, . . . , l

′
k in the array B to which an insertion would add the tuple for

key xsum/j and get back to step (1). The process of listing entries a.k.a “peeling off” B. might terminate before the IBLT is
empty. This is the failure procedure in Lemma 4.3, which corresponds to the natural procedure to find a 2-core in a random
graph (Goodrich & Mitzenmacher, 2011).

Sketch size. The above intuition corresponds to the IBLT construction variant from (Goodrich & Mitzenmacher, 2011) that
can handle duplicates. It can be implemented with four length ` vectors with entries in [d],Im(G), [mn], [mn], respectively.
In terms of concrete parameters (see (Goodrich & Mitzenmacher, 2011) for details), k = 3, ` > 1.3L0, and G = Zp
with p = 231 − 1 give good performance, and require 1.3L0(32 + log2 d+ 2 log2(mn)) bits. For the experiment setting
considered in Section 7, this is will take at most 8L0 words.

Cardinality estimation from saturated IBLT. Lemma 4.3 tells us that a tight bound L0 on the number of distinct
non-zero indices in the intended histogram, can save us space in an IBLT encoding. However, getting that bound wrong
results in an undecodable IBLT. While in the single round case all is lost, in the multi-round setting we leverage a property
of undecodable IBLTs that helps update our L0 bound for subsequent rounds after a failed round. This is the main ingredient
for our adaptive tuning heuristic presented in Section 6.

Let B be an undecodable IBLT, and let S be the size of the undecoded graph of B. Also let ` be the size of B, and let N
the (unknown) number of distinct elements inserted in B (note that N corresponds to the correct bound L0 that enables
decoding). By (Molloy, 2005), we have the following relation: For large enough N , if S < `, we have

S

C
= 1− e−x(1 + x) + o(1), (3)

where x is the greatest solution to
6N

C
=

2x

(1− e−x)2
. (4)

Hence we can have an estimate for N (and thus a correct choice for L0 in a subsequent round) based on S and C. We first
solve (3) ignoring the o(1) term to get x and then plug x and C into (4) to get an estimate for N . As mentioned above we
leverage this fact in Section 6.

D. Proof of lower bounds.
D.1. Proof of Theorem 4.2

We will focus on the case when R = 1 since the claimed bound doesn’t depend on R and we can assume there is no data in
other R− 1 rounds. We will consider the case when 10 < τ < n/4.

We prove the theorem by a reduction to the set disjointness problem (Bar-Yossef et al., 2004; Jayram, 2009). The set
disjointness problem (DISTt,d) considers the setting where t users where user i has a set of elements Si ⊂ {1, 2, . . . , d}.
The goal is to distinguish between the following two chase with success probability at least 4/5.

1. All Si’s disjoint.
2. There exists x ∈ [d] such that for all i, j ∈ [t], Si ∩ Sj = {x}.

And the goal is to minimize the size of the transcript of all communications among all users. More specifically, we will use
the following lemma:

Lemma D.1 ((Jayram, 2009)). Any protocol that solves DISTt,d must have a transcript of size at least Θ(d/t).

Next we show that DISTt,d with t = τ and d = mn/2 can be reduced to the approximate heavy hitter problem. We divide
users into τ + 1 groups. For i ∈ [τ ], the ith group has ni = d|Si|/me users. And let S̃i be set of all elements held by users
in group i. We partition Si to subsets of size at most m and distribute them to users in group i arbitrarily. This can be
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done since mni ≥ |Si|. The total number of users in the first τ groups is
∑
i∈[τ ] ni ≤

d+τ
m + τ ≤ n. The τ + 1 group has

n−
∑
i∈[τ ] ni users and each user has zero element.

Suppose there exists a τ -ApproxHH linear sketch algorithm with communication cost per-user o(mnτ ). When Si’s are
disjoint, all elements in [d] will have frequency 1 < τ/10. The algorithm should output an empty list. When Si’s have
an unique intersection, the element will have frequency τ , and hence the algorithm should output a list with size 1. By
distinguishing between the two cases, the ApproxHH algorithm can be used to solve DISTt,d.

Moreover, under linear sketching constraint, the size of the transcript is the same as the per-user communication. Hence we
conclude the proof by noticing that this violates Lemma D.1.

D.2. Proof of Theorem 5.2

Here we prove a stronger version of the lower bound where in each round r, the communication among users is not limited
but the users in Br must compress h(r) to an element Y (r) ∈ Gr with |Gr| ≤ 2`, which is observed by the server. And the
server will then obtain an approximate histogram ĥ[R] based on Π = (Y (1), . . . , Y (R), U). For a given τ , next we show that
any protocol with ` = o

(
min{mn

√
R

τ ,mn}
)

won’t solve τ -approximate heavy hitter with error probability at most 1/5. We

will focus on the case when τ ≥
√
R and ` = o

(
mn
√
R

τ

)
. When τ <

√
R, the bound follows by setting τ =

√
R and the

fact that the problem gets harder as τ decreases. To simply the proof, we assume R ≥ 400 without loss of generality.

We consider histograms h(r),∀r ∈ [R] supported over the domain 10` and are generated i.i.d. from a distribution P . Let Z
be uniformly distributed over {±1}5`, and under distribution PZ , we have ∀r ∈ [R], i ∈ [5`],

h(r)(2i) =

{
mn
5` with prob 1

2 + 10√
R
Zi.

0 with prob 1
2 −

10√
R
Zi.

and
h(r)(2i− 1) = 1− h(r)(2i).

It can be check that ‖h(r)‖1 = mn with probability 1. We prove the theorem by contradiction. If the protocol solves
τ -approximate heavy hitter with error probability at most 1/5, let

Ẑi = 1

{
ĥ[R](2i) >

mnR

10`

}
.

We have

Pr
(
Ẑi 6= Zi

)
≤ Pr

(∣∣∣ĥ[R](2i)− h[R](2i)
∣∣∣ ≥ mn

√
R

`

)
+ Pr

(∣∣∣∣h[R](2i)− mnR

5`

(
1

2
+

10√
R
Zi

)∣∣∣∣ ≥ mn
√
R

`

)

≤ 1

5
+

1

25
=

6

25
,

where the first probability is bounded by the success probability of the algorithm and the second probability is bounded
using Hoeffding bound. Hence we have∑

i∈[5`]

I(Zi; Π) ≥
∑
i∈[5`]

I(Zi; Ẑi) ≥
∑
i∈[5`]

(1−H(
5

26
)) ≥ 2`,

where H(p) is the Shannon entropy of a Bernoulli random variable with success probability 6/25.

To upper bound
∑
i∈[5`] I(Zi; Π), we notice that the vector(

5`h(r)(2)

mn
,

5`h(r)(4)

mn
, . . . ,

5`h(r)(10`)

mn

)
.

follows a product distribution with the marginal of each coordinate being a Bernoulli distribution. Hence by standard
arguments on communication-limited estimation of product of Bernoulli random variables (e.g., in (Braverman et al., 2016;
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Han et al., 2021; Acharya et al., 2020)). In particular, following almost the same steps as in Acharya et al. (2020, Section
7.1), ∑

i∈[5`]

I(Zi; Π) ≤ R ·
(

1√
R

)2

` = `,

which leads to a contradiction. This concludes the proof.

E. Binomial tail bound.
Lemma E.1. Let X ∼ Binom(n, p) be a binomial distribution, when n > 10 and p < 1/5, we have

Pr (X ≥ n/2) ≤ n+ 1

2

(
8ep

5

)n/2
.

Proof.

Pr (X ≥ n/2) =

n∑
i=b(n+1)/2c

Pr (X = i)

=

n∑
i=b(n+1)/2c

(
n

i

)
(1− p)n−ipi

≤ n+ 1

2

(
n

dn/2e

)
((1− p)p)n/2 (5)

≤ n+ 1

2
(2e)n/2

(
4p

5

)n/2
(6)

=
n+ 1

2

(
8ep

5

)n/2
,

where (5) follows from Pr (X = i) is monotonically decreasing when i ≥ n/2 and (6) follows from standard bounds on
binomial coefficients.
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