
Transformers Meet Directed Graphs

Simon Geisler * 1 Yujia Li 2 Daniel Mankowitz 2 Ali Taylan Cemgil 2 Stephan Günnemann 1 Cosmin Paduraru 2

Abstract
Transformers were originally proposed as a
sequence-to-sequence model for text but have be-
come vital for a wide range of modalities, includ-
ing images, audio, video, and undirected graphs.
However, transformers for directed graphs are
a surprisingly underexplored topic, despite their
applicability to ubiquitous domains, including
source code and logic circuits. In this work, we
propose two direction- and structure-aware posi-
tional encodings for directed graphs: (1) the eigen-
vectors of the Magnetic Laplacian – a direction-
aware generalization of the combinatorial Lapla-
cian; (2) directional random walk encodings. Em-
pirically, we show that the extra directionality
information is useful in various downstream tasks,
including correctness testing of sorting networks
and source code understanding. Together with a
data-flow-centric graph construction, our model
outperforms the prior state of the art on the Open
Graph Benchmark Code2 relatively by 14.7%.3

1. Introduction
Transformers have become a central component in many
state-of-the-art machine learning models spanning a wide
range of modalities. For example, transformers are used
to generate solutions for competitive programming tasks
from textual descriptions (Li et al., 2022), for conversational
question answering with the popular ChatGPT (OpenAI,
2022), or to find approximate solutions to combinatorial
optimizations problems like the Traveling Salesman Prob-
lem (Kool et al., 2019). Transformers have also had success
in graph learning tasks, e.g., for predicting the properties
of molecules (Min et al., 2022). While virtually all prior
works focus on undirected graphs, we advocate the use of di-

* Work performed while at Google DeepMind 1Dept. of
Computer Science & Munich Data Science Institute, Technical Uni-
versity of Munich 2Google DeepMind. 3Code and configuration:
www.cs.cit.tum.de/daml/digraph-transformer
Correspondence to: Simon Geisler <s.geisler@tum.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

rected graphs as they are omnipresent, and directedness can
rule semantics. Transformers that handle both undirected
and directed graphs could become an important building
block for many applications. For this, the attention mech-
anism needs to become aware of the graph structure. For
example, prior work modified the attention mechanism to
incorporate structural information (Ying et al., 2021) or pro-
posed hybrid architectures that also contain Graph Neural
Networks (GNNs) (Mialon et al., 2021; Chen et al., 2022).
Another (complementary) option are positional encodings
that are used by many, if not most, structure-aware trans-
formers (Min et al., 2022; Müller et al., 2023).

Directional positional encodings. Most of the literature
for structure-aware positional encodings either uses basic
measures like pair-wise shortest path distances (Guo et al.,
2021; Ying et al., 2021) or symmetrizes the graph for princi-
pled positional encodings, e.g., based on the combinatorial
Laplacian (Dwivedi & Bresson, 2021; Kreuzer et al., 2021).
Importantly, symmetrization might discard essential infor-
mation that determines the semantics of the input. For these
reasons, we propose two direction-aware positional encod-
ings: (1) the eigenvectors of the Magnetic Laplacian (§ 3),
which naturally generalizes the well-known combinatorial
Laplacian to directed graphs (see Fig. 1); and (2) directional
random walk encodings (§ 4) that generalize basic measures
like the shortest path distances. We show that our positional
encodings are predictive for various distances on graphs
(§ 5) and are useful in downstream tasks. Moreover, our
positional encodings can also improve GNNs (see Fig. 10).

Motivation for directed graphs. We make the impact of ap-
propriately modeling inputs via directed graphs explicit for
our applications. One example is the correctness prediction
of sorting networks (§ 6). Sorting networks (Knuth, 1973)
are a certain sorting procedures that can be represented by

(a) Sequence (b) Undir. seq. (c) Binary tree (d) Trumpet

Figure 1: First eigenvector of Magnetic Laplacian. Node
size encodes the real value and colors the imaginary value.

1

https://www.cs.cit.tum.de/daml/digraph-transformer

Transformers Meet Directed Graphs

a fixed sequence of operations. The goal is then to predict
whether the sequence is a correct sorting network. Based
on the sequence of operations, we can construct a (directed
acyclic) data-flow graph that models the dependencies be-
tween the operations. Conversely, the topological sorts of
this graph correspond to different but semantically equiv-
alent sequences of operations. Considering the potentially
large number of topological sorts, directed graphs can dras-
tically reduce the effective input dimensionality (e.g., see
Fig. 7). Moreover, we show that ignoring the edge direc-
tions maps both correct and incorrect sorting networks to
the same undirected graph, losing critical information.

Interestingly, representing source code as a sequence is the
de facto standard (Li et al., 2022; Feng et al., 2020; Chen
et al., 2021; OpenAI, 2022). Even graph-based represen-
tations of code (Allamanis et al., 2018; Hu et al., 2020;
Cummins et al., 2020; Guo et al., 2021; Bieber et al., 2022)
only enrich sequential source code, e.g., with an Abstract
Syntax Tree (AST). However, similar to sorting networks,
we can often reorder certain statements without affecting
the code’s functionality. This motivates us to rethink the
graph construction for source code, which not only boosts
performance but makes the model invariant w.r.t. certain
meaningless reorderings of statements (see § 7 for details).

Contributions: [I] We make the connection between si-
nusoidal positional encodings and the eigenvectors of the
Laplacian explicit (§ 2). [II] We propose spectral positional
encodings that also generalize to directed graphs (§ 3). [III]
We extend random walk positional encodings to directed
graphs (§ 4). [IV] As a plausibility check, we assess the
predictiveness of structure-aware positional encodings for a
set of graph distances (§ 5). [V] We introduce the task of
predicting the correctness of sorting networks, a canonical
ambiguity-free application where directionality is essential
(§ 6). [VI] We quantify the benefits of modeling a sequence
of program statements as a directed graph and rethink the
graph construction for source code to boost predictive per-
formance and robustness (§ 6 & 7). [VII] We set a new
state of the art on the OGB Code2 dataset (2.85% higher F1
score, 14.7% relatively) for function name prediction (§ 7).

2. Sinusoidal and Laplacian Encodings
Due to the permutation equivariant attention, one typi-
cally introduces domain-specific inductive biases with Posi-
tional Encodings (PEs). For example, Vaswani et al. (2017)
proposed sinusoidal positional encodings for sequences
along with the transformer architecture. It is commonly
argued (Bronstein et al., 2021; Dwivedi & Bresson, 2021)
that the eigenvectors of the (combinatorial) Laplacian can be
understood as a generalization of the sinusoidal positional
encodings (see Fig. 2) to graphs, due to their relationship
via the Graph Fourier Transformation (GFT) and Discrete

0 50
Node v

0

50

Di
m

. d
m

od
el

(a) Sinusoidal

0 50
Node v

0

50

Ei
ge

nv
ec

. Γ

(b) Eigenvec. of Laplacian

Figure 2: (a) Sinusoidal encodings (sin components top and
cos below) with denominator 1, 0002j/dmodel and dmodel =
100. (b) Lap. eigenvec. of sequence Fig. 1b of len. n = 100.

Fourier Transformation (DFT) (Smith, 1999). Even though
sinusoidal positional encodings capture the direction, eigen-
vectors of the Laplacian do not. But why is this the case? To
understand differences and commonalities, we next contrast
sinusoidal encodings, DFT, and Laplacian eigenvectors for
a sequence (Fig. 1a,1b).

Sequence encodings. Sinusoidal encodings (Vaswani
et al., 2017) form a dmodel-dimensional embedding of to-
ken u’s integer position in the sequence using cosine
PE

(sin)
u,2j := cos(u/10,0002j/dmodel) and sinus PE

(sin)
u,2j+1 :=

sin(u/10,0002j/dmodel) waves of varying frequencies with j ∈
{0, 1, ..., dmodel/2− 1}. Analogously, the DFT could be used
to define positional encodings:

Xj :=
n−1∑
u=0

xu

[
cos

(2π
n
ju

)
︸ ︷︷ ︸

PE
(DFT)
u,2j

−i · sin
(2π
n
ju

)
︸ ︷︷ ︸

PE
(DFT)
u,2j+1

]
(1)

Here X corresponds to signal x in the frequency domain.
In contrast to the DFT, sinusoidal encodings (a) sweep the
frequencies using a geometric series instead of linear; (b)
also contain frequencies below 1/n (longest wavelength is
2π10, 000); and (c) have dmodel components instead of 2n
(i.e., 0 ≤ j < n in Eq. 1).

Graphs generalize sequences to sets of tokens/nodes with
arbitrary connections. In a graph G = (V,E), the m edges E
represent connections between the n nodes V . We use X(n)

for node features and X(m) for edge features. We denote the
in-degree of node u with |{v|(v, u) ∈ E}| and out-degree
with |{v|(u, v) ∈ E}|. Alternatively to E, we denote the
adjacency matrix A ∈ {0, 1}n×n and refer with D ∈ Rn×n

to the diagonalized degree matrix. Analogously, we describe
the symmetrized adjacency matrix As = A ∨A⊤ with set
of edges Es and degree matrix Ds. In the main part of the
paper, we only discuss unweighted graphs; however, our
methods naturally generalize to weighted graphs (see § E).

Eigenvectors of Laplacian. The Graph Fourier Transfor-
mation (GFT) for undirected graphs X = Γ⊤x) can be
defined based on the eigendecomposition of the combina-

2

Transformers Meet Directed Graphs

torial Laplacian L = ΓΛΓ−1, with diagonal matrix Λ of
eigenvalues and orthogonal matrix Γ ∈ Rn×n of eigenvec-
tors (see § B for details). Similarly to the DFT, Γ are suitable
positional encodings. The unnormalized Laplacian LU as
well as degree-normalized Laplacian LN are defined as:

LU := Ds−As (2) LN := I − (D−
1/2

s AsD
−1/2
s) (3)

The symmetrization As discards directionality but is re-
quired s.t. L is guaranteed to be symmetric and positive
semi-definite. This ensures that Γ form an orthogonal basis,
which entails important properties of the GFT and for PEs
(see § C for a discussion). In the following, we index eigen-
values and eigenvectors by order: 0 ≤ λ0 ≤ λ1 ≤ · · · ≤
λn−1. We call λ0 or Λ0,0 the first eigenvalue and γ0 or Γ:,0

the first eigenvector that reflect the lowest frequency.

Laplacian vs. DFT. Two notable differences to the DFT
in Eq. 1 are (1) that the eigenvectors of the Laplacian are
real-valued; (2) the eigenvectors are not unique, e.g., due to
the sign ambiguity. That is, if γ is an eigenvector, so is −γ.

Cosine Transformation. A possible set of eigenvectors
of the combinatorial Laplacian for a sequence (Fig. 1b) is
given by the Cosine Transformation Type II (Strang, 1999):
Γv,j = ± cos((v + 1/2)jπ/n), where we must choose the
same sign per j. The ± is due to the sign ambiguity (2) of
the eigenvector and, thus, we cannot distinguish the embed-
ding of, e.g., the first and last node. Note that in traditional
applications of the Cosine Transformation, it is possible to
identify the first token and fix the sign. However, for general
graphs, it is not that easy to resolve the sign ambiguity (e.g.,
multiple sink and source nodes). Thus, in positional encod-
ings, we typically use an arbitrary sign for each γ (Dwivedi
& Bresson, 2021), and are not able to distinguish direction.

3. Directional Spectral Encodings
The Magnetic Laplacian is a generalization of the combi-
natorial Laplacian that encodes the direction with complex
numbers. We then use its eigenvectors for a structure-aware
positional encoding that acknowledges the directedness.

We define the Magnetic Laplacian (Furutani et al., 2020)

L
(q)
U := Ds −As ⊙ exp

(
iΘ(q)

)
(4)

with Hadamard product ⊙, element-wise exp, i =
√
91,

Θ
(q)
u,v := 2πq(Au,v − Av,u), and potential q ≥ 0. Recall,

Ds is the symmetrized degree matrix and As the sym-
metrized adjacency matrix. The Magnetic Laplacian is a
Hermitian matrix since it is equal to its conjugate transpose
L(q) = (L̄(q))⊤ and, thus, comes with complex eigenvec-
tors Γ ∈ Cn×n. Eq. 4 is equivalent to the combinatorial
Laplacian for q = 0. Moreover, if the graph is undirected,
we recover the combinatorial Laplacian for any finite q ∈ R.

Figure 3: First eigenvec. γ0 of Magnetic Laplacian (Eq. 4).

The exp
(
iΘ(q)

)
term in Eq. 4 encodes the edge direction. It

resolves to 1 if Au,v = Av,u and, otherwise, to exp(±i2πq),
with the sign encoding the edge direction. The potential q
determines the ratio of real and imaginary parts. Recall
that exp(iα) = cos(α) + i sin(α). Conversely, ∠(Γu,0) =
arctan2(ℑ(Γu,0),ℜ(Γu,0)) with real / imag. value ℜ / ℑ.
For illustration, we next give the Magnetic Laplacian for a
sequence with q = 0 and q = 1/4 (Eq. 5 & 6), as well as
their first eigenvector in Fig. 1b and 1a.

L
(0)
U =

 1 91 ··· 0 0
91 2 ··· 0 0
...

...
. . .

...
...

0 0 ··· 2 91
0 0 ··· 91 1

 (5) L
(1/4)
U =

 1 9i ··· 0 0
i 2 ··· 0 0
...

...
. . .

...
...

0 0 ··· 2 9i
0 0 ··· i 1

 (6)

In our experiments, we use the degree-normalized counter-
part L(q)

N := I−
(
D
−1/2
s AsD

−1/2
s

)
⊙ exp

(
iΘ(q)

)
that we

find to result in slightly superior performance.

Directedness. We next illustrate how the eigenvectors of
the Magnetic Laplacian L

(q)
U encode direction. For the spe-

cial case of a sequence (Fig. 1a), the eigenvectors are given
by Γ

(q)
v,j = c exp(9i2πqv)Γ(0)

v,j = c exp(9i2πqv) cos((v +
1/2)jπ/n) with c ∈ C \ {0}. This corresponds to the Co-
sine Transformation Type II (see § 2) with additional factor
exp(9i2πqv) that encodes the node position v. Importantly,
the eigenvectors of the Magnetic Laplacian also encode the
directionality in arbitrary (directed) graph topologies, where
each directed edge (u, v) encourages a phase difference in
the (otherwise constant) first eigenvector γ0, i.e., between
Γu,0 and Γv,0. For simple cases with L

(q)
U , as in Fig. 3, each

directed edge induces a rotation of 2πq while each undi-
rected edge synchronizes the rotation of the adjacent nodes.
Note that self-loops are assumed to be undirected and only
affect the symmetrically degree-normalized L

(q)
N . In this

example, the one-hop neighbors of node 3, namely nodes
1 and 4, have a relative rotation of 2πq, while the two-hop
neighbor 2 has a relative rotation of 4πq. In general, the first
normalized eigenvector γ minimizes the Rayleigh quotient

min
x∈C

x̄⊤L
(q)
U x

x̄⊤x
=

1

2

∑
(u,v)∈Es

|Γu,0 − Γv,0 exp(iΘ
(q)
u,v)|2,

(7)
Thus, the eigenvectors trade off conflicting edges, e.g., if
multiple (directed) routes of different lengths exist between
nodes u and v. For more details, see § D.

3

Transformers Meet Directed Graphs

The potential q determines the strength of the induced
phase shift by each edge. Thus, q plays a similar role as the
lowest frequency in sinusoidal positional encodings (typ-
ically 1/2π10,000). Following the convention of sinusoidal
encodings, one could fix q to an appropriate value for the
largest expected graphs. However, scaling potential q with
the number of nodes n and the amount of directed edges
leads to slightly superior performance in our experiments.
Specifically, we choose q = q′/dG with relative potential
q′ and graph-specific normalizer dG . This normalizer is an
upper bound on the number of directed edges in a sim-
ple path dG = max(min(m⃗, n), 1) with the number of
purely directed edges m⃗ = |{(u, v) ∈ E | (v, u) /∈ E}|
and is motivated by Eq. 7 (see § D.1). We typically choose
q′ ∈ {0.1, 0.25} and empirically verify this in Fig. 9 where
it is among the best. For high values of q′ the performance
drops severely (corresponds to absolute q > 0.05).

Scale and rotation. Eigenvectors are not unique and we
normalize them by a convention. We visualize the first eigen-
vector after applying our normalization for different graphs
in Fig. 1 & A.1. One source of ambiguity is its scale and
rotation. If γ is an eigenvector of L then so is cγ, even if
c ∈ C \ {0} (proof: cLγ = cλγ =⇒ L(cγ) = λ(cγ)).
For real symmetric matrices, there is the convention to
choose c ∈ R s.t. Γ is orthonormal (Γ⊤Γ = I). Similarly,
(1) we choose |c| s.t. Γ is unitary (Γ̄⊤Γ = I). Moreover, if
not using a sign-invariant architecture, as described below,
(2) we determine the sign of each eigenvector such that the
maximum real magnitude is positive. This resolves the sign-
ambiguity up to ties in the maximum real magnitude and nu-
merical errors. (3) we fix the rotation. If possible for the task
at hand, we use the graph’s distinct “root” node u. For ex-
ample, in function name prediction, the root node marks the
start of the function definition. Alternatively, we use the fore-
most (source) node u as root, i.e., the node with maximum
phase shift in the first eigenvector u = argmaxv ∠(Γv,0).
In both cases, we then rotate all eigenvectors, such that the
phase shift ∠(Γu,j) is 0 for all j ∈ {0, 1, . . . , n− 1}. Due
to the rotation in (3), our normalization is best suited for
graphs with root/source node(s). For details, see § D.2.

MagLapNet. Inspired by prior approaches (Lim et al., 2022;
Kreuzer et al., 2021), we also preprocess eigenvectors be-
fore using them as positional encodings (Fig. 4b) to ob-
tain a structure-aware transformer (Fig. 4a). We consider
the eigenvectors associated with the k lowest eigenvalues
Γ:,:k91 and treat k as hyperparameter. We study two architec-
ture variants for processing the eigenvectors after stacking
real and imaginary components: (a) a model that ignores
the sign-invariance felem(γ) and (b) the sign-invariant Sign-
Net (Lim et al., 2022) that processes each eigenvector as
felem(−γj) + felem(γj), where felem is permutation equiv-
ariant over the nodes, like a point-wise Multi-Layer Percep-
tron (MLP) or GNN. However, when utilizing an MLP, we

(a) Transformer Encoder (b) MagLapNet

Figure 4: (a) shows a transformer encoder operating on a
graph with omitted residual connection. (b) is one specific
instantiation of the (optional) “PosEncNet” using the eigen-
vectors of the Magnetic Lap (see “MagLapNet” paragraph)
with batch size b. See § 4 for random walk encodings.

observe that choice (a) yields superior performance. This
outcome can be attributed to several factors, including our
aforementioned selection of the sign (see above) and the
characteristic of a point-wise MLP to disregard relative
differences in γ. Note that we always process the first eigen-
vector as felem(γj) since we fully resolve its sign ambiguity.

Thereafter, we apply LayerNorm, Self-Attention, and
Dropout. Similar to Kreuzer et al. (2021), we apply self-
attention independently for each node u over its k eigenvec-
tor embeddings. In other words, for each node, we apply
self-attention over a set of k tokens. This models the node-
wise interactions between the eigenvectors, i.e., (Γu,:k91)
for node u. The last reshape stacks each node’s encoding,
and the MLP fre matches the transformer dimensions.

4. Directional Random Walks
An alternative principled approach for encoding node posi-
tions in a graph is through random walks. Li et al. (2020)
have shown that such positional encodings can provably im-
prove the expressiveness of GNNs, and such random walk
encodings have been applied to transformers as well (Mialon
et al., 2021). Interestingly, random walks generalize, e.g.,
shortest path distances via the number of steps required for
a non-zero landing probability. However, naïvely applying
random walks to directed graphs comes with caveats.

Random walks on graphs. A k-step random walk on a
graph is naturally expressed via the powers T k of the tran-
sition matrix T = AD−1out . In each step, the random walk
proceeds along one of the outgoing edges with equal proba-
bility or probability proportional to the edge weight. We then

4

Transformers Meet Directed Graphs

obtain the landing probability (T k)u,v at node u if starting
from node v. Note that even in connected graphs, we might
have node pairs v, u that have zero transition probability re-
gardless of k. Thus, the naïve application of random walks
for positional encodings on directed graphs is not ideal.

Directedness. To overcome the issue of only walk-
ing in forward direction and in contrast to Li et al.
(2020), we additionally consider the reverse direction
R = A⊤D−1in . Additionally, we add self-loops to sink
nodes (nodes with zero out or in degree for T or R,
respectively). This avoids that A might be nilpotent and
ensures that the landing probabilities sum up to one.
We then define the positional encoding for node v as
ζ(v|G) = f

(1)
rw (AGG({ζ(v|u) |u ∈ V })), where ζ(v|u) =

f
(2)
rw [(Rk)v,u, . . . , (R

2)v,u, Rv,u, Tv,u, (T
2)v,u, . . . , (T

k)v,u]

and AGG performs summation. f (1)
rw and f

(2)
rw is an MLP.

Large distances. A large amount of random walk steps k is
expensive and for a sufficiently large k the probability mass
concentrates in sink nodes. Thus, the random walk posi-
tional encodings are best suited for capturing short distances.
For the global relations, we extend ζ(v|u) with a forward
and reverse infinite step random walk, namely Personalized
Page Rank (PPR) (Page et al., 1999). Importantly, PPR in-
cludes the restart probability pr to jump back to the starting
node u and has closed form solution pr(I − (1− pr)T)−1.

We provide an overview of our positional encodings in § F
and discuss computational cost/complexity in § H.

5. Positional Encodings Playground
We next assess the efficacy of our two directional structure-
aware positional encodings. As there is no (established) way
of assessing positional encodings standalone, we rely on
downstream tasks. In our first task, we verify if the encod-
ings are predictive for distances on graphs.

Tasks. We hypothesize that a good positional encoding
should be able to distinguish between ancestors/successors
and should have a notion of distance on the graph. To cope
with general graphs, instead of ancestor/successor nodes,
we predict if a node is reachable, acknowledging the edge
directions. As distance measures, we study the prediction of
adjacent nodes as well as the directed and undirected short-
est path distance. With undirected shortest path distance, we
refer to the path length on the symmetrized graph, and in
both cases we ignore node pairs for which no path exists.
In summary, we study pair-wise binary classification of (1)
reachability and (2) adjacency as well as pair-wise regres-
sion of (3) undirected distance and (4) directed distance.

Models. We use a vanilla transformer encoder (Vaswani
et al., 2017) with positional encodings (see Fig. 4a). We
compare our Magnetic Laplacian (ML) positional encod-

F1 RMSE

reach.
(1)

adj.
(2)

u. dist
(3)

d. dist
(4)

Lap. (basln)

SVD (basln)

ML (ours)

RW (ours)

0.63 0.63 0.23 0.51
0.53 0.53 0.26 0.54
1.00 1.00 0.83 0.38
1.00 1.00 0.97 0.45
1.00 1.00 0.22 0.33
1.00 1.00 0.25 0.38
0.97 0.97 1.22 0.65
0.95 0.95 1.33 0.68

val.
test
val.
test
val.
test
val.
test

F1 RMSE

reach.
(1)

adj.
(2)

u. dist
(3)

d. dist
(4)

0.75 0.62 0.27 1.96
0.73 0.49 0.31 2.08
1.00 1.00 1.02 1.64
0.97 1.00 1.12 1.86
1.00 1.00 0.27 0.93
1.00 1.00 0.31 1.06
1.00 0.97 1.00 1.24
0.99 0.94 1.06 1.36

(a) Directed Acyclic Graph (b) Regular Directed Graph

Figure 5: Positional encodings playground results. Dark
green encodes the best scores and bright green bad ones. For
F1 score high values are better and for RMSE low values.

ings w/o SignNet (§ 3) with our direction-aware random
walk (RW) of § 4 and eigenvectors of the combinatorial
Laplacian (Lap.) from § 2. The eigenvectors of the com-
binatorial Laplacian are preprocessed like the ones of the
Magnetic Laplacian (Fig. 4b), except that the “Stack” step
is superfluous due to the real eigenvectors. Additionally, we
compare to the SVD encodings of Hussain et al. (2022) that
perform a low-rank decomposition of the (directed) adja-
cency matrix. Moreover, with the goal of obtaining general
positional encodings, we do not study any heuristics that can
be considered “directional”. For example, if solely consid-
ering trees, it might be sufficient to add features for source
and sink nodes next to undirected positional encodings.

All studied tasks are instances of link prediction or link re-
gression where the predictions are of shape n× n (ignoring
the disconnected pairs of nodes in distance regression), mod-
eling the relative interactions between nodes. For this, we
broadcast the resulting node encodings H(n)

l (see Fig. 4a)
of the sender and receiver nodes and stack a global readout.
Thereafter, we use a shallow MLP with 3-layers in total and
task-dependent output activation (softmax or softplus).

Setup. We use cross-entropy for classification and L2 loss
for regression. We assess classification with the F1 score
and regression with the Root Mean Squared Error (RMSE).
We sample Erdős-Rènyi graphs with equally probable av-
erage degree {1, 1.5, 2} and, additionally, Directed Acyclic
Graphs (DAGs), where we draw the average degree from
{1, 1.5, 2, 2.5, 3} to account for the greater sparsity. Then,
we extract the largest (weakly) connected component. For
the regression tasks, we sample graphs with 16 to 63, 64
to 71, and 72 to 83 nodes for train, validation, and test, re-
spectively. To counteract a too-severe class imbalance, we
choose 16 to 17, 18 to 19, and 20 to 27 nodes for the classi-
fication tasks, respectively. We report the average over three
random reruns. We sample 400,000 training instances and
for test/validation 2,500 for each number of nodes n.

5

Transformers Meet Directed Graphs

Results. In Fig. 5, we show the performance of the posi-
tional encodings for the four curated tasks. We see that
the eigenvectors of the Magnetic Laplacian outperform the
eigenvectors of the combinatorial Laplacian for all measures
that rely on directedness. For (3) undirected distance, they
perform similarly well. On the classification tasks (1) &
(2), the random walk encodings perform comparably to the
Magnetic Laplacian. However, random walk encodings are
less predictive for regressing distances. In general, random
walks seem to show their strength for tasks that are well-
aligned with their design. For example, a random walk with
k = 1 resembles the adjacency matrix that we predict in
task (2). However, the random walk encodings only achieve
mediocre scores for (3) undirected distance prediction.

The Magnetic Laplacian encodings consistently outperform
the SVD encodings and achieve an up to 4 times lower
RMSE. Nevertheless, the SVD encodings are a surprisingly
strong baseline on the DAG (Fig. 5a), where they even out-
perform the random walk encodings. However, on general
directed graphs (Fig. 5b), the random walk encodings out-
perform the SVD encodings on (4) directed distance with a
roughly 30% lower RMSE. Moreover, we did not achieve
similarly strong performance with SVD in the other studied
tasks. For example, in the sorting network task (see § 6),
we were not able to achieve meaningful performance after
a basic hyperparameter search. This might be due to the
undesirable properties low-rank SVD positional encodings
have for certain graph structures (see § D.4).

In § I, we provide additional comparisons. These include
(a) a comparison to GNNs and (b) the study of relative
random walk encodings. For (b), we use the pair-wise en-
codings ζ(v|u) before the node-level aggregation and add
the n×n×d encodings to the attention matrix before apply-
ing the softmax. The relative random walk encodings can
be understood as a generalization of the pair-wise shortest
distances used by Ying et al. (2021). Moreover, in § J, we
give a hyperparameter study of the random walk encodings
and compare them to the (forward) random walk encodings
of Li et al. (2020) that are designed for undirected graphs.

6. Application: Sorting Networks
Sorting networks (Knuth, 1973) are a certain class of
comparison-based algorithms that have the goal of sort-
ing any input sequence of fixed size with a static sequence
of comparators. Sorting networks are a particularly inter-
esting application since they mark the middle ground be-
tween logical statements and source code. Specifically, the
sequence of comparators reflects a sequence of program
instructions while asserting their correctness is related to
satisfiability (Knuth, 1968). We use this task to make the
implications of symmetrization (Laplacian encodings) and
sequentialization (sinusoidal encodings) explicit.

We consider sorting networks that consist of a sequence
of conditional exchange instructions. In Fig. 6a, the p hor-
izontal lines represent the variables that are to be sorted,
and the vertical lines are comparators that sort the con-
nected variables. Thus, a sorting network can also be
expressed by n v_i, v_j = sorted((v_i, v_j))
statements, where v_i and v_j are two of the p variables,
i.e. i, j ∈ {0, 1, . . . , p−1}. Our graph construction (Fig. 6b)
treats every instruction as a node with i and j as features
(sinusoidal encoding). If a node operates on indices i and j,
we add an edge from the last occurrences of i and j (if there
are any). Thus, in this data-flow graph, the in- and outdegree
equal two for all nodes except source and sink nodes.

Directed graph vs. sequence. An important implication is
that each topological sort of the directed graph is an equiva-
lent “program”, i.e., a different ordering of statements that
yields the same result. In Fig. 7, we show the number of
topological sorts over the sequence lengths p for a type
of compact and deterministically constructed sorting net-
work. For such networks and a sequence length of just 8, the
number of equivalent sequentializations already exceeds 1
million (see also § L). Note that in the worst case, a directed
graph has n! topological sorts. Therefore, representing di-
rected graphs as sequences can introduce a huge amount of
arbitrary orderedness. In contrast to sequential modeling, a
graph-based representation can significantly reduce the size
of the effective input space.

Symmetrization hurts. There exist correct and incorrect
sorting networks that map to the same undirected graph.
Hence, a model that uses undirected graphs cannot distin-
guish these cases. For example, the correct sorting network
for length three with comparators [(0, 2), (0, 1), (1, 2)] and
its reversed version (incorrect) map to the same undirected
graph. In summary, symmetrizing may hurt expressiveness.

Dataset. We construct a dataset consisting of 800,000 train-
ing instances for equally probable sequence lengths 7 ≤
ptrain ≤ 11, generate the validation data with pval = 12, and
assess performance on sequence lengths 13 ≤ ptest ≤ 16.
We construct the sorting networks greedily until we have

0

1

2

3

4

(a) Sorting Network

3,4 1,21,3

0,1
1,4

1,2
1,32,4

2,3

(b) Directed Graph

Figure 6: (a) Common illustration for a sorting network with
sequence length p = 5 and (b) as directed graph.

6

Transformers Meet Directed Graphs

4 6 8
Seq. length p

103

106

to

p.
 so

rts

Figure 7: # topologi-
cal sorts for Batcher
even odd mergesort.

Sin Lap. RW ML GNN GNN (und.) GNN+RW GNN+ML

13 14 15 16
Seq. length p

0.0

0.5

1.0

F1
 S

co
re

Figure 8: Comparing
positional enc. over
length p (sorting netw.).

0.25 2.5 25
Rel. potential q ′

0.50

0.75

F1
 S

co
re

Figure 9: Relative pot.
q = q′/max(min(m⃗,n),1)

with k = 25 eigenvec.

2 4 6
hops

0.50

0.75

F1
 S

co
re

(a) # mess. pass. steps

13 14 15 16
Seq. length p

0.0

0.5

1.0

F1
 S

co
re

(b) GNN only

Figure 10: (a) # message passing steps of GNN
and (b) for GNN w/ and w/o pos. enc.

a correct sorting network. For this, we draw a random pair
of comparators, excluding immediate duplicates and com-
parators between inputs that are already sorted. We then
generate an incorrect example by omitting the last com-
parator (i.e., train is balanced). This procedure is similar to
datasets for the related task of satisfiability (Selsam et al.,
2019). Moreover, we add additional incorrect sorting net-
works by reversing the directions of the correct networks to
make the test sets more challenging. Thus, the test and vali-
dation data consist of 1/3 correct sorting networks (20,000)
and 2/3 of incorrect ones (40,000). Therefore, the task is to
generalize the correctness prediction to longer sequences
and reversed (slightly out of distribution) sorting networks.
See § K for more details on the dataset construction.

Empirical Evaluation. We follow the setup of § 5 and in-
clude sinusoidal positional encodings (Sin). As shown in
Fig. 8, the eigenvectors of the Magnetic Laplacian (ML)
perform comparably to the random walk encodings. Both
outperform the other positional encodings by a large margin.
This shows that, without bells and whistles, the Magnetic
Laplacian and random walk encodings provide a transformer
a considerable structural awareness for directed graphs (see
Fig. 4a). On the other hand, the eigenvectors of the combi-
natorial Laplacian barely outperform the naïve baseline that
randomly chooses a class based on the prior probabilities.

Sinusoidal positional encodings perform well for se-
quences close to the training data but do not generalize
well to longer sequences. The lacking generalization might
be due to the much larger input space if measuring input
space size in terms of unique inputs for the transformer.

GNN. In Fig. 10a, we study the performance of a GNN (fol-
lowing Battaglia et al. (2018), see § 7 & § G for specifics)
with mean readout over the number of message passing
steps. Since the improvements diminish for more than two
message passing steps, we report the results in Fig. 10b
using three message passing steps. We compare a direction-
aware “GNN” and direction unaware “GNN (und.)”. Ex-

pectedly, the directional information is important for gen-
eralization also in the context of GNNs. Note that the di-
rectional GNN performs on par with a transformer encoder
with the Magnetic Laplacian encodings for sequence length
13. However, the GNN generalizes slightly worse to longer
sequences. Motivated by Li et al. (2020), we additionally
pair the GNN with positional encodings and find that the
Magnetic Laplacian eigenvectors can also help a GNN’s
generalization. On the other hand, the random walk encod-
ings struggle to generalize to longer sequences and harm
performance. We hypothesize that the Magnetic Laplacian
encodings provide complimentary information while the
random walk encodings are similar to message passing.

7. Application: Function Name Prediction
We study function name prediction since it is an established
task in the graph learning community (Hu et al., 2020) where
the direction of edges influences the true label, and trans-
formers seem to have an edge over GNNs. Similar to sorting
networks, each program represents a specific ordering of
statements, and there can be many equivalent programs via
reordering statements. Thus, it is surprising that graphs for
source code used for machine learning retain the sequen-
tial connections between instructions. In other words, these
graphs “only” enrich sequential source code (here, add a
hierarchy). For example, the Open Graph Benchmark Code2
dataset represents the 450,000 functions with its Abstract
Syntax Tree (AST) and sequential connections. Since the
input space of sequences can be much larger than the input
space of directed graphs (see § 6), for some tasks, such a
graph construction is an unfortunate choice.

Robustness. We trained the state-of-the-art model1 on the
Open Graph Benchmark Code2 dataset, called Structure
Aware Transformer (SAT) (Chen et al., 2022). We then used
OGB’s code to generate multiple graph representations of

1Shortly before submission, Luo (2022) proposed in their
preprint a new model with 0.4% higher F1 test score.

7

Transformers Meet Directed Graphs

Prediction: unknown
def f1_score(pred, label):
correct = pred == label
tp = (correct & label).sum()
fn = (~correct & pred).sum()
fp = (~correct & ~pred).sum()
precision = tp / (tp + fp)
recall = tp / (tp + fn)
return (
2 * (recall * precision) /
(recall * precision)

)

Prediction: accuracy
def f1_score(pred, label):

correct = pred == label
tp = (correct & label).sum()
fn = (~correct & pred).sum()
fp = (~correct & ~pred).sum()
precision = tp / (tp + fp)
recall = tp / (tp + fn)
return (
2 * (precision * recall) /
(precision * recall)

)

Prediction: precision
def f1_score(pred, label):

correct = pred == label
tp = (correct & label).sum()
fn = (~correct & ~pred).sum()
recall = tp / (tp + fn)
fp = (~correct & pred).sum()
precision = tp / (tp + fp)
return (

2 * (precision * recall) /
(precision * recall)

)

Figure 11: State-of-the-art model on OGB Code2 is susceptible to meaningless permutations (highlighted in yellow) due to
OGB Code2’s graph construction. The code was minimally modified for better layout.

functions, where we reordered some statements s.t. the func-
tionality is preserved. In Fig. 11, we show that the state-of-
the-art model using OGB’s graph construction is susceptible
to these semantics-preserving permutations of the source
code. Moreover, the number of possible reorderings can be
surprisingly high. E.g., if constructing a data-flow DAG, the
F1 score function of Fig. 11 has 16 topological sorts. Fur-
ther considering commutativity for ==, &, +, and *, we find
4,096 possibilities to write this seemingly simple function.

Our graph construction maps all these 4,096 possibilities
to the very same directed graph. Our graph construction
is greatly inspired by Bieber et al. (2022), although they
also connect most instructions sequentially. While we do
avoid this sequentialism, we leverage their static code anal-
ysis for a graph construction that handles the sharp bits like
if-else, loops, and exceptions. The most significant differ-
ences to Bieber et al. (2022) are: (a) We construct a DAG
for each “block” (e.g., body of if statement) that reflects
the dependencies between instructions. We then connect
the statements between blocks considering the control flow.
(b) we address the commutative properties for basic Python
operations via edge features; (c) we do not reference the
sequence of tokenized source code; (d) we omit the (in our
case) unnecessary “last read” edges; (e) we construct the
graph similarly to OGB Code2 for comparability. For ex-
ample, we aggregate child nodes containing only attributes
into their parent’s node attributes. We provide details and a
side-by-side comparison to an OGB Code2 graph in § M.

Assumptions. While the right equi-/invariances are task-
dependent, we argue that for high-level reasoning tasks,
including function name prediction or correctness predic-
tion, the mentioned reorderings should not affect the true
label. Nevertheless, e.g., for predicting the runtime of a
program, reorderings can have an impact. Moreover, we
assume that non-class-member methods are side-effect-free.
For example, this includes reordering print statements. Even
though this will result in a different output stream, we argue
that these differences are typically not vital. Moreover, since
we construct the graph with lexicographical static code anal-
ysis, we do this on a best-effort basis and do not capture

all dynamic runtime effects. Last, our eigenvector-based
positional encodings are only permutation equivariant in the
absence of repeated eigenvalues (see § D for details).

Empirical Evaluation. In Table 1, we report the results on
OGB Code2. Here we also compare to the Structure Aware
Transformer (SAT) of Chen et al. (2022). SAT is a hybrid
transformer w/ GNN for query and key and was the prior
state of the art. We illustrate the architecture in Fig. G.1b.
If we omit the GNN, we recover the vanilla transformer en-
coder Fig. 4a (plus degree-sensitive residual). We improve
the current state-of-the-art model with a number of small
tricks (i.e., no new positional encoding yet). Our SAT++ (w/
GNN) improves the F1-score by 1.66% (relatively 8.6%).
Besides smaller changes like replacing ReLU with GeLU
activations, we most notably (1) add dropout on the sparsely
populated node attributes and (2) offset the softmax score
to adjust for the class imbalance of the special tokens for
unknown words as well as end of sequence. We also replace
the GCN with a three-layer GNN following Battaglia et al.
(2018) (w/o global state). The edge and node embeddings
are updated sequentially with independently aggregated for-
ward and backward. Then, we concatenate the embeddings
we obtained after each message passing step and apply an
MLP with two layers. For details on the GNN see § G.

Our graph construction (“data-flow” in Table 1) consis-
tently increases the predictive performance. We do not re-
port results w/o GNN and solely w/ AST depth positional
encodings because this approach does not make use of the
enhanced graph structure. Our graph construction raises
the F1 score by almost 0.58% (relatively 2.8%), if using
the SAT++ architecture (w/ GNN) with AST depth encod-
ings. Note that the gain partially stems from the improved
edge features. In a dedicated experiment, we compare the
effect of our data-flow edges with the sequential edges of
Bieber et al. (2022) and find that our edges contribute to
an ≈ 0.1% greater F1 score (model uses Magnetic Lapla-
cian encodings). Nevertheless, we want to emphasize that
our graph construction yields robustness gains w.r.t. certain
reorderings of statements in the source code (see Fig. 11).

8

Transformers Meet Directed Graphs

Table 1: Results on the Open Graph Benchmark Code2
dataset. The first two rows correspond to prior work. All
other approaches are our contribution. We report the average
and error of the mean over 10 reruns. Best is bold.

Position. Enc. GNN Test F1-Score Val. F1-Score

Se
qu

en
.

AST depth

✗ 16.70±0.05 15.46±0.06

Pr
ev

.

✓ 19.37±0.09 17.73±0.07
✗ 19.09±0.10 17.68±0.06

O
ur

s

✓ 21.03±0.07 19.38±0.07

D
at

a-
flo

w AST depth ✓ 21.61±0.12 19.79±0.11

Random walk ✗ 19.34±0.08 17.96±0.05
✓ 21.82±0.20 20.03±0.17

Magnetic Lap. ✗ 19.43±0.03 17.83±0.05
✓ 22.22±0.10 20.44±0.06

Hybrid. The Magnetic Laplacian also helps in the hybrid
transformer GNN architecture. Our SAT++ with Magnetic
Laplacian positional encodings (SignNet w/ GNN) marks
the new state of the art on the Code2 dataset, outperform-
ing SAT by 2.85% (relatively 14.7%). The Random Walk
positional encodings only slightly improve performance.
For the Code2 graphs, the GNN for query and key appears
to be of great importance. We hypothesize that this is due
to the sparsely populated node features. Only a few nodes
are attributed, and additionally, the permitted vocabulary is
restrictive. The local message passing might spread the in-
formation to neighboring nodes to adjust for this sparseness.
Moreover, w/o GNN, we do not make use of edge features.

Dataset challenges. The node attributes (e.g., variable
names) and function names are only lightly preprocessed.
For example, for perfect performance, one needs to dis-
tinguish singular and plural method names. Although sin-
gular/plural semantically makes a difference, the naming
consistency is lacking for the 450k functions taken from
github. We refrain from adjusting the dataset accordingly to
maintain comparability to prior work.

8. Related Work
Directed graphs appear in various applications and can
be crucial to appropriately model the input data, also in
well-established domains for GNNs such as citation net-
works (Rossi et al., 2023). An important related GNN for
directed graphs is MagNet (Zhang et al., 2021) since it used
the Magnetic Laplacian within its message passing. We
compare to MagNet in § I on the playground tasks.

Positional encodings. Prior work on positional encodings
includes traditional graph metrics, like shortest path dis-
tances (Guo et al., 2021). Related to the distance from a
node to the AST root node in the OGB Code2 dataset (see
§ 7), Luo (2022) proposes sinusoidal positional encodings
for DAGs leveraging their partial order. An alternative form

of spectral encodings, based on Singular Value Decompo-
sition (SVD), was used for positional encodings (Hussain
et al., 2022). The authors argue that these encodings also
include directed graphs; however, they do not verify this
choice, and the SVD of the adjacency matrix has undesir-
able properties (see § D.4). We compare the SVD encodings
in § 5 on the tasks of the positional encodings playground.

We include a discussion of Laplacians for directed graphs in
§ C. For an in-depth overview and a how-to for graph trans-
formers, we refer to Min et al. (2022), Müller et al. (2023)
and Rampášek et al. (2022). They also provide an overview
of graph transformers that rethink attention architectures for
structure-awareness like (Dwivedi & Bresson, 2021; Mialon
et al., 2021; Chen et al., 2022; Kim et al., 2022; Hussain
et al., 2022; Diao & Loynd, 2022).

Graph construction. There are many attempts to enrich
source code in a graph-structured manner for machine learn-
ing (Allamanis et al., 2018; Cummins et al., 2020; Guo
et al., 2021; Bieber et al., 2022). However, they all retain
the sequentialism of the underlying source code. As we see
in Fig. 11, this can lead to a fragile representation w.r.t. to
semantically meaningless reorderings. Such reorderings are
a novel perspective on the robustness of models for source
code (e.g., see (Jha & Reddy, 2022; Yefet et al., 2020)).
However, the relationship between a directed graph and its
sequentializations is well-known in task scheduling. Sim-
ilarly, an appropriate graph construction may improve the
robustness of transformers if applied to other combinato-
rial optimization problems (Geisler et al., 2022; Kool et al.,
2019) than correctness prediction of sorting networks.

9. Conclusion
We propose positional encodings for directed graphs based
on the Magnetic Laplacian and random walks. Both posi-
tional encodings can help transformers to gain considerable
structure awareness and show complementary strengths in
our experiments. We argue that direction-aware positional
encodings are an important step towards true multi-purpose
transformers universally handling undirected and directed
graphs. We show that directedness can be central for the
semantics in the target domain and that directed graphs
can drastically lower the effective input dimensionality (i.e.,
many instances map to one graph).

Acknowledgements
We thank Kim Stachenfeld, Dimitrios Vytiniotis, Shariq
Iqbal, Andrea Michi, Marco Selvi, Daniel Herbst, and Jan
Schuchardt for the feedback at various stages of this work.
This research was supported by the Helmholtz Association
under the joint research school “Munich School for Data
Science – MUDS“.

9

Transformers Meet Directed Graphs

References
Allamanis, M., Brockschmidt, M., and Khademi, M. Learn-

ing to Represent Programs with Graphs. In International
Conference on Learning Representations, ICLR, 2018.

Bandeira, A. S., Singer, A., and Spielman, D. A. A Cheeger
Inequality for the Graph Connection Laplacian. SIAM J.
Matrix Anal. Appl., 2013.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C.,
Song, F., Ballard, A., Gilmer, J., Dahl, G., Vaswani, A.,
Allen, K., Nash, C., Langston, V., Dyer, C., Heess, N.,
Wierstra, D., Kohli, P., Botvinick, M., Vinyals, O., Li,
Y., and Pascanu, R. Relational inductive biases, deep
learning, and graph networks, In arXiv, 2018.

Belkin, M. and Niyogi, P. Laplacian Eigenmaps for Di-
mensionality Reduction and Data Representation. Neural
Computation, 2003.

Bieber, D., Shi, K., Maniatis, P., Sutton, C., Hellendoorn, V.,
Johnson, D., and Tarlow, D. A Library for Representing
Python Programs as Graphs for Machine Learning, In
arXiv, 2022.

Bojchevski, A., Klicpera, J., Perozzi, B., Kapoor, A., Blais,
M., Rózemberczki, B., Lukasik, M., and Günnemann,
S. Scaling Graph Neural Networks with Approximate
PageRank. International Conference on Knowledge Dis-
covery and Data Mining, KDD, 2020.

Brock, A., De, S., Smith, S. L., and Simonyan, K. High-
Performance Large-Scale Image Recognition Without
Normalization. In International Conference on Machine
Learning, ICML, 2021.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković,
P. Geometric Deep Learning: Grids, Groups, Graphs,
Geodesics, and Gauges, In arXiv, 2021.

Chen, D., O’Bray, L., and Borgwardt, K. Structure-Aware
Transformer for Graph Representation Learning. Interna-
tional Conference on Machine Learning, ICML, 2022.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H.,
Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N.,
Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter,
C., Tillet, P., Such, F. P., Cummings, D., Plappert, M.,
Chantzis, F., Barnes, E., Herbert-Voss, A., Guss, W. H.,
Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I.,
Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr, A. N.,
Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford,
A., Knight, M., Brundage, M., Murati, M., Mayer, K.,

Welinder, P., McGrew, B., Amodei, D., McCandlish, S.,
Sutskever, I., and Zaremba, W. Evaluating Large Lan-
guage Models Trained on Code, In arXiv, 2021.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlos, T., Hawkins, P., Davis, J. Q., Mo-
hiuddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J.,
and Weller, A. Rethinking Attention with Performers. In
International Conference on Learning Representations,
ICLR, 2020.

Cummins, C., Fisches, Z. V., Ben-Nun, T., Hoefler, T., and
Leather, H. ProGraML: Graph-based Deep Learning for
Program Optimization and Analysis, In arXiv, 2020.

Defferrard, M., Bresson, X., and Vandergheynst, P. Convo-
lutional Neural Networks on Graphs with Fast Localized
Spectral Filtering. In Neural Information Processing
Systems, NeurIPS, 2017.

Diao, C. and Loynd, R. Relational Attention: Generalizing
Transformers for Graph-Structured Tasks, In arXiv, 2022.

Dwivedi, V. P. and Bresson, X. A Generalization of Trans-
former Networks to Graphs. Deep Learning on Graphs
at AAAI Conference on Artificial Intelligence, 2021.

Fanuel, M., Alaíz, C. M., and Suykens, J. A. K. Magnetic
eigenmaps for community detection in directed networks,
In arXiv, 2016.

Fanuel, M., Alaíz, C. M., Fernández, , and Suykens, J. A. K.
Magnetic Eigenmaps for the visualization of directed
networks. Appl. Comput. Harmon. Anal., 2018.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., and Zhou, M.
CodeBERT: A Pre-Trained Model for Programming and
Natural Languages. In Findings of the Association for
Computational Linguistics: EMNLP, 2020.

Furutani, S., Shibahara, T., Akiyama, M., Hato, K., and
Aida, M. Graph Signal Processing for Directed Graphs
Based on the Hermitian Laplacian. In Machine Learn-
ing and Knowledge Discovery in Databases - European
Conference, ECML PKDD, 2020.

Geisler, S., Sommer, J., Schuchardt, J., Bojchevski, A., and
Günnemann, S. Generalization of Neural Combinatorial
Solvers Through the Lens of Adversarial Robustness. In
International Conference on Learning Representations,
ICLR, 2022.

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou,
L., Duan, N., Svyatkovskiy, A., Fu, S., Tufano, M., Deng,
S. K., Clement, C., Drain, D., Sundaresan, N., Yin, J.,
Jiang, D., and Zhou, M. GraphCodeBERT: Pre-training
Code Representations with Data Flow. International
Conference on Learning Representations, ICLR, 2021.

10

Transformers Meet Directed Graphs

He, Y., Perlmutter, M., Reinert, G., and Cucuringu, M.
MSGNN: A Spectral Graph Neural Network Based on
a Novel Magnetic Signed Laplacian. In Learning on
Graphs Conference, 2022.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open Graph Benchmark:
Datasets for Machine Learning on Graphs. In Neural
Information Processing Systems, NeurIPS, 2020.

Hussain, M. S., Zaki, M. J., and Subramanian, D. Global
Self-Attention as a Replacement for Graph Convolution.
In International Conference on Knowledge Discovery and
Data Mining, KDD, 2022.

Jha, A. and Reddy, C. K. CodeAttack: Code-based Adver-
sarial Attacks for Pre-Trained Programming Language
Models, In arXiv, 2022.

Kim, J., Nguyen, T. D., Min, S., Cho, S., Lee, M., Lee, H.,
and Hong, S. Pure Transformers are Powerful Graph
Learners. In Neural Information Processing Systems,
NeurIPS, 2022.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. International
Conference on Learning Representations, ICLR, 2017.

Kitaev, N., Kaiser, , and Levskaya, A. Reformer: The Effi-
cient Transformer. International Conference on Learning
Representations, ICLR, 2020.

Knuth, D. E. The art of computer programming, Volume 4,
Fascicle 6. Addison-Wesley series in computer science
and information processing. Addison-Wesley, Reading,
Mass., 1968.

Knuth, D. E. The art of computer programming, Volume
3. Addison-Wesley series in computer science and infor-
mation processing. Addison-Wesley Pub. Co, Reading,
Mass, 1973.

Kool, W., Hoof, H. v., and Welling, M. Attention, Learn to
Solve Routing Problems! In International Conference on
Learning Representations, ICLR, 2019.

Kreuzer, D., Beaini, D., Hamilton, W. L., Létourneau, V.,
and Tossou, P. Rethinking Graph Transformers with
Spectral Attention. In Neural Information Processing
Systems, NeurIPS, 2021.

Li, P., Wang, Y., Wang, H., and Leskovec, J. Distance Encod-
ing: Design Provably More Powerful Neural Networks for
Graph Representation Learning. In Neural Information
Processing Systems, NeurIPS, 2020.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,

Lago, A. D., Hubert, T., Choy, P., d’Autume, C. d. M.,
Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J., Gowal,
S., Cherepanov, A., Molloy, J., Mankowitz, D. J., Rob-
son, E. S., Kohli, P., de Freitas, N., Kavukcuoglu, K., and
Vinyals, O. Competition-Level Code Generation with
AlphaCode, In arXiv, 2022.

Lim, D., Robinson, J., Zhao, L., Smidt, T., Sra, S., Maron,
H., and Jegelka, S. Sign and Basis Invariant Networks for
Spectral Graph Representation Learning, In arXiv, 2022.

Loshchilov, I. and Hutter, F. SGDR: Stochastic gradient
descent with warm restarts. International Conference on
Learning Representations, ICLR, 2017.

Loshchilov, I. and Hutter, F. Decoupled Weight Decay
Regularization. International Conference on Learning
Representations, ICLR, 2019.

Luo, Y. DAGformer: Directed Acyclic Graph Transformer,
In arXiv, 2022.

Marques, A. G., Segarra, S., and Mateos, G. Signal Process-
ing on Directed Graphs: The Role of Edge Directional-
ity When Processing and Learning From Network Data.
IEEE Signal Processing Magazine, 2020.

Mialon, G., Chen, D., Selosse, M., and Mairal, J. GraphiT:
Encoding Graph Structure in Transformers, In arXiv,
2021.

Min, E., Chen, R., Bian, Y., Xu, T., Zhao, K., Huang, W.,
Zhao, P., Huang, J., Ananiadou, S., and Rong, Y. Trans-
former for Graphs: An Overview from Architecture Per-
spective, In arXiv, 2022.

Müller, L., Galkin, M., Morris, C., and Rampášek, L. At-
tending to Graph Transformers, In arXiv, 2023.

OpenAI. ChatGPT: Optimizing Language Models for
Dialogue. URL https://openai.com/blog/
chatgpt/, 2022.

Page, L., Brin, S., Motwani, R., and Winograd, T. The
PageRank Citation Ranking : Bringing Order to the Web.
In The Web Conference, 1999.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a General, Powerful, Scal-
able Graph Transformer. In Neural Information Process-
ing Systems, NeurIPS, 2022.

Rossi, E., Charpentier, B., Di Giovanni, F., Frasca, F., Gün-
nemann, S., and Bronstein, M. Edge Directionality Im-
proves Learning on Heterophilic Graphs, In arXiv, 2023.

Sandryhaila, A. and Moura, J. M. F. Discrete Signal Process-
ing on Graphs. IEEE Transactions on Signal Processing,
2013.

11

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

Transformers Meet Directed Graphs

Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L.,
and Dill, D. L. Learning a SAT Solver from Single-Bit
Supervision. In International Conference on Learning
Representations, ICLR, 2019.

Sevi, H., Rilling, G., and Borgnat, P. Harmonic analysis on
directed graphs and applications: from Fourier analysis
to wavelets, In arXiv, 2021.

Singh, R., Chakraborty, A., and Manoj, B. S. Graph Fourier
Transform based on Directed Laplacian, In arXiv, 2016.

Smith, S. W. The scientist and engineer’s guide to digital
signal processing. California Technical Pub., San Diego
(Calif.), 2nd edition edition, 1999. OCLC: 493473234.

Stevanović, D. Research problems from the Aveiro Work-
shop on Graph Spectra. Linear Algebra and its Applica-
tions, 2007.

Strang, G. The Discrete Cosine Transform. SIAM Review,
1999.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, , and Polosukhin, I. Attention
is all you need. Neural Information Processing Systems,
NeurIPS, 2017.

von Luxburg, U. A tutorial on spectral clustering. Statistics
and Computing, 2007.

Wang, H., Yin, H., Zhang, M., and Li, P. Equivariant and
Stable Positional Encoding for More Powerful Graph
Neural Networks. In International Conference on Learn-
ing Representations, ICLR, 2022.

Wu, Q., Zhao, W., Li, Z., Wipf, D., and Yan, J. NodeFormer:
A Scalable Graph Structure Learning Transformer for
Node Classification. In Neural Information Processing
Systems, NeurIPS, 2022.

Yefet, N., Alon, U., and Yahav, E. Adversarial Examples
for Models of Code. ACM Program. Lang., 2020.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y.,
and Liu, T.-Y. Do Transformers Really Perform Bad for
Graph Representation? Neural Information Processing
Systems, NeurIPS, 2021.

Zhang, X., He, Y., Brugnone, N., Perlmutter, M., and Hirn,
M. MagNet: A Neural Network for Directed Graphs. In
Neural Information Processing Systems, NeruIPS, 2021.

12

Transformers Meet Directed Graphs

A. Example Graphs
Additionally to the graphs in Fig. 1, here we give further examples (illustrated in Fig. A.1). These examples, are used for the
more elaborate discussion in the appendix. The construction of most graphs should be self-explanatory, even if we increase
the number of nodes. We next provide necessary details. For the two disconnected sequences Fig. A.1i, we split the sequence
after the first ⌊n/2⌋ tokens/nodes. All “trumpet graphs” (Fig. A.1d, A.1h, and A.1l) connect the nodes (between) ⌊3n/10⌋ and
⌊7n/10⌋. For Fig. A.1k, we first construct a fully connected DAG plus self-loops (entries of main diagonal and above are all
one). Then, we add the reversed edges for the inner 50% of nodes (⌊n/4⌋ to ⌊3n/4⌋).

(a) Sequence (b) Undirected sequence (c) Balanced binary tree (d) Trumpet

(e) Reversed sequence (f) Cirlce (g) Reversed bal. bin. tree (h) Trumpet (DAG)

(i) Disconnected seq. (j) Fully connected DAG (k) Mix DAG & fully con. (l) Trumpet (fully con.)

Figure A.1: First eigenvector of Magnetic Laplacian. Node size encodes the real value and color the imaginary value.

B. Graph Fourier Transformation
Similarly to the Discrete Fourier Transformation (DFT) Eq. 1, a Graph Fourier Transformation (GFT) for undirected graphs
can be defined with the eigenvectors Γ of the combinatorial Laplacian (Eq. 2 or Eq. 3). Here the graph signal x ∈ Rn is
mapped to the frequency domain as

X := Γ⊤x (B.1)

or for a specific frequency/eigenvalue

X(γk) = Xk =

n∑
i=1

xiΓi,k (B.2)

The inverse transform is then given as x = ΓX . Here we assume Γ to be orthonormal (ΓΓ⊤ = I). In analogy to sequences,
the lowest eigenvalues and eigenvectors reflect the low frequencies. For undirected and connected graphs, the first (also
called trivial) eigenvector is constant across nodes: Γu,0 = ±1/

√
n. This primitive is apparent from the quadratic form of the

Laplacian

x⊤LUx =
1

2

∑
(u,v)∈E

(xu − xv)
2 =

1

2

n∑
u=1

n∑
v=1

Au,v(xu − xv)
2 (B.3)

13

Transformers Meet Directed Graphs

that is minimized by its smallest eigenvector γ⊤0 LUγ0 = λ0 = 0. We will come back to a similar relation for the smallest
eigenvector of the Magnetic Laplacian in § D.

Graph convolution. Particularly important for graph signal processing is the convolution defined on graphs

gθ ⊛ x = Γgθ(Λ)Γ⊤x︸︷︷︸
GFT

= Γ gθ(Λ)X︸ ︷︷ ︸
filter× signal

= ΓX̂︸︷︷︸
inverse GFT

(B.4)

where gθ(Λ) is a diagonal matrix parameterized by θ that can be understood as a function of the eigenvalues Λ and represents
the filter in the frequency domain. For more details see Defferrard et al. (2017) or Furutani et al. (2020).

Applications in machine learning. The eigenvectors of the combinatorial Laplacian are widely used in graph machine
learning. For example, they are the workhorse in spectral clustering (von Luxburg, 2007) where one can gain helpful insights
if dealing with disconnected graphs. Moreover, the Laplacian eigendecomposition also stands at the core of many Graph
Neural Networks. For example, ChebyNet (Defferrard et al., 2017) approximates gθ(Λ) (Eq. B.4) via k-order polynomial in
the spatial domain and, similarly, the popular Graph Convolutional Network (Kipf & Welling, 2017) uses an alike linear
approximation. For more background, we refer to Bronstein et al. (2021).

C. Laplacians for Directed Graphs
It is well known that the combinatorial Laplacian is a discretization of the Laplace-Beltrami operator on Riemannian
manifolds (Belkin & Niyogi, 2003). This insight allows for many connections, including the negligence of direction. In
short, here we only encode distances on a manifold where the order of start and end point is irrelevant. In other words, the
eigenvectors of the combinatorial Laplacian form an isotropic transformation.

Combinatorial Laplacian w/o symmetrization. For directed graphs the Laplacian, e.g., L = D −A is in general not
symmetric. Hence, the eigenvectors as well as eigenvalues are potentially complex, L is not necessarily diagonalizable,
and the resulting eigenvectors might not form an orthonormal basis. Especially, the latter criterion is important s.t. the
different signals do not interfere with each other and that we can go back and forth from the spatial to the frequency domain
without complications. Specifically, the eigenvectors might neither be unitary Γ̄⊤Γ = I or there might not even be a basis
of eigenvectors.

We plot the first 5 eigenvectors of the combinatorial Laplacian without symmetrization in the right column of Fig. D.1 and
D.2 for all the graphs in Fig. A.1. It is clear that these eigenvectors are well-suited for positional encodings of nodes for
many of the graph topologies. For example, if we would use Γ̄⊤ or Γ in the GFT or its inverse, respectively, we would
potentially ignore the signal of some nodes. Equivalently, a positional encoding would assign the the zero vector 0 to these
nodes.

Magnetic Laplacian. Various alternatives were proposed that generalize (or substitute) the eigenvectors for the Laplacian to
directed graphs. So far, we have only discussed the Magnetic Laplacian (§ 3 and D) that bridges the gap using complex
values, i.e., using a Hermitian matrix for which eigenvectors again form an orthogonal basis. We can use these eigenvectors
for a GFT that includes directed graphs (Furutani et al., 2020). Such a transformation, where the direction does matter, is
called anisotropic.

Jordan Decomposition. Other approaches include the use of generalized eigendecomposition, like the Jordan decompo-
sion (Sandryhaila & Moura, 2013). However, here we are still left with a potentially non-orthogonal set of eigenvectors, and,
most importantly, in this case, the “low frequencies” do not necessarily change smoothly over the nodes in the graph (Singh
et al., 2016).

Eigenfunctions of random walk operator. Sevi et al. (2021), on the other hand, use the Dirichlet energy of eigenfunctions of
a random walk operator. However, this approach is only applicable to strongly connected graphs and comes with restrictions
related to the orthogonality of the Fourier basis.

Optimization. Last, (non-convex) optimization problems with constraints were proposed that typically minimize the Lovász
extension of the graph cut size or local variations of the graph signal. Both directions additionally impose orthogonality
constraints. A good entry point for the literature can be found in (Marques et al., 2020). It is worth noting though, that these
approaches typically do not preserve all information s.t. we can reconstruct the graph structure (Furutani et al., 2020). Hence,
it is not clear if they are well-suited positional encodings.

14

Transformers Meet Directed Graphs

D. Magnetic Laplacian
We next give more details on the Magnetic Laplacian and its eigenvectors. For this recall its definition:

L
(q)
U := Ds −As ⊙ exp

(
iΘ(q)

)
(D.1)

with Hadamard product ⊙, element-wise exp, i =
√
91, Θ(q)

u,v := 2πq(Au,v − Av,u), and potential q ≥ 0. The degree-
normalized counterpart is defined as

L
(q)
N := I −

(
D−

1/2
s AsD

−1/2
s

)
⊙ exp

(
iΘ(q)

)
(D.2)

Here the quadratic form (see Eq. B.3) becomes

1

2

∑
(u,v)∈Es

|xu − xv exp(iΘ
(q)
u,v)|2

=
1

2

∑
(u,v)∈Es

(xu − xv exp(iΘ
(q)
u,v))(xu − xv exp(iΘ

(q)
u,v))

=
1

2

∑
(u,v)∈Es

x̄uxu − exp(iΘ(q)
u,v)x̄uxv − exp(iΘ(q)

v,u)x̄vxu + exp(iΘ(q)
u,v) exp(iΘ

(q)
v,u)︸ ︷︷ ︸

=1

x̄vxv

=
1

2

∑
(u,v)∈Es

x̄uxu − exp(iΘ(q)
u,v)x̄uxv − exp(iΘ(q)

v,u)x̄vxu + x̄vxv

=
∑

(u,v)∈Es

x̄uxu − exp(iΘ(q)
u,v)x̄uxv

=
∑

(u,v)∈Es

x̄uxu︸ ︷︷ ︸
=x̄⊤Dsx

−
∑

(u,v)∈Es

exp(iΘ(q)
u,v)x̄uxv︸ ︷︷ ︸

=x̄⊤(As⊙exp(iΘ(q)))x

= x̄⊤
(
Ds −As ⊙ exp(iΘ(q))

)
x

= x̄⊤L
(q)
U x

(D.3)

where Es is the set of edges of the symmetrized graph. Note that either Θ(q)
v,u = −Θ(q)

u,v or Θ(q)
v,u = 0.

Recall that the first eigenvector minimizes the Rayleigh quotient

min
x∈Cn

x̄⊤L
(q)
U x

x̄⊤x
=

γ̄⊤0 L
(q)
U γ0

γ̄⊤0 γ0
= λ0 (D.4)

From this, we can obtain the behavior of the first eigenvector of the Magnetic Laplacian (as illustrated in Fig. 3). The
first eigenvector γ0 is related to the so-called “angular synchronization problem” (Eq. D.5). In angular synchronization,
we seek the L2-optimal estimate of n angles α given m (noisy) measurements of phase offsets αu − αv mod 2π where
u, v ∈ {0, 1, . . . , n− 1}. Formally, the angular synchronization problem (Bandeira et al., 2013) is defined as (we drop the
normalizing constants as they do not influence the minimum)

∠(γ0) ∈ argminα∈[0,2π)nη(α) with η(α) =
∑

u,v∈E
| exp(iαv)− exp(iαu + iΘu,v)|2 (D.5)

15

Transformers Meet Directed Graphs

(a) Sequence

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. <
(Γ

)

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. =
(Γ

)

(b) Eigenvectors of Magnetic Laplacian

0 5
Node v

0.5

0.0

0.5

1.0

Ei
ge

nv
ec

. <
(Γ

)

0 5
Node v

0.05

0.00

0.05

Ei
ge

nv
ec

. =
(Γ

)

(c) Eigenvec. of comb. Lap. w/o symmetrization

(d) Reversed sequence

0 50 100
Node v

1

0

1
Ei

ge
nv

ec
. <

(Γ
)

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. =
(Γ

)
(e) Eigenvectors of Magnetic Laplacian

0 5
Node v

0.5

0.0

0.5

1.0

Ei
ge

nv
ec

. <
(Γ

)

0 5
Node v

0.05

0.00

0.05

Ei
ge

nv
ec

. =
(Γ

)

(f) Eigenvec. of comb. Lap. w/o symmetrization

(g) Undirected se-
quence

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. <
(Γ

)

0 50 100
Node v

0.05

0.00

0.05

Ei
ge

nv
ec

. =
(Γ

)

(h) Eigenvectors of Magnetic Laplacian

0 5
Node v

0.5

0.0

0.5

Ei
ge

nv
ec

. <
(Γ

)

0 5
Node v

0.05

0.00

0.05

Ei
ge

nv
ec

. =
(Γ

)

(i) Eigenvec. of comb. Lap. w/o symmetrization

(j) Circle

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. <
(Γ

)

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. =
(Γ

)

(k) Eigenvectors of Magnetic Laplacian

0 5
Node v

0.2

0.0

0.2

Ei
ge

nv
ec

. <
(Γ

)

0 5
Node v

0.2

0.0

0.2

Ei
ge

nv
ec

. =
(Γ

)

(l) Eigenvec. of comb. Lap. w/o symmetrization

(m) Disconnected seq.
sequence

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. <
(Γ

)

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. =
(Γ

)

(n) Eigenvectors of Magnetic Laplacian

0 5
Node v

0.5

0.0

0.5

1.0

Ei
ge

nv
ec

. <
(Γ

)

0 5
Node v

0.05

0.00

0.05

Ei
ge

nv
ec

. =
(Γ

)

(o) Eigenvec. of comb. Lap. w/o symmetrization

(p) Binary tree

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. <
(Γ

)

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. =
(Γ

)

(q) Eigenvectors of Magnetic Laplacian

0 5
Node v

0.5

0.0

0.5

1.0

Ei
ge

nv
ec

. <
(Γ

)

0 5
Node v

0.05

0.00

0.05

Ei
ge

nv
ec

. =
(Γ

)

(r) Eigenvec. of comb. Lap. w/o symmetrization

Figure D.1: First eigenvector(s) for sample graphs (part 1). In the left column (a, d, g, j, m, p), we show the first eigenvector
of the Magnetic Laplacian for q = 0.25. The node size encodes the real value and colors the imaginary value. In the middle
column (b, e, h, k, n, q), we show the first 5 eigenvectors on a graph with n = 100 nodes. In the right column (c, f, i, l, o, r),
we show instead the eigenvectors of the Laplacian (Eq. 2) omitting the symmetrization.

16

Transformers Meet Directed Graphs

(a) Reversed bin. tree

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. <
(Γ

)

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. =
(Γ

)

(b) Eigenvectors of Magnetic Laplacian

0 5
Node v

0.0

0.5

1.0

Ei
ge

nv
ec

. <
(Γ

)

0 5
Node v

0.05

0.00

0.05

Ei
ge

nv
ec

. =
(Γ

)

(c) Eigenvec. of comb. Lap. w/o symmetrization

(d) Trumpet

0 50 100
Node v

1

0

1
Ei

ge
nv

ec
. <

(Γ
)

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. =
(Γ

)
(e) Eigenvectors of Magnetic Laplacian

0 5
Node v

0.5

0.0

0.5

1.0

Ei
ge

nv
ec

. <
(Γ

)

0 5
Node v

0.25

0.00

0.25

Ei
ge

nv
ec

. =
(Γ

)

(f) Eigenvec. of comb. Lap. w/o symmetrization

(g) Trumpet (forward)

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. <
(Γ

)

0 50 100
Node v

1

0

1
Ei

ge
nv

ec
. =

(Γ
)

(h) Eigenvectors of Magnetic Laplacian

0 5
Node v

0.5

0.0

0.5

1.0

Ei
ge

nv
ec

. <
(Γ

)

0 5
Node v

0.05

0.00

0.05

Ei
ge

nv
ec

. =
(Γ

)

(i) Eigenvec. of comb. Lap. w/o symmetrization

(j) Trumpet (DAG)

0 50 100
Node v

0

1

Ei
ge

nv
ec

. <
(Γ

)

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. =
(Γ

)

(k) Eigenvectors of Magnetic Laplacian

0 5
Node v

0.5

0.0

0.5

1.0

Ei
ge

nv
ec

. <
(Γ

)

0 5
Node v

0.05

0.00

0.05

Ei
ge

nv
ec

. =
(Γ

)
(l) Eigenvec. of comb. Lap. w/o symmetrization

(m) Fully con. DAG

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. <
(Γ

)

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. =
(Γ

)

(n) Eigenvectors of Magnetic Laplacian

0 5
Node v

0.5

0.0

0.5

1.0

Ei
ge

nv
ec

. <
(Γ

)

0 5
Node v

0.05

0.00

0.05

Ei
ge

nv
ec

. =
(Γ

)

(o) Eigenvec. of comb. Lap. w/o symmetrization

(p) Mix DAG & f. con.

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. <
(Γ

)

0 50 100
Node v

1

0

1

Ei
ge

nv
ec

. =
(Γ

)

(q) Eigenvectors of Magnetic Laplacian

0 5
Node v

0.5

0.0

0.5

1.0

Ei
ge

nv
ec

. <
(Γ

)

0 5
Node v

0.05

0.00

0.05

Ei
ge

nv
ec

. =
(Γ

)

(r) Eigenvec. of comb. Lap. w/o symmetrization

Figure D.2: First eigenvector(s) for sample graphs (part 1). In the left column (a, d, g, j, m, p), we show the first eigenvector
of the Magnetic Laplacian for q = 0.25. The node size encodes the real value and colors the imaginary value. In the middle
column (b, e, h, k, n, q), we show the first 5 eigenvectors on a graph with n = 100 nodes. In the right column (c, f, i, l, o, r),
we show instead the eigenvectors of the Laplacian (Eq. 2) omitting the symmetrization.

17

Transformers Meet Directed Graphs

In this analogy, each directed edge Au,v ̸= Av,u encourages a difference in the angle / phase in the first eigenvector Γu,0

and Γv,0, while an undirected edge Au,v = Av,u = 1 supports them to be equal. We give an example in Fig. 3. Here each
directed edge induces a phase shift in γ0 of 2πqh mod 2π and the undirected edges connect to nodes of equal phase.

In contrast to the combinatorial Laplacian, the first eigenvalue can only be equal to zero if the angles of the first eigenvector
γ0 (also see Eq. D.5) are “conflict-free”, i.e., |Γu,0 − Γv,0 exp(Θ

(q)
u,v)|2 = 0 for all (u, v) ∈ E (this term also appears in

§ D.1). We plot the first eigenvector(s) of the Magnetic Laplacian in the first two columns of Fig. D.1 and D.2. For an eased
comparability, here we normalize the eigenvectors s.t. the maximum absolute value is equal to one (maxu |γu| = 1).

Relationship between combinatorial and Magnetic Laplacian. For certain graphs we can relate the eigenvectors of the
Magnetic Laplacian to the eigenvectors of the combinatorial Laplacian: Γ(q)

v,j = csvΓ
(0)
v,j for node v, the j-th eigenvector,

normalizer c ∈ C \ {0}, and vector s ∈ Cn. Moreover, we define S as the diagonal matrix with s on its diagonal. Then,
if we choose S s.t. L(q)S = SL(0) it follows that L(q)Sγ

(0)
j = SL(0)γ

(0)
j = S(L(0)γ

(0)
j). Since, L(0)γ

(0)
j = λ

(0)
j γ

(0)
j

we conclude L(q)Sγ
(0)
j = S(λ

(0)
j γ

(0)
j) = λ

(0)
j Sγ

(0)
j . Thus, the eigenvectors of the Magnetic Laplacian can be calculated

form the eigenvectors of the combinatorial Laplacian γ
(q)
j = Sγ

(0)
j if S exists and is known. For example, for trees and

sequences it is trivial to construct S. Here the elements on the diagonal can be chosen to Sv,v = exp(−i2πdv), where dv is
the distance from the root node to node v.

Repeated eigenvalues. A source of ambiguity in the eigenvectors Γ emerges in the case of l repeated eigenvalues (also called
multiple eigenvalues) of a connected component. Then, the respective eigenvectors can be chosen from an l-dimensional
subspace as long as they are orthogonal. We refer to (Lim et al., 2022) and Wang et al. (2022) on how to address it.

Permutation equivariance. Notably, in the presence of repeated eigenvalues, the eigenvectors calculated by the eigensolvers
are generally not equivariant to node-permutations. Following, also our eigenvector encodings are not permutation equivariant
for graphs with repeated eigenvalues. Similarly, permutation equivariance is affected by the arbitrary factor c ∈ C \ {0} we
can apply to eigenvectors cLγ = cλγ =⇒ L(cγ) = λ(cγ). Thus, on needs also to be careful about modelling the scale,
sign and rotation of c to retain permutation equivariance. If using a sign-net like encoder with our convention of normalizing
the eigenvectors, we obtain equivariance w.r.t. scale, sign and rotation.

Disconnected components. In the case of disconnected components, the eigenvectors and eigenvalues resolve as if we
would decompose each component independently, where the components of the eigenvectors for the other components
are set to zero. For example, for two disconnected sequences Fig. A.1i with an even number of nodes, we obtain two
equal disconnected components. Here, we will obtain each eigenvalue λ twice. Also, Γ contains two full sets of equivalent
eigenvectors, except that they are zero for the other component and vice versa.

Co-spectrality (Stevanović, 2007) describes the phenomenon that there exist (potentially non-isomorphic) graphs with
identical eigenvalues. Co-spectrality is of lesser concern for our architecture since we also process the eigenvectors. Similarly
to co-spectrality, many well-known facts for the combinatorial Laplacian (e.g., the Cheeger inequality) extend to the
Magnetic Laplacian. For the interested reader, we refer to (Bandeira et al., 2013).

D.1. Influence of Potential q

The potential q seems to be a crucial choice for successfully encoding direction. For example, in Fig. 9, we see that for too
large potentials q, the performance degrades on the sorting network tasks. Moreover, Furutani et al. (2020) show that for too
large values of q, the eigenvectors of the Magnetic Laplacian do not order from low to high frequencies. In other words, then
the eigenvalue order is not predictive for the variation of the graph signal.

In applications of the Magnetic Laplacian stemming from physics, q is typically given since, e.g., it represents the electric
charge in a magnetic field. However, in general, it is not clear how to derive appropriate q values from the domain. Although
the Magnetic Laplacian has been used for a Spectral GNN (Zhang et al., 2021), Community Detection (Fanuel et al., 2016)
or the visualization of directed graphs (Fanuel et al., 2018), there is not much guidance on how to choose q in these works.
These works treat q simply as a (hyper-) parameter.

Fanuel et al. (2018) open a perspective on q that is perhaps not well-suited for positional encodings but conveys an interesting
intuition. They argue to choose q as a rational number. For example, q = 1/3 is particularly well-suited for visualizing graphs
that consist of directed triangles. In such a directed triangle, each edge can induce a shift of 2/3π. Consequently, a triangle
would induce a cumulative shift of a full 360 degrees.

18

Transformers Meet Directed Graphs

q ′ = 0 q ′ = 0.125 q ′ = 0.25 q ′ = 0.5 q ′ = 1

0 50 100
Node v

0.1

0.0

0.1

Ei
ge

nv
ec

. =
(Γ

)

(a) Sequence

0 100
Node v

0.05

0.00

0.05

(b) Undirected Seq.

0 50 100
Node v

0.00

0.02

(c) Binary Tree

0 100
Node v

0.1

0.0

(d) Trumpet

0 100
Node v

0.0002

0.0001

0.0000

(e) FC DAG

Figure D.3: The influence of q on the imaginary part of the eigenvectors for the graphs in Fig. 1.

In graph signal processing, Furutani et al. (2020) propose to choose potential q using insights from eigenvector perturbation
theory. However, they choose potential q based on the average node degree which is not related to the directedness of the
graph. Additionally, it does not scale with n and, hence, the maximum phase shift between a source and target node is not
bounded for larger n.

Conflict-free graphs. We argue that for positional encodings it is particularly helpful to bound the total phase shift (here
for Eq. 4) to avoid degenerate cases. For this we first discuss graphs we call conflict-free, i.e., if its first eigenvalue is
γ̄⊤0 L(q)γ0 = λ0 = 0 for all 0 < q ≤ 1/4. It is easy to see that for graphs without conflicting edges the phase shift between at
least one source and sink nodes is 2πql, where l is the maximum number of purely directed edges ({(u, v) ∈ E | (v, u) /∈ E})
in a path accounting for their direction (Eq. D.4). That is, we increment f l for every purely directed edge that we traverse in
its direction and decrement l if we traverse such an edge against its direction. Bidirectional edges do not affect l. This can be
understood as a weighted longest simple path problem. In the following, we call l simply the longest simple path.

0 50 100
Node v

0.1

0.0

0.1

Ei
ge

nv
ec

. <
(Γ

)

0 50 100
Node v

0.05

0.00

0.05

Ei
ge

nv
ec

. =
(Γ

)

(a) Absolute potential q = 0 (relative q′ = 0)

0 50 100
Node v

0.1

0.0

0.1

Ei
ge

nv
ec

. <
(Γ

)

0 50 100
Node v

0.1

0.0

0.1

Ei
ge

nv
ec

. =
(Γ

)

(b) Absolute potential q = 2.5× 10−3 (relative q′ = 2.5e− 1)

0 50 100
Node v

0.1

0.0

0.1

Ei
ge

nv
ec

. <
(Γ

)

0 50 100
Node v

0.1

0.0

0.1

Ei
ge

nv
ec

. =
(Γ

)

(c) Absolute potential q = 2.5× 10−2 (relative q′ = 2.5)

0 50 100
Node v

0.1

0.0

0.1

Ei
ge

nv
ec

. <
(Γ

)

0 50 100
Node v

0.1

0.0

0.1

Ei
ge

nv
ec

. =
(Γ

)

(d) Absolute potential q = 2.5× 10−1 (relative q′ = 25)

Figure D.4: Eigenvectors of Magnetic Laplacian (Eq. D.1) for a sequence Fig. 1a with n = 101 nodes where we also include
particularly large q values (see subcaptions).

All directed trees are conflict-free, but there also exist conflict-free graphs with cycles. For example, we can construct a
conflict-free graph with cycles, if we add self-loops. Alternatively, a graph remains conflict-free, if we add bidirectional
edges between (some) pairs of nodes u and v that have the same phase, i.e., if ∠(Γu,0) = ∠(Γv,0).

19

Transformers Meet Directed Graphs

Moreover, except for numerical issues of the eigendecomposition, also for general graphs (λ0 > 0) the phase shift is
bounded by 2πql. The argument is as the following: Choose an arbitrary pair of nodes u and v for which the longest simple
path distance is l (see above). Although there might exist other paths between u and v, they have at most a simple path
length of l. If there exist alternative paths of smaller length o < l, then γ̄⊤0 L(q)γ0 is optimal for a maximum shift in the
open interval (2πqo, 2πql) (here with accounting for overflows in the value range).

Visualizations. We next validate our choice for q = q′/dG with relative potential q′ (see § 3) and graph specific normalizer
dG = max(min(m⃗, n), 1). In Fig. D.3, we show the imaginary value of the first eigenvector for different exemplary graphs.
We see that for the conflict-free sequence with longest path distance m⃗, 2π/q′ is the total induced phase shift. For all shown
graphs, with q′ ≤ 1/4 we could reorder the graph nodes using a simple sort operation (up to ties and cycles). We argue that
this is a desirable property for directional positional encodings. We demonstrate this ability in § D.3. Moreover, in Fig. D.4,
we contrast the eigenvectors of the combinatorial Laplacian (a) as well as Magnetic Laplacian with reasonable q′ = 1/4
(b) to very high values for potential q (c-d). For the large potentials q, the resulting oscillations in the direction can be of
high frequency (relatively to n). Consequently, it seems neither helpful nor necessary to choose high potential values q. Our
graph-specific normalization avoids such degenerate cases.

D.2. Sign, Scale and Rotation

As discussed in § 3, if γ is an eigenvector of L then so is cγ, even if c ∈ C with |c| > 0 (proof: cLγ = cλγ =⇒ L(cγ) =
λ(cγ)). One way to cope with this is to fix c s.t. the neural network does not need to be invariant w.r.t. to arbitrary factors c.
We note that this is much more challenging for complex eigenvectors as than it is for real-valued eigenvectors. We give an
algorithmic description in Fig. D.1.

For the subsequent procedure it is important that the maximum relative phase shift is small enough. Moreover, the used
eigensolver chooses a zero imaginary component for the first node (in terms of the adjacency matrix). With out choice of
potential q, the rotation to the first node is within [−π/2, π/2].

Algorithm D.1 Normalize Eigenvectors

1: Input: Eigenvectors Γ ∈ Cn×k

2: j ← argmax(|ℜ(Γ)|, axis = 0) // shape k
3: s← sign(ℜ(Γ)[0 : n− 1, j]) // shape k
4: Γ← s⊙ Γ
5: j ← max(ℑ(Γ[:, 0])) // scalar
6: α← ∠(Γ[j, :])
7: Γ← exp(−iα)⊤ ⊙ Γ
8: Return Γ

Sign and scale. For the scale we choose c for all eigenvectors s.t. Γ is unitary. However, this still allows for choosing the
sign / direction as well as rotation. For the sign, we choose maximum real component for each γ to be positive.

Rotation. If there is an application specific origin, e.g., as in function name prediction, we also use this to choose the rotation
relatively to it (i.e., replace line 5 or abort if j = 0). Otherwise, as in the playground and sorting network tasks, we choose
the foremost source node as origin. That is, we search first for the source node with greatest phase argmaxv ∠(Γv,0) = u.
Then we use this node as origin. That is, we rotate all eigenvectors: ∠(Γu,j) = 0 , ∀ j ∈ {0, 1, . . . , n− 1}.

D.3. Reorder Permuted Graphs

We can also use the Magnetic Laplacian for reordering permuted graphs, up to ties. For example, we have ties in a balanced
binary tree (Fig. A.1c or A.1g) stemming from the equal distance to the root node. For the three exemplary graphs in
Fig. D.5, D.6, and D.7 we show that the eigenvectors of the Magnetic Laplacian can be used to reorder directed graphs.
First, we permute the nodes arbitrarily, perform the eigendecomposition, and, lastly reorder the graphs after applying our
normalization scheme for the eigenvectors (§ D.2). We naïvely recover the order by idx = argsort(ℑ(γ0)).

20

Transformers Meet Directed Graphs

(a) Sequence (b) Rand. permuted (c) Rand. permuted (d) Rand. permuted (e) Rand. permuted (f) Rand. permuted

(g) Sequence (h) Reordered (i) Reordered (j) Reordered (k) Reordered (l) Reordered

Figure D.5: Reordering of randomly permuted sequence Fig. A.1a with idx = argsort(ℑ(γ0)).

(a) Binary tree (b) Rand. permuted (c) Rand. permuted (d) Rand. permuted (e) Rand. permuted (f) Rand. permuted

(g) Binary tree (h) Reordered (i) Reordered (j) Reordered (k) Reordered (l) Reordered

Figure D.6: Reordering of randomly permuted binary tree Fig. A.1c with idx = argsort(ℑ(γ0)).

(a) Trumpet (fully c.) (b) Rand. permuted (c) Rand. permuted (d) Rand. permuted (e) Rand. permuted (f) Rand. permuted

(g) Trumpet (ful. c.) (h) Reordered (i) Reordered (j) Reordered (k) Reordered (l) Reordered

Figure D.7: Reordering of randomly permuted trumpet with fully connected middle part Fig. A.1l with idx =
argsort(ℑ(γ0)).

21

Transformers Meet Directed Graphs

D.4. Comparison to Singular Value Decomposition

One could also use the Singular Value Decomposition (SVD) UΣV to obtain structure-aware positional encodings.
Specifically, Hussain et al. (2022) argue that a low-rank approximation (via SVD) of the adjacency matrix yields general
positional encodings that are also suitable for directed graphs (see § I for an empirical comparison). In contrast to the
eigendecomposition, the singular values and singular vectors are real also if decomposing asymmetric matrices. However, it
is questionable if the SVD of the adjacency matrix has desirable properties.

For example, a low-rank approximation of the adjacency matrix of a directed sequence Fig. A.1a simply filters out some of
the edges. For example, a 2-rank approximation for a directed sequence with n = 5 nodes is

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0 0 0 0 1
0 0 0 0 0

 ≈

0 0
1 0
0 1
0 0
0 0


[
1 0
0 1

] [
0 0 1 0 0
0 0 0 1 0

]
=


0 0 0 0 0
0 0 1 0 0
0 0 0 1 0

0 0 0 0 0
0 0 0 0 0

 (D.6)

One could obtain appropriate results if using well-suited matrices like the combinatorial Laplacian for undirected graphs or
the Magnetic Laplacian for directed graphs. However, then the alleged advantage of the SVD for directed graphs vanishes.
That is, the singular vectors of a Hermitian Matrix are complex U ∈ Cn×n and V ∈ Cn×n and not real. Moreover, one
needs to account then for the (slightly different) properties of the SVD, like its sign ambiguity UΣV = (9U)Σ(9V).

E. Weighted Graphs
Our positional encodings based on random walks as well as the Magnetic Laplacian straight-forwardly generalize to
weighted graphs. Here the adjacency matrix A ∈ Rn×n

≥0 contains positive real-valued weights. For the extension of the
Magnetic Laplacian to signed graphs, i.e., also allowing negative edge weights, we refer to He et al. (2022).

For the random walk encodings, all equations in § 4 are directly applicable, however, for the (Magnetic) Laplacian one needs
to adjust the strategy for symmetrizing the graph and potentially how to choose potential q. Then, for weighted graphs, the
smallest eigenvalue of the Magnetic Laplacian solves

min
x∈C

x̄⊤L(q)x

x̄⊤x
=

1

2

∑
(u,v)∈Es

wu,v|Γu,0 − Γv,0 exp(Θ
(q)
u,v)|2 (E.1)

where wu,v is the weight for edge (u, v) in the then weighted symmetrized adjacency matrix As.

F. Overview of Our Positional Encodings
We next provide a concise overview over the positional encodings. In Algorithm F.1, we provide an overview for the
Magnetic Laplacian (§ 3). Thereafter, we list the full equation for the random walk encodings (§ 4). In both cases, we add
the obtained positional encodings to the node features. For the relative random walk encodings see § I.

Algorithm F.1 Magnetic Laplacian Positional Encodings

1: Input: Adjacency matrix A ∈ {0, 1}n×n, potential q, number of eigenvectors k
2: Calculate L(q) ← Laplacian(A, q) // e.g. Eq. 4
3: Decompose Λ,Γ← eigh(L(q), k)
4: Normalize Γ,Λ← norm(Γ,Λ) according to Algorithm D.1
5: Obtain preprocessed Γ̂← MagLapNet(Γ,Λ) // see Fig. 4b
6: Return Γ̂

The finite-horizon random walk and Personalized Page Rank landing probabilities are processed together as

ζ(v|u) = f (2)
rw [Π(R)v,u, (R

k)v,u, . . . , (R
2)v,u, Rv,u, Tv,u, (T

2)v,u, . . . , (T
k)v,u,Π(T)v,u] (F.1)

where Π(T) = pr(I − (1− pr)T)−1. Then, the node encodings (here for node v) are given as

ζ(v|G) = f (1)
rw (AGG({ζ(v|u) |u ∈ V })) (F.2)

22

Transformers Meet Directed Graphs

Table G.1: Most important hyperparameters for tasks and models

Model Hyperparameter

Pl
ay

gr
ou

nd
an

d
So

rt
in

g
N

et
w

or
k Base

15 epochs sorting network / 30 epochs playground,
learning rate η ≈ 8.3× 10−6 × batch size, weight decay α = 6× 10−5,
Adam β1 = 0.7, β2 = 0.9, AGC clipping 7.5× 10−2

+
Combinatorial

Laplacian Top k = 25 eigenvectors (degree normalized Eq. 3), dropout ppos = 0.15, w/o SignNet

+
Magnetic
Laplacian Top k = 25 eigenvectors (deg. norm.), rel. potential p′ = 1/4, dropout ppos = 0.15, w/o SignNet

+
Random

Walk k = 3 random walk steps, personalized page rank restart probability pr = 0.05

O
G

B
C

od
e2

Sequential data
15 epochs, learning rate η/approx5.4× 10−5 × batch size, weight decay α = 7.5× 10−5,
Adam β1 = 0.75, β2 = 0.935, AGC clipping 0.1, 3 mess. passing steps

Our dataset constr.
32 epochs, learning rate η = 5.4× 10−5 × batch size, weight decay α = 6× 10−5,
Adam β1 = 0.9, β2 = 0.95, AGC clipping 5× 10−2, 3 mess. passing steps

+
Magnetic
Laplacian Top k = 25 eigenvectors (deg. norm.), rel. potential p′ = 1/4, dropout ppos = 0.15, SignNet w/ GNN

+
Random

Walk k = 3 random walk steps, personalized page rank restart probability pr = 0.05

G. Experimental Setup
We use the AdamW optimizer (Loshchilov & Hutter, 2019) and employ early stopping, using the validation data. Moreover,
we apply adaptive gradient clipping (AGC) as proposed by Brock et al. (2021) and decay the learning rate with cosine
annealing (Loshchilov & Hutter, 2017). We report peak learning rate in Table G.1. For the playground classification tasks
§ 5, we train on one Nvidia GeForce GTX 1080TI with 11 GB RAM. Regression as well as sorting network results are
obtained with a V100 with 40 GB RAM. For training the models on function name prediction dataset, we used four Google
Cloud TPUv4 (behaves like 8 distributed devices). For eased reproduction of results, we also provide configuration for a
single V100. In the single device setup, training with precomputed eigenvectors and eigenvalues of the Magnetic Laplacian
requires less than 4 hours.

(a) W/o GNN (b) W/ GNN

Figure G.1: Architectures of structure-aware transformers that we
study in this work. (a) solely relies on positional encodings for struc-
ture awareness and (b) resembled the Structure Aware Transformer
(SAT) (Chen et al., 2022). Analogously, to their architecture for the
OGB Code2 dataset, here we omit the subgraph sampling. We only
show the first of l layers. Subsequent layers H(j) for 1 ≤ j ≤ l
operate on the input data besides the node embeddings. H(l) is used
for the downstream task.

Models. We study two architectures: Fig. G.1a
a standard transformer encoder that relies on the
positional encodings for structure awareness and
Fig. G.1b a hybrid GNN transformer architecture,
also called Structure Aware Transformer (Chen
et al., 2022). The latter is motivated via the connec-
tion of the self-attention to kernels and the GNN
resembles here a learnable graph kernel. Addition-
ally, the Structure Aware Transformer uses the node
degree for weighting the residual connection around
self-attention in each transformer layer.

GNN architecture We follow the generic GNN
“framework” of Battaglia et al. (2018) w/o a
global state. Their framework subsumes most
major spatial message-passing schemes. We
tested various variants but only report the
best-performing model. The used GNN alter-
natingly updates edge embeddings e

(l)
p and

node embeddings v
(l)
j , with layer l, node in-

dex v ∈ V , and edge index p from the set
of edges (u, v) ∈ E. Specifically, e

(l)
p =

fe(e
(l−1)
p ||

∑
k∈V←(p) v

(l−1)
k ||

∑
k∈V→(p) v

(l−1)
k) and v

(l)
j = fv(v

(l−1)
j ||

∑
k∈E←(j) e

(l)
k ||

∑
k∈E→(j) e

(l)
k) with concate-

23

Transformers Meet Directed Graphs

nation || and the sets of incoming nodes V←(p) as well as outgoing nodes V→(p) of edge p. Respectively, E←(j) and E→(j)
are the sets of incoming and outgoing edges of node j. fe and fv are MLPs. For the undirected GNN we sum up forward
and backward messages instead of concatenating them.

Batching. The maximum batch size per device is 48, except for the tasks in § 5, where we use a batch size of 96. Since we
use JAX for our experiments, we have constraints on the tensor shape variations. Thus, in each batch, we consider graphs
of similar size to avoid excessive padding. Moreover, we increase the batch size 4× and 2× if n < 256 and n < 512,
respectively.

Hyperparameters. We choose the hyperparameters for each model based on a random search over the important learning
parameters like learning rate, weight decay, and the parameters of AdamW (30 random draws for the sorting network and
50 for OGB). Due to the small and mostly insignificant differences, we consolidated the parameters for both architectures
(Fig. G.1) and all positional encodings. That is, hyperparameters unspecific to the respective positional encoding are shared.
Moreover, for the results in § 5, we use the parameters for the sorting network task (§ 6) without additional tuning. We list
the important hyperparameters in Table G.1.

H. Scalability
Both positional encodings, namely random walks (§ 4) and eigenvectors of Magnetic Laplacian (§ 3) can be calculated
efficiently. Although, for the random walk encodings one has to be cautious since even for a small number of steps k
the transition matrix becomes practically dense (complexity O(n2)) if not using some sparsification technique. For the
scalability of personalized page rank encodings within a neural netowork, we refer to (Bojchevski et al., 2020).

Moreover, we only study the standard self-attention that scales with O(n2). Scalable alternatives were extensively studied,
e.g., (Choromanski et al., 2020; Kitaev et al., 2020), also covering the graph domain (Dwivedi & Bresson, 2021; Rampášek
et al., 2022; Wu et al., 2022). It is straightforward to apply our positional encodings to most of these approaches.

q= 0, dense q= 0.25, dense q= 0, sparse q= 0.25, sparse

0 500 1000 1500 2000
Number of nodes n

10 2

10 1

100

101

Du
ra

tio
n

/ s

(a) Intel(R) Xeon(R) CPU @ 2.20GHz

0 2000 4000
Number of nodes n

10 2

10 1

100

101

Du
ra

tio
n

/ s

(b) Nvidia Tesla T4 GPU

Figure H.1: Runtime required for eigendecomposition on random Erdős-Rènyi graphs.

In Fig. H.1, we study the duration of the eigendecompositon on a CPU (scipy) and GPU (cupy) over graphs of different
size. We also contrast the overhead of having a Hermitian matrix (q = 0.25) in contrast to the decomposition of a real matrix
(q = 0) and in which cases a sparse calculation (with k = 25) is beneficial over its dense equivalent. For this benchmark, we
draw random Erdős-Rènyi graphs with an average degree of 5 (similar to the positional encodings playground § 5) and
report the average over 10 trials via timeit or cupyx.profiler.benchmark.

In any case, once q and other hyperparameters have been chosen it is beneficial to precompute the eigenvectors for training.
With precomputed eigenvectors, the training on OGB Code2 (32 epochs) finishes within 4 hours using a single V100.

24

Transformers Meet Directed Graphs

I. Positional Encodings Playground
GNNs. Additionally to the baselines of Laplacian and SVD encodings, we also compare to our default GNN architecture
(see § G) and MagNet (Zhang et al., 2021). MagNet is a GNN for directed graphs that uses the Magnetic Laplacian in
its message passing. Specifically, they formulate each message passing step as a polynomial of the Magnetic Laplacian.
We follow the default parameters of the authors and choose (absolute) potential q = 0.1, which is performs best out
of q ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25}. We find that both GNNs are predictive for classifying reachability and adjacency,
however, fall behind in the distance regression tasks (see Fig. I.1).

F1 RMSE

reach.
(1)

adj.
(2)

u. dist
(3)

d. dist
(4)

Lap. (basln)

SVD (basln)

GNN (basln)

MagNet (basln)

RW (ours)

RW rel. (ours)

ML w/o SignNet (ours)

ML w/ SignNet (ours)

0.63 0.63 0.23 0.51

0.53 0.53 0.26 0.54

1.00 1.00 0.83 0.38

1.00 1.00 0.97 0.45

0.95 0.95 1.94 0.62

0.94 0.94 2.12 0.67

0.97 0.97 1.99 0.82

0.97 0.96 2.17 0.86

0.97 0.97 1.22 0.65

0.95 0.95 1.33 0.68

0.99 0.98 0.81 0.35

0.96 0.95 0.98 0.44

1.00 1.00 0.22 0.33

1.00 1.00 0.25 0.38

1.00 0.99 0.54 0.81

1.00 0.99 0.58 0.83

val.

test

val.

test

val.

test

val.

test

val.

test

val.

test

val.

test

val.

test

F1 RMSE

reach.
(1)

adj.
(2)

u. dist
(3)

d. dist
(4)

0.75 0.62 0.27 1.96

0.73 0.49 0.31 2.08

1.00 1.00 1.02 1.64

0.97 1.00 1.12 1.86

0.92 0.96 1.41 2.13

0.91 0.95 1.51 2.34

0.89 0.95 1.62 2.34

0.87 0.94 1.72 2.56

1.00 0.97 1.00 1.24

0.99 0.94 1.06 1.36

1.00 0.96 0.76 0.97

0.98 0.79 0.91 1.54

1.00 1.00 0.27 0.93

1.00 1.00 0.31 1.06

1.00 1.00 0.64 1.71

1.00 1.00 0.68 1.85

Figure I.1: Complimentary results to Fig. 5 for (1) reachability, (2) adjacency, (3)
undirected distance, and (4) directed distance.

Relative random walk encodings
can be constructed following the
recipe in § 4. However, instead of
aggregating the encodings to a node-
level, we keep the n × n encod-
ings ζ(v|u) using the a different
linear transformation f

(2)
rw for each

transformer layer and head. The at-
tention mechanism for each head
becomes softmax(QK⊤/

√
d+ζ)V ,

where ζ ∈ Rn×n is the matrix con-
taining the one-dimensional ζ(v|u).
Note tha these positional encodings
can be understood as a generaliza-
tion of the pair-wise shortest path
distances used by Ying et al. (2021)
and Guo et al. (2021), if using a
sufficiently large number of random
walk steps.

In Fig. I.1, we show that these rela-
tive positional random walk encod-
ings (RW rel.) consistently outper-
form node-level random walk en-
codings (RW). However, the rela-
tive positional encodings seem to be
more prone to overfitting and train-
ing becomes less stable. This can,
e.g., be seen in the comparably large
differences between validation and
test scores. Recall that the valida-
tion set is more similar to the train-
ing set than the test set due to the dif-
ferent number of nodes. Due to the
brittleness and the additional tuning
required, we do not study the rela-
tive positional encodings in the other tasks.

SignNet with MLP. Additionally to the Magnetic Laplacian encodings w/o SignNet (as presented in Fig. 5), we report
results w/ SignNet felem(−γj) + felem(γj) using using an MLP for felem. As we can see in Fig. I.1, the encodings w/
SignNet perform considerably worse than the encodings w/o SignNet. As hypothesised in § 3, one reason could be that our
convention for choosing the eigenvectors sign resolves the sign ambiguity to a sufficient extend. Moreover, SignNet with an
element-wise MLP behaves similarly to processing the absolute value of the eigenvectors. If using solely the absolute values,
we loose the information about relative differences between different nodes that include sign changes. Note that this finding
crucially rely on the usage of a point-wise MLP and if using a GNN (e.g., as we do for function name prediction in § 7)
SignNet appears to help achieving better performance.

25

Transformers Meet Directed Graphs

J. Random Walk Hyperparameter Study
We next study our most important design choices along the impact of the number of random walk steps k. We find that these
decision are rudimental for random walk positional encodings on directed graphs and that two or three random walk steps k
are sufficient for this task.

In Fig. J.1a, we show the random walk encodings alike Li et al. (2020). That is, solely relying on the transition matrix
T = AD−1out , without backward direction and without Personalizd Page Rank (PPR). In Fig. J.1b, we show the results with
reversed random walk (transition matrix R = A⊤D−1in). In Fig. J.1c, we study the random walk encodings as presented in
§ 4, including backward random walk and PPR. Both, choices substantially boost performance, although, for PPR the gains
diminish for k > 3 (on the admittedly small graphs in this task).

F1 RMSE

reach.
(1)

adj.
(2)

u. dist
(3)

d. dist
(4)

k= 1

k= 2

k= 3

k= 4

k= 5

0.80 0.29 1.64 2.46

0.76 0.23 1.76 2.59

0.89 0.49 1.50 2.28

0.87 0.39 1.53 2.41

0.92 0.63 1.44 2.16

0.91 0.56 1.47 2.29

0.94 0.72 1.40 2.06

0.92 0.66 1.44 2.19

0.95 0.76 1.37 1.89

0.93 0.71 1.41 2.01

F1 RMSE

reach.
(1)

adj.
(2)

u. dist
(3)

d. dist
(4)

0.89 0.58 1.43 2.28

0.86 0.50 1.47 2.42

0.98 0.86 1.20 1.88

0.96 0.79 1.25 2.02

0.99 0.94 1.07 1.51

0.99 0.91 1.13 1.64

1.00 0.97 1.00 1.29

0.99 0.95 1.06 1.42

1.00 0.98 0.95 1.20

1.00 0.96 1.01 1.32

val.

test

val.

test

val.

test

val.

test

val.

test

F1 RMSE

reach.
(1)

adj.
(2)

u. dist
(3)

d. dist
(4)

0.99 0.84 1.17 1.69

0.98 0.78 1.23 1.81

1.00 0.94 1.14 1.52

0.99 0.91 1.20 1.65

1.00 0.97 1.09 1.34

0.99 0.94 1.15 1.46

1.00 0.97 1.13 1.15

0.99 0.95 1.18 1.27

1.00 0.98 1.04 1.06

1.00 0.97 1.10 1.18

(a) W/o rev., w/o PPR (Li et al., 2020) (b) W/ reversal, w/o PPR (c) W/ reversal, w/ PPR

Figure J.1: Hyperparemter study for random walk encodings on the playground tasks: (1) reachability, (2) adjacency, (3)
undirected distance, and (4) directed distance Dark green encodes the best scores and bright green bad ones. For F1 score
high values are better and for RMSE low values.

K. Sorting Networks Dataset Construction
We give the data generation process for a single sorting network in Algorithm K.1. Additionally, we only consider sorting
networks with less than 512 comparators and abort early if this bound is exceeded. Since adding a comparator cannot
diminish any progress of the sorting network, we only need to generate all possible test sequences once in the beginning and
sort ti successively. Moreover, we make use of the so-called “0-1-principle” (Knuth, 1973). That is, if a sorting network sorts
all possible sequences in {0, 1}p, then it sorts all possible sequences consisting of comparable elements. Once a valid sorting
network was constructed, we drop the last comparator C[: −1] for an instance of an incorrect sorting network. Moreover, for
test and validation, we include another (typically incorrect) sorting network via swapping the order of comparators C[:: −1].

L. Sorting Networks Are Near-Sequential
All the comparators perform a data-dependent in-place swap operation. In other words, there are no buffers to store, e.g., a
value at the beginning of the program and retrieve it at the end. Consequently, edges in the resulting directed graph (e.g.
Fig. 6) are typically connected to close ancestor nodes and align well with the main diagonal of the adjacency matrix. We
give an example in Fig. K.1. For this reason, we call the graphs in the sorting network task near-sequential.

Due to the near-sequentiality, sinusoidal positional encodings are intuitively an appropriate choice (see § 2). However, even
these near-sequential graphs can have a huge amount of topological sorts. Enumerating all topological orders for the training
instances rarely terminates within a few minutes (using python). We estimate, that the number of topological sorts typically

26

Transformers Meet Directed Graphs

Algorithm K.1 Generate Sorting Network

1: Input: Number of nodes set N
2: Sample uniformly n ∼ U(N)
3: Empty list of comparators C ← []
4: Unsorted sequences S ← all possible sequences({0, 1}, n)
5: Unsorted locations L← {0, 1, . . . , n− 1}
6: while |S| ≥ n+ 1 do
7: Sample uniformly (u, v) ∼ U(L) without replacement
8: if (u, v) ̸= C[−1] then
9: C ← C + [(u, v)]

10: S ← sort positions(S, u, v)
11: L← determine unsorted(S)
12: end if
13: end while
14: Return C

Figure K.1: Sorting networks are
near-sequential since the edges align
well with main diagonal.

exceeds 1× 106. This, surprisingly high number of topological sorts could be the reason why the positional encodings for
directed graphs are superior to the sinusoidal encodings (see § 6) and shows the significance of this relationship.

M. Application: Function Name Prediction
We next describe how we construct the directed graph in the function name prediction task. Recall, that we construct a
data-flow-centric directed graph that is also able to handle the sharp bits like if-else, loops, and exceptions. In our graph, we
avoid sequential connections that originate from the sequence of statements in the source. We aim for a similar reduction of
the input space size to the sorting network task § 6. To explain how we construct this graph, we will first give a high-level
description of the design narratives. Then, we include the Abstract Syntax Tree (AST) in the discussion.

Design principles. In Fig. M.1, we give an example function and give a data-flow-centric dependency graph for the actual
computations. The function can be clustered into three blocks (excluding function definition and return statement): (1)
variable d is calculated, (2) if-else-statement for refining the value of variable a, and (3) variable b is changed if negative.
These three blocks are each represented by a grey box. Further, we highlight (sub-) blocks white that correspond to the
bodies of the if-else statement.

def func(a, b, c):
d = min(a, b)
if a > 0:

e = a ** 2
f = b ** 2
a = sqrt(e + f)

else:
a = -a

if b < 0:
b = b + d

return a + b

Figure M.1: Exemplary data-flow-centric graph construction

We connect nodes based on the required inputs for the computation (aka data flow). Moreover, we add edges to describe the
control flow of the if-statements (dashed blue lines). Last, we add edges if values are being overwritten (dash-dotted green

27

Transformers Meet Directed Graphs

line). Conceptually, we generate a Directed Acyclic Graph (DAG) for each block and then recursively traverse the hierarchy
and connect the contained instructions. Hence, the resulting graph is not necessarily acyclic.

Order of computation. In this example, each computation can only take place after all its immediate ancestors have been
calculated (and if these values are kept in memory). Vice versa, all computations could take in arbitrary order as long as
the parent nodes have been executed. For general functions, the picture is a bit more complicated (but similar) due to, for
example, loops, exceptions, or memory constraints.

Hierarchy. To generate the connections we rely on the fact that (Python) code can be decomposed into a hierarchy of
blocks. Except for ancestor and successor nodes, these blocks build a mutually exclusive separation of instructions. This
decomposition is what an AST provides. While also prior work uses ASTs for their graph construction, they retain the
sequential structure of the source code in the graph construction. For example in Fig. M.2a, we show the graph constructed
by the OGB Code2 dataset (Hu et al., 2020) for the code in Fig. M.3. From this, it should be clear without additional
explanation why we argue that the AST solely enriches the sequence of code statements with a hierarchy. In stark contrast,
our graph construction (Fig. M.2b) is by far not as sequential.

Module

FunctionDef
mask

arguments

arg
a

Assign

Assign

Return

arg
b

Constant
3.14

Name
a BinOp

Name
c Call

BinOp

Name
float

Load

Store Name
a Pow

Constant
2Load

Store Attribute
sqrt

Name
b

Name
math Load

Load Name
c

Load

Name
aLoad

Add

Load

(a) OGB Code 2 graph

Module

FunctionDef
mask

FIELD
body

arguments

FIELD
args

Assign

FIELD
body

Assign

FIELD
body

Return

FIELD
bodyCFG_NEXT CFG_NEXT

Name
a

FIELD
args

Name
b

FIELD
args:1

Constant
3.14

FIELD
defaults

CFG_NEXT

Name
a

FIELD
targets

BinOp

FIELD
value CFG_NEXT

Name
c

FIELD
targets

Call

FIELD
value

BinOp

FIELD
valueParam

FIELD
ctx

LAST_WRITE Name
a

LAST_WRITE

Param

FIELD
ctx

Name
float

FIELD
annotation

Name
b

LAST_WRITE

CFG_NEXT

Store

FIELD
ctx

Name
a

LAST_WRITE

COMPUTED_FROM

Load

FIELD
ctx

Load

FIELD
ctx

COMPUTED_FROMLoad

FIELD
ctx

FIELD
inputs

Pow

FIELD
op

Constant
2

FIELD
inputs:1

Load

FIELD
ctx

Store

FIELD
ctx

Name
c

LAST_WRITE

FIELD
args

Attribute
sqrt

FIELD
func

Load

FIELD
ctx

Name
math

FIELD
value

Load

FIELD
ctx

COMPUTED_FROM

Load

FIELD
ctx

FIELD
inputs

FIELD
inputsAdd

FIELD
op

(b) Our data-centric graph

Figure M.2: Comparison of OGB Code2’s graph construction to ours.

Sequentialization. Generating semantically equivalent sequences of program statements from such a directed graph is
more challenging than determining feasible orders of computation or in the sorting network task § 6. For example, in DAG
of Fig. M.1, not every possible topological sort corresponds to a possible sequentialization of the program. To determine
sequentializations one needs to consider the hierarchical block structure. For example, it is possible to reorder the blocks

28

Transformers Meet Directed Graphs

highlighted in grey, depending on their dependencies. However, our data and control flow does not capture all dependencies
required to generate the program. For example, as already hinted above, one caveat resides in the availability of intermediate
values. Although the first block (to determine d) and second block (if else construct) are independent in the shown graph,
overwriting the value of a has not been modeled. In other words, it would make a difference to swap these blocks since a
changes its value in the second block. Thus, for constructing a possible sequence of program instructions, we would also need
to address changing variable values. For example, we could assign a new and unique name after changing a variable’s value
(as in functional programming or like a compiler does). Alternatively, adding further edges could be sufficient. Nevertheless,
these dependencies are not important for the semantic meaning of a program.

def transform_add(
a, b: float = 3.14):

a = a**2
c = math.sqrt(b)
return c + a

Figure M.3: Code used for Fig. M.2.

OGB’s graph construction first converts the source to AST
and adds additional edges to simulate the sequential order of
instructions. In Fig. M.2a, the black edges are the edges from
the AST and the red edges for the sequential order.

Our graph construction. We also construct the AST from
source (FIELD edges) and build on top of the graph construc-
tion / static code analysis of Bieber et al. (2022). In the example
in Fig. M.2b, we have the same amount of nodes as Fig. M.2a
except for two “Param” nodes belonging to the argument nodes.
Similarly to the example in Fig. M.1, we augment the AST with additional edges mimicking the data flow and program flow.
Here, we have Control Flow Graph edges CFG_NEXT that model the possible order of statement execution. Moreover, the
variable nodes (close to leaf nodes) are connected by LAST_WRITE and CALCULATED_FROM edges. These edges model
where the same variable has been written the last time and from which variables is was constructed. Additionally, we use a
CALLS edge that model function calls / recursion (not present in this example). Thereafter, since the task is function name
prediction, we need to prevent data leakage. For this, we mask the occurrences of the function name in its definition as well
as in recursive calls.

Comparison to Bieber et al. (2022). We largely follow them and build upon their code base. The most significant difference
is the avoidance of unnecessary sequentialism. Specifically, (1) their CFG_NEXT edges connect instructions sequentially
while ours form a dependency graph, and (2) we omit their LAST_READ edges. Moreover, we address commutative
properties of the basic python operations (And, Or, Add, Mult, BitOr, BitXor, and BitAnd). This can also be
observed in Fig. M.2b, where we name the edges for the inputs to these operations input and concatenate :<order> if
the operation is non-commutative and <order> > 1. Last, we do not reference the tokenized source code and choose a less
verbose graph similar to OGB.

Sequentialization. Reconstructing the code from AST is a straightforward procedure. Following our discussion above,
we need to acknowledge the hierarchical structure to retrieve valid programs. Fortunately, this hierarchical structure
is provided by the AST. However, similar to the example above, we do not model all dependencies for an immediate
sequentialization. However, as stated before, these dependencies are not important for semantics. Thus, we most certainly
map more semantically equivalent programs to the same directed graph, as if we would compare to a graph construction that
models all dependencies.

29

