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Abstract

Stackelberg equilibria arise naturally in a range
of popular learning problems, such as in secu-
rity games or indirect mechanism design, and
have received increasing attention in the reinforce-
ment learning literature. We present a general
framework for implementing Stackelberg equilib-
ria search as a multi-agent RL problem, allowing
a wide range of algorithmic design choices. We
discuss how previous approaches can be seen as
specific instantiations of this framework. As a key
insight, we note that the design space allows for
approaches not previously seen in the literature,
for instance by leveraging multitask and meta-RL
techniques for follower convergence. We pro-
pose one such approach using contextual policies,
and evaluate it experimentally on both standard
and novel benchmark domains, showing greatly
improved sample efficiency compared to previ-
ous approaches. Finally, we explore the effect of
adopting algorithm designs outside the borders of
our framework.

1. Introduction
Stackelberg equilibria are an important concept in eco-
nomics, and in recent years have received increasing atten-
tion in computer science and specifically in the multiagent
learning community. They model an asymmetric setting:
a leader who commits to a strategy, and one or more fol-
lowers who respond. The leader aims to maximize their
reward, knowing that followers in turn will best-respond
to the leader’s choice of strategy. These equilibria appear
in a wide range of settings. In security games, a defender
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wishes to choose an optimal strategy considering attackers
will adapt to it (An et al., 2017; Sinha et al., 2018). In mech-
anism design, a designer wants to allocate resources in an
efficient manner, knowing that participants may strategize
(Nisan & Ronen, 1999; Swamy, 2007; Brero et al., 2021a).
More broadly, many multi-agent system design problems
can be viewed as Stackelberg equilibrium problems: we
as the designer take on the role of the Stackelberg leader,
wishing to design a system that is robust to agent behavior.

In this paper, we are particularly interested in Stackel-
berg equilibria in sequential decision making settings, i.e.,
stochastic Markov games, and using multi-agent reinforce-
ment learning to learn these equilibria. We make two key
contributions:

1. We introduce a new theoretical framework for framing
Stackelberg equilibria as a multi-agent reinforcement
learning problem.

(a) We give a theorem (Theorem 1) that unifies
and generalizes several prior algorithmic design
choices in the literature.

(b) Complementing this, we show that algorithm de-
signs outside our framework can provably fail
(Theorem 2). In particular, we give to our knowl-
edge the first demonstration that reinforcement
learning (RL) against best-responding opponents
can provably diverge.

2. Inspired by Theorem 1, we introduce a novel approach
to accelerating follower best-response convergence,
borrowing ideas from multitask and meta-RL, includ-
ing an experimental evaluation on existing and new
benchmark domains.

Our theoretical framework (Section 3) allows a black-box
reduction from learning Stackelberg equilibria into separate
leader and follower learning problems. This theory encom-
passes and generalizes several prior approaches from the
literature, in particular Brero et al. (2021a), and gives a large
design space beyond what has been explored previously.
In particular, our broader framework generalizes beyond
learning Stackelberg equilibria along with follower learning
dynamics to general, query-based follower algorithms. The

1



Oracles & Followers: Stackelberg Equilibria in Deep Multi-Agent Reinforcement Learning

theory is complemented by necessary conditions, with a
demonstration of impossibility for successful Stackelberg
learning through RL by the leader when used together with
followers that immediately best respond to the leader policy
(Theorem 2). Our practical meta-RL approach uses con-
textual policies, a common tool in multitask and meta-RL
(Wang et al., 2016), to the follower learning problem. This
allows followers to generalize and quickly adapt to leader
policies, as demonstrated on existing benchmark domains,
with greatly improved speed of convergence compared to
previous approaches. Beyond this, we use this meta-RL
approach to scale up Stackelberg learning beyond what has
previously been shown, to a state-of-the-art RL benchmark
domain built on Atari 2600.

In the remainder of the paper, we will introduce Stackelberg
equilibria and Markov games in Section 2. In Section 3, we
motivate and define our framework for learning Stackelberg
equilibria using multi-agent RL, and discuss its scope and
limitations. We show sufficient conditions in Lemma 1
and Theorem 1. In Theorem 2 we show that RL against
best-responding opponents can fail, which implies that the
construction in Theorem 1 is also necessary for RL leaders
(Appendix C.1 discusses a case of non-RL leaders that does
not require Theorem 1). In Appendix B and Appendix C we
discuss further ablations and edge cases of our framework.
We define our novel Meta-RL approach in Section 4, and
empirically evaluate it in Section 4.1 on existing and new
benchmark domains.

1.1. Prior Work

Learning Stackelberg Equilibria. Most prior work on
Stackelberg equilibria focuses on single-shot settings such
as normal-form games, a significantly simpler setting than
Markov games. Some of this work studies solving an opti-
mization problem to find a Stackelberg equilibria, given an
explicit description of the problem (Paruchuri et al., 2008;
Xu et al., 2014; Blum et al., 2014; Li et al., 2022). Among
the first work to learn a Stackelberg equilibria was Letch-
ford et al. (2009), who focus on single-shot Bayesian games.
Peng et al. (2019) also give results for sample access to
the payoffs of matrix games. Wang et al. (2022) give an
approach that differentiates through optimality (KKT) con-
ditions, again for normal-form games. Bai et al. (2021)
give lower and upper bounds on learning Stackelberg equi-
libria in general-sum games, including so-called “bandit
RL” games that have one step for the leader and sequen-
tial decision-making for the followers. Few works consider
Markov games: Zhong et al. (2021) give algorithms that
find Stackelberg equilibria in Markov games, but assume
myopic followers, a significant limitation compared to the
general case. Brero et al. (2021a;b; 2022) use an inner-outer
loop approach, which they call the Stackelberg POMDP,
which can be seen as a special case of our framework.

Mechanism Design. One of the first works specifically
discussing Stackelberg equilibria in a learning context is
Swamy (2007), who design interventions in traffic patterns.
More recently, several strands of work have focused on
using multi-agent RL for economic design, often framing
this is a bi-level or inner-outer-loop optimization problem.
Zheng et al. (2022) use a bi-level RL approach to design op-
timal tax policies, and Yang et al. (2022) use meta-gradients
in a specific incentive design setting. Shu & Tian (2018) and
Shi et al. (2019) learn leader policies in a type of incentive-
shaping setting, using a form of modeling other agents cou-
pled with rule-based followers. Balaguer et al. (2022) use an
inner-loop outer-loop, gradient descent approach for mecha-
nism design on iterated matrix games (which we also use
as an experimental testbed). They mainly focus on the case
where both the environment transition as well as the fol-
lower learning behavior is differentiable, and otherwise fall
back to evolutionary strategies for the leader.

Opponent Shaping. More broadly related is also a line
of work on opponent shaping, such as M-FOS (Lu et al.,
2022) or LOLA (Foerster et al., 2017). While these works
also learn while taking into account other agents’ responses,
they intentionally only let the other agents learn “a little bit”
between the opponent-shaping agent’s learning steps, as
opposed to letting them learn until they best-respond. This
reflects a difference in goals: Opponent-shaping aims to pre-
dict and exploit other agents’ learning behaviors, whereas
Stackelberg work aims to learn strategies that are robust
even when other agents are able to learn and adapt as much
as they like.

2. Preliminaries
Markov games. We consider partially observable stochas-
tic Markov games, which are a multi-agent generalization of
a partially observable Markov Decision Process (POMDP).

Definition 1 (Markov Game). A Markov Game,M, with n
agents is a tuple (S,A, T, r,Ω, O, γ), consisting of a state
space S, an action space A = (A1, ..., An), a (stochastic)
transition function T : S × A→ S, a (stochastic) reward
function r : S × A → Rn, an observation space Ω =
(Ω1, ...,Ωn), a (stochastic) observation function O : S ×
A→ Ω, and a discount factor γ.

At each step t of the game, every agent i chooses an ac-
tion ai,t from their action space Ai, the game state evolves
according to the joint action (a1,t, . . . , an,t) and the transi-
tion function T , and agents receive observations and reward
according to O and R. An agent’s behavior in the game
is characterized by its policy πi : oi 7→ ai, which maps
observations to actions.1 Each agent in a Markov Game

1To keep notation concise we discuss here the memory-less
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individually seeks to maximize its own (discounted) total
return

∑
t γ

tri(st, ai,t, a−i,t). This gives rise to the usual
definitions of Nash equilibria (NE), correlated equilibria
(CE), and coarse correlated equilibria (CCE), which we do
not repeat in full here, as well as their Bayesian counterparts.
Note that strategies in Markov games and in each of these
equilibrium definitions are policies, not actions: A pair of
policies π1, π2 in a two-player Markov game is a Nash equi-
librium if neither agent can increase their expected total
reward by unilaterally deviating to a different policy π

′

i.

Stackelberg Equilibria. Unlike the above equilibrium
concepts, a Stackelberg equilibrium is not symmetric: There
is a special player, the leader, who commits to their strategy
first; the other player (the follower) then chooses their best
strategy given the leader’s choice of strategy. This makes
the leader potentially more powerful.

Example 1. In a game often called the “battle of the sexes,”
you and I wish to have dinner together, but you prefer restau-
rant A (deriving happiness 2, but I only get happiness 1),
and I prefer restaurant B (I get happiness 2, you get hap-
piness 1)—but we would both rather eat together at our
less-preferred venue, than to eat separately (we both get
happiness 0). Table 1 shows the payoff matrix of this game.
There are two pure Nash equilibria in this game: We both
go to restaurant A, or we both go to restaurant B. But there
is only a single Stackelberg equilibrium (per leader): If you
commit to going to restaurant A, then my only best response
is to also go to restaurant A. In doing so I receive happiness
1, whereas my only alternative would be to eat alone at
restaurant B for happiness 0. Notice that this hinges on the
leader strictly committing to their choice of restaurant.

Table 1. “Battle of
the Sexes” game.

2,1 0,0
0,0 1,2

This Stackelberg concept also
extends to Markov games:
Here a leader agent L decides
on their policy (i.e. strat-
egy), and the remaining (fol-
lower) agents—knowing the
leader’s choice of policy—
best-respond. The leader
seeks to maximize their own reward, considering that follow-
ers will best-respond. For instance, in an Iterated Prisoners’
Dilemma (Robinson & Goforth, 2005), a leader might com-
mit to a Tit-for-Tat strategy, in turn leading the follower to
cooperate.

Typically, a Stackelberg equilibrium is formally defined
using a max-min-style condition: The leader maximizes
its own reward knowing that the follower best-responds,
i.e., maximizes its own reward, with the leader-follower
dynamic giving the order of the two nested max-operators.

case, but all our results generalize to a stateful leader policy in a
straightforward manner, as we discuss in Appendix B.

This in turn suggests a nested outer-inner loop (reinforce-
ment) learning approach, where the follower trains until
convergence every time the leader updates its policy. As
a key innovation in this work, we instead use a statement
of the follower best-response through an oracle abstrac-
tion. An oracle definition has been used before in order to
extend Stackelberg equilibria to multiple followers (Naka-
mura, 2015; Zhang et al., 2016; Liu, 1998; Solis et al., 2016;
Sinha et al., 2014; Wang et al., 2022; Brero et al., 2021a).
In contrast, we use the oracle abstraction to greatly simplify
the statement and proof of our main theorem, while simul-
taneously generalizing it beyond prior approaches. In turn,
this allows us to develop a novel Meta-RL approach in the
second part of the paper.

With multiple followers, any choice of leader strategy, πL,
induces a Markov game, FπL

, between the followers, which
could feature multiple equilibria as well as equilibria of dif-
ferent types, such as Nash, correlated, and coarse correlated
equilibria, each giving rise to a corresponding Stackelberg-
Nash, Stackelberg-CE, and Stackelberg-CCE concept. This
motivates an oracle abstraction. For any choice of leader
strategy, we denote as E(FπL

) a follower equilibrium (or
a probability distribution over equilibria), where we refer
to E as an oracle. This oracle will later be realized as an
algorithm. See also Wang et al. (2022).
Definition 2 (Stackelberg equilibrium). Given a Markov
GameM and a follower best-response oracle E , a leader
strategy πL together with a tuple of follower strategies πF

is a Stackelberg equilibrium, if and only if πL maximizes the
leader’s expected reward under the condition that follower
strategies are drawn from E(FπL

):

πL ∈ argmax
πL

E
πF∼E(FπL

)

[∑
t

E[rL
(
st, aL,t, aF,t

)
]
]
,

where the second expectation is drawing actions and state
transitions from their respective policies πL, πF and transi-
tion function T , and the reward function is r, all as in Defi-
nition 1. If the follower oracle E gives a Nash equilibrium
in the induced game FπL

, we call this a Stackelberg-Nash
equilibrium, and similarly for CE and CCE.

In the remainder of the paper, when we say “oracle” we
mean an algorithm that computes or learns the follower best-
response equilibrium, E(FπL

), given the leader strategy
πL. In full generality, an oracle algorithm could take many
forms, including RL, optimization, or any other algorithm
that takes as input πL and outputs E(FπL

). These algo-
rithms may vary in regard to how they access information
about πL. Our main positive result (Theorem 1) will rely
on oracle algorithms that only require query access (also
called sample access) to the leader policy; i.e., algorithms
that only interact with the leader policy by receiving as input
the leader’s actions in each of a set of leader observation
states, these states queried by the algorithm in some order.
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Definition 3 (Query Oracle). An algorithm implementing
an oracle E is called a query oracle if its interactions with
the leader policy πL are exclusively through queries, where
a query is an input to the leader policy; i.e., an observation
o together with the response from the leader policy, which
is the action πL(o) the leader would take given o.

A query oracle can also receive additional information, for
example an interaction with the environment that is asso-
ciated with the Markov Game (or a description of the en-
vironment). The definition of a query oracle is only in
regard to how the oracle algorithm interacts with the leader
policy. In particular, any oracle implemented using RL
or another typical learning approach is a query oracle, as
learning algorithms generally only require query access to
their environment and the actions taken by other agents
in different states. In particular, a suitably formulated RL
leader together with a RL-based followers (i.e., an “outer
loop - inner loop” approach) can be interpreted within our
framework as an oracle querying the leader policy.

An algorithm that operates directly on a description of the
leader policy, πL, such as a parametrization θ of πL, is not a
query oracle. For instance, ifM has a small number of dis-
crete states and actions, πL could be directly parametrized,
with θij denoting the probability of taking action j in state
i. An optimization approach could then compute a best
response directly from knowledge of θ, but these parameters
are not available through query access. Similarly, θ could
be the weights of a neural network.

3. A General Framework for Stackelberg
Equilibria in Multi-Agent RL

Several approaches have been proposed to learning Stack-
elberg equilibria in Markov games, or to use multi-agent
RL for mechanism design in such settings. A main aim
of our work is to elucidate commonalities between these
approaches, and to delineate what is required to guarantee
Stackelberg equilibria. For instance, most of the existing
approaches use (reinforcement or no-regret) learning to im-
plement the follower best-response, effectively arriving at
an “inner-loop-outer-loop system”: The leader performs
one update to their policy, then the followers perform many
updates to theirs until they converge to a best response,
then this repeats. Is this the only possible approach? Can
you mix-and-match leader and follower approaches at will?
One approach for leader learning is reinforcement learning,
where the gradient of the leader policy is estimated from
sampled trajectories (Brero et al., 2021a)—this is in contrast
to global approaches such as direct differentiation of the
leader policy in a world where everything is differentiable
or evolutionary strategies (Balaguer et al., 2022), which
modify the leader policy as a whole based on total episode
reward, without looking at what happens at each step. Some

leader RL approaches (Brero et al., 2021a; 2022) incorpo-
rate the followers’ learning dynamics into the leader’s view
of the environment. Is it necessary that the leader can see
this adaption process? Or could we also have the follower
best-respond to the leader immediately on the first step it
takes? Some approaches for mechanism design do not ex-
plicitly mention Stackelberg equilibria (Zheng et al., 2022;
Balaguer et al., 2022), but seem very similar to approaches
that do; do those approaches converge to a Stackelberg equi-
librium? In this section we develop a common framework
that answers these questions, and provide a common lan-
guage to categorize the various strands of research in this
area.

A key novelty in our framework is that following Defini-
tion 2 we separate the problem into a leader learning prob-
lem and a follower oracle implementation. Let L = LM be
the learning problem that the leader faces. In standard multi-
agent RL, L would simply be the leader’s local view of the
multi-agent system, considered as a single-agent learning
problem (i.e., taking the other agents as being part of the
environment). We will now show how to construct L so as
to guarantee a Stackelberg equilibrium. As a warm-up, we
will derive two basic conditions on L that guarantee that an
optimal policy in L forms a Stackelberg equilibrium.

Lemma 1. Given a Markov GameM and a follower equi-
librium oracle E , let LM be the learning problem the leader
faces. If:

1. for each choice of leader policy πL, L computes the
follower best-response E(πL), and

2. L(πL) evaluates the leader policy πL against the fol-
lower best-response E(πL) in M, i.e. the value of
L(πL) is rL(πL, E(πL)) inM,

then an optimal solution π∗
L to L together with the follower

best-response E(π∗
L) form a Stackelberg equilibrium inM.

This follows in a straightforward way from Definition 2 (see
Appendix A for a formal proof). It is also easy to see that
these are essentially necessary conditions (modulo trans-
formations and reward shaping, see Appendix E). While
Lemma 1 is simple, it already allows us to answer some of
the questions we posed initially. In particular, do previous
not-explicitly-Stackelberg approaches from the literature
give Stackelberg equilibria? They are not guaranteed to,
because many of them either do not train followers until
convergence (e.g. (Zheng et al., 2022), violating condition
1), or give reward even while followers are still learning (e.g.
(Balaguer et al., 2022), violating condition 2).

However, Lemma 1 only applies if we already have an
optimal solution to L, and it does not say anything about
whether a particular leader learning algorithm, such as RL,
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will converge on L. In particular, we asked earlier if it is
necessary for the leader to be able to see the followers’ adap-
tion process, or if we could also have followers best-respond
immediately? We first show that “letting the leader see” the
followers’ adaption process (formally, the operation of the
oracle E) makes L a POMDP, meaning that RL algorithms
for the leader can be expected to converge under standard
assumptions. Through the oracle abstraction, we show this
for a much broader class of follower best-response algo-
rithms than typical learning approaches. Second, we show
this is also a necessary condition, i.e., leader RL can fail if
followers best-respond immediately and without a visible
adaption process. In the following theorem, we show that
for any query oracle, a suitable construction of the leader
problem L will be a POMDP, i.e. exhibit Markovian state
transitions. This POMDP can, in turn, be solved via leader
RL to yield a Stackelberg equilibrium, which makes the
theorem applicable to settings where it is desirable to use
RL to solve the leader learning problem.

Theorem 1. Given a Markov GameM, and a follower equi-
librium oracle E , if in addition to the conditions of Lemma 1,
the follower oracle E is a query oracle (Definition 3), then
the leader learning problem L can be constructed as a
POMDP.

In the following, we provide the main idea behind this pos-
itive result, which relies on the construction of a suitable,
single-agent POMDP to model the leader’s problem. We
defer the full proof of Theorem 1 to Appendix A, where we
also give concrete examples.

Given M and a query oracle E we define a new leader
POMDP L as follows: The action and observation space
for the leader in L are the same as those inM. L is then
constructed in two parts. First, the leader is queried as often
as is required to compute a follower equilibrium by the
oracle E ; then an episode from the original Markov game
M plays out:

• Initial Segment: For an initial number of steps in L,
each step performs one query from the follower oracle
E : If a given query wishes to determine the leader
policy’s response to observation o, then the leader will
receive o as its observation in L, and the leader’s action
will be given to E as the response to its query. The
leader will receive no reward in these steps.

• Final Segment: Once a follower equilibrium πF has
been determined, the remainder of L will be con-
structed from the original Markov gameM: We let
followers act according to the computed follower equi-
librium πF and treat them (including all their internal
state) as part of the environment.

If the follower oracle is implemented using RL, i.e., both

leader and followers use RL, then the initial segment is
simply one or more episodes of M where the followers
are learning, and the final segment is one episode fromM
where the followers have converged. This formalizes, in a
general way, the “train followers until convergence for every
leader policy update” approach seen in prior work (Brero
et al., 2022). The innovation is that we generalize to any
query-based algorithm implementing the follower oracle,
not just followers using learning algorithms, and this will
be crucial in the next section. (And note that we fur-
ther generalize even to non-query follower algorithms in
Lemma 1, which applies to the case of non-RL leaders; see
Appendix C.1).

The POMDP property of the construction in Theorem 1
gives us strong evidence that that outer-loop inner-loop RL
approaches have a solid theoretical foundation. However,
such approaches also have drawbacks (such as very long
and sparse-reward episodes for the leader). The remaining
question is whether this visibility is necessary, or if we could
skip the initial segment in the construction in Theorem 1
and have followers best-respond immediately on the first
step the leader takes. For the first time, we can answer this
question clearly: RL against immediately-best-responding
opponents can provably diverge.

Theorem 2. There exists a Stochastic Markov Game,M,
where neither tabular Q-learning nor policy gradient can
learn the optimal policy for the leader when the follower
agent immediately best-responds.

We prove Theorem 2 in Appendix D, and also confirm the
effect experimentally in Appendix C.1 in the context of the
Iterated Prisoners’ Dilemma. This result is highly surpris-
ing, as training against a best-responding follower at first
may seem like a natural approach that one might consider
using. In the proof of Theorem 2, we see that the RL al-
gorithm fails due to missing counterfactuals. In particular,
the key idea is that the best response to a leader’s policy
may depend on its behavior on all possible states, including
states not visited when the follower actually best-responds.
For instance, in iterated prisoner’s dilemma, the threat of
retaliation to a defection is crucial. But if a follower best-
responds by always cooperating, the defection state will
never be visited, and will not lead to corresponding updates
in the RL algorithm. We use this insight to then construct an
instance where all other possible visits of the defection state
(from a non-optimal leader policy, or random exploration)
will lead to RL updates that “point away” from the optimal
policy.

Collectively, Lemma 1, Theorem 1, and Theorem 2 allow
us to answer the last remaining question we posed initially:
Can we mix-and-match arbitrary approaches for the leader
and followers? The answer is “Yes, we can.” The only
restriction is that if we use RL for the leader (or another
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approach that hinges on a Markov property), then we need
to use a query-based approach for the followers and the
initial-final segment construction from Theorem 1.2

Appendix B further details how to extend Theorem 1 to
leader policies with memory, and details a crucial condition
of leader invariance. This invariance condition requires
that the leader policy act the same during oracle queries
as it does during real play. In the memory-less case this
follows immediately in theory, but is an important imple-
mentation detail in practice. As an illustration, we show
in Appendix C.4 an example where a seemingly innocuous
step counter being made part of the leader’s observation
leads to learning failure.

Relation to prior approaches. A key novelty in our
framework is that it generalizes to arbitrary approaches for
the leader and followers, allowing us to develop the novel
Meta-RL approach in Section 4, and also supporting the
unification of several approaches from the literature. As dis-
cussed above, the main theorem of Brero et al. (2021a) can
be seen as a special case of Theorem 1, with our theorem
generalizing this to arbitrary leader and follower approaches.
A key difference is that their theorem focuses on follower
approaches that learn in the base Markov gameM, whereas
Theorem 1 includes arbitrary queries of the leader policy.

Existing approaches can be categorized by the approaches
that they take for leader and follower modeling, and are
mainly focused on no-regret, RL, or policy gradient learning
to implement follower oracles, coupled with either RL or
direct gradient descent methods for the leader.

Brero et al. (2021a; 2022) use no-regret dynamics and Q-
learning to implement the follower oracle inside the leader’s
episode rollout, and standard RL techniques to solve the
resulting leader POMDP.

Balaguer et al. (2022) use gradient methods to implement
the follower oracle. In the case where both followers and
world dynamics are differentiable, they directly differentiate
the leader policy (as opposed to estimating its gradient using
sampled trajectories). For the non-differentiable case they
use evolutionary computation. Interestingly, they seem to
accumulate leader reward throughout the entire learning
phase of the follower. This puts their approach outside the
scope of our Theorem 1, and may give the leader the wrong
optimization target, as we detail in Appendix C.3. Our
understanding is that if the leader were to optimize for its
final reward at the end of follower learning instead, their
approach would fall within Theorem 1 and yield Stackelberg

2Note that this is strictly a special case, as there are also other
approaches on either side that fall outside this. For instance, one
could use evolutionary strategies for the leader, coupled with a
non-query-based optimization approach for the followers. See for
instance Appendix C.1 for a relevant experiment.

equilibria.

Zheng et al. (2022) similarly use two-level RL design, us-
ing policy gradient to learn each of the follower oracle and
the leader policy. While they do not specifically mention
Stackelberg equilibria, this would be the target equilibrium
condition in the taxation-policy design setting. Interestingly,
they use a curriculum learning approach that can be seen as a
rudimentary form of the contextual policy meta-learning ap-
proach that we develop in this paper. As with Balaguer et al.
(2022), Zheng et al. (2022) also seem to accumulate leader
reward, putting them outside the assumptions of Theorem 1.
Table 3 gives an overview of these prior approaches.

4. Meta-RL for Stackelberg RL
Going beyond existing approaches, Theorem 1 suggests a
wide design space for implementing the follower oracle. As
a key contribution, we explore using multi-task and meta-
RL as a means of implementing the follower oracle. This is
both to illustrate the power of Theorem 1 as a way to think
about Stackelberg learning, as well as due to the advantages
of the approach over existing ones.

We can recognize that the follower games, FπL
, are in fact a

family of related problems. For this reason, the follower ora-
cle problem can be seen as a multitask or Meta-RL problem,
and solved using techniques from those fields. We make use
of contextual policies (Wang et al., 2016), where a context
ω describes the task an agent is supposed to solve. In our
case, the context provides the specific MDP among a family
of MDPs a follower finds itself in, and ω is a description
of the leader policy. This context, ω, is concatenated to
the follower agent’s observation oi,t, and agent i observes
(oi,t, ω) at timestep t. Crucially, we will construct context
ω through queries of the leader policy, so that we can use
the POMDP construction of Theorem 1.

We focus on settings where the leader policy’s effect on
the follower can be fully understood with a small number
of queries, and we directly use the leader’s response to
a fixed set of queries as the context ω. For instance, in
the Iterated Prisoners’ Dilemma, we ask the leader three
questions: “How do you act on the initial step of the game?”,
“How do you act if the opponent cooperated in the previous
step?” and “How do you act if the opponent defected in the
previous step?” Clearly, if these are the only three possible
states, this is sufficient to characterize the leader policy.

We further use a two-stage training approach. In Phase 1, we
train a follower meta-policy against a different, randomized
leader policy in each episode. By the end of this phase, the
meta-policy is able to best-respond to all possible leader
policies. In Phase 2, we train a leader policy against this
follower, where the leader is queried at the beginning of
each episode. Note that this two-stage approach is separate
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Table 2. Situating different approaches within the framework of Theorem 1. Approaches marked * do not fully satisfy the conditions of
Lemma 1 and Theorem 1. Approaches marked in bold indicate approaches that apply to general Markov games, i.e., that are sequential
for both leader and followers, and otherwise unrestricted.

Leader Learning Approach
Oracle

Implementation
Optimization,

Search
Direct Gradient Descent,
Evolutionary Strategies RL

N/A - Oracle
Assumed Given

(Letchford et al., 2009)
(Peng et al., 2019) (Wang et al., 2022) (Zhong et al., 2021)

No-Regret (Brero et al., 2021a)

RL (Bai et al., 2021) (Balaguer et al., 2022)*
(Yang et al., 2022)*

(Zheng et al., 2022)*
(Brero et al., 2022)

Multitask / Meta-RL new

from the two-segment construction in Theorem 1. The first
training phase is purely a pre-training stage for the follower
meta-policy. In effect, it builds a suitable query-based fol-
lower oracle. The second training phase trains the leader,
and uses the two-segment construction from Theorem 1
in each episode experienced through leader training. Con-
cretely, in Phase 2, every episode looks as follows: First, in
the “initial segment” (Theorem 1), the leader sees a fixed
sequence of observations o0, . . . , ok. The follower does not
act in these steps at all. The leader’s actions, a0, . . . , ak, in
response to the sequence of observations, o0, . . . , ok, are
memorized. Specifically in the iterated matrix game envi-
ronments we use, this sequence of observations is simply all
the possible states ofM, and so the leader’s response fully
characterizes its policy. The actions a0, . . . , ak then form
the context ω = (a0, . . . , ak) for the follower in the “final
segment.” In this second part of each episode, leader and
(meta-) follower act together in an episode of the original
game,M. At a given timestep t if the current state is st, the
leader’s observation is oL,t = st, and the (meta-) follower’s
observation is oF,t = (st, ω). In words, the follower ob-
serves its usual observation, but also the context. Through
this context, the follower is informed about the leader policy
it is playing against, and can best-respond to it.

Because the context ω was derived through queries that
are part of the leader’s batch of experiences, this forms a
POMDP for the leader by Theorem 1. At the same time,
because the follower does not need to learn from scratch
how to respond for every leader policy update, we avoid
the “inner loop” of typical “outer-inner loop” approaches.
For settings where it is not possible to explicitly define the
context ω in this way, the multitask and meta-RL literature
provides a range of approaches that infer context, often
using recurrent networks (Wang et al., 2016; Mishra et al.,
2017; Duan et al., 2016; Rakelly et al., 2019; Zintgraf et al.,
2019; Humplik et al., 2019).

4.1. Experiments

We evaluate our Meta-RL approach on both a benchmark
iterated matrix game domain, comparing to existing ap-
proaches, as well as on a novel Atari 2600-based domain
that is significantly more challenging. In the first, our main
positive finding is that our approach can match or exceed
prior approaches at greatly improved sample efficiency. In
the latter, we show for the first time a positive result using a
principled Stackelberg approach on a state-of-the-art gen-
eral RL benchmark domain. We will detail each of the two
domains, along with the results obtained using the Meta-RL
algorithm. Appendix F and G give further details on the
algorithms and full hyperparameters.

Environments: Iterated Matrix Games. We evaluate
our contextual policy approach and general framework on
an ensemble of iterated symmetric matrix games, such as the
Iterated Prisoners’ Dilemma (Robinson & Goforth, 2005).
We choose these games as they present a significant step up
in complexity from previous approaches that give explicit
Stackelberg guarantees, in that both leader and followers
face a sequential decision-making problem. In these, we
play a matrix game for n = 10 steps per episode, and give
agents a one-step memory. This makes these environments
Markov games, with five states: one for the initial steps of
each episode, and four for later steps depending on the two
agents’ previous actions. At each step, each agent has a
choice of two actions (e.g. “cooperate” or “defect”), leading
to the next state, e.g. “both cooperated”.

Figure 1 shows the performance of our Meta-RL approach
using PPO for the leader. We compare against the ap-
proaches of Balaguer et al. (2022) and Brero et al. (2022).
For our PPO+Meta-RL approach, we plot the combined en-
vironment steps used by the meta-follower training plus the
leader training on the x-axis. For Balaguer et al. (2022), we
estimate performance from Figure 2 therein. Note that this
is the eventual performance at the end of training (Balaguer
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Figure 1. Blue: Mean episode reward of our novel PPO+Meta-RL approach on 12 canonical symmetric iterated matrix games. Orange:
PPO+Q-learn (Brero et al., 2022). Dashed green: Good Shepherd ES-MD (Balaguer et al., 2022) (final, mean episode reward at 1.28B
timesteps, estimated from Fig. 2 ibid.)

et al. (2022) do not publish learning curves).

In terms of mean episode reward, the final performance
largely matches that of the “good shepherd” ES-MD ap-
proach, which is expected as both approaches achieve at or
very near the theoretical optimum on all games; i.e., they
both find the Stackelberg equilibrium of the game. By ex-
tension our approach also matches or outperforms all their
baselines (c.f. Figures 1 and 2 therein). The more relevant
comparison between our approach and “good shepherd” is
on speed of convergence, where our Meta-RL approach con-
verges in around 50k environment steps, whereas Balaguer
et al. (2022) report performance at 1.28 billion environment
steps in the ES-MD case. We give further details on this
comparison with Balaguer et al. (2022) in Appendix H.

We also see that our approach outperforms the PPO+Q-
learn approach of Brero et al. (2022). In Appendix H we
show the PPO+Q-learn approach training for significantly
longer, and see that when it does converge it does so around
500k environment steps at the earliest, whereas for most
of the harder cases it still has not nearly reached optimal
performance at 2M timesteps. We again note that our Meta-
RL approach shows greatly improved sample efficiency.

Environments: Bilateral Trade on Atari 2600. As a
second, significantly higher-dimensional and challenging
domain, we present a bilateral trade scenario on a modified
Atari 2600 game (a state-of-the-art domain in single-agent
RL). We use a two-player version of Space Invaders, and
introduce an artificial resource constraint: Each agent can
only fire in the game if they have a bullet available. Ini-

tially, neither player has any bullets available. Throughout
the episode, we give bullets to player 1, one at a time at
stochastic intervals. Player 1 can then choose to offer the
sell this bullet to player 2 by offering them a price, or Player
1 can choose to use the bullet themselves. Player 2 in turn
can choose to accept or reject a particular offer at a particu-
lar price. If a trade takes place, the sales price is added to
player 1’s reward, and subtracted from player 2’s reward.
Additionally, we introduce a reward scale imbalance: Each
time player 1 successfully shoots an alien invader, they get
a reward of 0.1. However each time player 2 shoots an alien,
they get a much higher reward of 1.0. Noting that even
well-trained AI agents do not hit every single shot they take,
we should still expect that player 2 be able to generate just
under 1.0 reward from each bullet they fire, and player 1 a
much smaller reward of just under 0.1.

There is more total reward generated if player 1 sells all
their bullets to player 2, with the difference the “gains from
trade” in economics. However, this is not a mechanism
design setting (there is no mechanism), and also that there
are two Stackelberg equilibria: If player 1 is the leader, then
their optimal strategy is to offer bullets to player 2 at just
under player 2’s average utility per bullet. Player 2 will best
respond by accepting the trade, still generate small positive
reward, and player 1 will receive almost the entirety of the
gains from trade. In the second Stackelberg equilibrium,
player 2 is the leader. Player 2’s optimal strategy is to refuse
any price higher than just above player 1’s average utility
per bullet; and player 1’s best response is to offer to sell at
that (low) price. In this scenario, player 1 will be left with
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Figure 2. Performance and behavior of PPO+Meta-RL on the Atari 2600 bilateral trade scenario. Plots show results for two distinct
Stackelberg equilibria: Agent 1 (seller) as leader (blue curves) and agent 2 (buyer) as leader (orange).

little more reward than had they kept and used the bullets
themselves, and player 2 will receive almost all the gains
from trade.

Figure 2 shows that the Meta-RL algorithm is able
to successfully learn this optimal behavior for both
equilibria. In this experiment we use discrete prices
(0, 0.25, 0.5, 0.75.1.0) for compatibility with the discrete
Atari environment, so the results shown are the exact opti-
mum.

5. Conclusion
We have introduced a general framework for using multi-
agent RL approaches to find Stackelberg equilibria in
Markov games, and discussed how this encompasses several
approaches in the literature, while also conveying a much
larger design space. In addition, we show the necessity of
our POMDP construction by showing that RL against fol-
lowers that immediately best respond can fail, an important
and surprising result by itself. As a second key contribution,
we have proposed and evaluated a novel approach to Stackel-
berg learning that uses Meta-RL to implement the follower
oracle. This shows the power of Theorem 1, which enables
this approach, and is also a key contribution itself. Our
approach matches or exceeds the final mean episode reward
of previous approaches, and does so at greatly improved
speed of convergence. It also enables Stackelberg learning
in domains beyond the reach of previous approaches, which
we show for a novel Atari 2600-based bilateral trade sce-
nario. Finally, we show theoretically and experimentally the
limits of Theorem 1, and in particular that RL algorithms
can provably be unable to learn without the query-oracle
special case construction.

In addition to the technical results, we would like to of-
fer a more high-level interpretation of the framework. A
useful way to think about learning Stackelberg equilibria
in Markov games is that they are, in a way, two problems
in one: One, how does my strategy, i.e., choice of policy,
affect the best-response of other agents? Two, how does
my interactions with the environment, i.e., actions at each
step, affect the reward I (and others) get? These are two

very different problems, even operating at different levels—
entire policy, versus action at each step. Theorem 1 is giving
a way to reconcile the best-response “meta-level” and the
environment-interaction “RL problem.” In the general case,
using techniques such as direct gradient descent or evolution-
ary policies, we focus on the best-response meta-level and
either ignore the environment interaction (in evolutionary
strategies) or subsume them inside an end-to-end differen-
tiation (in direct policy gradient). In contrast, in the query-
oracle special case, we focus on the environment interaction
RL problem, and implicitly work the follower best-response
into this. One way of looking at the contextual-policy fol-
lower oracle is that it makes the latter more feasible, by
greatly reducing the number of leader queries compared to
real environment interaction.

We hope that this Meta-RL approach will enable Stack-
elberg RL approaches to scale up to richer settings, both
through the explicit, contextual-policy approach taken in
this paper, as well as approaches that infer context through
recurrent networks. Beyond this, we hope the framework
of Theorem 1 will inspire novel ways of thinking about
Stackelberg RL. One potential avenue for future work is to
study approaches that explicitly take into account both the
“meta-level” and “environment-interaction” problems. We
believe that doing so could enable Stackelberg RL to scale to
much more complex scenarios, and open novel applications.
If successful, this may enable the automated, end-to-end
learning of system design beyond traditional settings such
as security games and mechanism design.
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A. Proof and Discussion of Theorem 1
We include here the proof of Lemma 1 and Theorem 1.

Lemma 1. Given a Markov GameM and a follower equilibrium oracle E , let LM be the learning problem the leader
faces. If:

1. for each choice of leader policy πL, L computes the follower best-response E(πL), and

2. L(πL) evaluates the leader policy πL against the follower best-response E(πL) in M, i.e. the value of L(πL) is
rL(πL, E(πL)) inM,

then an optimal solution π∗
L to L together with the follower best-response E(π∗

L) form a Stackelberg equilibrium inM.

Proof. Assume s∗L optimally solves L, i.e. rL,L(s
∗
L) = max rL,L(πL). By condition 2, the leader’s reward in L is

the same as that in M when the followers play their best-response equilibrium, i.e. rL,L(s
∗
L) = max rL,L(πL) =

max rL,M(πL, E(πL)). This immediately means that s∗L together with E(πL) form a Stackelberg equilibrium in M.
Condition 1 is only required implicitly to ensure that followers are playing their best-response equilibrium when the leader
strategy πL is evaluated inM. This shows the general case.

We now show the main theorem.

Theorem 1. Given a Markov GameM, and a follower equilibrium oracle E , if in addition to the conditions of Lemma 1,
the follower oracle E is a query oracle (Definition 3), then the leader learning problem L can be constructed as a POMDP.

Proof. Given a Markov GameM and a follower best-response oracle E that only requires query access to the leader strategy
πL, define a new leader POMDP L as follows: The action and observation space for the leader in L are the same as those in
M. L is then constructed in two parts. First, the leader is queried by the oracleR; then an episode from the original Markov
gameM plays out:

• Initial Segment: For an initial number of steps in L, each step performs one query from the follower oracle E : If
a given query wishes to determine the leader policy’s response to observation o, then the leader will receive o as its
observation in L, and the leader’s action will be given to E as the response to its query. The leader will receive no
reward in these steps.

• Final Segment: Once a follower equilibrium πF has been determined, the remainder of L will be constructed from the
original Markov gameM: We let followers act according to the computed follower equilibrium πF and treat them
(including all their internal state) as part of the environment.

We now show that L is a POMDP.

POMDP, setup: Let the state of L be zt = (zE,t, zM,t, zF,t), the internal state of the follower equilibrium oracle (in the
initial part of the L), the state of the original Markov Game, and the internal state of the follower agents (in the final part of
the L). In the initial part wlog assume this is (zE , 0, 0), and in the final part (0, zM,t, zF,t).

POMDP, part 1: By assumption, E only requires query access to πL, i.e. if at timestep t, the oracle’s internal state is zE,t
and the oracle issues the query ot, then the oracle’s next internal state zE,t+1 is a function of only zE,t and qt, the leader’s
response to the query ot. By the construction of the first part of L, we have that the leader’s observation at timestep t is
precisely the oracle query ot, and so it’s action at gives the oracle response qt. Together, we get that the L state at time
t+ 1, zt+1, is a function of only zt and at, showing that L is a POMDP in the initial part.

POMDP, part 2: In the final part of L, at step t, the Markov Game state is zM,t, and leader and follower observations
depend only on this state, i.e. oL,t = oL,t(zM,t) and oF,t = oF,t(zM,t). In turn, both the follower actions aF,t as well as
the next follower state zF,t+1, only depend on oF,t and the current follower state zF,t; therefore both depend only on zM,t

and zF,t. In turn, the next state ofM, zM,t+1, depends on leader and follower actions, and therefore only on leader action,
zM,t and zF,t. Together, it follows that zt+1 only depends on zt and the leader’s action aL,t, meaning the final part of L is
Markovian.
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We have therefore shown that L as a whole is a POMDP. We now show that an optimal policy in L forms a Stackelberg
equilibrium.

Stackelberg: By the assumption that the leader policy is invariant, we have that if πL(o) = a in response to an oracle query,
then πL(o) = a in the Markov GameM as well. Therefore, the follower equilibrium πF computed by the oracle at the end
of the initial part of L is a best-response equilibrium to the strategy the leader plays inM in the final part of L.

Now, by construction of L, the leader reward given any πL in L is the same as the leader reward inM when followers
play πF , and by the above πF is indeed a best-response equilibrium, i.e. rL,L(πL) = rL,M(πL, πF ) = rL,M(πL, E(πL)).
Finally, by optimality of π∗

L in L, π∗
L ∈ argmax(rL,L(πL)), and therefore π∗

L ∈ argmax(rL,M(πL, E(πL))). But this
precisely means that π∗

L and E(π∗
L) form a Stackelberg equilibrium inM.

Discussion We intentionally stated the lemma and theorem in a fairly abstract manner, so as to be general and cover a
wide range of possible oracle implementations. The theorem may be more readily understood through concrete examples:

In the simplest case, the follower oracle is implemented using reinforcement learning, i.e. the leader and follower(s) all
use RL. In this scenario, the initial segment of L is simply one or more episodes ofM, where the followers are learning.
The final segment is an episode ofM when the followers have converged and are not learning anymore. This “looks”
very similar to a standard independent-learning multi-agent RL setup, but with some crucial differences (necessary due
to conditions 2 and 3 from the general case of the theorem): For the leader, the initial and final segment form one single
episode (but are treated as multiple episodes for the followers), and the leader does not receive reward in the initial-segment
episodes. A variant of this is done in (Brero et al., 2022), and variations that do not strictly follow conditions 2 and 3 (and
thus do not strictly guarantee Stackelberg) are common in the literature as discussed in section 4.

A related case is a follower oracle implemented using a different learning approach, such as no-regret dynamics in (Brero
et al., 2021a). In this case, the leader POMDP looks similar to the RL case, except in the initial segment the followers are
now learning using a no-regret algorithm such as multiplicative weights. This is qualitatively different, as these algorithms
explore in a more systematic way than RL algorithms do.

Note that for the purposes of Theorem 1 and in contrast to typical multi-agent RL setups, in both the above situations we
view the leader learning as separate from the follower (reinforcement or no-regret) learning. The latter in our model is an
algorithm to implement the follower best-response oracle, and it is useful to think of it in this way. In this view, the initial
segment isn’t a joint leader-follower multi-agent system, it is the follower oracle algorithm querying the leader policy. In
the above cases the follower oracle happens to use the same or a similar algorithm as we use to learn the leader behavior,
but a crucial consequence of our statement of Definition 2 and Theorem 1 is that this need not be the case. Indeed, for any
follower oracle algorithm that only uses query access to the leader policy, we can use the same construction. For instance, in
our Meta-RL approach, we use a fixed set of queries o0, . . . , ok to define the context for the meta-follower. In this case, the
initial segment in the leader POMDP L will always be the same sequence of observations o0, . . . , ok. The leader’s actions in
responses to these observations in turn are used to form the context for the meta-follower in the final segment. The final
segment is an episode ofM played between the leader and the meta-follower, whose behavior is informed by the context.

Finally, what would a follower oracle implementation look like that falls outside the query-oracle special case of Theorem 1
(but within the general case)? Firstly, any of the above cases have a non-POMDP counterpart: We could simply omit the
initial segment from the leader’s training batch (but in a centralized training regime we could still run forward passes through
the leader’s neural network to answer the follower oracle queries). Crucially, the followers’ behavior changes without any
action being taken by the leader. This makes such a construction non-Markovian from the leader’s point of view (thought
the general case of Theorem 1 still applies). However, this is not the most interesting case. Secondly, any follower oracle
algorithm that makes use of a description of the leader policy, rather than query access, would be incompatible with the
POMDP construction. For instance, if the leader policy πL is parametrized by weights θ, it is conceivable that a follower
oracle algorithm could compute a best response directly from θ. In such a case, it is not possible to roll out the best-response
computation into the leader’s experiences as we do through the initial segment of the special case POMDP construction.
Without this initial segment, however, learning can provably fail, as Theorem 2 shows

B. Theorem 1: Leader Memory and Leader Invariance
Leader Memory. We state the query-oracle case of Theorem 1 for memory-less leader policies, i.e. leader policies that
map directly from observations to actions. This is without loss of generality because for leader policies that use memory we
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Figure 3. Performance of contextual-policy approach with hidden and rolled-out oracle queries in iterated prisoners dilemma.

may take the view that the leader policy operates on belief states, mapping belief state to action. In this view, the theorem
applies as-is, and we query the leader policy on belief states. This would work well, for instance, if leader memory was
implemented through a sufficient statistic. Alternatively, if we want to treat memory as intrinsic to the leader policy, queries
become sequences of observations. In this view, the proof applies mutatis mutandis. The main technicality in this case is to
reset internal state of the leader policy between queries, so that queries are well-defined. This is also important in order to
ensure the leader invariance conditions (an unrestricted LSTM could easily allow a leader to distinguish queries from real
game).

Leader Invariance. It may be possible to give the leader policy memory beyond the two cases above, i.e. memory with
state that carries through between follower oracle queries and/or to real play. In any such cases, it is necessary that the
leader policy be invariant, meaning it is acting the same during the initial segment (i.e. oracle queries) and the final segment
(i.e. original game) of the constructed leader POMDP L. This has not been stated explicitly in previous works, but is a
critical part of ensuring convergence to the correct equilibrium. If the leader policy were to act differently during the oracle
queries, it could “trick” followers into suboptimal behavior that gives the leader better reward but is not a best-response, and
thus not a Stackelberg equilibrium. For instance, in an iterated prisoners dilemma, a leader could pretend to be playing
tit-for-tat during oracle queries, leading followers to cooperate; and could then defect during the actual game. We show
this experimentally in Appendix C.2. Invariance is easily ensured if the leader policy cannot distinguish queries and real
play, which is generally true for memory-less policies. Alternatively the leader policy could be explicitly constrained to be
invariant, e.g. through an appropriate loss term.

C. Limitations of Lemma 1 and Theorem 1
We now present experimental evidence of the limitations of our main Lemma and Theorem. In particular, we will show that
violating any of the conditions of the theorem can lead to learning failure.

C.1. Non-POMDP

An interesting question we asked earlier is whether rolling out the follower queries into the leader episode to form a POMDP
is strictly necessary. Theorem 2 formally shows that this is the case, but we also test this experimentally here. Figure 3
shows the performance of our approach on a slightly modified iterated prisoner’s dilemma (see Appendix D for full payoff
matrices). We show our standard setting where queries are part of the leader episode, as well as a setting where they are
hidden from the leader. The hidden-queries setting fails to learn a sensible behavior. This is consistent across learning rates,
and across algorithms. Note however that this only applies to RL algorithms. An approach that operates directly on the
policy space such as Evolutionary Strategies is still able to learn successfully, as shown on the right hand side of Figure 3.
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Figure 5. Leader performance with and without reward during follower Q-learning. Clearly the leader fails to learn the sole Stackelberg
equilibrium (reward 2.0) if reward is given during follower learning. Plots show reward during actual play only, i.e. without reward during
follower Q-learning, as this is the relevant quantity for Stackelberg equilibria.

C.2. Non-Invariant Leader
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Figure 4. Leader reward with invariant and non-invariant policies in
iterated prisoners dilemma.

We also experimentally illustrate the leader invariance
condition in Theorem 1 in the iterated prisoner’s dilemma
setting. For simplicity, we emulate memory for the leader
policy by concatenating a binary variable to its observa-
tion, set to 0 during the first five steps of each episode (the
queries), and 1 afterwards.3 As can be seen in Figure 4,
when given access to this additional variable, the leader
gains significantly higher reward. The leader policy effec-
tively learns to act as if it was playing tit-for-tat during
the queries, thereby inducing the follower to respond by
cooperating; the leader then always defects during the
actual game, thereby achieving maximum reward. This
is not a Stackelberg equilibrium.

C.3. Leader Reward During Follower Learning

One condition of Theorem 1 is that the leader only be evaluated against followers who are best-responding. If the follower
oracle is implemented using learning dynamics observable to the leader, this means that the leader must not receive reward
during this learning phase. If the leader did receive reward, this could give the leader the wrong optimization target. Imagine
for instance a setting where the leader has one strategy choice corresponding to a quickly-learnable follower best-response
strategy that gives medium reward to the leader, and another leader strategy choice corresponding to a slow-to-learn follower
strategy with high leader reward. We can easily simulate this using a slightly modified version of the “Battle of the
Sexes” single-shot matrix game we used as an example in the introduction. In this, we modify the follower reward so that
the leader-preferred option gives the follower very little reward. We then couple this with carefully chosen (but entirely
reasonable) Q-learning hyperparameters for the follower. As a result, a leader who receives reward during the follower
learning phase is not able to reliable learn the correct equilibrium anymore, even in such a simple game, as Figure 5 shows.
If we further modify the game to penalize the leader for coordination failure, this can even lead to the leader consistently
learning the wrong coordination choice, as the right-hand plot shows.

Notice however that this (reward throughout follower learning) is also a valid target to optimize for, where the leader aims to
optimize its expected return taking into account that followers may need some time to adjust to the leader’s behavior. In the
case of (Balaguer et al., 2022) this is the intent, especially with regards to designing mechanisms for human participants as

3A neural network could learn to extract the same discriminator from a step counter, and a recurrent network could easily learn to keep
such a counter.
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Figure 6. Leader reward with a Q-learning follower on Battle of the
Sexes, where the follower initializes a blank Q-table each episode
(blue) or keeps their previous Q-table (orange).

Finally, virtually all previous approaches in the literature
use some sort of learning dynamics to implement the
follower oracle. A tempting way of improving learning
speed in such a paradigm would be to retain follower
policies between leader updates. That is, if at the end
of the leader learning iteration t, the follower is best
responding using strategy / policy parameters ϕt,end, then
instead of initializing follower weights ϕt+1,start randomly,
set ϕt+1,start = ϕt,end. Under the assumption that the
leader policy only changed a little, and the conjecture
that therefore the optimal follower policy only changed a
little, this should allow follower learning to start from very
near the optimum, and thus hopefully require much short
inner (follower learning) loops. However, this has some
drawbacks. For one, it makes the leader learning problem
non-stationary. Beyond this, it can lead to learning failure,
if both leader and follower get stuck on a local optimum.
Figure 6 shows this in practice on the “Battle of the Sexes” example, where non-resetting follower learning can lead to
convergence to the follower-preferred choice rather than the Stackelberg equilibrium.

D. Proof of Non-POMDP Divergence
We now present a proof of Theorem 2. A priori it is not clear that the query-oracle POMDP construction is strictly necessary,
or if standard RL algorithm could also learn without it. Without the POMDP construction, the leader would effectively
always play against followers who immediately best respond. The following theorem shows that this cannot work.

Theorem 2. There exists a Stochastic Markov Game,M, where neither tabular Q-learning nor policy gradient can learn
the optimal policy for the leader when the follower agent immediately best-responds.

Proof. We consider a slight variation of the iterated prisoner’s dilemma discussed in the main text. Consider payoff matrices

L =

(
0 −2
−1 −3

)
and F =

(
−1 0
−3 −2

)
denoting the payoff to the leader and follower agent respectively. The leader

chooses the row, the first row denoting “cooperate” or C and the second row “defect” or D, and similarly the follower
chooses the column. Notice that these are the standard prisoner’s dilemma payoff matrices, except the top and bottom row
for the leader have been switched.

Let each agent’s observation space be a one-step memory of the other agent’s previous action, that is, there are three possible
observations o0, oC and oD. At the first step of each episode, both agents observe o0. If at step t the leader cooperates and
the follower defects, then at step t+ 1, the leader observes oD (“other agent defected”) and the follower observes oC (“other
agent cooperated”). We also write sCD for this state if we want to refer to both agents. In particular sCD corresponds to
leader reward -2 for the leader and 0 for the follower (top right corner of both matrices). This is a simplification of the
setting presented in the main text, but without loss of generality in the case of iterated prisoner’s dilemma, and also defines a
valid stochastic Markov game in its own right. Let us define an episode of our SMG to be h iterations of the matrix game,
where h denotes the horizon or episode length of the game. As a preliminary, notice that for any leader policy, the follower
best-response is always deterministic. This is easy to check.

It is also easy to see that the optimal leader policy is to cooperate on the first step, and to then play tit-for-tat. That is, if
the follower cooperated, the leader cooperates in the following step. If the follower defects, the leader defects in return. If
the leader plays this policy, then the follower will in turn always cooperate, leading to leader episode reward 0, clearly the
optimum. Using the construction in the query-oracle special case of Theorem 1, this optimal leader policy can be learned
using standard RL algorithms. What we will now show is that if the follower best-responds without that construction,
i.e. immediately without queries folded into the leader sample batch, then standard RL algorithms will diverge. This is
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independent of choice of hyperparameters, but as a matter of principle.

Intuitively, the problem is one of a missing counterfactual: Notice that for the leader tit-for-tat Stackelberg equilibrium,
it is essential that the leader commits to defecting if the follower defects. But notice also that when the leader plays this
tit-for-tat policy, the follower will always best respond, and so the leader will never actually see a follower defection. But
this also means that it cannot accumulate a gradient for this hypothetical behavior.

We now make this formal. Consider first the case of (tabular) Q-learning. Let q(s, a) be the (leader’s) Q-value of taking
action a in state s. We let α denote the learning rate and γ the discount factor. Given an experience (s, a, r, s′) we update
Q-values as follows:

q(s, a) ← (1− α) · q(s, a) + α ·
(
r + γmax q(s′, .)

)
(1)

As a convenient shorthand and as a slight abuse of notation, we will define θ as follows:

θs =

{
0 if q(s,D) ≤ q(s, C)

1 if q(s,D) > q(s, C)
(2)

In words, we let θs = 1 denote that the current leader policy given the q(s, a) values will defect in state s, and 0 if the leader
will cooperate in state s. We can then write θ = (θ0, θC , θD) for the entire leader policy induced by the current Q-table.
θ = (0, 0, 0) would denote a leader policy that always cooperates, θ = (1, 1, 1) denotes a leader always defecting, and
θ = (0, 0, 1) denotes the (optimal) tit-for-tat strategy.

Now consider the case of tabular Q-learning with parameter noise exploration. In this, we collect experiences from any of the
eight possible deterministic leader policies. Note also that the leader action on the initial step does not affect the follower’s
best response strategy; and it does not influence Q-table updates for the non-initial observations oC , oD (because o0 will
never be revisited and so the reward generated from o0 can never appear in a Q-table update or indeed in a reward-to-go
calculation in a policy gradient algorithm). We can therefore disregard the leader’s initial action and for brevity focus
only on the four cases θ = (⋆, 0, 0), θ = (⋆, 0, 1), θ = (⋆, 1, 0) and θ = (⋆, 1, 1). It is easy to see that for θ = (⋆, 0, 1)
the follower best-response is to always cooperate, and for the other three cases it is to always defect. We may therefore
encounter experiences of the following form:

θ = (⋆, 0, 0) → (oD, C,−2, oD)

θ = (⋆, 0, 1) → (oC , C, 0, oC)

θ = (⋆, 1, 0) → (oD, C,−2, oD)

θ = (⋆, 1, 1) → (oD, D,−3, oD)

It is easy to see that under usual Q-learning update rules and for any choice of learning rate, we will have that in the limit
q(oD, C) = −2 · g (lines 1, 3) and q(oD, D) = −3 · g (line 4) where g = 1−γh/2

1−γ is a term from the discount factor γ.
Crucially we have that q(oD, C) > q(oD, D), and therefore the policy will converge toward θ = (⋆, ⋆, 0), which is not
optimal. This holds for any choice of learning rate, discount factor and exploration parameters (as any mix of the above
trajectories will lead to this).

For the ϵ-greedy case, let θϵs = θs + (−1)θs(ϵ/2). That is, if our current Q-table induces the deterministic policy θ, then θϵs
gives the probability of choosing action D in state s in the ϵ-greedy case. It is easy to see that for sufficiently small ϵ and
θϵs = (⋆, ϵ, 1− ϵ) the follower best-response is still to always cooperate, and for any other θϵs the follower best-response
is to always defect. Therefore in particular, no matter which way a particular leader action is sampled, the follower will
best-respond in the same way (only depending on the leader policy as a whole, not the particular leader action sampled). In
turn this means that q(oD, C) can only continue to accumulate −2 terms, and q(oD, D) can only continue to accumulate −3
terms, and the policy will converge toward θ = (⋆, ⋆, 0), which is not optimal.

To show this for policy gradient, let the leader policy be parametrized by theta as above, i.e. let θo be the probability that
the leader policy defects given observation o, and 1− θo the probability that the leader cooperates given o. Recall the basic
REINFORCE gradient update rule:

θ ← θ + αGt∇θ lnπθ(at|ot) (3)
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Here Gt denotes the (discounted) “reward to go”, i.e. Gt = rt + γrt+1 + γ2rt+2 . . . as usual. A very similar argument as in
the Q-learning case now holds to show that the reward-to-go from cooperating when observing oD will always be larger in
expectation than the reward-to-go from defecting, because rt when defecting is smaller than rt when cooperating given oD
and the remainder of the sum in Gt is the same in expectation. This in turn pushes gradients toward cooperation, and away
from the optimal tit-for-tat policy.

The above holds for tabular Q-learning and basic policy-gradient with direct parametrization, but likely can be extended to
further RL algorithms such as DQN or actor-critic.

Notice the key difference in the query-oracle POMDP construction: In this, the oracle must query the leader policy for its
action given oD at least once in the initial “oracle” segment of the episode. That action therefore sees as its reward to go the
reward from the entire final segment, i.e. the entire episode reward of the original Markov game. Intuitively, the leader gets
to see at least one experience where it retaliates on a follower defection and this leading to an entire episode of cooperation
and good rewards. Without the oracle query, the leader never gets to see this, and cannot learn from it. It may still see
experiences where it retaliates for defection, but these will be from within the actual episode, will not influence follower
behavior, and will lead to strictly worse rewards than cooperating. Finally, it is also clear that this only applies to typical RL
algorithms that learn on taking actions in individual steps. Approaches that learn on the policy space as a whole, such as
evolutionary strategies, are not affected by this (as indeed they never look at individual steps and actions at all).

E. Necessary Conditions for Stackelberg Convergence
It may also be interesting to consider the inverse direction of Theorem 1, i.e. what are necessary conditions that follow from
Stackelberg convergence. The resulting theorem is not very strong, but still informative, as it suggests avenues for future
research. Recall that in Theorem 1 we map a Markov game to a single-agent RL problem (POMDP) for the leader. In the
general case this is simply taking the leader’s view of the original Markov game as-is, and in the query-oracle special case
we construct a POMDP that incorporates oracle queries. We then show that a solution to the leader’s POMDP together with
the follower best-response forms a Stackelberg Equilibrium.

Consider now the reverse: Suppose we are given some mapping from Markov game to leader POMDP, and a guarantee
that no matter the original Markov game, an optimal solution to the leader POMDP it maps to forms part of a Stackelberg
equilibrium. What needs to be true of any such mapping? We formulate this here in a slightly more general manner, in that
we also allow an additional (not necessarily identity) mapping between leader policies in the Markov game and the POMDP.

Theorem 3 (Necessity). Suppose we are given mappings L : M 7→ L(M) and l : ΠL → ΠM. L maps any Markov
GameM to a single-agent RL problem, and l maps policies in L to policies inM. Furthermore suppose that whenever a
policy πL,L optimally solves L(M), then l(πL,L) together with E(l(πL,L)) are a Stackelberg equilibrium inM. Then the
following two conditions must be true of L and l.

1. The leader reward in L is maximized by the same choice of strategy as the leader reward inM when followers play
E(πL), i.e.

l
(
argmax rL,L(πL)

)
⊆ argmax rL,M(πL, E(πL))

2. L implements a follower equilibrium oracle E(πL)

Proof (Sketch). The first condition immediately follows from the problem statement. For the second condition, consider that
given full freedom in choosingM, we can constructM so as to let E be any arbitrary function from leader to follower policy
space. Similarly, we can chooseM so that rL is any arbitrary function. Both of these follow from cardinality arguments,
and the observation that since Markov games may be partially observable we are essentially unrestricted in the complexity
of the Markov game we choose to construct even for small strategy spaces. Since by the first condition L needs to compute
r ◦ E , both of which can be arbitrary, it thus also needs to compute E .

The main difference to the conditions in Theorem 1 is that we can only show that the argmax of the leader reward needs to
be that of the original Markov game, not that the rewards need to be identical. This is in a way trivial (of course Theorem 1
still holds if we scaled leader rewards in the leader learning problem by a constant factor), but it also suggests that reward
shaping may be a viable technique to accelerate leader learning, potentially still with provable Stackelberg equilibrium
guarantees.
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F. Further Experiment Details: Iterated Matrix Games
Environments We use the 12 canonical symmetric matrix games identified in (Robinson & Goforth, 2005) and also used
by (Balaguer et al., 2022). We construct Markov games from these matrices by concatenating multiple iterations into an
episode, and giving both agents one-step memory of both agents’ action in the previous step. We use n = 10 steps per
episode. Table H shows the payoff matrices for all the Markov games, reported on the same scale as the figures. During
training, we scale rewards to be centered at 0, i.e. taking values −1.5, −0.5, 0.5, 1.5, but we report results offset to match
the reward scales used by (Balaguer et al., 2022). This has no effect on comparability of results.

Algorithm. We focus on the contextual policy meta-learning approach described in subsection 4 for followers, and
standard RL for the leader: At the beginning of each episode, the leader is queried (as part of the episode rollout) for its
action in each possible state of the environment. Its responses are then concatenated to the follower observation. In a
pre-training phase, we train the follower against randomly sampled leader policies. In the main training phase, we then train
the leader against the follower meta-policy. Algorithm 1 in the Appendix details this in pseudo-code. An advantage of the
generality of our framework is that it is agnostic to which specific RL algorithm is used. We generally use a standard policy
gradient (PG) algorithm for the followers, although our results do not depend on this specific choice.

Algorithm 1 details the two-phase learning algorithm we use. In all the experiments shown in the main text, we use policy
gradient to train the follower meta-policy in the pre-training loop. We use PG (Sutton et al., 1999), PPO (Schulman et al.,
2017) and DQN (Mnih et al., 2013; 2015) in the main training loop, as indicated in the respective figures. We use linear
models, and disable exploration in the leader policy while pre-training the follower and vice versa. Table H lists the
hyperparameters used for each of these algorithms. Any hyperparameters not listed were left at default values in rllib
version 2.0.0. All experiments were run with a single rollout worker (per experiment), and using Torch.

Equilibrium Verification. At the end of every experiment, we freeze the leader policy and further train the follower policy
for n = 50 iterations. Unlike in the pre-training phase, we here train them only against the specific leader policy trained in
the main training loop. This is to further verify that the policies indeed form a Stackelberg equilibrium, and in particular
that the follower meta-policy is best-responding to the trained leader. If this is the case, we should not see any change in
leader or follower performance in this post-training phase. If the follower meta-policy was not already best-responding to
the leader, we may see an increase in follower performance during this post-training phase. In all of the experiments in this
paper (except the ones designed to show failure modes) we see no follower improvement, i.e. behavior consistent with a
Stackelberg equilibrium. This is not shown in the training curves in the figures, but can be reproduced from the source code.

Implementation and Environment. All experiments were implemented using Ray / RLlib 2.0.0 (Liang et al., 2018).
Experiments were run on recent Intel Xeon processors with a single core and 2GB RAM per experiment.

Hyperparameter Tuning. Learning rates and batch sizes were tuned using grid search, with some additional tuning using
the HyperOpt Python package (Bergstra et al., 2013), yielding no further improvement however.

G. Further Experiment Details: Atari 2600
Environment. We modify the Atari 2600 game “Space Invaders”. We read from emulator RAM to detect when a shot
has been fired, and by which player. Separately in a Python wrapper we keep a count of how many shots each player has
available. We decrement this whenever we detect that the player fired a shot. If the Python variable keeping track of the
available bullets reaches zero, we overwrite the player action that is fed to the Atari emulator to not-firing. Both players start
with zero available bullets, but we increment the bullets available to player 1 at stochastic intervals for up to a total of five
times per episode.

We implement a bilateral trade between agents: The selling agent may offer a price, and the buying agent may choose to
accept this price.

Neural Network Architecture. This is implemented by augmenting both action and observation space, both providing a
dictionary of both the underlying Atari action/observation, as well as the new economic action and observations.

The action space contains the original Atari action, as well as the trading action. For the seller, the trading action is picking
one of several discrete price points, where we choice n = 5 price points ranging from 0 to 1 in 0.25-step increments. For the
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Figure 7. Neural Network Architecture used in the Atari 2600 bilateral trade experiments.

buyer, instead of giving a discrete buy / don’t-buy action, we let the buyer policy set a maximum price it is willing to buy. If
the offered sales price is below the maximum buying price of the buyer, the trade happens, and the price paid is that set by
the selling agent. It is easy to see that this is equivalent to letting the buying agent observe the price offer and respond with
acceptance or rejection. We chose this implementation as it makes implementing the follower oracle easier when the buyer
is Stackelberg leader, but it does not affect the outcome.

In the observation space, we provide a Dictionary to each agents containing both the original Atari 2600 image observation,
as well as all the relevant economic information (number of bullets the agent currently has available, if applicable price
offered by the other agent, whether a trade is current being proposed). In the neural network, we run these economic features
through a separate fully connected layer, which feeds into a joint logits layer. The Atari input is run through default RLlib
CNN and fully connected layers. Figure 7 shows this neural network architecture as a diagram.

Algorithm. We use standard PPO for both the leader and follower. Hyperparameters were taken from RLlib tuned
examples and are listed at the end of Table H. For convenience, we initialize weights of the CNN and default RLlib FC
layers to weights obtained from training agents in the unmodified game. This speeds up training, but is not strictly necessary.
We utilize the same Meta-RL approach as we do in the iterated matrix game experiments: We first train a meta-follower.
In this phase, we let the gameplay actions of the leader agent be controlled by an agent trained on the unmodified game,
but we randomize the leader’s economic actions. Once this meta-follower training has finished, we train the leader. In this
phase, the meta-follower weights are frozen, and only the leader policy is trained. In the Atari experiments, we let the
meta-follower query the leader immediately before each trade rather than at the start of the episode, as this allows us to fold
the queries into the trading exchange.

H. Further Details on Performance Comparisons
In Figure 1 we compare our Meta-RL approach with the PPO+Q-learn approach of (Brero et al., 2022) and the ES-MD
approach of (Balaguer et al., 2022).

For (Brero et al., 2021a), we implement follower Q-learning using information therein. Hyperparameters for both the leader
and the follower were tuned using the HyperOpt package (Bergstra et al., 2013). In Figure 1 we plot learning curves up to
200k timesteps, as our approach converges before that point. We show in Figure 8 learning curves until 2M timesteps. We
can see that in some cases PPO+Q-learn eventually converges to the optimum, while in the majority of cases this still has
not happened by 2M timesteps.
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Figure 8. Performance on symmetric matrix games (see Figure 1) up to 2M timesteps.

For (Balaguer et al., 2022), we estimate their performance from Figure 2 therein. Notice that that figure is not a learning
curve, but represents a single inner loop at the end of their training procedure. In the ES-MD case, (Balaguer et al., 2022)
report their performance after 1.28 billion environment steps. In the Diff-MD case, a comparison of sample complexity is
difficult, as that approach uses a description of the environment rather than sample access. The closest we can come to a
like-for-like comparison is noting that (Balaguer et al., 2022) report performance for Diff-MD after 500k computed expected
episode returns with 10-step episodes. In some sense this could be seen to be equivalent to 5M environment steps as a lower
bound.
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Algorithm 1 Contextual Policy
Pre-Training Loop
Initialize follower policy πF

for each pre-training iteration do
for each episode per sample batch do

Sample a random leader policy πr
L

for each oL ∈ OL do
Query πr

L for πr
L(oL)

end for
Set context ω = πr

L(oL), oL ∈ OL

for each episode step do
Return oL,t to leader, (ω, oF,t) to follower
Step environment using aL,t = πr

L(oL), aF,t = πF (ω, oF,t)
end for

end for
Update follower policy πF using collected sample batch using PG/PPO/DQN

end for
Main Training Loop
Initialize leader policy πL

for each training iteration do
for each episode per sample batch do

for each oL ∈ OL do
Query πL for πL(oL)

end for
Set context ω = πL(oL), oL ∈ OL

for each episode step do
Return oL,t to leader, (ω, oF,t) to follower
Step environment using aL,t = πr

L(oL), aF,t = πF (ω, oF,t)
end for

end for
Update leader policy πL using collected sample batch using PG/PPO/DQN

end for
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Table 3. Payoff Matrices used in the matrix-game experiments

Iterated Matrix Games (Figure 1 etc.)

Name Leader Payoff Follower Payoff

prisoners dilemma
(
−1 −3
0 −2

) (
−1 0
−3 −2

)
stag hunt

(
0 −3
−1 −2

) (
0 −1
−3 −2

)
assurance

(
0 −3
−2 −1

) (
0 −2
−3 −1

)
coordination

(
0 −2
−3 −1

) (
0 −3
−2 −1

)
mixedharmony

(
0 −1
−3 −2

) (
0 −3
−1 −2

)
harmony

(
0 −1
−2 −3

) (
0 −2
−1 −3

)
noconflict

(
0 −2
−1 −3

) (
0 −1
−2 −3

)
deadlock

(
−2 −3
0 −1

) (
−2 0
−3 −1

)
prisoners delight

(
−3 −2
0 −1

) (
−3 0
−2 −1

)
hero

(
−3 −1
0 −2

) (
−3 0
−1 −2

)
battle

(
−2 −1
0 −3

) (
−2 0
−1 −3

)
chicken

(
−1 −2
0 −3

) (
−1 0
−2 −3

)
Single-Shot Matrix Game (Appendix C)

battle of the sexes
(
2 0
0 1

) (
1 0
0 2

)
Modified Prisoner’s Dilemma (Theorem 2)

prisoners dilemma modified
(

0 −2
−1 −3

) (
−1 0
−3 −2

)
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Table 4. Hyper-Parameter Configuration Table

Follower Policy Gradient

Hyper-Parameter Value Hyper-Parameter Value
algorithm PG rollout fragment length 100
lr 0.02 train batch size 100
iterations 500 batch mode complete episodes

Leader Policy Gradient

Hyper-Parameter Value Hyper-Parameter Value
algorithm PG rollout fragment length 100
lr 0.156 train batch size 100
iterations 1200 batch mode complete episodes

Leader PPO

Hyper-Parameter Value Hyper-Parameter Value
algorithm PPO rollout fragment length 1000
lr 0.008 train batch size 1000
entropy coeff 0.0 sgd minibatch size 1000
iterations 500 batch mode complete episodes

Leader DQN

Hyper-Parameter Value Hyper-Parameter Value
algorithm SimpleQ rollout fragment length 10
lr 0.001 train batch size 1024
learning starts 5000 exploration type ParameterNoise
exploration initial stddev 1.0 exploration random timesteps 0
iterations 20000 batch mode complete episodes

Atari PPO

Hyper-Parameter Value Hyper-Parameter Value
train batch size 5000 rollout fragment length 100
sgd minibatch size 100 num sgd iter 10
lambda 0.95 kl coeff 0.5
clip param 0.1 vf clip param 10.0
entropy coeff 0.01 lr 0.001
num rollout workers 10 num envs per worker 5
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