
On User-Level Private Convex Optimization

Badih Ghazi * 1 Pritish Kamath * 1 Ravi Kumar * 1 Pasin Manurangsi * 2 Raghu Meka * 1 3 Chiyuan Zhang * 1

Abstract
We introduce a new mechanism for stochastic
convex optimization (SCO) with user-level dif-
ferential privacy guarantees. The convergence
rates of this mechanism are similar to those in the
prior work of Levy et al. (2021); Narayanan et al.
(2022), but with two important improvements.
Our mechanism does not require any smoothness
assumptions on the loss. Furthermore, our bounds
are also the first where the minimum number of
users needed for user-level privacy has no depen-
dence on the dimension and only a logarithmic
dependence on the desired excess error. The main
idea underlying the new mechanism is to show
that the optimizers of strongly convex losses have
low local deletion sensitivity, along with an out-
put perturbation method for functions with low
local deletion sensitivity, which could be of inde-
pendent interest.

1. Introduction
Differential Privacy (DP) (Dwork et al., 2006b) is a formal
notion that protects the privacy of each user contributing to
a dataset when releasing statistics about the dataset. The
settings considered in literature have typically involved each
user contributing a single “item” to the dataset. Thus the
most commonly used notion of DP protects the privacy of
each item, and we refer to it as item-level DP. However,
when a dataset contains multiple items contributed by each
user, it is essential to simultaneously protect the privacy of
all items contributed by any individual user; this notion has
come to be known as user-level DP.

Convex optimization is one of the most basic and powerful
computational tools in statistics and machine learning. In
the most abstract setting, each item corresponds to a loss

1Google Research, Mountain View, CA 2Google Re-
search, Thailand 3UCLA, Los Angles, CA. Correspondence to:
Pasin Manurangsi <pasin@google.com>, Pritish Kamath <pri-
tish@alum.mit.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

function. The goal is to return a value that achieves as small
a loss as possible, either averaged over the data (empirical
risk minimization) or the population distribution underlying
the data (stochastic convex optimization).

Given its importance, a large body of work has tack-
led the convex optimization problem under item-level DP
(e.g., Chaudhuri & Monteleoni (2008); Chaudhuri et al.
(2011); Kifer et al. (2012); Bassily et al. (2014; 2019); Wang
et al. (2017); Feldman et al. (2020); Asi et al. (2021); Gopi
et al. (2022)) with the optimal risk bounds established in
many standard settings, such as when the loss is Lipschitz
or strongly convex. User-level DP has also been studied re-
cently in various learning tasks (Liu et al., 2020; Ghazi et al.,
2021); see also the survey by Kairouz et al. (2021, Section
4.3.2) for its relevance in federated learning, where the ques-
tion of determining trade-offs between item-level and user-
level DP is highlighted. Levy et al. (2021); Narayanan et al.
(2022) have studied convex optimization with user-level DP;
these results have two main drawbacks: they require the
loss function to be smooth and they do not achieve good
risk bounds in some regime of parameters. A question in
Levy et al. (2021) was if the smoothness requirement can
be removed. In this paper, we resolve this question in the
affirmative by introducing novel mechanisms for convex
optimization under user-level DP. En route, we also improve
existing excess risk bounds for a large regime of parameters.

1.1. Background

We introduce some notation to state our results concretely.
For n,m ∈ N, suppose there are n users, and let the input
to the ith user be xi := (xi,1, . . . , xi,m). Two datasets
x = (x1, . . . ,xn) and x′ = (x′1, . . . ,x

′
n) are said to be

user-level neighbors, denoted x ∼ x′, if there is an index
i0 ∈ [n] such that xi = x′i for all i ∈ [n]∖ {i0}.1

We recall the definition of DP, extended from Dwork et al.
(2006a;b); see also Dwork & Roth (2014); Vadhan (2017):

Definition 1.1 ((User-Level) Differential Privacy (DP)).
Let ε > 0 and δ ∈ [0, 1]. A randomized algorithm
M : Xn×m → O is (ε, δ)-differentially private ((ε, δ)-DP)
if, for all x ∼ x′ and all (measurable) outcomes E ⊆ O, it
holds that Pr[M(x) ∈ E] ≤ eε · Pr[M(x′) ∈ E] + δ.

1We use item-level to refer to the case where m = 1.

1

On User-Level Private Convex Optimization

Throughout the paper, we assume that ε ∈ (0, 1] and δ ∈
(0, 1/2], and we will not state this explicitly.

Convex Optimization. A convex optimization (CO) prob-
lem over a parameter space K ⊆ Rd and domain X , is
specified by a loss function ℓ : K ×X → R, that is convex
in the first argument. Here, ℓ is said to be G-Lipschitz if all
sub-gradients have norm at most2 G, i.e., ∥∇θℓ(θ;x)∥ ≤ G
for all θ, x. Moreover, ℓ is said to be µ-strongly convex if for
all x ∈ X , ℓ(θ;x)− µ

2 ∥θ∥
2 is convex. We consider the case

where K ⊆ Rd has ℓ2-diameter at most R; we use Bd(θ, r)
to denote the ℓ2-ball of radius r centered at θ.

The empirical loss on dataset x = (x1, . . . ,xn) is

L(θ;x) := 1
nm

∑
i∈[n]

∑
j∈[m] ℓ(θ;xi,j),

whereas the population loss over a distribution D on X is

L(θ;D) := E
x∼D

[ℓ(θ;x)] .

For a loss function ℓ and dataset x, let θ∗ℓ,K(x) denote
an element of argminθ∈K L(θ;x) (ties broken arbitrarily),
and let θ∗ℓ,K(D) be defined similarly. When ℓ,K are clear
from context, we may drop them and simply write θ∗(x) or
θ∗(D). When there is no ambiguity in x and D, we may
drop them and simply write θ∗. Empirical risk minimiza-
tion (ERM) corresponds to the goal of minimizing L(θ;x)
and stochastic convex optimization (SCO) to the goal of
minimizing L(θ;D). If θ̂ denotes the output of our algo-
rithm, its excess risk is defined as E[L(θ̂;x) − L(θ∗;x)]
and E[L(θ̂;D)−L(θ∗;D)] for ERM and SCO, respectively.

1.2. Our Results

We provide user-level DP algorithms for both the ERM as
well as the SCO problems. For both problems, we consider
the basic case of Lipschitz (including non-smooth) losses
and the case of Lipschitz strongly convex losses.

DP-ERM. We give an algorithm for any Lipschitz and con-
vex loss function with excess risk O

(√
d

n
√
m

)
that works

for any n ≥ Ω̃ε(1). Previously, no user-level DP algo-
rithm was known without a smoothness assumption on the
loss function. Even with smoothness, the known algorithm
of Narayanan et al. (2022) incurs an additional additive error
of Õε(1/

√
n). In particular, the previous excess risk does

not converge to zero if we fix the number of users (n) and let
m→∞. Concretely, to achieve excess risk α, Narayanan
et al. (2022) need n ≥ Ω̃ε(1/α

2). In contrast, we only
need a logarithmic dependence of n ≥ Ω̃ε(log(1/α)). Ad-
ditionally, for loss functions that are also strongly convex,
we improve the excess risk bound to Õε

(
d

n2m

)
. Again, no

previous user-level DP algorithm, without the smoothness
assumption, was known in this setting .

2We use ∥ · ∥ to denote the Euclidean, i.e., ℓ2-norm.

DP-SCO. Here, we give algorithms with similar excess
risk bounds except with additive terms of Õ

(
1√
nm

)
and

Õ
(

1
nm

)
for the convex and strongly convex cases, respec-

tively. These additive terms are known to be tight, even
without privacy. Again, previous results (Levy et al., 2021;
Narayanan et al., 2022) are only known under the smooth-
ness assumption and the excess risk bounds do not converge
to zero when n is fixed.

A summary of the previous and new bounds is in Table 1.

Tightness of our Risk Bounds. Our excess risk bounds
are nearly tight for a large regime of parameters. In
particular, Levy et al. (2021) proved a lower bound of
Ω
(

1√
n
+

√
d

εn
√
m

)
for DP-SCO. It is not hard to extend this

to prove a lower bound of Ω
(

1
nm + d

ε2n2m

)
for the strongly

convex DP-SCO case. These two lower bounds hold for
any n ≥ Θ(

√
d/ε). For DP-ERM, it is possible to extend

these lower bounds to get Ω
(√

d
εn
√
m

)
and Ω

(
d

εn2m

)
lower

bounds for the convex and strongly convex cases, respec-
tively; however, these DP-ERM lower bounds require an
additional assumption that n = O(d/ε2). We discuss these
lower bounds in more detail in Appendix D.

2. Technical Overview
Our main technical contribution is an improved output per-
turbation algorithm for user-level DP compared to item-
level DP. Recall that in item-level DP, the output pertur-
bation algorithm (Chaudhuri et al., 2011) computes the
empirical risk minimizer θ∗ and outputs θ∗ + Z where
Z ∼ N (σ2 · I) for a suitable σ; naturally, the smaller the σ
for which DP guarantees hold, the better the accuracy. It is
known that for strongly convex loss functions, this algorithm
is DP for σ = Õε

(
1
n

)
. As discussed more below, we give

a similar algorithm that only requires σ = Õε(
1

n
√
m
). This

improvement is critical in our results.

Deletion Sensitivity. We exploit a refined notion of sensitiv-
ity to facilitate our improved output perturbation algorithm.
Bounding the sensitivity of the quantity to be computed
is one of the most used methods for achieving DP guaran-
tees. Indeed, the DP guarantee of the output perturbation
algorithm in (Chaudhuri et al., 2011) for item-level privacy
follows from the fact that the (ℓ2-)sensitivity of the empiri-
cal risk minimizer is O

(
1
n

)
(Shalev-Shwartz et al., 2009).

Formally,

∥θ∗(x)− θ∗(x′)∥ ≤ O(1/n), (1)

for any two neighboring datasets x,x′.

Ideally, we would like the “sensitivity” of θ∗ to become
Õ
(

1
n
√
m

)
for some notion of “sensitivity”. However, the

2

On User-Level Private Convex Optimization

Additional Item-Level DP User-Level DP User-Level DP
Assumptions on ℓ (Previous Work) (Previous Work) (Our Results)

(no additional —

assumption) Õε

(√
d

n

)
Õε

(√
d

n
√
m

)
for n ≥ Ω̃ε(1)

(Bassily et al., 2014) Õε

(
1√
n
+

√
d

n
√
m

)
(Theorem 4.1)

Smooth for n ≥ Ω̃ε(1)

(Narayanan et al., 2022)
ERM Strongly Convex —

Õε

(
d
n2

)
Õε

(
d

n2m

)
for n ≥ Ω̃ε(1)

Strongly Convex (Bassily et al., 2014) Õε

(
d

n2m

)
(Theorem 4.3)

& Smooth for n ≥ Ω̃ε(1)

(Narayanan et al., 2022)
(no additional —

assumption) Õε

(
1√
n
+

√
d

n

)
Õε

(
1√
nm

+
√

d
n
√
m

)
for n ≥ Ω̃ε(1)

(Bassily et al., 2019) Õε

(
1√
nm

+
√
d

n
√
m

)
(Theorem 5.1)

SCO Smooth for n ≥ Ω̃ε(min{ 3
√
m,

√
m/d})

(Narayanan et al., 2022)
Strongly Convex Õε

(
1
n
+ d

n2

)
— Õε

(
1

nm
+ d

n2m

)
for n ≥ Ω̃ε(1)

(Feldman et al., 2020) (Theorem 5.3)

Table 1. Summary of our results and previous results. In all rows, the loss function is assumed to be convex and Lipschitz. The Õε hides
polynomial dependency on the convexity, Lipschitzness, strong convexity and smoothness parameters, ε, and polylogarithmic dependency
on 1/δ, n,m. We remark that, while it seems plausible to derive bounds using their techniques, Levy et al. (2021); Narayanan et al. (2022)
did not explicitly consider the strongly convex (and smooth) case for DP-SCO.

standard notion of sensitivity as above (or even local sensi-
tivity (Nissim et al., 2007)) does not work: even for mean
estimation3, we can change a user to have all their input
vectors far from the mean, resulting in the same O(1/n)
sensitivity as before. Instead, we use the notion of deletion
sensitivity. Here, instead of considering x′ that results from
changing a user’s data in x, we only consider x′ that results
from removing a user’s data completely.

Bounding Deletion Sensitivity of Empirical Risk Mini-
mizer. We show that the (local) deletion sensitivity of θ∗(x)
is at most Õ

(
1

n
√
m

)
. To describe our approach, let us

briefly recall the proof of (1) (item level setting, i.e., m = 1)
from Shalev-Shwartz et al. (2009). The proof proceeds by
bounding the norm of the gradient at θ∗ := θ∗(x) with
respect to x′ (i.e., ∥∇L(θ∗(x);x′)∥); strong convexity then
implies that θ∗(x′) is close to θ∗(x). The gradient norm
bound is based on the observation that∇L(θ∗;x) = 0 due
to optimality, and that∇L(θ∗;x)−∇L(θ∗;x′) is only 1/n
times a difference of the gradients of two input points (that
got changed from x to x′). These two claims yield the
desired O(1/n) bound.

For the user-level setting, the situation is similar except

3This corresponds to ℓ(θ;x) = ∥θ − x∥2 (here x ∈ Rd) for
which the empirical risk minimizer θ∗(x) is the average over all
the input points.

that ∇L(θ∗;x)−∇L(θ∗;x′) now becomes O
(

1
nm

)
times

the gradient of all input points of a single user (that got
removed from x to x′). An observation we use here is
that in SCO—where all nm input points are drawn i.i.d.—
we may view the input generation as a two-step process:
(i) draw the nm input points, and (ii) randomly allocate
these nm input points to n users. With this view in mind,
∇L(θ∗;x) = 0 means that the sum of the nm gradients
is zero. The randomness in (ii) means that ∇L(θ∗;x) −
∇L(θ∗;x′) is now O

(
1
nm

)
times the sum of m vectors

randomly chosen from these nm vectors that sum to zero.
Applying concentration inequalities (and a union bound),
we can show that w.h.p. ∥∇L(θ∗;x) − ∇L(θ∗;x′)∥ ≤
Õ
(

1
n
√
m

)
as desired.

Noise Addition Algorithm for Deletion Sensitivity.
Adding noise is still not trivial, even after bounding the
(local) deletion sensitivity. As stated earlier, since we do
not have the bound for the (standard) sensitivity, adding
Gaussian noise directly to θ∗(x) will not yield the desired
DP guarantee. To overcome this, we give an algorithm that
adds noise w.r.t. the (local) deletion sensitivity. At a high-
level, our algorithm has to perform a test to ensure that x is
“sufficiently stable” (akin to propose-test-release (Dwork &
Lei, 2009)) before adding Gaussian noise. Our algorithm is
an adaptation of that of Kohli & Laskowsk (2021), which
focuses on the real-valued case and adds Laplace noise.

3

On User-Level Private Convex Optimization

From Output Perturbation to DP-SCO/DP-ERM. Fi-
nally, once we have the improved output perturbation al-
gorithm, we use the localization-based algorithms (called
Phased-SCO/Phased-ERM) of Feldman et al. (2020) with
the enhanced output perturbation algorithm as subroutines
to arrive at our results for DP-SCO/DP-ERM in the con-
vex case. The strongly convex case follows from a known
black-box reduction from Bassily et al. (2014).

Remark. Our algorithm for ERM guarantees an Õε
(√

d
n
√
m

)
excess risk w.h.p. over the input being a random permutation
of any given dataset x. We emphasize that this is a mild
assumption on the distribution of the dataset, and the same
guarantees immediately follow for stronger assumptions
such as the dataset x being drawn from any exchangeable
distribution, e.g., drawn i.i.d. from D. Furthermore, we
stress that it is impossible to have an excess risk bound for
ERM that is better than Õε(

√
d/n) for worst-case datasets

since xi,j could be all the same for each i, which becomes
essentially identical to the item-level setting with m = 1.

Comparison to Previous Work. Previous work (Levy et al.,
2021; Narayanan et al., 2022) on user-level DP-SCO and
DP-ERM tackle the problem using privatized first-order
methods (i.e., variants of gradient descent), sometimes with
regularization. The main tool in these works is a user-level
DP algorithm for mean estimation of vectors, which is
used to aggregate the gradients with errors smaller than
in the item-level setting. Such a result needs to rely on the
fact that the average of the gradients of each user is well-
concentrated; this can be interpreted as the average gradient
having low deletion sensitivity. As discussed earlier, our
result significantly generalizes this by showing that this also
holds for the minimizer of any strongly convex function.
Our algorithms also provide a novel paradigm of output
perturbation for user-level DP learning—deviating from the
first-order methods explored in previous works.

In addition to the aforementioned work of Kohli &
Laskowsk (2021), a notion similar to local deletion sen-
sitivity has been studied in the context of DP graph analysis
under the names of “empirical sensitivity” (Chen & Zhou,
2013) and “down sensitivity” (Raskhodnikova & Smith,
2016). Several mechanisms were developed using this no-
tion, including an algorithm for monotonic real-valued func-
tions (Chen & Zhou, 2013) and for many graph parameters.
However, we are not aware of a generic algorithm for the
high-dimensional case similar to our Algorithm 1.

3. Output Perturbation for Strongly Convex
Losses

At the heart of our results is a new DP output perturbation
algorithm (Algorithm 2) for strongly convex losses. The
guarantee of this algorithm does not hold for any worst-

case dataset, but instead holds for a random permutation
of any given dataset. In particular, for any permutation π
over [n] × [m], let xπ be the permutation of x by π, i.e.,
xπi,j := xπ(i,j). As discussed in the previous section, this is
a mild assumption but is required for our results.

Theorem 3.1. Fix a G-Lipschitz and µ-strongly convex loss
ℓ and a sufficiently large constant C. For all ε, δ, β > 0
and n ≥ C log(1/δ)/ε, there exists an (ε, δ)-DP algo-
rithm SCOutputPert, such that for all x, with probability
≥ 1 − β over a random permutation π over [n] × [m],
SCOutputPert(xπ) outputs θ∗(xπ) + N (0, σ2 · I) where

σ = O

(
G
√

logn log(1/δ)/ε+log(1/β)

µn
√
m

· (log(1/δ))
1.5

ε2

)
.

The expected ℓ2-distance between the output estimate and
the true minimizer thus scales as Õε

(√
d

n
√
m

)
. This should

be compared with the item-level (i.e., m = 1) setting where
the bound is Õε(

√
d/n) (Chaudhuri & Monteleoni, 2008;

Chaudhuri et al., 2011).

3.1. Deletion Sensitivity & A Generic Output
Perturbation Algorithm

Before we can prove Theorem 3.1, we need to introduce
the notion of local deletion sensitivity and present a generic
output perturbation algorithm for low local deletion sensi-
tivity functions and datasets. We stress that the algorithm in
this section works for any such function and can be applied
beyond the context of convex optimization.

Local Deletion Sensitivity. For any x = (x1, . . . ,xn), let
x−i, denote the dataset obtained by deleting the ith user’s
data xi from x. For any subset S ⊆ [n], let x−S denote the
dataset obtained by deleting xi from x for all i ∈ S.

Definition 3.2. The local (ℓ2-)deletion sensitivity of func-
tion f at dataset x with n users is defined as ∆ f(x) :=
maxi∈[n] ∥f(x) − f(x−i)∥. Moreover, for r ∈ N, let
∆r f(x) := maxS⊆[n],|S|≤r∆ f(x−S).

The difference between the usual definition of local sensitiv-
ity (Nissim et al., 2007) and that of local deletion sensitivity
is that the latter definition only applies to removal of a user’s
data. This means that standard frameworks such as propose-
test-release (Dwork & Lei, 2009) cannot be directly used
here. We however show that this sensitivity notion still
allows us to design an algorithm with small error on any
dataset for which ∆r f(x) is small for any sufficiently large
r = Θ(log(1/δ)/ε). The guarantee is given below.

Theorem 3.3. Let f : X ∗×m → Rd, and ∆ > 0 be a pre-
defined parameter. There exists an (ε, δ)-DP algorithm that
either outputs⊥ or a vector in Rd. Furthermore, there exists
r = O(log(1/δ)/ε) such that, on input dataset x that sat-
isfies ∆r f(x) ≤ ∆, it never returns ⊥ and simply returns

f(x) +N (0, σ2 · I) where σ = O
(
∆ · (log(1/δ))

1.5

ε2

)
.

4

On User-Level Private Convex Optimization

The general idea is to find a “sufficiently stable” dataset
x̂ and add noise to f(x̂). Although we may wish to just
set x̂ = x directly and check that the local sensitivity is
small, we cannot do this, as changing a single datapoint can
change whether we pass the test. Therefore, similar to the
propose-test-release framework, we check for x−S for all
subsets S with |S| ≤ R1 where R1 is a shifted truncated
discrete Laplace random variable, as defined below. This
allows us to maintain the closeness of acceptance probability
across neighboring input datasets. The full description is
given in Algorithm 1. As stated earlier, our algorithm is a
modification of that of Kohli & Laskowsk (2021), which
uses Laplace noise and a different distribution of R1.

Definition 3.4 (Shifted Truncated Discrete Laplace Dis-
tribution). For any ε, δ > 0, let κ = κ(ε, δ) := 1 +
⌈ln(1/δ)/ε⌉ and let TDLap(ε, δ) be the distribution sup-
ported on {0, . . . , 2κ} with probability mass function at x
being proportional to exp (−ε · |x− κ|).

Algorithm 1 DelOutputPertε,δ,∆(f ;x)

1: Input: Dataset x, function f : X ∗×m → Rd
2: Parameters: Privacy parameters ε, δ; Target deletion

sensitivity parameter ∆

3: ε← ε
2 , δ ← δ

eε+2 , κ← κ(ε, δ), σ ← 2
√

ln(2/δ)(8κ∆)
ε

4: Sample R1 ∼ TDLap(ε, δ) ▷ See Definition 3.4
5: XR1

stable ←
{
x−S : |S| ≤ R1,∆4κ−|S| f(x−S) ≤ ∆

}
6: if |XR1

stable| = ∅ then
7: return ⊥
8: end if
9: Choose x−S ∈ XR1

stable with smallest |S|
▷ Ties broken arbitrarily

10: return f(x−S) +N (0, σ2 · I)

To prove Theorem 3.3, the following observation is useful.

Observation 3.5. For neighboring datasets x,x′, and all
r1 ∈ Z≥0, if X r1stable(x

′) ̸= ∅, then X r1+1
stable(x) ̸= ∅.

Proof. Suppose x′ = (x′1, . . . ,x
′
n). Let x′−S′ be an el-

ement of X r1stable(x
′). That is, we have |S′| ≤ r1 and

∆r2 f(x
′
−S′) ≤ ∆ for r2 = 4κ − r1. Let i ∈ [n] denote

the user on which x and x′ differ. We consider two cases:
If i ∈ S′, then we simply have x−S′ = x′−S′ and therefore
x−S′ also belongs to X r1+1

stable(x). If i /∈ S′, let S = S′∪{i}.
We have |S| ≤ r1+1 and ∆r2−1(x−S) ≤ ∆r2(x

′
−S′). This

means that x−S ∈ X r1+1
stable(x) as well.

Proof of Theorem 3.3. Let A be the DelOutputPert algo-
rithm (Algorithm 1).

Privacy Analysis. Let x,x′ be neighboring datasets. First,

Pr[A(x) =⊥]

=
∑2κ
r1=0 1[A(x) =⊥| R1 = r1] · Pr[R1 = r1]

=
∑2κ
r1=0 1[X

r1
stable(x) = ∅] · Pr[R1 = r1]

≤ Pr[R1 = 0] +
∑2κ
r1=1 1[X

r1
stable(x) = ∅] · Pr[R1 = r1]

≤ δ +
∑2κ
r1=1 1[X

r1
stable(x) = ∅] · eε · Pr[R1 = r1 − 1]

≤ δ +
∑2κ
r1=1 1[X

r1−1
stable(x

′) = ∅] · eε · Pr[R1 = r1 − 1]

≤ δ + eε ·
∑2κ
r1=0 1[A(x′) =⊥| R1 = r1] · Pr[R1 = r1]

= δ + eε · Pr[A(x′) =⊥]. (2)

Next, consider any set S0 ⊆ Rd. We have

Pr[A(x) ∈ S0]

≤
∑2κ
r1=0 Pr[A(x) ∈ S0 | R1 = r1] · Pr[R1 = r1]

=
∑2κ−1
r1=0 Pr[A(x) ∈ S0 | R1 = r1] · Pr[R1 = r1]

+ Pr[R1 = 2κ]

≤ δ + eε ·
∑2κ−1
r1=0 Pr[A(x) ∈ S0 | R1 = r1]

· Pr[R1 = r1 + 1], (3)

where the last inequality follows since R1 ∼ TDLap(ε, δ).
To bound the term Pr[A(x) ∈ S0 | R1 = r1] for r1 < 2κ,
observe that if it is non-zero, then it must be that A(x) ̸=⊥
or equivalently that X r1stable(x) ̸= ∅; Observation 3.5 then
implies that X r1+1

stable(x) ̸= ∅, or equivalently, A(x′) ̸=⊥.
Let x̂r1 and x̂′r1+1 be the sets chosen on Line 9 when we
run the algorithm on input x̂, R1 = r1 and x̂′, R1 = r1 + 1
respectively. Let x∗ := x̂r1 ∩ x̂′r1+1. We have |x∗| ≥ |x|−
r1−(r1+1) ≥ |x|−4κ. Therefore, since x̂r1 ∈ X

r1
stable(x)

and x̂′r1+1 ∈ X
r1+1
stable(x

′), we must have

∥f(x̂r1)− f(x∗)∥ ≤ ∆ · |x̂− x̂′| ≤ 4κ ·∆,

and similarly,

∥f(x̂′r1+1)− f(x∗)∥ ≤ ∆ · |x̂− x̂′| ≤ 4κ ·∆.

Combining the two, we can conclude that

∥f(x̂r1)− f(x̂′r1+1)∥ ≤ 8κ ·∆.

From the privacy guarantee of the Gaussian mechanism
(e.g., Dwork & Roth (2014, Appendix A)), we have

Pr[f(x̂r1) +N (σ2 · I) ∈ S0]

≤ eε · Pr[f(x̂′r1+1) +N (σ2 · I) ∈ S0] + δ.

Note that Pr[f(x̂r1) + N (σ2 · I) ∈ S0] = Pr[A(x) ∈
S0 | R1 = r1], while Pr[f(x̂′r1+1) + N (σ2 · I) ∈ S0] =
Pr[A(x′) ∈ S0 | R1 = r1 + 1].

Plugging this back to (3), we get

Pr[A(x) ∈ S0]

5

On User-Level Private Convex Optimization

≤ δ + eε ·
∑2κ−1
r1=0 Pr[A(x) ∈ S0 | R1 = r1]

· Pr[R1 = r1 + 1]

= δ + eε ·
∑2κ−1
r1=0

(
eε · Pr[A(x′) ∈ S0 | R1 = r1 + 1] + δ

)
· Pr[R1 = r1 + 1]

≤ (eε + 1)δ + e2ε ·
∑2κ
r1=0 Pr[A(x′) ∈ S0 | R1 = r1]

· Pr[R1 = r1]

= (eε + 1)δ + e2ε · Pr[A(x′) ∈ S0]. (4)

Now, consider any set S of outcomes. Let S0 = S ∩Rd and
S⊥ = S ∩ {⊥}. Then, we have

Pr[A(x) ∈ S] = Pr[A(x) ∈ S0] + Pr[A(x) ∈ S⊥]
(4),(2)
≤

(
(eε + 1)δ + e2ε · Pr[A(x′) ∈ S0]

)
+
(
δ + eε · Pr[A(x′) = S⊥]

)
≤ (eε + 2)δ + e2ε Pr[A(x′) ∈ S]
≤ δ + eε · Pr[A(x′) ∈ S].

Therefore, the algorithm is (ε, δ)-DP as desired.

Accuracy Analysis. Let x be any dataset such that ∆4κ x ≤
∆. This means that, for any 0 ≤ R1 ≤ 4κ, ∆4κ−R1 x ≤ ∆.
In other words, x belongs to XR1

stable. Thus, we always
have x̂ = x and the output is simply drawn from f(x) +
N (0, σ2 · I) as claimed.

3.2. Deletion Sensitivity of Optimizers of Strongly
Convex Losses

Having provided a generic noising algorithm for func-
tions with low local deletion sensitivity, the next step is
to show that the function that we care about for convex
optimization—the empirical risk minimizer—has low dele-
tion sensitivity (with high probability), as formalized below.

Theorem 3.6. Let ℓ be any µ-strongly convex loss function
such that ∥∇ℓ(θ;x)∥ ≤ G for all θ ∈ K, x ∈ X . For all
x ∈ Xn×m and β < 1/e, with probability 1 − β over the
choice of a random permutation π over [n]× [m], we have

∥θ∗(xπ)− θ∗(xπ−n)∥ ≤
5G
√

log(1/β)

µ(n−1)
√
m
.

Before proving this, we note that by applying a union bound
over all the n users and all subsets S of size at most r, we ar-
rive at Corollary 3.7. Theorem 3.1 now follows by defining
SCOutputPert (Algorithm 2) that invokes DelOutputPert
on the function f being the empirical loss, and combining
Corollary 3.7 with Theorem 3.3 (setting r = 4κ).

Corollary 3.7. Let ℓ be any G-Lipschitz, µ-strongly convex
loss. For all x ∈ Xn×m and r ≤ n/2, with probability
1 − β over the choice of a random permutation π over

Algorithm 2 SCOutputPertε,δ,β,G,µ,K(ℓ;x)

1: Input: Dataset x, loss function ℓ : K ×X → R
2: Parameters: Privacy parameters ε, δ; Target failure

probability β; Lipschitz parameter G; Strong convexity
µ

3: ∆← 10G
√

log(1/β)

µn
√
m

4: return DelOutputPertε,δ,∆(f ;x),
where f(·) := argminθ L(θ; ·)

[n]× [m], we have

∆r θ
∗(xπ) ≤ O

(
G
√
r logn+log(1/β)

µn
√
m

)
.

In order to prove Theorem 3.6, we use the following lemma,
proved in Appendix A.
Lemma 3.8. Let v1, . . . ,vN ∈ Rd be any set of vectors
satisfying

∑
i vi = 0 and ∥vi∥ ≤ G for all i. For all

β < 1/e, over choice of a random permutation π over [N],
it holds that

Pr
[∥∥∥∑j∈[m] vπ(j)

∥∥∥ > 5G
√
m log(1/β)

]
≤ β.

Proof of Theorem 3.6. Let θ∗ := θ∗(x); note that due to
the symmetric nature of L(θ; ·), it holds that θ∗(x) =
θ∗(xπ) for all permutations π. Let θ∗,π−n := θ∗(xπ−n). Since
L(·;xπ−n) is µ-strongly convex4, we have that

∥∇L(θ∗;xπ−n)−∇L(θ
∗,π
−n ;x

π
−n)∥ ≥ µ∥θ∗ − θ∗,π−n∥.

(5)

Next, we upper bound ∥∇L(θ∗;xπ−n)∥.

0 = ∇L(θ∗;xπ) = n−1
n · ∇L(θ

∗;xπ−n) +
1
n · ∇L(θ

∗;xπn),

and hence∥∥∇L(θ∗;xπ−n)∥∥ = 1
n−1 ∥∇L(θ

∗;xπn)∥

=
∥∥∥ 1
(n−1)m

∑
j∈[m]∇ℓ(θ;xπ(n,j))

∥∥∥ . (6)

Since
∑
i∈[n],j∈[m]∇ℓ(θ;xi,j) = 0 and ∥∇ℓ(θ;xi,j)∥ ≤

G, we have from Lemma 3.8 that

Pr
[∥∥∥∑j∈[m]∇ℓ(θ;xπ(n,j))

∥∥∥ ≤ 5G
√
m log(1/β)

]
≥ 1− β. (7)

Putting (6) and (7) together, we have that,

Pr

[
∥∇L(θ∗;xπ−n)∥ ≤

5G
√

log 1
β

(n−1)
√
m

]
≥ 1− β.

Combining this with (5), and noting that∇L(θ∗,π−n ;xπ−n) =
0 since θ∗,π−n is the minimizer of L(·;xπ−n), completes the
proof.

4f is µ-strongly convex iff ∥∇f(θ)−∇f(θ′)∥ ≥ µ∥θ − θ′∥.

6

On User-Level Private Convex Optimization

4. User-Level DP-ERM
In this section, we describe our algorithms for DP-ERM
and prove their excess risk bounds. As in Section 3, our
guarantee holds for a random permutation of any dataset—a
mild but necessary assumption.

4.1. Convex Losses

The formal guarantee when the loss is only assumed to be
convex (and Lipschitz) is given below.

Theorem 4.1. For any G-Lipschitz loss ℓ, there exists an
(ε, δ)-DP mechanism that, for all n ≥ Ω̃

(
log(1/δ) log(m)

ε

)
,

outputs θ̂ such that

Eπ,θ̂←M(xπ)[L(θ̂;x
π)]− L(θ∗;xπ) ≤ Õε

(
RG
√
d

n
√
m

)
,

where Õε hides a multiplicative factor of
poly(log(1/δ), log(nm), 1/ε).

We use Phased-ERM algorithm similar to Feldman et al.
(2020), which requires solving a regularized ERM in each
step. Our proof below closely follows their proof, although
we change the algorithm slightly because their proof is for
SCO whereas the analysis below is for ERM. In particular,
for ERM, we need to use the full dataset in each step. We
also change some parameters accordingly. The full descrip-
tion is in Algorithm 3; note that on line 12, we only optimize
over the set Ki, and use Lipschitz constant 2G and strong
convexity parameter λi.

Algorithm 3 Phased-ERM.
1: Input: Dataset x, loss function ℓ : K×X → R that is

convex and G-Lipschitz
2: Parameters: Privacy parameters ε, δ; Regularizer

coefficient λ; Target failure probability β
3: T ← ⌈log(nm)⌉ ▷ Number of iterations
4: ε′ ← ε/T, δ′ ← δ/T ▷ Per-iteration privacy budgets
5: β′ ← β/T ▷ Per-iteration failure probability
6: θ̂0 ← arbitrary element of K ▷ Initial parameter
7: for i = 1, . . . , T do
8: λi ← λ · 4i
9: Ri ← G/λi

10: Let ℓi(θ;x) := ℓ(θ;x) + λi

2 · ∥θ − θ̂i−1∥
2

11: Ki ← K ∩ Bd (θi−1, Ri)
12: θ̂i ← SCOutputPertε′,δ′,β′,2G,λi,Ki

(ℓi;x)
13: end for
14: return θ̂T

To analyze the accuracy, let θ∗i := θ∗ℓi,Ki
(x) for all i ∈ [T].

It should be noted that θ∗i is also equal to θ∗ℓi,K(x) (where
the optimization is over K instead of Ki). Furthermore,
within Ki, the loss Li is 2G-Lipschitz. We start with the

following lemma, which is an analogue of Feldman et al.
(2020, Lemma 4.7).

Lemma 4.2. For any θ ∈ K and i ∈ [T], we have

L(θ∗i ;x)− L(θ;x) ≤ λi

2 · ∥θ̂i−1 − θ∥
2.

Proof. This is simply because

L(θ∗i ;x)− L(θ;x) ≤ Li(θ∗i ;x)− L(θ;x)

≤ Li(θ;x)− L(θ;x) = λi

2 · ∥θ − θ̂i−1∥
2.

We are now ready to prove Theorem 4.1. The usual analysis
of the “standard” Phased-ERM algorithm in Feldman et al.
(2020)—where SCOutputPert is replaced by an algorithm
that just adds Gaussian noise to the true optimizer—shows
that it has small excess risk. We then relate Algorithm 3
back to this “standard” version by using Theorem 3.1 to
show that the output distribution of our algorithm (over
random π) is very close in total variation distance to this
standard version. This idea is formalized below.

Proof of Theorem 4.1. We run the Phased-ERM algorithm
(Algorithm 3) where we set λ = G

√
d

Rn
√
m

and β = 1
nm ;

throughout the proof, we will useM as a shorthand for this
algorithm. The privacy guarantee follows immediately from
the fact that each call to SCOutputPert is (ε′, δ′)-DP and
the basic composition of DP.

To understand its accuracy guarantee, let us start by con-
sidering another algorithmM′ that is the same asM ex-
cept that on line 12 we do not call SCOutputPert but
instead directly let θ̂i ← θ∗i (x) + N (0, σ2

i · I) where
σi := σ(ε′, δ′, β′, 2G,λi) is as in Theorem 3.1.

For convenience, we let θ0 = θ∗(x). We have

L(θ̂T ;x)− L(θ∗0 ;x)

= (L(θ̂T ;x)− L(θ∗T ;x))

+
∑T
i=1

(
L(θ∗i ;x)− L(θ∗i−1;x)

)
≤ G · ∥θ̂T − θ∗T ∥+

∑T
i=1

λi

2 · ∥θ̂i−1 − θ
∗
i−1∥2

≤ O
(
λR2

)
+G · ∥θ̂T − θ∗T ∥+

∑T−1
i=1

λi+1

2 · ∥θ̂i − θ∗i ∥2,

where we used Lemma 4.2 for the first inequality.

Thus, we have (where the expectation is over the random-
ness ofM′, i.e., noise drawn from N (0, σ2

i · I) for each
i ∈ [T])

Eθ̂←M′(x)[L(θ̂;x)]− L(θ
∗;x)

≤ O
(
λR2 +G

√
d · σT +

∑T−1
i=1 λi+1 · d · σ2

i

)
≤ Õε

(
λR2 + G2

√
d

λT ·n
√
m

+
∑T−1
i=1

λi+1·dG2

λ2
i ·n2m

)
7

On User-Level Private Convex Optimization

≤ Õε
(
λR2 + dG2

λ·n2m

)
,

where the last inequality comes from our setting λi = λ · 4i.
Finally, from our setting of λ = G

√
d

Rn
√
m

, we can conclude

Eθ̂←M′(x)[L(θ̂;x)]− L(θ
∗;x) ≤ Õε

(
RG
√
d

n
√
m

)
. (8)

Let P ′ denote the distribution of the output of runningM′
on x, and let P denote the distribution of the output of run-
ningM on xπ where π is a uniformly random permutation.
Next, we will show that

dtv(P
′, P) ≤ β. (9)

Before proving this, note that (8) and (9) together imply the
bound in the theorem because we have

Eπ,θ̂←M(xπ)[L(θ̂;x)]− L(θ
∗;x)

(9)
≤ Eθ̂←M′(x)[L(θ̂;x)]− L(θ

∗;x) + β ·RG
(8)
≤ Õε

(
RG
√
d

n
√
m

)
.

We are left with proving (9). To do this, for every i ∈
{0, . . . , T}, consider a hybrid algorithmMi where, in the
first i iterations, we followM′ and, in the remaining itera-
tions, we followM. Let Pi denote the probability distribu-
tion of the output ofMi on input xπ where π is a uniformly
random permutation. Notice that P0 = P and PT = P ′.

For every i ∈ [T], consider Pi and Pi−1. They differ only
in the ith iteration. Thus, dtv(Pi, Pi−1) is at most the prob-
ability that SCOutputPert does not output a sample from
θ∗i +N (0, σ2

i · I). By Theorem 3.1, the probability (over
π) that this happens is at most5 β′. Therefore, we have that
dtv(Pi, Pi−1) ≤ β′.

Thus, dtv(P, P ′) ≤
∑
i∈[T] dtv(Pi−1, Pi) ≤ T · β′ = β,

concluding our proof.

4.2. Strongly Convex Losses

For strongly convex losses, we can get an improved bound:

Theorem 4.3. For any G-Lipschitz, µ-strongly convex loss
ℓ, there exists an (ε, δ)-DP mechanism that, for all n ≥
Ω̃
(

log(1/δ) log(m)
ε

)
, outputs θ̂ such that

Eπ,θ̂←M(xπ)[L(θ̂;x
π)]− L(θ∗;xπ) ≤ Õε

(
G2d
µn2m

)
,

where Õε hides a multiplicative factor of
poly(log(1/δ), log(nm), 1/ε).

5Note that the distribution of θ∗i is independent of π since we
are running M′ for the first i−1 steps. Thereby, we can still apply
Theorem 3.1, which only relies on the randomness in π.

We obtain the above result by reducing back to the convex
case. This reduction essentially dates back to Bassily et al.
(2014) and works as follows: first we apply the output per-
turbation algorithm (Theorem 3.1). With high probability,
the output is within a ball of radius R = Õε

(
G
√
d

µn
√
m

)
. We

then run Theorem 4.1 using thisR, which yields the final ex-
cess risk of Õε

(
G
√
d

µn
√
m
· G
√
d

n
√
m

)
= Õε

(
G2d
µn2m

)
as desired.

The full proof is presented in Appendix B.1.

5. User-Level DP-SCO
We next describe our algorithms for DP-SCO and their
excess risk guarantees.

5.1. Convex Losses

For the convex (and Lipschitz) loss case, the risk bound is
similar to that of Theorem 4.1 except with an additional
additive term O(1/

√
nm):

Theorem 5.1. For any G-Lipschitz convex loss ℓ, there
exists an (ε, δ)-DP mechanism that, for all n ≥
Õ
(

log(1/δ) log(m)
ε

)
, outputs θ̂ such that

Ex∼Dn×m,θ̂←M(x)[L(θ̂;D)]− L(θ
∗;D)

≤ Õε

(
RG

(√
d

n
√
m

+ 1√
nm

))
,

where Õε hides a multiplicative factor of
poly(log(1/δ), log(nm), 1/ε).

The arguments in the previous section also extend to SCO.
The idea as before is to replace the output perturbation step
in Algorithm 3 of Feldman et al. (2020) with SCOutputPert.
The full algorithm is presented in Algorithm 4; note that
in the ith iteration, we only use the input from users
2−in, . . . , 2−i+1n to perform SCOutputPert.

Similar to before, let θ∗i := θ∗ℓi,Ki
(D) for all i ∈ [T]. Again,

note that θ∗i = θ∗ℓi,K(D) (where the optimization is over
K instead of Ki). Furthermore, within Ki, the loss Li is
2G-Lipschitz.

We use the following lemma, analogous to Lemma 4.2.
Lemma 5.2. For any θ ∈ K and i ∈ [T], we have

L(θ∗i ;D)− L(θ;D) ≤ λi

2 · ∥θ̂i−1 − θ∥
2 + 16G2

λini
.

Proof. The objective ℓi(θ;x(i)) is (2G)-Lipschitz and is λi-
strongly convex. Therefore, by Shalev-Shwartz et al. (2009,
Theorem 7), we get that

L(θ∗i ;D)− L(θ;D) ≤ λi

2 · ∥θ − θ̂i−1∥
2 + 4(2G)2

λini
.

Proof of Theorem 5.1. We run the Phased-SCO algorithm
(Algorithm 4) where we set λ = G

√
d

Rn
√
m

and β = 1
nm ; we

8

On User-Level Private Convex Optimization

Algorithm 4 Phased-SCO
1: Input: Dataset x, loss function ℓ : Θ×X → R that is

convex and G-Lipschitz
2: Parameters: Privacy parameters ε, δ; Regularizer

coefficient λ; Target failure probability β
3: N0 = C log(1/δ)/ε for some sufficiently large con-

stant C
4: T ← ⌈log(n/N0)⌉ ▷ Number of iterations
5: β′ = β/T ▷ Per-iteration failure probability
6: θ̂0 ← arbitrary element of K ▷ Initial parameter
7: for i = 1, . . . , T do
8: λi = λ · 4i
9: Ri = G/λi

10: Let ℓi(θ;x) := ℓ(θ;x) + λi

2 · ∥θ − θ̂i−1∥
2

11: Ki ← K ∩ Bd (θi−1, Ri)
12: x(i) = (xℓ : ℓ ∈ [2−in, 2−i+1n])

13: θ̂i ← SCOutputPertε,δ,β′,2G,λi,Ki
(ℓi;x

(i))
14: end for
15: return θ̂T

will useM as a shorthand for this algorithm. The main dif-
ference from Algorithm 3 is that we use different batch sizes
(and do not reuse sample points across phases). The analysis
is similar to the proof of Theorem 4.1 with corresponding
changes to Lemma 4.2. The privacy guarantee follows im-
mediately from the fact that each call to SCOutputPert is
(ε, δ)-DP and the parallel composition of DP (McSherry,
2010). Note that we maintain a minimum batch size as
required for SCOutputPert so that we maintain DP.

Further, as in the analysis of Theorem 4.1, we can con-
sider another algorithm M′ which is the same as M ex-
cept that on line 13 it does not call SCOutputPert but
instead directly lets θ̂i ← θ∗i (x) + N (0, σ2

i · I) where
σi := σ(ε′, δ′, β′, 2G,λi) is as in Theorem 3.1. Proof of
Theorem 5.1 is completed by following the same analysis
as in the proof of Theorem 4.1 with Lemma 4.2 replaced
with Lemma 5.2.

5.2. Strongly Convex Losses

We obtain better excess risk bounds for the case of strongly
convex losses, as stated below. The proof is similar to that
of DP-ERM for strongly convex loss, i.e., we use output
perturbation and then run DP-SCO for convex losses (The-
orem 5.1) using a smaller radius. An additional step here
is to show that an empirical minimizer is Õ

(
G

µ
√
nm

)
-close

to the population minimizer w.h.p. (which might be of in-
dependent interest; see Proposition B.1). The full proof is
presented in Appendix B.2.

Theorem 5.3. For any G-Lipschitz, µ-strongly convex loss
ℓ, there exists an (ε, δ)-DP mechanism that, for all n ≥

Õ
(

log(1/δ) log(m)
ε

)
, outputs θ̂ such that

Eπ,θ̂←M(xπ)[L(θ̂;D)]− L(θ
∗;D)

≤ Õε

(
G2

µ

(
d

n2m + 1
nm

))
,

where Õε hides a multiplicative factor of
poly(log(1/δ), log(nm), 1/ε).

6. Discussion & Open Problems
Although we do not discuss the running time of our algo-
rithm, it can be seen that they run in nO(log(1/δ)/ε)(md)O(1)

time; the bottleneck comes from the step to compute XR1

stable

in DelOutputPert, which requires enumerating all subsets
S of size R1 = O

(
log(1/δ)

ε

)
. In Appendix C, we describe

a speed up for all our DP-SCO/ERM results that makes
the algorithm run in polynomial (in n,m, d) time with high
probability. However, with the remaining o(1) probability,
the algorithm may still take nO(log(1/δ)/ε)(md)O(1) time.
It remains open whether we can get an algorithm whose
running time is polynomial in the worst case. As discussed
in the introduction, it was not known whether excess risk
bounds that we achieve were obtainable (even with ineffi-
cient algorithms) before.

Another question is whether we can get tight dependency on
δ, ε. Specifically, our ERM excess risk bound in the convex
case has a factor of O

(
(log(1/δ))2

ε2.5

)
, while previous bounds

only had Õ
(√

log(1/δ)

ε

)
. Note that our larger dependency

is indeed due to the generic output perturbation algorithm
(DelOutputPert), which requires the noise scale σ to be
inflated by a factor of κ = O

(
log(1/δ)

ε

)
, and the union

bound performed for Corollary 3.7 which includes another√
κ factor. Therefore, this question may be related to the

previous question.

Acknowledgments

Pritish Kamath would like to thank Gene Li, Ohad Shamir,
and Nathan Srebro for helpful discussions about stochastic
convex optimization. Pasin Manurangsi would also like to
thank Adam Sealfon for useful discussions and for pointers
to DP graph analysis literature.

9

On User-Level Private Convex Optimization

References
Agarwal, A., Bartlett, P. L., Ravikumar, P., and Wainwright,

M. J. Information-theoretic lower bounds on the ora-
cle complexity of stochastic convex optimization. IEEE
Trans. Inf. Theory, 58(5):3235–3249, 2012.

Asi, H., Feldman, V., Koren, T., and Talwar, K. Private
stochastic convex optimization: Optimal rates in ℓ1 ge-
ometry. In ICML, pp. 393–403, 2021.

Bassily, R., Smith, A. D., and Thakurta, A. Private empirical
risk minimization: Efficient algorithms and tight error
bounds. In FOCS, pp. 464–473, 2014.

Bassily, R., Feldman, V., Talwar, K., and Thakurta, A. G.
Private stochastic convex optimization with optimal rates.
In NeurIPS, pp. 11279–11288, 2019.

Chaudhuri, K. and Monteleoni, C. Privacy-preserving logis-
tic regression. In NIPS, pp. 289–296, 2008.

Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. Dif-
ferentially private empirical risk minimization. J. Mach.
Learn. Res., 12:1069–1109, 2011.

Chen, S. and Zhou, S. Recursive mechanism: towards node
differential privacy and unrestricted joins. In SIGMOD,
pp. 653–664, 2013.

Dwork, C. and Lei, J. Differential privacy and robust statis-
tics. In STOC, pp. 371–380, 2009.

Dwork, C. and Roth, A. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci.,
9(3-4):211–407, 2014.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and
Naor, M. Our data, ourselves: Privacy via distributed
noise generation. In EUROCRYPT, pp. 486–503, 2006a.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. D.
Calibrating noise to sensitivity in private data analysis. In
TCC, pp. 265–284, 2006b.

Feldman, V., Koren, T., and Talwar, K. Private stochastic
convex optimization: optimal rates in linear time. In
STOC, pp. 439–449, 2020.

Ghazi, B., Kumar, R., and Manurangsi, P. User-level dif-
ferentially private learning via correlated sampling. In
NeurIPS, pp. 20172–20184, 2021.

Gopi, S., Lee, Y. T., and Liu, D. Private convex optimization
via exponential mechanism. In COLT, pp. 1948–1989,
2022.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in

federated learning. Found. Trends Machine Learning, 14
(1-2), 2021.

Kamath, G., Li, J., Singhal, V., and Ullman, J. R. Privately
learning high-dimensional distributions. In COLT, pp.
1853–1902, 2019.

Kifer, D., Smith, A. D., and Thakurta, A. Private convex
optimization for empirical risk minimization with appli-
cations to high-dimensional regression. In COLT, pp.
25.1–25.40, 2012.

Kohli, N. and Laskowsk, P. Differential privacy for black-
box statistical analyses. In TPDP, 2021.

Laurent, B. and Massart, P. Adaptive estimation of a
quadratic functional by model selection. Ann. Stat., 28
(5):1302 – 1338, 2000.

Levy, D., Sun, Z., Amin, K., Kale, S., Kulesza, A., Mohri,
M., and Suresh, A. T. Learning with user-level privacy.
In NeurIPS, pp. 12466–12479, 2021.

Liu, Y., Suresh, A. T., Yu, F. X., Kumar, S., and Riley, M.
Learning discrete distributions: user vs item-level privacy.
In NeurIPS, 2020.

McSherry, F. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. Commun.
ACM, 53(9):89–97, 2010.

Narayanan, S., Mirrokni, V. S., and Esfandiari, H. Tight and
robust private mean estimation with few users. In ICML,
pp. 16383–16412, 2022.

Nissim, K., Raskhodnikova, S., and Smith, A. D. Smooth
sensitivity and sampling in private data analysis. In STOC,
pp. 75–84, 2007.

Raskhodnikova, S. and Smith, A. D. Differentially private
analysis of graphs. In Encyclopedia of Algorithms, pp.
543–547. Springer, 2016.

Sambale, H. and Sinulis, A. Concentration inequalities
on the multislice and for sampling without replacement.
Journal of Theoretical Probability, 35:2712–2737, 2022.

Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan,
K. Stochastic convex optimization. In COLT, 2009.

Vadhan, S. P. The complexity of differential privacy. In
Tutorials on the Foundations of Cryptography, pp. 347–
450. Springer International Publishing, 2017.

Wang, D., Ye, M., and Xu, J. Differentially private empirical
risk minimization revisited: Faster and more general. In
NIPS, pp. 2722–2731, 2017.

10

On User-Level Private Convex Optimization

A. Proof of Lemma 3.8
Lemma 3.8 follows quite immediately as an application of a special case of Proposition 1 in Sambale & Sinulis (2022) as
stated below. Let SN denote the set of all permutations over [N] and for any π ∈ SN , let πi↔j denote the permutation with
ith and jth entries swapped.

Proposition A.1 (Proposition 1 in Sambale & Sinulis (2022)). Let f : SN → R be a real-valued function over SN , such
that |f(π)− f(πi↔j)| ≤ ci,j for all π ∈ SN and all 1 ≤ i < j ≤ N for some ci,j ≥ 0. For any t ≥ 0, it holds that

Pr
π∼SN

[f(π)− E[f(π)] ≥ t] ≤ exp

(
− Nt2

4
∑

1≤i<j≤N c
2
i,j

)
.

Proof of Lemma 3.8. Since
∑
i vi = 0, we have for any two vectors u,v sampled randomly without replacement from

{v1, . . . ,vN} that ⟨u,v⟩ < 0, since E[u | v] = −v/(N − 1). Hence, we have

E
[∥∥∥∑j∈[m] vij

∥∥∥2] =
∑
j∈[m]

E[∥vij∥2] + 2
∑
j<k

E
[〈
vij ,vik

〉]
≤ mG2,

and hence E
[∥∥∥∑j∈[m] vij

∥∥∥] ≤ √mG. Let f : SN → R be defined as f(π) = ∥
∑m
j=1 vπ(j)∥. It follows that f(π) =

f(πi↔j) whenever both i, j ≤ m or both i, j > m. Moreover, when i ≤ m and j > m, it holds that

|f(π)− f(πi↔j)| =

∥∥∥∥∥
m∑
k=1

vπ(k)

∥∥∥∥∥−
∥∥∥∥∥
m∑
k=1

vπi↔j(k)

∥∥∥∥∥ ≤ ∥∥vπ(i) − vπ(j)
∥∥ ≤ 2G.

Thus, using Proposition A.1 with ci,j = 2G when i ≤ m < j and 0 otherwise, we have that

Prπ∼SN

[∥∥∥∑j∈[m] vπ(j)

∥∥∥ ≥ t+√mG] ≤ exp

(
− Nt2

16m(N −m)G2

)
≤ exp

(
− t2

16mG2

)
.

Choosing t = 4G
√
m log(1/β) completes the proof.

B. Proofs of Improved Bounds for Strongly Convex Losses
B.1. Empirical Risk Minimization

Algorithm 5 Strongly-Convex-ERM
1: Input: Dataset x, loss function ℓ : Θ×X → R that is µ-strongly convex and G-Lipschitz
2: Parameters: Privacy parameters ε, δ; Target Failure Probability β
3: θ0 ← SCOutputPertε/2,δ/2,β,G,µ,K(ℓ;x)

4: R′ ← σ(ε/2, δ/2, β,G, µ) ·
√
d log 1/β

5: K′ ← K ∩ Bd(θ0, R′)
6: λ← G

√
d

R′n
√
m

7: θ̂ ← Phased-ERMε/2,δ/2,β,G,λ,K′(ℓ;x)

8: return θ̂

Proof of Theorem 4.3. The mechanism in Algorithm 5, which uses a two-step approach to get stronger rates for strongly
convex losses, following a similar reduction in Bassily et al. (2014). It first uses the SCOutputPert algorithm with
(ε/2, δ/2)-DP, which with probability 1−β returns θ0 := θ∗(x)+ e where e ∼ N (0, σ2 · I) for σ specified in Theorem 3.1.
From standard concentration, we have that Pr[∥e∥ ≥ Cσ

√
d log 1/β] ≤ β, for a suitable C. Thus, with probability 1− 2β,

we have that θ∗(x) is indeed contained in Bd(θ0, R′) for R′ = Cσ
√
d log 1/β = Õε(G

√
d/(µn

√
m)); note that this

can be much smaller than the diameter of K which is at most 2G/µ. Finally, we use the Phased-ERM algorithm with

11

On User-Level Private Convex Optimization

(ε/2, δ/2)-DP over the region K′ = K ∩ Bd(θ0, R′). Following the proof of Theorem 4.1, setting β = 1/2n2m, we have
that

E[L(θ̂;x)]− L(θ∗;x) ≤ Õε

(
G2d
µn2m

)
.

The value of β was chosen such that βRG ≤ O(G2/(µn2m)), where R is the diameter of K, which is at most 2G/µ. This
is to account for the probability of at most 2β that either SCOutputPert fails or that ∥e∥ > Cσ

√
d log 1/β, in which case,

the excess risk is at most RG.

B.2. Stochastic Convex Optimization

We rely on the following proposition, which to the best of our knowledge, is not known in the literature.

Proposition B.1. For any G-Lipschitz, µ-strongly convex loss ℓ and for any distribution D, it holds for all β < 1/e that

Pr
x∼Dn×m

[
∥θ∗(x)− θ∗(D)∥ ≤

30G
√

log(2/β)

µ
√
nm

]
≥ 1− β.

Before we prove Proposition B.1, let us see how to use it to prove Theorem 5.3.

Algorithm 6 Strongly-Convex-SCO
1: Input: Dataset x, loss function ℓ : Θ×X → R that is µ-strongly convex and G-Lipschitz
2: Parameters: Privacy parameters ε, δ; Target Failure Probability β
3: θ0 ← SCOutputPertε/2,δ/2,β,G,µ,K(ℓ;x)

4: R′ ← σ(ε/2, δ/2, β,G, µ) ·
√
d log 1/β +

G
√

log 1/β

µ
√
nm

5: K′ ← K ∩ Bd(θ0, R′)
6: λ← G

√
d

R′n
√
m

7: θ̂ ← Phased-SCOε/2,δ/2,β,G,λ,K′(ℓ;x)

8: return θ̂

Proof of Theorem 5.3. Algorithm 6 is similar to Algorithm 5, namely, it first uses the SCOutputPert algorithm with
(ε/2, δ/2)-DP, which with probability 1 − β returns θ0 := θ∗(x) + e where e ∼ N (0, σ2 · I). Using Proposition B.1,
we have that with probability at least 1− β, it holds that ∥θ∗(x)− θ∗(D)∥ ≤ O(G

√
log 1/β/(µ

√
nm)). Thus, we have

that θ∗(D) is contained in Bd(θ0, R′) for R′ = O
(
G
µ

(√
d

n
√
m

+ 1√
nm

))
with probability at least 1 − β. Finally, we use

the Phased-SCO algorithm with (ε/2, δ/2)-DP over the region K′ = K ∩ Bd(θ0, R′). We get our desired conclusion by
plugging in the bound for R′ in Theorem 5.1, again setting β = 1/2n2m.

We suspect that Proposition B.1 might already be known in literature. Since we are unaware of a reference, we include a
proof for completeness, which incidentally uses our new result about deletion stability (Theorem 3.6).

Proof of Proposition B.1. First, it is well known from Shalev-Shwartz et al. (2009) that

E
x∼Dn×m

[L(θ∗(x);D)]− L(θ∗(D);D) ≤ 4G2

µnm
.

On the other hand, from strong convexity we have for all x that

L(θ∗(x);D)− L(θ∗(D);D) ≥ µ

2
· ∥θ∗(x)− θ∗(D)∥2.

Combining the above, we have

E
x∼Dn×m

[∥θ∗(x)− θ∗(D)∥] ≤ 3G

µ
√
nm

. (10)

12

On User-Level Private Convex Optimization

Additionally, from Theorem 3.6 (invoked twice with m← nm and n← 2, followed by the triangle inequality and a union
bound), it follows that

Pr
x,x′∼Dn×m

[
∥θ∗(x)− θ∗(x′)∥ ≤

10G
√

log(2/β)

µ
√
nm

]
≤ β.

By an averaging argument, there exists θ0 = θ∗(x(0)) for some x(0), such that

Pr
x∼Dn×m

[
∥θ∗(x)− θ0∥ ≤

10G
√
log(2/β)

µ
√
nm

]
≤ β.

Thus, combining with Equation (10), we have

E
x∼Dn×m

∥θ∗(x)− θ∗(D)∥ ≥ (1− β) ·

(
∥θ0 − θ∗(D)∥ −

10G
√
log(2/β)

µ
√
nm

)

=⇒ ∥θ0 − θ∗(D)∥ ≤
20G

√
log(2/β)

µ
√
nm

(for β < 1/2).

Finally by the triangle inequality, we get

Pr
x∼Dn×m

[
∥θ∗(x)− θ∗(D)∥ ≤

30G
√

log(2/β)

µ
√
nm

]
≤ β.

C. On Speeding up our Algorithms
As stated in Section 6, the time bottleneck of our algorithm is DelOutputPert, which requires computing XR1

stable. Doing
this in a straightforward manner requires enumerating all sets S of size R1, resulting in a running time of nR1(md)O(1) =
nO(log(1/δ)/ε)(md)O(1). In this section, we sketch an argument that brings the time down to (nmd)O(1) with high
probability, while maintaining all the error bounds to within Õε(1) factor. Note that all algorithms invoke DelOutputPert
through Theorem 3.1 (i.e., the SCOutputPert algorithm). Therefore, it suffices to argue how to achieve the speed up for
SCOutputPert.

The first observation here is that if x belongs to XR1

stable, then we can just output θ∗(x)+N (0, σ2 · I). Furthermore, we have
already shown (Theorem 3.1) that x ∈ XR1

stable with high probability. Thus, if we can give a “certificate” that x ∈ XR1

stable,
then we would be able to complete skip the check and just output θ∗(x) +N (0, σ2 · I); this means that, whenever we have
such a certificate, our algorithm will run in polynomial (in n,m, d) time.

Our certificate is simple: the gradients at θ∗ w.r.t. each user. The following lemma (whose proof is similar to part of the
proof of Theorem 3.6) relates this certificate to ∆r (which in turn implies membership in XR1

stable for appropriate ∆).

Lemma C.1. Let x be any dataset and let θ∗ := θ∗(x). Suppose that for all i ∈ [n], we have ∥∇L(θ∗;xi)∥ ≤ γ. Then, we
have ∆r θ

∗(x) ≤ ∆ for ∆ = O(rγµn) for all r ≤ n/2.

Proof. Consider any set S ⊆ [n] such that |S| ≤ r. Let s := |S| and θ∗−S := θ∗(x−S). Since∇L(θ∗;x) = 0, we have

∥∇L(θ∗;x−S)∥ =

∥∥∥∥∥ 1

n− s
∑
i∈S
∇L(θ∗;xi)

∥∥∥∥∥
≤ 1

n− s
∑
i∈S
∥∇L(θ∗;xi)∥

≤ sγ

n− s
≤ rγ

n/2
= O(rγ/n).

13

On User-Level Private Convex Optimization

Therefore, we have

L(θ∗;x−S)− L(θ∗−S ;x−S) ≤
〈
∇L(θ∗;x−S), θ∗ − θ∗−S

〉
≤ O(rγ/n) · ∥θ∗ − θ∗−S∥.

On the other hand, since ℓ is µ-strongly convex and since θ∗−S is the minimizer for L(·;x−S), we can conclude that

L(θ∗;x−S)− L(θ∗−S ;x−S) ≥
µ

2
∥θ∗−S − θ∗∥2

Comparing the two bounds above, we get

∥θ∗ − θ∗,π−n∥ ≤ O

(
rγ

µn

)
.

Recall also from the proof of Theorem 3.6 that w.h.p. we have ∥∇L(θ∗;xi)∥ ≤ Õ(G/
√
m). When this holds, by

computing
∑
j∈[m]∇ℓ(θ∗;xi,j) for all i ∈ [n], the above lemma means that this is a certificate that x ∈ XR1

stable when we

set ∆ = O(κγµn) = Õ
(
G·log(1/δ)
εµn
√
m

)
. Plugging this into Theorem 3.3, we arrive at a statement similar to Theorem 3.1 but with

σ = O

(
G
√
log n log(1/δ)/ε+ log(1/β)

µn
√
m

· (log(1/δ))
2.5

ε3

)
,

i.e., with an extra factor of O(log(1/δ)/ε). On the other hand, from the discussion about the certificate, we have that this
algorithm runs in polynomial time with high probability (whenever ∥∇L(θ∗;xi)∥ ≤ Õ(

√
m)).

D. On Lower Bounds for User-Level DP-ERM and DP-SCO
This section discusses lower bounds for user-level DP-SCO and DP-ERM. We start by noting that Levy et al. (2021) already
proved a lower bound of Ω

(
RG

(
1√
nm

+
√
d

εn
√
m

))
for DP-SCO for the convex case assuming n ≥ Ω

(√
d/ε
)

. It can be

easily seen that this also implies a lower bound of Ω
(
RG ·

√
d

εn
√
m

)
for Ω

(√
d/ε
)
≤ n ≤ O

(
d/ε2

)
(see, e.g., the proof of

Theorem D.8 below). In the remainder of this section, we extend their techniques to show the lower bounds for strongly
convex losses.

D.1. Preliminaries

Throughout, we will consider the loss ℓζsq(θ;x) := ζ · ∥θ − x∥2 where ζ > 0 is a parameter. We list here a few results that
will be useful throughout. We start by defining the (ℓ2-)truncated version of the Gaussian distribution as follows.
Definition D.1. Let N tr(χ,Σ;B) denote the distribution of r.v. Z drawn as follows. First, draw Z ′ ∼ N (χ,Σ). Then, let
Z = Z ′ · 1[∥Z ′∥ ≤ B]. We use χtr(χ,Σ;B) to denote the mean of the distribution N tr(χ,Σ;B).

As shown in Levy et al. (2021), the means of the truncated Gaussian distribution and the standard (non-truncated) version
are very close:
Lemma D.2 (Levy et al. 2021). For any χ ∈ Rd, d ∈ N, σ > 0, if ∥χ∥2 + 100

√
d · σ < B, then ∥χtr(χ, σ2Id;B)− χ∥2 ≤

O((σ + ∥χ∥2) · e−10d).

Since the version of the lemma in Levy et al. 2021 is slightly different than the one we use here, we give a proof sketch of
this below6.

Proof Sketch of Lemma D.2. Due to spherical symmetry, we may assume w.l.o.g. that χ2 = · · · = χd = 0 and χ1 ≥ 0.
Again, due to symmetry, we have χtr(χ, σ2Id;B)2 = · · · = χtr(χ, σ2Id;B)d = 0 and thus ∥χtr(χ, σ2Id;B) − χ∥2 =
|χtr(χ, σ2Id;B)1 − χ1|.

To bound this term, observe further that we may view Z1 as being generated as follows:

6More precisely, Levy et al. 2021 is using truncation in a coordinate-by-coordinate manner (i.e., by the ℓ∞-norm), which results in an
extra polylogarithmic factor.

14

On User-Level Private Convex Optimization

• Sample Z ′1 ∼ N (χ1, σ
2).

• Sample U ∼ χ2(d− 1) . (This represents ((Z ′2)
2 + · · ·+ (Z ′d)

2)/σ2.)

• Let Z1 = Z ′1 · 1[(Z ′1)2 + σ2 · U ≤ B2]

For u > 0, let µu denote the mean of Z1 conditioned on U = u. We have

χtr(χ, σ2Id;B) = E
U∼χ2(d−1)

[µU].

From symmetry, it is again simple to see that 0 ≤ µU ≤ χ1. As such, we have

|χtr(χ, σ2Id;B)1 − χ1| ≤ E
U∼χ2(d−1)

[|µU − χ1|] = E
U∼χ2(d−1)

[χ1 − µU].

Now, using standard concentration of χ2(d−1) distribution (see e.g., (Laurent & Massart, 2000)), we have PrU∼χ2(d−1)[U ≥
70
√
d] ≤ e−10d. From this, we have

|χtr(χ, σ2Id;B)1 − χ1| ≤ E
U∼χ2(d−1)

[χ1 − µU | U ≤ 70
√
d] + χ1 · Pr

U∼χ2(d−1)
[U ≥ 70

√
d]

≤ max
u∈[0,70

√
d]
(χ1 − µu) + χ1 · e−10d.

To bound the first term, observe that for a fixed u, we simply have Z1 = Z ′11[|Z ′1| ≤ Bu] where Bu :=
√
B2 − σ2u ≥

∥χ∥2 + 70
√
d · σ. Thus, we have

µu = Pr[|Z ′1| ≤ Bu]E[Z ′1 | |Z ′1| ≤ Bu] ≥ (1− e−10d) · E[Z ′1 | |Z ′1| ≤ Bu],

where the probability bound on Pr[|Z ′1| > Bu] is based on standard concentrations of a (single-variate) Gaussian.

Finally, E[Z ′1 | |Z ′1| ≤ Bu] is simply the expectation of the truncated single-variate Gaussian distribution, which has a
closed-form formula, described below. Here ψ,Φ denote the PDF and CDF of the standard normal distribution respectively,
and let α =

(
−Bu−χ1

σ

)
, β =

(
Bu−χ1

σ

)
. Note that we have β ≥ 70

√
d.

E[Z ′1 | |Z ′1| ≤ Bu] = χ1 + σ

(
ψ(α)− ψ(β)
Φ(β)− Φ(α)

)
≥ χ1 − σ ·O(ψ(β)) ≥ χ1 − σ ·O(e−10d).

Plugging the previous three bounds together, we have

|χtr(χ, σ2Id;B)1 − χ1| ≤ O((σ + χ1) · e−10d).

More importantly, Levy et al. (2021) make the following crucial observation, which allows us to reduce any user-level DP
algorithm for Gaussian distribution back to an item-level DP algorithm, albeit with the variance that is m times smaller.

Lemma D.3 (User-to-Item Level Reduction, Levy et al. 2021). LetAuser be any user-level (ε, δ)-DP algorithm. Then, there
exists an item-level (ε, δ)-DP algorithm Aitem such that, for any Gaussian distribution D = N (χ, σ2Id), Auser(Dn×m)

has exactly the same distribution as Aitem(D̃n) where D̃ = N
(
χ, σ

2

m Id

)
.

Finally, we will use the following “fingerprinting lemma for Gaussians” result due to Kamath et al. (2019), which gives a
lower bound for any DP algorithm for estimating the mean of a spherical Gaussian.

Theorem D.4 (Kamath et al. 2019). For any ψ ∈ (0, 1), σ > 0, n, d ∈ N and ε ∈ (0, 1], δ ∈ (0, 1/2] such that
δ ≤

√
d

100ψn
√

log(100ψn/
√
d)

, if there exists an item-level (ε, δ)-DP mechanismM such that, for any Gaussian distribution

D = N (χ, σ2Id) where χ is unknown with −ψσ ≤ χ ≤ ψσ it satisfies

E
χ̂←M(Dn)

[∥χ̂− χ∥2] ≤ α2 ≤ dσ2ψ2

6
,

then we must have n ≥ dσ
24αε .

15

On User-Level Private Convex Optimization

Combining Lemma D.3 and Theorem D.4, we immediately arrive at the following lower bound for the user-level DP setting.

Lemma D.5. For any ψ ∈ (0, 1), σ > 0,m, n, d ∈ N and ε ∈ (0, 1], δ ∈ (0, 1/2] such that δ ≤
√
d

100ψn
√

log(100ψn/
√
d)

, if

there exists a user-level (ε, δ)-DP mechanismM such that, for any Gaussian distribution D = N (χ, σ2Id) where χ is
unknown with − ψσ√

m
≤ χ ≤ ψσ√

m
it satisfies

E
χ̂←M(Dn×m)

[∥χ̂− χ∥2] ≤ α2 ≤ dσ2ψ2

6m
,

then we must have n ≥ dσ
24αε

√
m

.

Furthermore, combining the above with Lemma D.2, we arrive at the following lower bound where the only change is from
Gaussian distributions to truncated Gaussian distributions.

Lemma D.6. For any ψ ∈ (Ω(e−d), 1), B, σ > 0,m, n, d ∈ N and ε ∈ (0, 1], δ ∈ (0, 1/2] such that δ ≤√
d

100ψn
√

log(100ψn/
√
d)

and B > ψσ
√
d√

m
+ 100

√
dσ, if there exists a user-level (ε, δ)-DP mechanism M such that, for

any truncated Gaussian distribution D = N tr(χ, σ2Id;B) where χ is unknown with − ψσ√
m
≤ χ ≤ ψσ√

m
it satisfies

E
χ̂←M(Dn×m)

[∥χ̂− χtr(χ, σ2Id;B)∥2] ≤ α2 ≤ dσ2ψ2

12m
,

then we must have n ≥ dσ
50αε

√
m

.

D.2. Lower Bounds for Strongly Convex Losses

D.2.1. DP-SCO

We can now prove the lower bound for DP-SCO in the strongly convex case in a relatively straightforward manner, as
optimizing for the loss ℓsq is equivalent to mean estimation with ℓ22-error.

Theorem D.7. For any ε ∈ (0, 1], δ ∈ (0, 1/2] and any sufficiently large d, n,m ∈ N such that n ≥
√
d/ε and

δ ≤
√
d

200
√
n
√
logn

, there exists a µ-strongly convex G-Lipschitz loss function ℓ such that for any (ε, δ)-DP algorithm, we

have

sup
D

(
E

θ̂←M(Dn)

[
L(θ̂;D)

]
− L(θ∗;D)

)
≥ Ω

(
G2

µ

(
1

nm
+

d

ε2n2m

))
.

We note that the condition n ≥
√
d/ε may be unnecessary. However, a slightly weaker condition n

√
m ≥ Ω(

√
d/ε) is

necessary because outputting, e.g., the origin already achieves an error of G2/µ. Therefore, the second term G2

µ ·
d

ε2n2m
cannot be present in this case.

Proof of Theorem D.7. The first term of Ω
(
G2

µ
1
nm

)
is simply the statistical excess risk bound that holds even without any

privacy considerations (Agarwal et al., 2012). We will only focus on the second term here.

Consider ℓ = ℓζsq for ζ = µ/2 and the parameter space K = Bd(0, G/µ). The loss is µ-strongly convex and is G-Lipschitz
in K. Set the parameters as follows: B = G

µ , σ = B
1000

√
d
, ψ = 1. Let α = dσ

100εn
√
m

; note that when n ≥
√
d/ε, we also

have α2 ≤ dσ2ψ2

12m as desired. Thus, we may apply Lemma D.6 with these parameters. This implies that, for any user-level
(ε, δ)-DP mechanismM, there must be some truncated Gaussian distribution D = N (χ, σ2Id;B) such that

E
χ̂←M(Dn×m)

[∥χ̂− χtr(χ, σ2Id;B)∥2] ≥ Ω(α2) = Ω

(
G2

µ2
· d

ε2n2m

)
.

Moreover, the excess (population) risk can be expanded as

E
θ̂←M(Dn×m)

[
L(θ̂;D)

]
− L(θ∗;D) = µ

2
· E
θ̂←M(Dn×m)

[∥θ̂ − χtr(χ, σ2Id;B)∥2] ≥ Ω

(
G2

µ
· d

ε2n2m

)
.

16

On User-Level Private Convex Optimization

D.2.2. DP-ERM

The proof for DP-ERM is similar to above, except that we now have to account for the error between the population mean
and the empirical mean. We enforce the parameters in such a way that this error is dominated by the lower bound given by
Theorem D.7.

Theorem D.8. There exists a sufficiently small constant c > 0 such that the following holds. For any ε ∈ (0, 1], δ ∈ (0, 1/2]

and any sufficiently large d, n,m ∈ N such that cd/ε2 ≤ n ≥
√
d/ε and δ ≤

√
d

200
√
n
√
logn

, there exists a µ-strongly convex

G-Lipschitz loss function ℓ such that for any (ε, δ)-DP algorithm, we have

sup
D

(
E

x←Dn×m,θ̂←M(x)

[
L(θ̂;x)− L(θ∗;x)

])
≥ Ω

(
G2

µ
· d

ε2n2m

)
.

In addition to the assumption n ≥
√
d/ε as in Theorem D.7, this theorem also requires the assumption n ≤ O(d/ε2).

This assumption is required for the error between the empirical mean and the population mean to be small enough to be
dominated by the error term Ω

(
G2

µ ·
d

ε2n2m

)
.

Proof of Theorem D.8. Let ℓ, B, σ, ψ, α be exactly as in the setting of Theorem D.7. Similarly, there must exist some
truncated Gaussian distribution D = N (χ, σ2Id;B) such that, for any (ε, δ)-DP algorithmM, we have

E
χ̂←M(Dn×m)

[∥χ̂− χtr(χ, σ2Id;B)∥2] ≥ Ω(α2) = Ω

(
G2

µ2
· d

ε2n2m

)
.

Let χ̂(x) denote the empirical mean of the dataset x. The left hand side can be further expanded as

E
χ̂←M(x),x←Dn×m

[∥χ̂− χtr(χ, σ2Id;B)∥2]

≤ 2

(
E

χ̂←M(x),x←Dn×m
[∥χ̂− χ̂(x)∥2] + E

x←Dn×m
[∥χ̂(x)− χtr(χ, σ2Id;B)∥2]

)
= 2 E

χ̂←M(x),x←Dn×m
[∥χ̂− χ̂(x)∥2] +O

(
B2

nm

)
= 2 E

χ̂←M(x),x←Dn×m
[∥χ̂− χ̂(x)∥2] +O

(
G2

µ2
· 1

nm

)
.

Since we assume that n ≤ cd/ε2, we have 1
nm ≤ c ·

d
ε2n2m . Therefore, when c is sufficiently small, we can combine the

previous two inequalities to conclude that

E
χ̂←M(x),x←Dn×m

[∥χ− χ̂(x)∥2] ≥ Ω

(
G2

µ2
· d

ε2n2m

)
. (11)

Finally, the excess (empirical) risk can be expanded as

E
θ̂←M(x),x←Dn×m

[
L(θ̂;x)− L(θ∗;x)

]
=
µ

2
· E
θ̂←M(x),x←Dn×m

[∥θ̂ − χ̂(x)∥2]
(11)
≥ Ω

(
G2

µ
· d

ε2n2m

)
.

17

