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Abstract
Deep neural networks often fail catastrophically
by relying on spurious correlations. Most prior
work assumes a clear dichotomy into spurious
and reliable features; however, this is often un-
realistic. For example, most of the time we do
not want an autonomous car to simply copy the
speed of surrounding cars—we don’t want our
car to run a red light if a neighboring car does so.
However, we cannot simply enforce invariance to
next-lane speed, since it could provide valuable
information about an unobservable pedestrian at
a crosswalk. Thus, universally ignoring features
that are sometimes (but not always) reliable can
lead to non-robust performance. We formalize
a new setting called contextual reliability which
accounts for the fact that the “right” features to
use may vary depending on the context. We pro-
pose and analyze a two-stage framework called
Explicit Non-spurious feature Prediction (ENP)
which first identifies the relevant features to use
for a given context, then trains a model to rely
exclusively on these features. Our work theoreti-
cally and empirically demonstrates the advantages
of ENP over existing methods and provides new
benchmarks for contextual reliability.

1. Introduction
Despite remarkable performance on benchmarks, deep neu-
ral networks often fail catastrophically when deployed un-
der slightly different conditions than they were trained on.
Such failures are commonly attributed to the model relying
on “spurious” features (e.g., background) rather than “non-
spurious” features that remain reliably predictive even for
out of distribution inputs. Prior work has focused on learn-
ing models that rely exclusively on non-spurious features.
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We argue that such a neat delineation of features as “non-
spurious” and “spurious” is often unrealistic. As an example,
consider autonomous driving. In some cases, it can be dan-
gerous to rely on the speed of cars in the neighboring lane.
A neighboring car running a red light should not cause the
agent to dangerously run a red light as well, and a neighbor-
ing car slowing to turn left should not cause an agent going
straight to slow down. At a crosswalk, however, the brak-
ing of a neighboring car carries evidence of an unobserved
pedestrian and should be treated as a cause for stopping.
Thus, we observe that neighboring-lane speed cannot be
globally treated either as spurious or non-spurious, it must
be used or ignored depending on the context. Similarly,
image backgrounds are often considered spurious in prior
robustness research. However, we contend that there are
contexts where the background is useful and should not be
ignored, for example, when the foreground is occluded or
ambiguous. In fact, humans often use the background to
identify objects in such situations (Torralba, 2003).

In this work, we propose and study contextual reliability, a
new setting that better captures the above nuances of real-
world settings. We assume that the data comes from differ-
ent latent contexts, each of which has a potentially different
designation of spurious and non-spurious features. Thus, in
contrast to prior settings, the optimal robust predictor might
need to rely on different features in different contexts.

How to improve contextual reliability? The predominant ap-
proach to improving robustness enforces invariance across
a fixed set of spurious features (Muandet et al., 2013; Blan-
chard et al., 2011; Gulrajani & Lopez-Paz, 2020; Rosenfeld
et al., 2021) but such a set need not exist in our setting.
The alternative active learning approaches do not require a
predefined set of features, but actively source maximally un-
certain data with the hope of breaking spurious correlations.
These approaches also fail to address contextual reliability
due to poor uncertainty estimates when different features are
spurious across different contexts. Finally, robust optimiza-
tion based approaches also fail to control for performance
across multiple contexts without explicit information about
the latent contexts of different training points. This suggests
that we need some additional information about the latent
context in order to improve contextual reliability.

1



Contextual Reliability

Figure 1. Our Setting and Proposed Framework. (Left Panel) Typically, it is dangerous for an autonomous car to get influenced by cars
in the next lane—you do not want to run a red light if the car next to you does. Prior work provides methods to be invariant to the speed of
neighboring cars. However, in the context of a pedestrian crossing, such an invariance is dangerous. The braking of the neighboring car
can provide valuable information about a potential pedestrian. (Right Panel) We propose a two-stage framework for achieving reliable
performance. In the first stage, a feature prediction model is trained to predict the set of non-spurious features from human annotations. In
the second stage, we train a target model that is invariant to predicted spurious features.

Having established the necessity of context information,
we consider the problem of harnessing it effectively. We
propose a framework called Explicit Non-spurious feature
Prediction (ENP). Ideally, we want to train a model that is
invariant to the context-dependent spurious features. Rather
than expecting end-to-end training to implicitly uncover
contexts and respect their feature invariances, ENP employs
a divide and conquer approach whereby the model first ex-
plicitly predicts the context before making a final prediction
that respects the predicted context’s invariances. To pro-
vide explicit supervision for the first identification step, we
augment a small fraction of the training set with explicit
annotations (termed feature annotations) on what features
the optimal robust predictor should rely on. We analytically
compare ENP to a variety of baselines (both with and with-
out context information) in a simple linear setting. This
allows us to precisely characterize the conditions when con-
text information is helpful, and how different approaches to
incorporating context compare. We also confirm these find-
ings via simulations on linear models and neural networks.

Finally, we consider a variety of semi-synthetic and real-
world datasets that require contextual reliability ranging
from control to image classification and motion forecasting
with real-world autonomous vehicle data from the Wayo
Open Motion Dataset (WOMD) (Ettinger et al., 2021). On
WOMD, we make use of crowd-sourced human annotations
of vehicle spuriousness provided in (Roelofs et al., 2022).
ENP offers consistent gains over baselines across all these
settings, offerings gains of around 15% in control environ-
ments and 6% in image classification, and 5% on WOMD.
Ultimately, we hope that our setting of contextual reliability
and proposed ENP method serve as a setting and benchmark
for addressing this important real-world challenge.

2. Related Works
Robustness in supervised learning. Prior works in ma-
chine learning have investigated various distribution shift
types: subpopulation shifts (Hu et al., 2018; Sagawa et al.,

2019b), input perturbations and adversarial shifts (Goodfel-
low et al., 2014; Raghunathan et al., 2018), and generaliza-
tion to new domains (Gulrajani & Lopez-Paz, 2020). Our
setting of contextual reliability is most closely related to
subpopulation shifts and one line of work to address this is
Distributionally Robust Optimization (DRO) (Duchi et al.,
2019; Liu & Ziebart, 2014). DRO optimizes the worst-
subpopulation performance, which can be over-conservative
and statistically inefficient (Hu et al., 2018). A slightly
different setting is domain generalization, where the goal
is to learn a predictor that extrapolates to unseen subpop-
ulations (Li et al., 2018). Usually, assumptions about the
relationship between domains are made in order to allow
the robust predictor to be reliably identified (Muandet et al.,
2013). Our setting of contextual reliability is similar to do-
main generalization in that the goal is to be optimally robust
on every context, however, we do not consider the task of
extrapolating to new contexts and do not rely on end-to-end
training. Rather, we explicitly infer the context and enforce
invariance to the spurious features in each context.

Robustness in imitation learning. Imitation learning nat-
urally suffers from distribution shift: during training, the
distribution of observed states arises from the expert pol-
icy, while in testing it arises from the learned policy (Ross
et al., 2011; Tien et al., 2023). As a result, prior works
have contributed methods for achieving robustness to these
shifts. De Haan et al. (2019) propose learning the true
causal graph of an expert’s policy through online execution
and expert queries. Lyle et al. (2021) examine uncertainty-
based exploration for disambiguating spurious correlations
in both online and imitation learning settings. Although
these methods have achieved success in previously studied
robustness settings, they primarily rely on careful data col-
lection in the environment. As we demonstrate in Section
6, techniques for achieving this often fail under contex-
tual reliability. Other work on robust imitation learning
considers Bayesian robustness to uncertainty over the objec-
tive (Brown et al., 2020; Javed et al., 2021), in contrast to
the contextual feature reliability we study.
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Incorporating prior knowledge. Recent works have pro-
posed methods for leveraging prior human knowledge to
improve neural network robustness. For example, Koh et al.
(2020) introduces the concept bottleneck method for em-
bedding interpretable human concepts within neural net-
works. Although the concept bottleneck shares a similar
high-level approach to our paper of imposing explicit struc-
ture in neural networks, concept bottleneck models do not
consider the problem of controlling when different features
are utilized, as we are concerned with. Notably concept
bottleneck models represent an ideal setting for our method
as the presence of human-interpretable concepts makes pro-
viding the annotations we consider in this work feasible.
Another approach for incorporating prior human knowledge
is explicitly regularizing model saliency maps to align with
human annotations (Ross et al., 2017a). In our work, we
demonstrate that human annotation of relevant features is
particularly essential in the contextual reliability setting.
However, we avoid directly regularizing saliency maps in
favor of data augmentations due to the fragility of saliency
methods observed in prior work (Shah et al., 2021).

3. The Setting of Contextual Reliability
We first formalize relevant background and introduce the
setting of contextual reliability. Next, we contrast our setting
with prior distribution shift settings.

Preliminaries. We learn predictors that map an input x ∈ X
to some target y ∈ Y where Y is a discrete set. The target
could either be a class label as in supervised learning, or
the expert action in imitation learning. We assume access
to n sampled training points {(x(1), y(1)), . . . (x(n), y(n))}.
Let θ ∈ Θ parameterize the class of predictors such that
f(x; θ) ∈ R and ℓ : R×Y 7→ R is used to compute the
loss ℓ(f(x; θ), y) that evaluates the prediction at point x, for
parameter θ.

Reliable performance. We are interested in models that
work reliably, even under shifts between the train and test
distributions. We consider two settings: supervised learning
and imitation learning. In the supervised learning setting,
we are interested in training robust models that work well
across all subpopulations in the training data. For exam-
ple, these partitions could each model different settings
like normal driving conditions, slowdowns due to accidents
etc. Typically some subpopulations (e.g. normal driving
conditions) are more common than others (e.g. accident-
induced slowdowns). However, at test time, it is imperative
to achieve good performance in all subpopulations including
the less frequent ones.

Formally, training inputs z = (x, y) are drawn from a mix-
ture distribution over the set of K latent subpopulations, i.e.,
z ∼ P

def
=
∑

k∈[K] αkPk, where Pk is the distribution over

the kth subpopulation. The goal is to control the worst-case
performance across all subpopulations:

Errrob(θ)
def
= max

k∈[K]
E(x,y)∼Pk

[ℓ(f(x; θ), y)], (1)

where ℓ is some appropriate loss function.

In the imitation learning setting, distribution shifts naturally
arise due to a difference between the train distribution (in-
duced by the expert policy) and test distribution (induced
by the learned policy) which often leads to poor test perfor-
mance of such methods (De Haan et al., 2019). Our metric
of interest Errrob(θ) in these imitation learning settings is
simply the total reward obtained by the policy induced by θ.

3.1. Background: Prior Robustness Methods

When training deep networks, it is widely observed that sim-
ply minimizing the empirical loss on the training data leads
to poor performance under subpopulation shifts (Koh et al.,
2021; Beery et al., 2021; Zech et al., 2018). Several ap-
proaches have been proposed to achieve robust performance
under these shifts.

Consider the optimal robust predictor defined as follows.

θ⋆rob
def
= argmin

θ∈Θ
Errrob(θ). (2)

Prior approaches consider different training methods that
are aimed at retrieving θ⋆rob.

Invariance-based approaches. One popular approach to
improve robustness is to enforce invariances that are dis-
played by the optimal robust predictor θ⋆rob. To do so, it is
convenient to think of a model as using various “features”
Φ, where each ϕ : X 7→ R ∈ Φ is non-spurious with respect
to the optimal robust predictor θ⋆rob if f(x; θ⋆rob) varies as
the feature ϕ(x) varies. All other features are considered
spurious, i.e., f(x; θ⋆rob) is invariant to spurious features.
Some approaches assume knowledge of the spurious fea-
tures and directly enforce invariance during training via
appropriate augmentations (Botev et al., 2022) or regulariz-
ing saliency maps (Ross et al., 2017b). Other works address
the case where spurious features must be inferred automat-
ically; however, these approaches offer limited gains in
practice (Arjovsky et al., 2019; Heinze-Deml et al., 2018;
Peters et al., 2016).

Robust optimization approaches. Another family of ro-
bust training methods minimize the worst-case loss across
subpopulations in the training data (Sagawa et al., 2019b).
These methods can be viewed as minimizing the empirical
counterpart of the worst-case loss Errrob described in Equa-
tion (1). Crucially, these methods require annotating the
entire training set with the subpopulation identity.

Targeted data collection. A third family of approaches
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for learning reliable models seeks to influence the data col-
lection process such that the empirical risk minimizer over
this new distribution is close to θ⋆rob. This usually involves
collecting more data from subpopulations that are underrep-
resented in the original training distribution and requires the
ability to either interact with the environment (De Haan
et al., 2019; Lyle et al., 2021), or actively query labels for
points from an unlabeled pool (Tamkin et al., 2022). Im-
portantly, the success of these methods depends heavily on
access to reliable uncertainty estimates (e.g., Tamkin et al.
(2022); Lyle et al. (2021)) that inform the collection process.

3.2. Our Setting: Contextual Reliability

In this section, we introduce a novel setting that better cap-
tures the nuances of reliable performance in the real world.
Next, we compare it to previously studied settings.

We consider the following small twist to the data gen-
eration process. Given a discrete set of contexts C def

=
{c1, c2, . . . ck}, we first sample a context c ∼ P(c) (from a
categorical distribution over C), and then sample x, y from
a distribution Pc

def
= p((x, y) | c). Our goal is now to

achieve reliable performance in all contexts. Formally, we
are interested in the following objective:

ConErrrob(θ)
def
= max

k∈[K],
c∈C

E(x,y)∼Pk,c
[ℓ(f(x; θ), y)], (3)

where Pk,c is the probability distribution over the kth sub-
population in context c, and ℓ is an appropriate loss function.

As motivation, consider an autonomous driving setting with
a next-lane vehicle speed feature and two contexts indicating
the presence/absence of a pedestrian crossing. Across both
contexts, agent speed and next-lane vehicle speed are gen-
erally correlated. However, in the context of no-pedestrian
crossing, the slowing of a neighboring vehicle need not im-
ply that the agent should slow, absent of other information.
For example, the neighboring vehicle may be preparing to
perform a turn or responding to an obstruction in its lane.
Suddenly slowing to mimic this vehicle may be unnecessary
and expose the agent to the risk of rear-end collisions. At
a pedestrian crossing, however, braking of the neighboring
vehicle may indicate an unobservable pedestrian entering
the intersection and is evidence in itself of the need to stop.
Thus, the optimal robust predictor must rely on different
features in different contexts. Consequently, both existing
context-invariant approaches and their context-incorporating
extensions will fail to achieve reliable performance.

3.3. The Need to Incorporate Context Information

Without accounting for the context, we find all prior ap-
proaches can fail. We support this finding with intuition in
this section, analytical proofs in Section 5, and experimental

observations in Section 6.

Invariance-based methods train models that use the same
set of features in all contexts. For our autonomous vehicle
example, this would result in a model that either always uses
the next lane speed (with dangerous outcomes when there
is no pedestrian crossing and an irrelevant neighboring car
slows down) or always ignores the next lane speed (with
dangerous outcomes when there is a pedestrian crossing). In
the extreme case where every feature is used by the optimal
robust predictor in some context, invariance-based methods
reduce to standard empirical minimization which is well
documented to perform poorly under distribution shifts.

Robust optimization approaches on the other hand, make no
assumptions of universal invariance with respect to features.
However, they also fail if we do not incorporate context.
Minimizing the empirical counterpart of the objective of
interest in Equation (3) requires annotations of the context
of training points. In the absence of context annotations, we
can only minimize the empirical counterpart of Equation (1)
which can differ wildly from Equation (3) if the contexts
are imbalanced in the training data. Finally, our empirical
investigation in Section 6 reveals that uncertainty-based data
collection methods also fail to successfully handle multiple
contexts. We hypothesize that this is due to the challenging
nature of forming high-quality uncertainty estimates when
confronted with latent contexts.

4. How to Incorporate Context Information?
In the previous section, we introduced the setting of con-
textual reliability, where the optimal robust predictor relies
on different features in different contexts, and argued that
achieving reliable performance requires access to context
information. In this section, we explore different ways of
collecting and incorporating this information into model
training. We start with a natural extension of prior ap-
proaches and describe its limitations. We then present our
proposed approach and demonstrate it is a viable method
for addressing the limitations faced by the baseline method.

4.1. Context Identity Annotations

In order to incorporate context knowledge, we can annotate
every training point with its corresponding context. For-
mally, we annotate each training point (x(i), y(i)) with c(i)

such that (x(i), y(i)) ∼ Pc(i) .

Independent Classifier Per-Context (ICC). With this con-
text identity information, one natural baseline is to simply
train a separate model (via empirical risk minimization) for
each context. At test time, we first predict the context of the
input and then use the corresponding predictor. We refer to
this method as ICC (independent classifier per-context).
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Context-Based Robust Optimization (conDRO). A more
sophisticated way to leverage context annotations is via ro-
bust optimization. Robust optimization approaches already
assume annotations of the subpopulation identities of the
training data, where different subpopulations capture par-
titions of the input space across which we want to obtain
good worst-case performance. Equipped with additional
context identities of training points, we can partition the
training data into m = |C| ×K groups and minimize the
worst-case training loss across all m groups. Here, we have
K sub-populations for each context and |C| contexts. This
would be the empirical counterpart of our objective of inter-
est in Equation (3). We refer to this method as conDRO, an
extension of robust optimization with context information.

θconDRO
def
= argmin

θ∈Θ
max
k∈[K],
c∈C

E(x,y)∼P̂k,c
[ℓ(f(x; θ), y)], (4)

where P̂k,c is the empirical distribution over all training
points sampled from Pk,c. In this work, we propose a
new framework for extracting and incorporating information
about contexts: Explicit Non-spurious feature Prediction
(ENP). We propose to use a different kind of annotation
rather than the natural but naive annotation of context iden-
tities.

4.2. Explicit Non-Spurious Feature Prediction

Our framework is motivated by looking more carefully at
what the optimal robust predictor should do in the contextual
reliability setting. Recall that under contextual reliability,
the optimal robust predictor relies on different features in
different contexts. Therefore, the optimal robust predictor
should first infer the context, and then leverage the contex-
tually non-spurious features, while being invariant to the
spurious ones. Rather than training a model end-end in
some fashion and expecting this structure to emerge due
to implicit biases in the training process, we propose to
collect context information and explicitly insert this struc-
ture into the predictor. As the context affects the optimal
predictor solely by determining the set of non-spurious fea-
tures, we solicit context information in the form of explicit
non-spurious feature annotations (formally defined below)
instead of context identities.

Feature Annotations. Let θ⋆rob(c) denote the optimal robust
predictor for context c. A feature ϕ : X 7→ R in the set
of countable features Φ is non-spurious in context c if the
distribution of f(x; θ⋆rob(c)) is not invariant to the feature
values ϕ(x) for inputs x ∼ Pc(·). Let N (c) denote the set of
all such non-spurious features ϕ(x) in context c. We propose
to annotate training point x(i), y(i) with the subset of non-
spurious features N (i) = N (c(i)) where x(i), y(i) ∼ Pc(i) .
We do not require the entire training set to be annotated, only
(without loss of generality) the first n′ < n examples. With

these annotations, we propose a two-step methodology:

Step one: Train a feature predictor. Given training data
{(x(1),N (1)), . . . (x(n′),N (n′)), we learn a predictor g :
X 7→ 2Φ that maps inputs to their corresponding set of
non-spurious features, where Φ is the set of all features.

Step two: Train a target model that relies exclusively
on predicted non-spurious features. We train a target
model that takes as input the pair of original datapoint and
its feature annotations (x, N ), and returns the prediction
f(x; θ) such that f(x; θ) is invariant to the spurious features,
i.e., all features ϕ ∈ Φ \ N . This model is trained on
training data comprising (x(i), y(i),N (i)) for i = 1, . . . n′

and (x(i), y(i), g(x(i))) for i = n′ + 1, . . . n, where g is the
trained feature predictor obtained from step one. In other
words, we use the ground-truth feature annotations when
they are provided and the predicted features annotations on
unannotated data points.

At test time, given an input x, we first apply the feature pre-
diction model g to obtain non-spurious features g(x). We
then pass (x, g(x)) as input to the target model and obtain
final predictions. We enforce invariance at both test and
training time via augmentations that perturb the values of
spurious features (either by adding noise or zeroing them
out) such that they cannot be relied upon by the target model.
Our core methodological contribution is this two-step pro-
cess where, rather than training an end-end model, we ex-
plicitly induce the structure that different features should be
used in different contexts for reliable performance. Next,
we discuss the benefits of our proposed method (ENP) over
alternatives.

4.3. Benefits of Explicit Non-Spurious Prediction

We identify three axes along which ENP outperforms alter-
native approaches to incorporating context information.

(1) Annotation cost. Our method only requires non-
spurious feature annotations on a subset of the training set
and can train a downstream model on the full training set
by using predicted feature annotations. In contrast, end-end
approaches such as conDRO require context annotations
to be provided on the entire training set. Across a variety
of semi-synthetic and real datasets, we are able to achieve
good non-spurious feature prediction accuracy with just a
small fraction of the training set annotated.

(2) Annotation feasibility. Often, it is easier for experts
to think in terms of the reliability of features for a given
input, rather than identifying a dataset-wide partition of
points into contexts. It is clear to an expert that next lane
speed should be used when they see a pedestrian crossing.
However, simply given an input with a pedestrian crossing,
it might be hard to know apriori that this corresponds to a
distinct context. In recent work, Roelofs et al. (2022) use a
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similar rationale to crowdsource the annotations of “causal
agents” in a driving scenario (discussed in Section 6).

(3) Preventing overfitting. Even if we allow context an-
notations on all training points, we find that methods like
conDRO fail. This is an issue with the inductive bias of
current training algorithms. In the limit of infinite training
data, conDRO (Equation (4)) should also minimize our met-
ric of interest (Equation (3)). However, conDRO fails to do
so with finite data because it can overfit and fail to learn
from minority subpopulations and contexts (Sagawa et al.,
2019b; 2020). Furthermore, training such a model end-end
suffers from a chicken and egg problem as described in Liu
et al. (2021b). In order to learn how to use non-spurious
features, the model must have first learned to disambiguate
the context. But without an explicit signal to disambiguate
contexts, the only signal to disambiguate comes from differ-
ent features being non-spurious across contexts. The model
needs to already know how to use non-spurious features
in order to access this signal. Our ENP framework breaks
this chicken-egg problem by providing explicit supervision
about the set of non-spurious features.

5. Analysing ENP in a Simplified Setup
In a simplified setting that distills contextual reliability, we
contrast ENP that uses non-spurious feature annotations
with four baselines: (i) IRM (Arjovsky et al., 2019) that
learns a context invariant predictor; (ii) ICC where a sepa-
rate predictor is learned for each context independently; (iii)
conDRO (Sagawa et al., 2019b) that optimizes for worst
context performance (IRM, conDRO and ICC use context
labels); and (iv) ERM which minimizes loss on labeled
examples without knowledge of contexts or feature annota-
tions. We show why each baseline performs suboptimally
(compared to ENP), either due to its over-conservative na-
ture in learning worst-case robust/invariant predictors or
due to its statistical inefficiency caused by failure to share
features across contexts. ENP’s two stage procedure affords
benefits specifically when the non-spurious feature predic-
tor is easier to learn compared to learning the contextually
reliable predictor end to end. Details on the data distribution
and precise objectives for algorithms are in Appendix A and
proofs for our theoretical results are in Appendix B.

Setup. For a binary classification problem with Y def
=

{−1, 1}, the inputs x = [x1, x2, x3] (where, x1, x2, x3 ∈
Rd) span two contexts C def

= {c1, c2}. The feature anno-
tations for contexts c1, c2 are denoted by masks C1,C2 ∈
{0, 1}3d respectively. For each context, a different set of
features is non-spurious: {x1, x2} in c1; and {x1} in c2.
Thus, C(j)

1 = 1(j ≤ 2d) and C
(j)
2 = 1(j ≤ d) where C(j)

is the jth coordinate for annotation C. For more discus-
sion on the annotations and other details on the data dis-

tribution please refer to Appendix A. In this setting, we
theoretically analyze estimates returned by ERM, IRM,
conDRO, ICC, and ENP for a class of linear predictors
W1

def
= {w ∈ R3d : ∥w∥2 ≤ 1}; and empirically evaluate

solutions returned when optimizing them over deep nets.

ENP has lower asymptotic errors than conDRO, IRM
and ERM. In Theorem 5.1, for linear models, we com-
pare the asymptotic classification errors for all algorithms
(n → ∞). We see that both conDRO and IRM yield subop-
timal performance (specifically on c1) because: (i) IRM is
only restricted to use the invariant feature x1, which is less
predictive of the label than x2 in context c1 when γ ≪ 1;
(ii) the conDRO objective enforces its solution to have high
but uniform accuracies across both c1 and c2, and since any
component along x2 would affect the losses in both contexts
in opposite ways, conDRO is forced to forego components
along x2. On the other hand, ENP improves over both since
it is allowed to use different features in c1 (both x1, x2)
and c2 (only x2). The ERM solution relies too heavily on
x2 since this significantly reduces the loss in the majority
context c1, but leads to worse than random performance on
c2. This is because correlations for x2 are flipped between
c1 and c2. While it may seem that ERM suffers because W1

class does not contain a predictor that is uniformly optimal
on both contexts, in the subsection that follows we show that
similar failures exist even when the model class is more ex-
pressive (deep nets). On the other hand, components along
x2 do not effect the predictions on c2 for ENP since these
components are effectively masked by the annotations C2.
The solution for ENP is also comparable to Bayes optimal
solutions found by ICC as is evident from corollary 5.2
which follows immediately from Theorem 5.1.

Theorem 5.1 (test accuracies on population data). For ρ1
def
= ∥µ∥2/

√
2σ, ρ2

def
= ∥µ∥2/

√
2η, and γ ≪ 1, given population

access, the following test accuracies are afforded by solu-
tions for different optimization objectives over W1. For IRM,
conDRO the accuracy ∀pc is 0.5·erfc(−ρ1) on both c1, c2;
ERM achieves 0.5 · erfc(−ρ1

√
1 + 1/γ) on c1 and 0.5 ·

erfc(−ρ1(γ−1)/
√

γ2+1/γ) on c2 as pc → 1; ENP achieves
∀pc ≥ 0.5 at least 0.25 · erfc(−ρ2) · erfc(−ρ1

√
1 + 1/γ)

on c1 and 0.25 · erfc(−ρ2) · erfc(−ρ1/
√

1+1/γ3) on c2; and
ICC achieves ∀pc 0.5 · erfc(−ρ1

√
1 + 1/γ) on c1 and 0.5 ·

erfc(−ρ1
√
1 + γ) on c2. Here, erfc(x)=2/

√
π
∫∞
x

e−t2dt.

Corollary 5.2 (Almost Bayes optimality of ENP). As the
feature predictor in the first stage of ENP gets easier to
learn (η → 0), the ratio of accuracies for ENP solu-
tion and Bayes optimal predictor approaches 1 on c1 and
erfc(−ρ1/

√
1+1/γ3)/erfc(−ρ1) on c2.

ENP is statistically more efficient than ICC when con-
texts share some features. The distribution of x1 is identi-
cal in both c1 and c2. But, recall that the ICC method (which
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Figure 2. Empirical evaluations of ENP and baselines (ERM, IRM, ICC, conDRO) on the simplified two-context setup in Section 5:
For each method, we plot the test accuracy averaged over both contexts (balanced average). In (a), (b) each method learns a linear
predictor (in W1), where the asymptotic results (n→∞) are in (a), and the finite sample results (n=100) are in (b). Similarly, in (c) we
compare finite sample results when the target predictor is a non-linear deep network. In all three plots we vary the problem parameter γ,
where reducing γ makes the feature x2 more predictive of the target in c1 and less predictive in c2. Finally, in (d) we plot the performance
of ENP as we increase the fraction of non-spurious feature annotations in the training set. For each value in the plot, we also report the
standard deviation over five independent runs. Details on exact problem parameters for these runs are in Appendix A.

also uses context annotations similar to conDRO) only relies
on samples from c2 to learn a classifier for c2 (independent
of any information from c1). This can be statistically sub-
optimal when the distribution over contexts is skewed and
consequently there are much fewer training samples drawn
from c2 (i.e., when pc → 1). On the other hand, due to
explicit annotations, ENP is aware that x1 is non-spurious
in both contexts. In Appendix B.3, we formally show that
the generalization error upper bound for ICC is worse than
ENP by a factor of O(1/

√
1− pc) on context c2.

5.1. Empirical Results in our Simplified Contextual
Reliability Setting

The empirical results in Figure 2(a) show asymptotic errors
for the various methods and the results agree with our theo-
retical findings in Theorem 5.1. First, we see that both IRM
and conDRO only learn x1 and have similar (suboptimal)
asymptotic errors on c1, compared to other methods (e.g.,
ENP) that also learn feature x2. Second, ERM has poor
test accuracy since it relies too heavily on the more predic-
tive feature x2 in the majority context c1, and since x2 is
anti-correlated on minority, ERM’s accuracy on c2 drops
below that of random baseline. Additionally, as γ increases
we see a slight drop in the performance of ENP since the
signal to noise ratio for x2 decreases in c1 (where it is used
by ENP) and increases in c2 (where it is ignored). Next,
in the finite sample setting, we see the poor performance
of ICC in Figure 2(b), since it fails to leverage the shared
feature x1 when trying to learn independent classifiers per-
context. The baseline conDRO also overfits on the minority
examples from c2, by memorizing high dimensional noise
along x2, x3 (Sagawa et al., 2020). On the other hand, com-
pared to ICC and conDRO, for any value of γ, using only
finite data ENP achieves performance closer to that of its
asymptotic value in Figure 2(a), indicating that it suffers
less from finite sample estimation errors (see Theorem B.9

in Appendix B.3). ENP improves over ICC since it can
efficiently learn the feature x1 by using samples from both
contexts, and it improves over conDRO since the feature
annotation C2 masks out any noise along x2, x3 in context
c2, preventing memorization explicitly. In Figure 2(c), we
plot the performance of methods when the model class is
one hidden layer deep networks with 512 ReLU activations.
Here, even though the model class is expressive enough
to contain predictors that are uniformly optimal over both
contexts, IRM continues to fail as it enforces invariance
whereas conDRO, ERM and ICC suffer more from statis-
tical inefficiencies. Finally, in Figure 2(d) we plot the test
accuracy of ENP as the fraction of samples with feature
annotations is increased. This improves the performance
of the learned feature predictor which in turn improves the
test performance for the target predictor, corroborating our
results in Corollary 5.2.

6. Experiments
In this section, we study contextual reliability in three set-
tings spanning supervised learning for classification (Cor-
rupted Waterbirds), imitation learning for policies (Noisy
Mountain Car), and real-world vehicle trajectory prediction
(Waymo Open Motion Dataset). We compare appropriate
baselines in each setting to ENP and demonstrate that the
theoretical benefits of ENP (Section 5) transfer to practice.
Further experimental details can be found in Appendices C
and D (for the WOMD).

6.1. Setting One: Corrupted Waterbirds

Setting. We adapt the standard Waterbirds robustness bench-
mark demonstrated in (Sagawa et al., 2019a) to generate a
data-set where the foreground bird images are blurred and
randomly cropped with probability 0.05. In this setting, sim-
ply relying on the foreground bird images (as done in prior
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Table 1. Corrupted Waterbirds classification accuracies. We
provide the worst-group accuracy for our Corrupted Waterbirds
setting, where groups are defined in terms of both the spurious
attribute and context. We test methods that don’t make use of con-
text: ERM and GroupDRO (groups assigned without context infor-
mation) as well as methods that use varying amounts of context
information: conDRO and GT-Aug. require context information
on all training points, while ENP requires only annotations on 10%
of the training points.

METHOD WORST CASE ACC.

ERM 0.67
GDRO 0.60
CONDRO 0.73
GT-AUG. 0.73
ENP 0.728

works) is suboptimal: when the foreground is corrupted, the
highly correlated background provides useful information.
On the other hand, when the foreground bird is unambigu-
ous, we want to avoid relying on the background as it is not
always predictive (for e.g. water birds in land background).

Methods. We test the following methods on Corrupted Wa-
terbirds: ERM, Group DRO (where groups are defined using
the spurious/core features (Sagawa et al., 2019a)), conDRO
(group definitions are augmented with the ground-truth con-
text), and ENP. We also compare to an oracle version of ENP
where we augment according to the ground-truth (rather than
predicted) context labels (GT-Aug.). We omit baselines such
as Just Train Twice (Liu et al., 2021a) and Learning from
Failure (Nam et al., 2020) as they strictly underperform
Group DRO. We report the worst group accuracy across
contexts (corrupted and clear foreground) in Table 1.

Results. First, we note ERM has poor worst-group accu-
racy (67%). Standard group DRO (which is state-of-the-art
on WaterBirds) actually harms robustness in our setting with
a worst-group accuracy of 60%. Thus, we cannot ignore the
context structure for improving contextual reliability. Next,
we test ENP and compare it to two methods that assume
ground-truth context information on all training points: GT-
Aug. and conDRO. Even with far less context information
(10%), ENP performs comparably to both methods (72.8%).
In Appendix E, we test the performance of our feature pre-
dictor with varying feature annotation budgets.

6.2. Setting Two: Noisy MountainCar

Setting. We study contextual reliability in imitation learning
by extending the setting studied in (De Haan et al., 2019)
where adding the previous action to the state causes the
policy to underperform due to spurious correlations. In the
original setting, it is optimal to always ignore the previous
action. However, we hypothesize that when the state is noisy,
historical actions can be useful to disambiguate it. To test

Table 2. Noisy MountainCar policy returns. We show the policy
evaluation returns of various imitation learning methods. We con-
sider two standard imitation learning methods with either access
to or no access to the previous action (respectively With(out) Prev.
Action. We test two baselines that are successful in the universally
spurious feature setting (Policy Exec Intervention and Targeted
Exploration). Finally, we test conDRO (with ground-truth access
to context on all points) and ENP (with ground truth access to
feature annotations on 10% of the training data).

METHOD TEST REWARD

WITHOUT PREV. ACTION -170.4 ± 9.7
WITH PREV. ACTION -194 ± 4.6
POLICY EXEC INTERVENTION -188.3 ± 7.2
TARGETED EXPLORATION -195.2 ± 4.2
CONDRO -188.3 ± 4.26
ENP -139.5± 13.6

this, we construct a modified version of the MountainCar
environment where noise is added to the velocity in a subset
of the state space. Since the optimal MountainCar policy
must take different actions at a given x-position depending
on which direction it is heading (up or down the slope),
making selective use of the previous action is necessary to
recover the heading information lost by the state noise.

Results for baselines. We first test two approaches based on
standard imitation learning: Without Prev. Action assumes
no access to the previous action and With Prev. Action
allows access to it. As shown in Table 2, both methods
perform poorly, demonstrating the insufficiency of universal
invariance to the previous action. Next, we consider learning
a causal graph of the optimal action through policy execu-
tion (De Haan et al., 2019) (Policy Exec Intervention). We
find that the learned causal graph often does not contain the
previous action despite it being useful on the noisy examples
in our setting, resulting in poor policy performance.

Prior work has also considered training an exploration pol-
icy to directly visit high uncertainty states and demonstrated
the capabilities of this approach when there exists a univer-
sal set of reliable features. We test this method (Targeted
Exploration) (implementation details in Appendix C) and
our results in Table 2 demonstrate the insufficiency of this
approach and exemplify the challenges of uncertainty based
active-learning in the contextual reliability setting.

Finally we test conDRO in the imitation learning setting,
defining groups using the ground-truth context, current ac-
tion, and previous action. We find that it performs poorly
(−188.3) and hypothesize that this arises from a mismatch
between the conDRO objective and the evaluation metric of
policy execution reward.

Results for ENP. We test the ENP framework in the Noisy
MountainCar setting. We train a non-spurious feature pre-
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Table 3. Validation minADE on Waymo Open Motion Dataset.
We present the minimum average displacement error (minADE)
of various MultiPath++ models, evaluated on a validation set with
all agents labeled spurious by humans removed. We compare with
two methods that do not use any annotation information: Standard
training and Random Augmentations (where agents are randomly
deleted during training). Given access to spuriousness annota-
tions, we test a method where only human-annotated samples are
augmented (Annotated Augmentations) and ENP.

METHOD PERTURBED MINADE

STANDARD 0.817
RANDOM AUGMENTATIONS 0.815
ANNOTATED AUGMENTATIONS 0.801
ENP 0.774

diction model by subsampling 10% of the training data
and providing feature annotations on these points. We use
this predictor model to label all training and test states and
enforce invariance through augmentations that randomly
perturb the previous action (when spurious) by selecting
uniformly from all possible actions. ENP’s performance
(-139.5) outperforms all baselines (best -170.4), showing
our method is successful in appropriately making use of the
previous action, while not over-relying on it.

6.3. Setting Three: Waymo Open Motion Dataset

Setting. As a preliminary evaluation of ENP on real-world
data, we perform experiments using a subset of the Waymo
Open Motion Dataset (WOMD) Ettinger et al. (2021) on the
task of predicting the future trajectory of an autonomous ve-
hicle. Roelofs et al. (2022) demonstrated that many state-of-
the-art models base their predictions on agents that human
drivers ignore as spurious and released crowd-sourced agent
spuriousness labels (termed causal agent labels) on a subset
of the data. For simplicity, we treat road agents as features
in this setting. We test all methods on a held-out subset of
the annotated data and perturb these samples by deleting
all spurious labeled agents. On a large and complex dataset
such as WOMD, it can be particularly challenging to a priori
specify an appropriate set of contexts, whereas pointwise
annotation of spuriousness can be performed easily by hu-
man drivers. This makes it impossible to test conDRO on
WOMD and provides evidence of the enhanced annotation
feasibility enjoyed by ENP (see Section 4.3).

Baselines. We compare ENP to two methods that do not
make use of feature annotations: a standard-trained Mul-
tiPath++ model (Standard) and data augmentations which
randomly delete agents during training (Random Augmenta-
tions). In addition, we examine a method that incorporates
20% of the ground-truth annotated data into the training
set and generates data augmentations that delete spurious-
labeled agents (Annotated Augmentations). We see that

Standard and Random Augmentations perform comparably
(0.817 and 0.815), while Annotated Augmentations result in
improved performance (0.801). This further demonstrates
the importance of incorporating spuriousness annotations
for achieving reliable performance.

ENP: Training a feature predictor. For the first step of
ENP, we train a feature predictor by sampling 20% of the
annotated samples and training a model to predict the spu-
riousness of a given agent on this data. We find that we
are able to use a much smaller architecture, relative to the
full MultiPath++ model and achieve 84.9% performance
on the spuriousness prediction task. The relatively small
dataset size and simple model used in our method provide
evidence of our hypothesis that learning the rules governing
the spuriousness of agents is much easier than achieving
good performance on the target task (trajectory prediction).

ENP: Training the target model. Using our trained fea-
ture predictor model, we predict feature spuriousness labels
on all trajectories in our trajectory prediction training set.
We implement ENP analogously to Annotation Augmen-
tations, except we are able to generate augmentations on
all data points using our feature prediction model. ENP
achieves a significant improvement (0.774) over Annotated
Augmentations (0.801), providing evidence of ENP’s effi-
cacy in improving model reliability with limited access to
spuriousness annotations.

7. Conclusion
We introduce and study a new setting of contextual reli-
ability where it is optimal to rely on different features in
different contexts. This captures several realistic settings
and introduces new challenges to robust machine learning.
Our theory and experiments show that methods that do not
incorporate context information struggle to improve contex-
tual reliability. Incorporating context boils down to eliciting
information from an expert about the latent context. We
propose and advocate for a framework that uses explicit
annotations of the non-spurious features for a small fraction
of the training data. The success of our method relies on two
ingredients. The first is the ability to effectively annotate
non-spurious features. As representation learning methods
improve via large-scale pretraining, it is an interesting future
direction to consider annotations in terms of higher-level
learned features. The second ingredient is the ability to suc-
cessfully learn a high-quality predictor that maps inputs to
non-spurious features. We provide evidence here that this is
indeed already possible for the real-world setting of motion
prediction in driving. We believe an exciting line of future
work is to consider even more complex context-prediction
scenarios perhaps by allowing for test-time interventions
with an expert.
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Appendix Outline

A. Additional details for the setup in Section 5.
In this section we provide details on the setup used for our analysis in section 5. We begin by describing the data distribution
and non-spurious feature annotations for each context. Then, we provide details on the various objectives we theoretically
and empirically analyze in this setup.

Data distribution. The data distribution P (over X × Y) for our setup is described in (5) where pc is the probability of
choosing the context c1 (majority context when pc ≫ 0.5), η is the signal to noise ratio that controls the hardness of learning
the non-spurious feature predictor, and γ ≪ 1 controls the signal to noise ratio (hardness of learning) for feature x2 over x1

in c1, and x1 over x2 in c2. Note, that this setup distills contextual reliability in the sense that the feature x2 is much more
useful in predicting the label in context c1 (over c2), and the invariant feature x1 is predictive of the label to the same degree
in both contexts.

For µ ∈ Rd, context c = c1 with prob. pc, and y ∼ Unif({−1, 1}),
x1 | y ∼ N (µy, σ2Id)

x2 | (y, c = c1) ∼ N (µy, γ · σ2Id)

x2 | (y, c = c2) ∼ N (−µy, 1/γ · σ2Id)

x3 | c = c1 ∼ N (µ, η2Id)

x3 | c = c2 ∼ N (−µ, η2Id) (5)

Models. For the theoretical analysis we restrict ourselves to a linear model class. In Section 5 we also have experimental
results with deep networks. We use W1 to denote the class of linear predictors that are bounded in l2 norm: W1

def
=

{x 7→ w⊤x : w ∈ R3d, ∥w∥2 ≤ 1.}. A label classifier that is used to predict the task label is evaluated using the loss
function ℓ : R×Y 7→ R evaluates classifiers w ∈ W1, and is a surrogate loss for the ℓ0/1 error where ℓ0/1(w

⊤x, y) =
1(sgn(w⊤x) = y). On the other hand, a classifier that is used to predict the context of a particular input is evaluated using
the loss function ℓ′ : R×C → R. For the theory, both the label classifier and the non-spurious feature predictor are restricted
to the linear class W1. For experiments with deep nets, we set the deep network to be a one-hidden layer ReLU network
with 512 activations.

Labels and annotations. From the distribution P above, we are given an i.i.d. sampled dataset P̂ def
= {(x(i), y(i))}ni=1 ∼ Pn.

When clear from context, we will also use P̂ to denote to denote the empirical distribution over the sampled data. The
context conditional distribution (x, y) | c is denoted by Pc. For ENP (our method) we assume access to an iid subset of
n′ ≤ n samples for which we have the feature annotations. We have two annotations C1 and C2 for c1 and c2 respectively.
The annotation is as follows. The jth co-ordinate of the feature annotation C(j) = 1(j ≤ 2d) if c = c1, and C(j) = 1(j ≤ d)
if c = c2. This is because, when γ ≪ 1 is small, both x1 and x2 are predictive of the label in c1, whereas only x1 is
predictive in c2 since the signal-to-noise ratio is poor for x2 in c2. For the conDRO baseline, we assume access to context
labels c (but not feature annotations). For label classification, we use the exponential loss: ℓ(z, y) = exp(−z · y) where
y ∈ {−1, 1} and z ∈ R. For context classification, we also use an exponential loss but one that now treats context c1 as
label +1 and context c2 as label −1, i.e., ℓ′(z, c) = exp (−z · 1(c = c1) + z · 1(c = c2)).

Algorithms. The goal of our analysis is to compare the performance of conDRO, ERM, and IRM with ENP by analyzing
the asymptotic error for the solution found by each method, and also its statistical efficiency. Here, we write the objectives
for linear predictors. For non-linear functions, the map x 7→ w⊤x is replaced with a deep neural network: f : X 7→ R.

First, we begin with the ERM and IRM objectives that uses no other auxiliary information apart from the label for each
example. The former minimizes average loss using all the features in the input, while the latter does the same only using the
invariant feature (across contexts), which is x1.

ERM: min
w∈W1

EP ℓ(w
⊤x, y) (6)

IRM: min
w∈W1,irm

EP ℓ(w
⊤x, y), (7)

where W1,irm is the class of norm bounded linear predictors that only use feature x1 i.e.,, W1,irm
def
= {w ∈ W1 : w =

[w′,0d,0d]} (w′ ∈ Rd and 0d is a d-dimensional vector of 0s).

12
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Next, we consider objectives that use context information (in addition to labels): (i) conDRO: optimizes for the worst
performance across contexts; (ii) ICC: learns a different classifier for each context using only samples drawn from that
context. Note the ICC learns Bayes optimal predictors for each context and thus has the lowest asymptotic errors.

conDRO: min
w∈W1

max
c∈C

EPc ℓ(w
⊤x, y) (8)

ICC: min
w1,w2
∈W1

EPc1
ℓ(w⊤

1 x, y) + EPc2
ℓ(w⊤

2 x, y) (9)

Finally, we describe ENP that learns two predictors: (i) non-spurious feature predictor that predicts the context (and
consequently the corresponding annotation) for each test example; (ii) the label predictor

ENP (target predictor) : min
w∈W1

pc · EP ℓ
(
w⊤ (C1 ◦ x)

)
, y) + (1− pc) · EP ℓ

(
w⊤ (C2 ◦ x)

)
, y), (10)

ENP (feature predictor) : min
g∈W1

EP ℓ
′(g⊤x, c), (11)

where, ◦ represents Hadamard product.

Note, that for conDRO we use context annotations to optimize for the worst context performance, and since this is clearly
more optimal for contextual reliability (over traditional group DRO methods that do not use context information), this is the
only DRO baseline we analyze. Subsequently, we shall see why even this strategy can be inefficient at learning the optimal
robust predictor for each context. In the IRM objective, we restrict optimization over linear predictors that make predictions
solely using x1, the only feature whose class distribution is invariant across both contexts (for each label).

B. Omitted proofs and formal statements for the analysis in Section 5
In this section, we provide proofs for our theorem statements in Section 5 of the main paper. We also provide formal
discussion on the generalization results for ENP and ICC.

B.1. Proof for Theorem 5.1

In this subsection, we prove claims regarding the asymptotic errors attained by solving population versions of the objectives
in Section A, when the model class is linear (W1). We look at each objective separately, but before that we introduce the
following two lemmas on optimal linear target predictors for each context, and accuracies on each context.

Lemma B.1 (optimal linear predictors for c1, c2). The linear predictor in W1 with the least ℓ0/1 error for context c1 is
1/(∥µ∥2

√
1+γ2) · [µγ, µ,0d], and for context c2 is 1/(∥µ∥2

√
1+γ2) · [µ,−µγ,0d]. Here ℓ0/1 is the 0-1 loss: ℓ0/1(z, y) =

1(sgn(z) = y).

Proof. For Gaussian data with the same covariance matrices for class conditionals P(x | y = 1) and P(x | y = −1), the
Bayes decision rule is given by the Fisher’s linear discriminant direction (Chapter 4; Bishop (2006)):

h(x) =

{
1, if h⊤x > 0

0, otherwise

where h = 2 · 1/σ2 [µ, µ/γ,0d] for context c1, and h = 2 · 1/σ2 [µ,−γµ,0d] for context c2 (using the covariance matrices
from the data distribution for each context). Here, 0d is a d−dimensional vector of 0s. Since, the direction of h solely
determines the ℓ0/1 error of the predictor, the optimal linear predictors in W1 are obtained by dividing them both by their
corresponding norms.

Lemma B.2 (per-context accuracy). The accuracy of predictor w = [w1, w2,0d] ∈ W1 on context c1 is 0.5 ·
erfc

(
− (w1+w2)

⊤µ

σ
√

2(∥w1∥2
2+γ∥w2∥2

2)

)
and on context c2 is 0.5 · erfc

(
− (w1−w2)

⊤µ

σ
√

2(∥w1∥2
2+

1/γ∥w2∥2
2)

)
, where erfc(x) = 2/

√
π
∫∞
x

e−t2dt.
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Proof. Let Pc1 be the probability distribution for context c1, and Pc2 be the distribution for c2. Let z1 and z2 be random
variables distributed as N (0d, σ

2Id). Then the accuracy on context c1 is,

Pc1(sgn
(
w⊤x

)
= y) = Pc1(sgn

(
w⊤x

)
y > 0)

= Pc1(yw
⊤
1 µ+ yw⊤

2 µ+ yw⊤
1 z1 + yw⊤

2 z2 > 0)

= P(z̃ > 0)

= P(z̃−µ̃/σ̃ > −µ̃/σ̃)

= P(z > −µ̃/σ̃)

= 0.5 · erfc(−µ̃/
√
2σ̃),

where z is distributed as standard Gaussian, and z̃ is a Gaussian random variable with mean µ̃
def
= µ⊤(w1+w2) and variance

σ̃2 def
= (∥w1∥2 + γ · ∥w2∥22)σ2. The last equality uses the definition of the erfc(·) function. The calculation for accuracy on

c2 remains the same except now µ̃
def
= µ⊤(w1 − w2), and σ̃2 def

= (∥w1∥2 + 1/γ · ∥w2∥22)σ2.

Lemma B.3 (solutions lie in a low dimensional subspace). For ERM conDRO, and ENP, their corresponding solutions
would belong to the set U def

= {λ1 · [µ,0d,0d] + λ2 · [0d, µ,0d] : λ
2
1 + λ2

2 = 1.}.

Proof. First, we will show that the component along x3 will be 0. Let’s say the component along xi is wi. Then, for any
context, the conditional variance V[y(w⊤x) | y], denoted as σ2

0 is σ2
0

def
= w⊤

1 V[x1 | y]w1+w⊤
2 V[x2 | y]w2+w⊤

3 V[x3 | y]w3,
and the mean is µ0

def
= w⊤

1 µ+ 1(c = c1)w
⊤
2 µ− 1(c = c2)w

⊤
2 µ. Here, V[x] ∈ Rd×d is a positive semidefinite covariance

matrix. For any context c1 or c2, the per-context accuracy improves as σ0 decreases (as per Lemma B.2) without changing
µ0. This is true when ∥w3∥2 decreases monotonically. Since the loss is classification calibrated, the loss also decreases
monotonically as ∥w3∥2 decreases. Hence, the optimal solution would necessarily have w3 = 0d.

Next, we consider the component along x1 and assume x1 = α1 · µ+ α2 · v. Assume that for the solutions of ERM, ENP
and conDRO: ω1, ω2 ̸= 0 and v⊤µ = 0. The component α2 · v will contribute to σ2

0 with the additive term α2
2σ

2∥v∥22,
without having any effect on µ0. This means that we can improve the accuracy for both contexts (reduce loss ℓ) further by
reducing α2. This contradicts the assumption that α2 ̸= 0 for the solutions of ERM, conDRO and ENP. Thus, for all the
objectives the solution would not have any component in the null space of µ along x1. Similar argument can be used to
prove that the component along the null space µ would be zero for x2 as well.

Combining the above two arguments on the component along x3 and components along null space of µ for x1, x2 we can
conclude that the solutions for ERM, conDRO and ENP would necessarily lie in the two rank subspace U .

Now, we are ready to start the proof of Theorem 5.1, and for the benefit of the reader we shall first restate the theorem
statement.

Theorem B.4 (test accuracies on population data (restated)). For ρ1
def
= ∥µ∥2/

√
2σ, ρ2

def
= ∥µ∥2/

√
2η, and γ ≪ 1, given

population access, the following test accuracies are afforded by solutions for different optimization objectives over W1.
For IRM, conDRO the accuracy ∀pc is 0.5·erfc(−ρ1) on both c1, c2; ERM achieves 0.5 · erfc(−ρ1

√
1 + 1/γ) on c1 and

0.5 · erfc(−ρ1(γ−1)/
√

γ2+1/γ) on c2 as pc → 1; ENP achieves ∀pc ≥ 0.5 at least 0.25 · erfc(−ρ2) · erfc(−ρ1
√

1 + 1/γ)

on c1 and 0.25 · erfc(−ρ2) · erfc(−ρ1/
√

1+1/γ3) on c2; and ICC achieves ∀pc 0.5 · erfc(−ρ1
√
1 + 1/γ) on c1 and 0.5 ·

erfc(−ρ1
√
1 + γ) on c2. Note that erfc(x) → 2 as x → −∞ since erfc(x) = 2/

√
π
∫∞
x

e−t2dt.

Proof. We start with the easier cases of IRM and ICC where we directly use results from the above two lemmas. Then we
shall look at conDRO and ERM where we need to deal with mixture of per-context losses. Finally, we look at ENP, where
we need to analyze both feature and target predictors.

IRM. Recall that the Wirm,1 class only consists of unit norm bounded predictors along attribute x1. Since the exponential
loss is a surrogate (Duchi et al., 2018), the predictor minimizing the exponential loss ℓ is also the one with the highest 0-1
accuracy. Thus, we can use similar arguments as in Lemma B.1 to conclude that the optimal predictor is µ/∥µ∥2, and from
arguments similar to the ones in Lemma B.2 we can conclude that the target accuracy 0.5·erfc(−∥µ∥2/

√
2σ) = 0.5·erfc(−ρ1).
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ICC. Since the exponential loss ℓ is classification calibrated, the minimizer of this loss on c1 and c2 individually also
has the least ℓ0/1 error in W1, which is exactly the predictor defined in Lemma B.1. Directly applying Lemma B.2 on
this predictor, with w1 = µγ/∥µ∥2

√
1+γ2 and w2 = µ/∥µ∥2

√
1+γ2 we conclude that test accuracy for ICC predictor on

c1 is 0.5 · erfc
(
−(w1+w2)

⊤µ/σ
√

2(∥w1∥2
2+γ∥w2∥2

2)
)
. Similarly, with w1 = µ/∥µ∥2

√
1+γ2 and w2 = −µγ/∥µ∥2

√
1+γ2 =

0.5 · erfc(−ρ1
√

1/γ + 1), the test accuracy of ICC on c2 is 0.5 · erfc
(
−(w1−w2)

⊤µ/σ
√

2(∥w1∥2
2+

1/γ∥w2∥2
2)
)

= 0.5 ·
erfc(−ρ1

√
1 + γ).

conDRO. From Lemma B.3 we know that the solution for conDRO is of the form λ⋆
1 ·v1+λ⋆

2 ·v2 where v1
def
= [µ,0d,0d] and

v2
def
= [0d, µ,0d]. Recall that ρ1

def
= ∥µ∥2/

√
2σ. Since the exponential loss is classification calibrated and (λ⋆

1)
2 + (λ⋆

2)
2 = 1,

we can say that:

λ⋆
1 ∈ arg inf

λ1∈[−1,1],

λ2
2=1−λ2

1

max
(
EPc1

ℓ(λ1µ
⊤x1 + λ2µ

⊤x2, y),EPc2
ℓ(λ1µ

⊤x1 + λ2µ
⊤x2, y)

)

= arg sup
λ1∈[−1,1],

λ2
2=1−λ2

1

min

(
erfc

(
−ρ1 ·

λ1 + λ2√
λ2
1 + γλ2

2

)
, erfc

(
−ρ1 ·

λ1 − λ2√
λ2
1 + λ2

2/γ

))

= arg sup
λ1∈[−1,1]

min

(
erfc

(
−ρ1 ·

λ1 ±
√
1− λ2

1√
λ2
1 + γ(1− λ2

1)

)
, erfc

(
−ρ1 ·

λ1 ∓
√
1− λ2

1√
λ2
1 + (1−λ2

1)/γ

))

Note that to minimize erfc(·) terms we need to increase the value of c when the terms are of the form erfc(−ρ1 · c). Thus it
is clear that λ⋆

1 > 0. Further, since γ ≪ 1, we also know that λ2
1 + γ(1− λ2

1) < λ2
1 + (1/γ) · (1− λ2

1). Thus, if assume that
λ⋆
2 ≥ 0, then the optimal value is λ⋆

1 = 1 and λ⋆
2 = 0. On the other hand, if we assume that λ⋆

2 < 0, then the minimum
of the erfc terms is clearly lower than erfc(−ρ1), which would be the value of the above objective at λ⋆

1 = 1. Therefore,
we conclude that λ⋆

1 = 1, λ⋆
2 = 0, which yields the following solution for conDRO: [µ/∥µ∥2,0d,0d]. From Lemma B.2 we

know that on both contexts this solution has accuracy 0.5 · erfc(−ρ1) which also matches the performance of IRM.

ERM. Once again because of classification calibrated losses, and Lemma B.3, similar to conDRO, we can re-write the
ERM problem as the following optimization objective:

inf
λ1∈[−1,1],λ2

2=1−λ2
1

pc · EPc1
ℓ(λ1µ

⊤x1 + λ2µ
⊤x2, y) + (1− pc) · EPc2

ℓ(λ1µ
⊤x1 + λ2µ

⊤x2, y)

Since, for every pc we can construct a Cauchy sequence of λ(1), λ(2), . . . , λ(n) that converges uniformly to the arg inf at the
given value of pc, we can apply Moore-Osgood theorem. The following interchanges limits and finds the solution for ERM
at pc → 1.

λ⋆
1 ∈ arg inf

λ1∈[−1,1],

λ2
2=1−λ2

1

EPc1
ℓ(λ1µ

⊤x1 + λ2µ
⊤x2, y)

Now, using Lemma B.1 we get λ⋆
1 = γ/∥µ∥2

√
1+γ2 and λ⋆

2 = 1/∥µ∥2

√
1+γ2. Then, we finally apply Lemma B.2 to conclude

that the accuracy of ERM solution as pc → 1 is 0.5 · erfc(−ρ1
√

1 + 1/γ) on c1 and 0.5 · erfc(−ρ1(γ−1)/
√

γ2+1/γ) on c2.

ENP. Recall that ρ2
def
= ∥µ∥2/

√
2η. Thus, using arguments similar to the ones in the proof of Lemma B.1, the optimal context

predictor in W1 will have accuracy of 0.5 · erfc(−ρ2) on the context prediction problem. Here, we treated the context
prediction problem as binary classification with balanced context labels. We can always do this since we have population
access to Pc1 and Pc2 , and thus we can upsample the examples from the minority context. In our simplified setting, the
feature predictor is given directly by the context predictor since each context maps to a unique annotation.

Now, to train the target predictor we use ground truth annotations, and given population access we assume that each data
point also has the corresponding ground truth annotation, i.e., if the datapoint is from context c1, then the annotation is
C1, else it is C2. Consequently, using Lemma B.3 and given classification calibrated exponential loss, we can rewrite the
optimization problem for ENP as:

sup
λ1∈[−1,1],

λ2
2=1−λ2

1

pc · erfc
(
−ρ1 ·

λ1 + λ2√
λ2
1 + γλ2

2

)
+ (1− pc) · erfc

(
−ρ1 ·

λ1√
λ2
1 + λ2

2/γ

)
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For all λ2 > 0, we know that λ1+λ2/
√

λ2
1+γλ2

2 > λ1/
√

λ2
1+(1/γ)·λ2

2, when γ ≪ 1. When pc ≥ 0.5, then
pc · erfc (−ρ1 · λ1+λ2/

√
λ2
1+γλ2

2) ≥ (1− pc) · erfc (−ρ1 · λ1/
√

λ2
1+

λ2
2/γ) for all values of λ1 ∈ [0, 1]. Thus, from Lemma B.1

we conclude that λ⋆
1 = 1/∥µ∥2

√
1+γ2 [µγ, µ,0d]. When we have perfect ground truth annotations, then plugging this value

into the equation we above, we find that the accuracy on c1 is 0.5 ·erfc
(
−ρ1

√
1 + 1/γ

)
and on c2 is 0.5 ·erfc

(
− ρ1√

1+1/γ3

)
.

At test time, when we do not have perfect feature annotations on each input, we use the trained feature predictor which has
an accuracy of 0.5 · erfc(−ρ2). Thus the accuracy of ENP on c1 is ≥ (0.5 · erfc(−ρ2)) ·

(
0.5 · erfc

(
−ρ1

√
1 + 1/γ

))
=

0.25 · erfc(−ρ2) · erfc
(
−ρ1

√
1 + 1/γ

)
. Similarly on c2 it is ≥ (0.5 · erfc(−ρ2)) · (0.5 · erfc (−ρ1/

√
1+1/γ3)) = 0.25 ·

erfc(−ρ2) · erfc (−ρ1/
√

1+1/γ3).

B.2. Proof for Corollary 5.2

Corollary B.5 (Almost Bayes optimality of ENP). As non-spurious feature predictor becomes easier to learn (η → 0), the
ratio of accuracies for ENP solution and Bayes optimal predictor approaches 1 on c1 and erfc(−ρ1/

√
1+1/γ3)/erfc(−ρ1) on c2.

Proof. The proof of this corollary directly uses the results regarding the asymptotic performance of ENP from Theorem B.4.
Since limη→0 erfc

(
−∥µ∥2√

2η

)
= 2, the performance of ENP on c1 approaches 0.5 · erfc(−ρ1

√
1 + 1/γ) which is Bayes

optimal on c1. Similarly, on c2 it approaches 0.5 · erfc(−ρ1/
√

1+1/γ3). From this we get the performance ratios stated in
Corollary B.5.

B.3. Discussion on generalization error for ENP vs. ICC.

In the previous sections, for the class of linear predictors, we say that the asymptotic error for ENP is lower than IRM and
conDRO on context c1 and lower than ERM on c2, under some conditions on problem parameters γ, pc. Here, we will
discuss why ENP performs better than ICC given only finite samples from the distribution. The main intuition behind this
is that ICC learns a separate predictor for each context and consequently fails to learn the shared feature x1 jointly using
samples from both. Thus, for the minority context the learned predictor would generalize poorly. On the other hand, ENP
learns a single predictor for both contexts and instead uses different augmentations for samples from each context. This
allows ENP to use samples from the majority context to learn the shared feature x1 that works well on the minority context
as well.

We will now formalize this argument by relying upon existing generalization bounds in prior works for l2 norm bounded
linear predictors. Specifically, we reuse the following generalization bound that is derived using a union bound argument,
and thus is applicable to any linear predictor in W1 (including ERM estimate).

Lemma B.6 (Corollary 4 from Kakade et al. (2008)). Let ℓ be a L-Lipschitz loss function, S a closed convex set and
1/p + 1/q = 1. Suppose that X = {x| ∥x∥p ≤ X} and W = {w ∈ S| ∥w∥q ≤ W}. Then we have for any δ > 0, the
generalization error of any w ∈ W is bounded with probability ≥ 1− δ.

ℓ(⟨w, x⟩, y)− 1

n

n∑
i=1

ℓ(⟨w, x(i)⟩, y(i)) ≤ LXW

√
p− 1

n
+ LXW

√
log(1/δ)

2n
(12)

In particular, when we consider p = q = 2 and our bounded set of predictors W1, we recover the bound:

ℓ(⟨w, x⟩, y)− 1

n

n∑
i=1

ℓ(⟨w, x(i)⟩, y(i)) ≤ LX

√
1

n
+ LX

√
log(1/δ)

2n
(13)

In order to use the above result, we need a high probability bound over the l2 norm of the covariates: ∥x∥2 (denoted in the
lemma as X), which we look into next.

Proposition B.7 (high probability bound over ∥x∥2). With probability ≥ 1− δ
2 , we can bound ∥x∥2 using Lemma B.8,

∥x∥2 <∼ max{σ/√γ, η}
(√

2(log 2/δ) +
√
3d
)
+
√

3∥µ∥22
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Proof. Recall that conditioned on the label and context x follows a multivariate Gaussian distribution, as specified by (5).
Now, for a multivariate Gaussian distribution centered at v ∈ R3d and with covariance Σ ∈ R3d×3d, we can use triangle
inequality to conclude that ∥x∥2 ≤ ∥v∥2 + ∥Σ1/2z∥2. This is because we can write x = v +Σ1/2z where z ∼ N (03d, I3d)

Hence, all we need to do is get a high probability bound over ∥Σ1/2z∥2 which is a function of 3d independent Gaussian
variables. Thus, we can apply the concentration bound in Lemma B.8. But before that, we need to compute the Lipschitz
constant for the the function z 7→ ∥Σ1/2z∥2 in the euclidean norm.

|∥Σ1/2z1∥2 − ∥Σ1/2z2∥2| ≤ ∥Σ1/2(z1 − z2)∥2 ≤
√

∥Σ∥op · ∥z1 − z2∥2 (14)

Next, with the Lipschitz constant as
√
∥Σ∥op we use Lemma B.8, to arrive at the following inequality which holds with

probability at least 1− δ
2 .

∥x∥2 ≤
√
2∥Σ∥op · log 2/δ + E[∥Σ1/2z∥2] + ∥v∥2 (15)

Finally, we can use Jensen to bound E[∥Σ1/2z∥2], i.e.,

E
[√

∥Σ1/2z∥22
]
≤
√
E
[
∥Σ1/2z∥22

]
=
√

tr (Σ). (16)

Here, we simplified E
[
∥Σ1/2z∥22

]
in the following way:

E
[
∥Σ1/2z∥22

]
= E

[
tr
(
z⊤Σz

)]
= tr

(
Σ · E

[
zz⊤

])
= tr (Σ)

Since the upper bound worsens with ∥Σ∥op and tr(Σ), we consider the covariance matrix of the Gaussian with the
worst ∥Σ∥op and tr(Σ) over the choice of context and label. Recall that γ ≪ 1. Thus, we take Σ as determined by
context c2, i.e., it is given by the following diagonal matrix: Σ = diag(σ2, σ2 . . . , σ2, σ

2
/γ, σ

2
/γ, . . . , σ

2
/γ, η2, η2, . . . , η2).

Plugging in ∥(∥opΣ) ≤ max{η, σ/√γ} and tr(Σ) ≤ 3d∥(∥opΣ), and ∥v∥2 =
√

3∥µ∥22 into the equation: ∥x∥2 ≤√
2∥Σ∥op · log 2/δ +

√
tr(Σ) + ∥v∥2, we get the result in the statement of Proposition B.7, i.e.,, with probability ≥ 1− δ/2,

∥x∥2 ≤
√
2max{(σ2/γ), η2} · log 2/δ +

√
3dmax{(σ2/γ), η2}+

√
3∥µ∥22.

Lemma B.8 (Lipschitz functions of Gaussians from Wainwright (2019)). Let X1, . . . , Xn be a vector of i.i.d. Gaussian
variables and f : Rn 7→ R be L-Lipschitz with respect to the Euclidean norm. Then the random variable f(X)− E[f(X)]
is sub-Gaussian with parameter at most L, thus:

P[|f(X)− E[f(X)]| ≥ t] ≤ 2 · exp
(
− t2

2L2

)
, ∀ t ≥ 0.

We can now use the high probability bound on ∥x∥2 from Proposition B.7 in the result in Lemma B.6. We will use L to
denote the Lipschitz constant of the exponential loss. Note that L is finite since we know ∥x∥2 is bounded. We also use n0

to denote the number of samples from minority context. Finally we apply union bound over the result in Proposition B.7 and
Lemma B.6 to get the following result that bounds the generalization error on the minority context.

With high probability 1− δ, ∀w ∈ W1 we have:

ℓ(⟨w, x⟩, y)− 1

n

n∑
i=1

ℓ(⟨w, x(i)⟩, y(i)) ≤ L

(
max{ σ√

γ
, η}

(√
2

(
log

2

δ

)
+

√
3d

)
+

√
3 ∥µ∥2

) 1√
n0

+

√
log(2/δ)

2n0


Given this generalization bound we now analyze the generalization gaps for ICC and ENP predictors on the minority context.
We will use c0 to denote the constant

√
3∥µ∥2 + (

√
3d+

√
log(2/δ))max(σ/

√
γ, η).
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Recall that ICC simply runs ERM on points coming from each context individually. As a result, we can directly use the
above generalization result to bound the generalization gap of ICC on the minority context which has n0 labeled points.
In our setting, the context assignment is modeled as a biased coin flip with probability pc for context c1. Thus denoting
the number of points in the minority context as n0, we have that n0 ∼ binom(n, 1− pc), were n is the total dataset size.
We have that E[n0] = n(1− pc) and |n0 − n(1− pc)| = Op(1/

√
n) by the Central Limit Theorem. This yields that the

generalization bound is Op(Lc0(1/
√

n(1− pc) +
√
log(2/δ)/n(1− pc))), where c0 is as defined above.

In order to analyze ENP, we assume that (a) we have access to the ground-truth feature annotations, and (b) that we observe
the samples after spurious features have been masked. Effectively, we consider that we are learning a linear predictor over
the input space C1 ◦ x when sample is from context c1 and over input space C2 ◦ x when sample is from c2. Now, the bound
over the constant X is given by a high probability bound over C1 ◦ x and C2 ◦ x. Trivially, both of these are upper bounded
by ∥x∥2. While this constant remains the same as in ICC, the key difference is that for ICC the bound is realized with only
n0 minority samples, but since ENP trains jointly on samples from both datasets the generalization bound is realized by all n
samples. Consequently, given a dataset of n points, we have a generalization bound that is O(Lc0(1/

√
n+

√
log(1/δ)/n))

where c0 is the constant defined above.

We can summarize the above comparison between ICC and ENP on the minority context in terms of the following result on
the estimation error of the two estimators.

Theorem B.9 (estimation error). When the exponential loss ℓ is optimized over W1 using finite samples in P̂n, then with
probability ≥ 1− δ the generalization error on the minority context c2 is Op(Lc0(1/

√
n(1−pc)+

√
log(2/δ)/n(1−pc))) for the

solution found by ICC (9), and O(Lc0(1/
√
n +

√
log(2/δ)/n)) for the solution found by ENP. Here, c0 =

√
3∥µ∥2 + (

√
3d+√

log(2/δ))max(σ/√γ, η).

C. Semi-Synthetic Experimental Details
C.1. Corrupted Waterbirds

Dataset and Architecture As in the standard Waterbirds construction, we generated images using the CUB 2011 dataset
and a subset of the Places365 dataset. However, 5% of the CUB images were corrupted by a random crop corresponding to
30% of the image, as well as a Gaussian Blur of radius 20. Like in the standard Waterbirds construction in Sagawa et al.
(2019a), both the test and validation datasets were generated such that the background and foreground were uncorrelated.

In all experiments, we conducted training by fine-tuning an Imagenet-pretrained ResNet50 model (as done by Sagawa
et al. (2019a)). All model weights were available to be updated during model training and a linear classification layer was
appended to the model to generate the final classifications.

Baseline Model Training Details For group DRO and conDRO experiments, we performed hyperparameter tuning in the
intervals around the hyperparameter values used by Sagawa et al. (2019a) in their Waterbirds experiments. For the ERM and
GT-Aug experiments, we used the standard weight decay parameter of 1e-4 and tuned the best epoch using the validation
dataset.

ENP: Feature Predictor Model In the Corrupted Waterbirds setting, we trained a feature predictor model to identify
whether the foreground was corrupted or not and then used access to ground-truth segmentation masks to generate pixel-level
feature annotations. In order to train the foreground corruption detector, we used the same architecture and hyperparameters
as the standard Waterbird task (Resnet50).

ENP: Target Model Invariance Given the pixel-level spuriousness labels obtained from our feature predictor model, we
generated enforced invariance to the spurious-labelled pixels by generating augmentations that added Gaussian noise to
them but had the same label as the original sample. At test-time, we further enforced invariance by generating predicted
pixel-level spuriousness labels, generating a fixed number of augmentations per sample, and using the averaged logits to
compute the final classification.

Test Set Construction and Metric We used the standard training/test/validation designations from the WOMD. In
addition, we assume ground-truth segmentations of foreground and background on test and validation datasets in order to
generate augmentations (for both GT-Augs. and ENP). We report the worst-context-group accuracy on the test set (using
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ground-truth contexts) except we exclude the two groups in which the spurious correlation breaks and the foreground is
corrupted (since under this setting, it is impossible to identify the correct label and these groups have very low accuracy.
Thus, our metric is the empirical counterpart of :

min
c∈C′k∈K

EPc,k 1{w(x) = y} (17)

where C′ denotes all context-groups except the corrupted-correlation breaking ones.

C.2. Noisy MountainCar

Environment, Data, and Architecture We used an expert MountainCar policy in order to generate a demonstration
dataset consisting of 100 demonstrations. During post-processing, we applied heavy Gaussian noise (stdev = 0.07) to
the velocity component of the state and clipped the resulting values within the permissible range for the feature value. We
used a three-layer policy network with a hidden layer of size 50 (as implemented by De Haan et al. (2019)). For training
the causal-graph parameterized policy we used a larger 4-layer network - with the same hidden layer size of 50 neurons.
Our implementation of this environment followed the open-sourced code released by (De Haan et al., 2019) found at
https://github.com/pimdh/causal-confusion/.

Baseline details We trained all models for 80 epochs and performed model selection by performing online policy
evaluation. For our standard imitation learning baselines (With Prev. Action) and (Without Prev. Action), as well as
the Policy Exec. Intervention, we tuned hyperparameters on an interval around the final values used by De Haan et al.
(2019). We implemented the targeted exploration (Lyle et al., 2021) baseline by training an ensemble of imitation learning
policies on the imitation learning dataset and then training an exploration policy using proximal policy optimization (PPO)
ensemble uncertainty as the reward function. We ran this policy online, collected states visited, and added them (with
their corresponding expert action into the imitation learning dataset. Finally, for our conDRO method, we devised groups
according to the current action (core feature), previous action (spurious feature), and group. As a result, we had a total of
3×3×2 = 18 groups and we tuned both weight decay and learning rate in the range {1e−5, 1e−4, 1e−3, 1e−2, 1e−1}.
For all baselines except policy execution interventions, we used the same model architecture as standard imitation learning

Evaluation and Metric All imitation learning policies were evaluated with online execution in the modified MountainCar
environment (with states noised on the subset of the state space) and with access to the previous action feature. We reported
the average reward attained by the imitation learning agent over 10 independent runs (i.e. independent imitation learning
datasets and trained models). The reward function for MountainCar is sparse (as reward is only attained once the goal is
reached and negative reward until that time) and the minimum value of −200 is attained when the goal is not reached.

ENP: Training a feature predictor We used the same architecture as the imitation learning model and trained on the
3-target classification problem of predicting the subset of reliable features (since our augmented state vector contained 3
features. We trained this model with feature annotations on 10% of our training data and found this was sufficient for 100%
validation accuracy.

ENP: Training the target model We trained our target model using the standard imitation learning loss with data
augmentations to enforce invariance to the spurious features. Since the only potentially spurious feature was the previous
action, we generated augmentations which (when the feature was labelled as spurious) randomly perturbed the previous
action by selecting uniformly from all actions. We generated these augmentations at training and test time (using the
predicted feature annotations from our model).

D. Extended Discussion and Implementation of WOMD
D.1. Dataset and Architecture Details

Dataset The Waymo Open Motion Dataset (WOMD) consists of vehicle trajectory data collected on real roads as an
autonomous vehicle navigates diverse traffic scenarios (intersections, traffic lights, etc.) alongside a variety of other road
users (i.e., other cars, pedestrians, and cyclists). In this setting, the number of contexts is unclear and each input has a
varying number of spurious/non-spurious features. As noted by (Ettinger et al., 2021), 46% of driving scenes in this dataset
have over 32 nearby agents, 57% of the scenes have a pedestrian (with 20% having more than 4), and 16% of all scenes
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Table 4. MultiPath++ Training Hyperparameters We show the set of hyperparameters used in training all MultiPath++ models in our
WOMD experiments.

PARAMETER VALUE

BATCH SIZE 42
LEARNING RATE 1E-4
GRADIENT NORM CLIPPING 0.4
MASK HISTORY PERCENTAGE 0.15
TOTAL TRAINING EPOCHS 120
LEARNING RATE SCHEDULER-TYPE REDUCE ON PLATEAU
LEARNING RATE SCHEDULER-FACTOR 0.5
LEARNING RATE SCHEDULER-PATIENCE 20

have at least 1 cyclist. As such, we believe that WOMD is representative of the real-world autonomous driving settings
where there could be a diverse range of interactions between multiple road agents. The task in this dataset is to predict the
autonomous vehicle (AV) trajectory given the historical trajectory of both the autonomous vehicle and other agents.

Base Target Model Our experiments are conducted on the MultiPath++ (Varadarajan et al., 2021) trajectory prediction
model (using the implementation at https://github.com/stepankonev/waymo-motion-prediction-challenge-2022-multipath-
plus-plus) which is currently a state-of-the-art model for vehicle motion prediction tasks. The MultiPath++ model consists
of LSTM trajectory encoders and fully connected road-graph polyline encoders followed by multi-context gating layers to
model interactions between agents and fuse the road and agent information. Finally, a multi-context gating-based decoding
layer generates a set of candidate predicted trajectories (see [3] for more information). In total, this model consists of 21
million parameters. Recently, (Roelofs et al., 2022) released a subset of WOMD with labels for whether nearby agents
presented spurious or robust information with respect to the prediction of the AV trajectory. These labels were collected
through a large-scale human annotation process where annotators were shown driving scenes from the perspective of the
autonomous vehicle and were asked to select non-spurious agents through a web-based interface (Roelofs et al., 2022).

D.2. Training Details

Data Preprocessing We pre-processed data according to the reference implementation of MultiPath++ with some minor
modifications. Due to computational constraints, we selected a random sample of the full WOMD dataset by downloading
100 shards from the Google Cloud Store. As the human-labelers for agent spuriousness were presented with the autonomous
vehicle’s (AV) point of view when labeling, we only trained our model to predict the trajectory of the AV. During data
preprocessing, all agent trajectory data (positions, orientations, and velocities) was transformed into the autonomous
vehicle’s reference frame before being fed into the MultiPath++ model. In many driving scenarios, there were agents labeled
as invalid, for example, due to not being in the autonomous vehicle’s field of view. In these cases, we zeroed out all agent
data corresponding, as well as setting the valid feature (part of the canonical feature representation to 0).

Standard Training Details We used all standard hyperparameters released in the reference WOMD implementation
(found in the file final RoP Cov Single.yaml and shown in the Table 4. We also tested larger learning rate parameters in
the set {0.01, 0.001, 0.00001} and did not find improvements with these parameters. We leave more intensive hyparameter
tuning experiments for future work.

Test Set Construction and Metric We sourced our test set as a subset of the annotated driving scenarios contained in
WOMD. As specified in (Roelofs et al., 2022), we used the spuriousness labels in order to delete all spurious labels from test
set (by setting the valid feature of these agents to 0) and zeroing out the associated data. Importantly, we note that our test set
was a subset of the annotated data: we reserved 20% of this data to use during training models that used agent spuriousness
annotations. We computed the minimum average displacement error (minADE) as our final metric as shown in Equation 18:

min
i∈[1,6]

1

T

T∑
j=1

||tgt
j − tpred,i

j || (18)
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Table 5. Corrupted Waterbirds Ablation on Annotated Samples. We show the effect of different training set sizes on the accuracy of
the feature predictor on Corrupted Waterbirds.

% ANNOTATED TRAINING 0.5 1 2 5 10

FEATURE PREDICTOR ACC. 90% 95.3% 97.5% 99.7% 99.9%

Table 6. WOMD Ablation on Annotated Samples. We show the effect of different training set sizes on the accuracy of the feature
predictor on the WOMD dataset.

% ANNOTATED TRAINING 0.1 1 5 20 50

FEATURE PREDICTOR ACC. 61% 77% 83% 84.9% 85%

Data Augmentation Details We adapt our data-augmentations strategy from (Roelofs et al., 2022). As introduced by that
work, driving scenarios with associated spuriousness annotations were generated by randomly deleting (i.e. setting the valid
feature to 0) all spurious-labelled agents with 10% probability. In our implementation of Annotation Augmentations, we
followed this procedure exactly: 20% of the annotated data was added to the WOMD training dataset and all these added
points were augmented according to the spuriousness labels. In our annotation-free baseline, Random Augmentations, we
simply performed random deletion across all agents. In section D.3, we describe how augmentations were performed in
ENP.

D.3. ENP Details

Feature Annotation Model We designed a lightweight feature annotation model based off of the Multipath++ architecture.
Due to the variable number of agents in the scene, we opted to train an agent-conditioned model which took the road graph
and other global information as input, as well as the trajectory for a given agent (in autonomous vehicle coordinates) and
predicted spuriousness of the provided information. Therefore, we included all road graph embedding modules from the
Multipath++ model and a single LSTM encoder for accepting the autonomous vehicle trajectory. All representations from
these modules were concatenated and fed through a fully connected network in order to output the predicted spuriousness
attribute. During preprocessing for our feature-prediction training set, we subsampled the number of invalid labeled agents
in order to ensure dataset balance.

Target Model Training With our feature predictor, we went through all trajectories in our training set and labeled each
agent as spurious or non-spurious using our model. During MultiPath++ training, we adopted an identical approach to the
Annotated Augmentations except now all trajectories were augmented in accordance with the feature predictor’s labels.
Although the ENP framework also involves test-time augmentations, these were not applicable in the WOMD setting
because all spurious agents were already removed from the dataset (also identical to the implementation of Annotated
Augmentations).

E. Ablations
In this section, we conduct ablations on the number of explicit non-spurious feature annotated samples. In Table 5, we show
the feature predictor accuracy given different percentages of feature annotations on Waterbirds and find that it is very high
even with a very small percentage of annotated samples. We see a similar effect with the WOMD accuracy though the
accuracy begins to decay quickly on smaller subsets of annotated samples (Table 6).
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