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Abstract

Bayesian inference usually requires running po-
tentially costly inference procedures separately
for every new observation. In contrast, the idea of
amortized Bayesian inference is to initially invest
computational cost in training an inference net-
work on simulated data, which can subsequently
be used to rapidly perform inference (i.e., to return
estimates of posterior distributions) for new obser-
vations. This approach has been applied to many
real-world models in the sciences and engineering,
but it is unclear how robust the approach is to ad-
versarial perturbations in the observed data. Here,
we study the adversarial robustness of amortized
Bayesian inference, focusing on simulation-based
estimation of multi-dimensional posterior distri-
butions. We show that almost unrecognizable, tar-
geted perturbations of the observations can lead
to drastic changes in the predicted posterior and
highly unrealistic posterior predictive samples,
across several benchmark tasks and a real-world
example from neuroscience. We propose a com-
putationally efficient regularization scheme based
on penalizing the Fisher information of the con-
ditional density estimator, and show how it im-
proves the adversarial robustness of amortized
Bayesian inference.

1. Introduction

Bayesian inference is a commonly used approach for identi-
fying model parameters that are compatible with empirical
observations and prior knowledge. Classical Bayesian infer-
ence methods such as Markov-chain Monte Carlo (MCMC)
can be computationally expensive at test-time, as they rely
on repeated evaluations of the likelihood function and, there-
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fore, require a new set of likelihood evaluations for each
observation. In contrast, the idea of amortized Bayesian
inference is to approximate the mapping from observation
to posterior distribution by a conditional density estimator,
often parameterized as a neural network. Once this density
estimation network has been trained, inference on a particu-
lar observation can be performed very efficiently, requiring
only a single forward-pass through the network. This amor-
tization can be achieved by training conditional density esti-
mators on simulated data and framing Bayesian inference
as a prediction problem: For any observation, the neural
network is trained to predict either the posterior directly
(Papamakarios & Murray, 2016; Greenberg et al., 2019;
Gongalves et al., 2020; Radev et al., 2020) or a quantity
that allows to infer the posterior without further simulations
(Papamakarios et al., 2019; Hermans et al., 2020). This
approach has several advantages over MCMC methods: It
can be used to perform ‘simulation-based inference’, i.e.,
applied to models which are only implicitly given as sim-
ulators (models which allow to sample the likelihood but
not to evaluate it), it does not require the model to be differ-
entiable (as compared to, e.g., Hamiltonian Monte Carlo),
and it allows application in high-throughput scenarios (Dax
et al., 2021; von Krause et al., 2022; Boelts et al., 2022;
Arnst et al., 2022).

However, these benefits come at a cost: the posterior pre-
dicted by the neural network will not be exact (Lueckmann
et al., 2021), can be overconfident (Hermans et al., 2022),
and can be sensitive to misspecified models (Cannon et al.,
2022; Schmitt et al., 2022). Here, we study another possi-
ble limitation of neural network-based amortized Bayesian
inference: It is well known that neural networks can be
susceptible to adversarial attacks, i.e., tiny but targeted per-
turbations to the inputs can lead to vastly different outputs
(Szegedy et al., 2014). For amortized Bayesian inference,
this would indicate that even minor perturbations in the
observed data could lead to entirely different posterior esti-
mates.

Adversarial attacks have become a common technique to
evaluate the robustness of ML algorithms. Attacks can
be used to assess performance in the presence of small
worst-case perturbations, offering valuable insights into how
models perform when faced with model misspecification.
Furthermore, amortized inference is increasingly used in
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2. Background and Notation
2.1. Amortized Bayesian inference

In this work, we consider a xed generative model that
de nes a relationship betweenand unknown parameters

, given byp( ;x) = p(xj )p( ). By Bayes theorem,
there exists a functioh : X ! P () which maps data onto
the posterior distributioh (x,) = p( jXo). As opposed to
computing the posterior distribution for every observation,
amortized Bayesian inference targets to learn the mapping

f directly, thereby amortizing the cost of inference.
Figure 1.Adversarial attack on amortized inference.A minor y y 9

perturbation of the observed data (left column, here: a voltag®One method to perform amortized Bayesian inference is
recording) creates a remarkably different estimate of the postéNeural Posterior Estimation (NPE). NPE rst draws sam-
rior over parameters (middle column, here: over parameters of ales from the joint distributiopp( ;x) and then trains a

biophysical neuron model). Predictive samples from the adversaggnditional density estimatay ( jx) with learnable param-
ial posterior estimate are very differeipoth from the observed  oi01c 1o approximate the posterior distribution:

and perturbed data (right column)—in this case, they exhibit two
“spikes”, while the original data only has a single one—showing 1 N
that the attack leads to a break-down of the postestimateof L( )= Ep xyl loga (jx)] logqg ( ijxi)

the inference network (rather than a change in the true posterior). N i=1
Our defense strategy leads to a more reliable posterior estimate N ] ) ) ) )
(bottom row) with realistic predictive samples. If the conditional density estimator is suf ciently expressive,

then this is minimized if and only i§f ( jx) = p( jx) for
all x in the support op(x) (Papamakarios & Murray, 2016).

real-world safety-critical applications such as, e.g., robotics2 2 Adversarial attacks and defenses
(Ramos et al., 2019) or applications accessible to the general

public (Moon et al., 2023; Shen et al., 2023). In scienceSzegedy et al. (2014) rst proposed the concept of adversar-
and engineering, users are usually domain experts, but thegl examples to fool neural networks. Adversarial examples
are often not machine learning experts and, hence, must &e typically de ned as solutions to an optimization problem
aware of the limitations and brittleness of any such method¢Szegedy et al., 2014; Goodfellow et al., 2015)

Here, we investigate the impact of adversarial attacks on x=arg max ( f(x);f(x));

amortized inference, focusing on a particular method for e xgix

amortized Bayesian inference, namely Neural Posterior Egghare  speci es a distance between the predictions of the
timation (NPE, Cranmer et al. 2020). While adversarlalneural network.

attacks have been extensively studied in the context of clas-

si cation (Rauber et al., 2017; Croce et al., 2021; Li et al.,Many defenses against adversarial examples have been pro-
2022), we present an approach and benchmark problen®sed. We build upon a popular defense called TRADES
for evaluating the adversarial robustness of neural network&Zhang et al., 2019)— when translated to inference tasks,
approximating multi-dimensional Bayesian posterior distri-TRADES can be interpreted as regularizing the neural net-
butions. Using this approach, we demonstrate that NPE cawyork loss with the Kullback-Leibler divergence between the
be highly vulnerable to adversarial attacks. Finally, we declean data and an adversarially perturbed data point:

velop a computationally ef cient method for improving the _ .

adversarial robustness of NPE, and demonstrate its utility L()=Eppexi [ l0ga (1x)+

on a real-world example from neuroscience. D ke (g ( jx)iig ( %))l

Our overall approach is the following (Fig. 1): Given an Here,x is obtained by generating an adversarial example
observationx,, we consider an adversarial perturbationduring training This regularization requires generating an
(Sec. 3.1). As we will show, even barely visible adversarialadversarial example for every datapoint and epoch, which
perturbations can strongly change estimated posterior disequires running several gradient descent steps for every
tributions, and lead to predictive samples which stronglydatapointx— this would be exceedingly computationally
deviate from the original observation. We suggest and imeostly for our inference tasks, but we will present methods
plement a defense strategy (Sec. 3.2), and will show that itor overcoming this limitation. To simplify notation, we
reduces the impact on the posterior estimate, in particulagbbreviate the posterior estimate given clean datp:as
such that it still contains the ground truth parameters. g ( jx) and given perturbed datags= q ( jx).



Adversarial robustness of amortized Bayesian inference

3. Methods several Monte Carlo (MC) samples at every gradient step,
thus rendering this approach exceedingly costly. Here, we
propose a computationally ef cient method based on a mov-
Adversarial perturbations are typically studied in classi -ing average estimate of the trace of the Fisher information
cation tasks, in which the perturbation makes the neurdhatrix.

network predict a wrong class. For amortized Bayesian

inference, however, the output of the neural network is &Regularizing by the Fisher information matrix To
continuous probability distribution (the estimate of the pos-avoid having to generate adversarial examples during train-
terior). We therefore de ne the target of the adversarialing, we exploit the fact that adversarial perturbations tend
perturbation to maximize the divergence between the e$0 be small and apply a second-order Taylor approximation
timated posterior given the “clean' vs. the adversariallyto the KL-divergence (as has been done in previous work,
perturbed data, i.eDx. (g( jx)jja( jx + )) (Gondim- Zhao etal. 2019; Shen etal. 2019; Miyato et al. 2016). This
Ribeiro et al., 2018; Willetts et al., 2021; Dax et al., 2022;results in a quadratic expression (Blyth, 1994),

Dang-Nhu et al., 2020).

o 1.,
We here focus on the Kullback-Leibler divergehdaut any D (@ Cpoiia Cix+ ) 5 s
divergence or pseudo-divergence (e.g. a distance function . . . . . .
on m?Jments ofpthe posterio?) woulc(:I b% possible (Gondim‘-NhereI x 1S the F_lsh_er information matrix (FIM) with re-
Ribeiro et al., 2018; Willetts et al., 2021; Dax et al., 2022;SPECt 1, which is given by
Dang-Nhu et al., 2020). An attack is thus de ned by the

constrained optimization problem

3.1. Adversarial attacks on amortized inference

Ix = Eq (jx) T xloga ( jx)(r xlogqg ( jx))7 :

This suggests that the neural network is most brittle along
=argmax Dk (q ( jx)jjg ( jx+ )) stji jj :  the eigenvector of the FIM with the largest eigenvalue (in
particular, for a linear Gaussian model, the optimal attack
To solve it, we use projected gradient descent (PGD) as a@hDkL correspondgxactlyto the largest eigenvalue of the
attacking scheme (Madry et al., 2018), following work on FIM, Sec. A5).). To improve robustness along this direction,
adversarial robustness for classi cation. We estimate th@ne can regularize with the largest eigenvalue of the FIM
divergence between distributions parameterized by condi-max (Zhao et al., 2019; Shen et al., 2019; Miyato et al.,
tional normalizing ows using Monte Carlo sampling. We 2016):
use the reparameterization trick (Kingma & Welling, 2014) )
to estimate gradients (details in A1.1). L( )= Eppy[ logq (jx)+  mad:

We note that small perturbations to the observed data aMvhile this approach overcomes the need to generate ad-
expected to change thirie posterior distribution. A suf- versarial examples during training, computing the largest
ciently small perturbation will, in general, only cause a eigenvalue of the FIM can still be costly: First, it requires es-
minor change in the posterior distribution (Latz, 2020). Furtimating an expectation over ( jx) to obtain the FIM and,
thermore, posterior predictive samples should match theecond, computing the largest eigenvalue of a potentially
perturbed observation (Berger et al., 1994; Sprungk, 2020karge matrix. Below, we address these challenges.

In contrast, we will demonstrate that the estimated poste-

rior will change strongly after minor changes to the dataReducing the number of MC samples with moving aver-

and that predictive samples of the posterior estimate do naiges For expressive density estimators such as normaliz-
match the perturbed observation, implying that the attackng ows, the expectation oveg ( jx) cannot be computed
indeed breaks the amortized postegstimate analytically, and has to be estimated with MC sampling:

3.2. An adversarial defense for amortized inference = 7X r xlogq ( ijx)(r x logqg ( ijx))"

How do we modify NPE to be robust against such attacks? '
As described in Sec. 2.2, many adversarial defenses (e.Jo reduce the number of samples required, we exploit that
TRADES) rely on generating adversarial examples duringconsecutive training iterations result in small changes of
training, which can be computationally costly. In particu-the neural network, and use an exponential moving average

lar, for expressive conditional density estimators such agstimator for the FIM, i.ef{? = f+@ M Y,

normalizing ows, generating an adversarial attack requiresyhere the superscrift) indicates the training iteration.

We focus onDk. (qjj§) to generate and evaluate attacks, . . . .
but we discuss and evaluate the effect of a different adversarid#sing the trace of the Fisher information matrix as reg-
objective in Sec. A4.2. ularizer Such an exponential moving average estimator
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Algorithm 1 FIM-regularized NPE

Inputs: conditional density estimatay ( jx) with learn-
able parameters, batch sizeB, number of training steps
T, learning rate , regularization strength, regulariza-
tion momentum , number of Monte Carlo samplés
Initialize: g© =0
fort=1toT do

for b=1to B do

L( )= 2&logq ( nixp) // NPE loss

it Np 9 ( jXp) // Monte Carlo
end for, P P , Figure 2.Regularizing conditional density estimators by the
r= Bi b Ni i gl x10gq ( ibjxp)lg Fisher information matrix (FIM) . We trained a neural spline
Il FIM Trace ow to estimate a conditional density with negative log-likelihood
g(t) =r r+(1 )g(t Dy moving average loss (left) and with our FIM regularizer (right). The Fisher in-
t= t1 (ADAM(r L( )+ g®)) formation (bottom) is high in regions that are non-smooth along
end for the conditioning variabl&. The regularized loss leads to density

estimates which are smoother while still being able to capture

complex densities.

decreases the number of required MC samples, but it would

require storing the FIM for eackh and computing the FIM's

largest eigenvalue at every iteration. Computing the largedp perturbations (Sec. A3). For a generalized linear Gaussian
eigenvalue scales cubically with the number of dimensionglensity estimator, the bias induced by FIM-regularization

of x (but could be scaled with power-iterations, Miyato can be calculated exactly (details in Sec. A6).

et al._ 2016) and obtaining th.e largest eigenval_ue of arandoR)a gemonstrate the method on a simple one-dimensional
matrix (such as the MC-estimated FIM) requires many MC . jitiona| density estimation task using a neural spline ow

samples (Hayashi et al., 2018; Hayou, 2017). To OVercomen ,|atabadi et al., 2020) (Fig. 2). The Fisher information
these limitations, we regularize instead with the trace of thqS large inx -regions wherey ( jx) changes quickly as a
FIM, which is an upper bound to the largest eigenvalue. function ofx. By regularizing with the trace of the FIM,

Unlike the largest eigenvalue, the trace of the FIM can bdhe learned density is signi cantly smoother.
computed from MC samples quickly and without explicitly
computing the FIM. Using the trace of the FIM simplies 4, Experimental results
the moving average estimator to
4.1. Benchmark tasks

()= w(C)+@  H{ V). N
We rst evaluated the robustness of Neural Posterior Esti-
mation (NPE) and the effect of FIM-regularization on six
benchmark tasks (details in Sec. A1.2). Rather than using
established benchmark tasks (Lueckmann et al., 2021), we
chose tasks with more high-dimensional data, which might
offer more exibility for adversarial attacks.

To avoid maintaining the computation graph for evergnd
(t), we store th@veragegradient with respect to the neural

network parameters instead of storingf ﬁl’)) directly,
h i
g =1 Eppy tr(MY) :

Visualizing adversarial attacks We rst visualized the
Summary and illustration Our adversarial defense is effect of several adversarial examples on inference models
summarized in Algorithm 1. At every iteration, the method trained with standard (i.e., unregularized) NPE. We trained
computes the Monte Carlo average of the trace of the FishédPE with a Masked Autoregressive Flow (MAF, Papamakar-
information, updates the moving average of this quantityios et al. 2017) o10Gk simulations and generated an adver-
and uses it as a regularizer to the negative log-likelihood lossarial attack for a held-out datapoint. Although the perturba-
Despite our approximations, our method performs similarlytions to the observations are hardly perceptible, the posterior
to regularizers based on the largest eigenvalue or trace of thestimates change drastically, and posterior predictive sam-
exact FIM (comparison with a Gaussian density estimatoples match neither the clean nor the perturbed observation
on the VAE task in Sec. A7). Finally, we note that using (Fig. 3). This indicates that the attacked density estimator
the FIM-regularizer systematically changes the posteriopredicts a posterior distribution that does not match the true
estimate even with in nite training data and, therefore, leadsBayesian posterior given the perturbed datapp{nfx),
to a trade-off between accuracy on clean data and robustnebsit rather it predicts an incorrect distribution.

4
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Figure 3.Adversarial examples for each benchmark taskEach panel shows i) the original observation (blue line) and corresponding
posterior predictive samples (blue shaded), ii) the adversarial example (orange line) and posterior predictive samples based on the
perturbed posterior estimate, and iii) posterior distribution plots with the posterior estimate for the original (blue) and perturbed (orange)
data, and the ground-truth parameters (black dot).

How does the adversarial attack change the prediction of th@uantifying the impact of adversarial attacks We quan-
neural density estimator so strongly? We investigated twai ed the effect of adversarial attacks on NPE without using
possibilities for this: First, the adversarial attack could conan adversarial defense. After training NPE with 100k simu-
struct a datapoint which is misspeci ed. Previous work lations, we constructed adversarial attackslfé held-out

has reported that NPE can perform poorly in the presence alatapoints (as described in Sec. 3.1). As a baseline, we
misspeci cation (Cannon et al., 2022). Indeed, on the SIRalso added a random perturbation of the same magnitude
benchmark task (Fig. 3D), we nd clues that are consistenbn each datapoint. We then computed the avebage

with misspeci cation: At the end of the simulation¥ 20), between the posterior estimates given clean and perturbed
the perturbed observation shows an increase in infectiondata (Fig. 4). For all tasks and tolerance levels (the scale of
although they had already nearly reached zero. Such ate perturbation), the adversarial attack increase®the
increase cannot be modeled by the simulator and cannot bwore strongly than a random attack. In addition, for all tasks
attributed to the noise model (since the noise is log-normahpart from the linear Gaussian task, the difference between
and, thus, small for low infection counts). the adversarial and the random attack is several orders of

A second possibility for the adversarial attack to stronglyma(‘:]nItUde (Fig. 4A).

change the posterior estimate would be to exploit the neurahs a second evaluation-metric, we computed the expected
network itself and generate an attack for which the networlcoverage of the perturbed posterior estimates, which allows
produces poor predictions. We hypothesized that, on ouns to study whether posterior estimates are under-, or over-
benchmark tasks, this possibility would dominate. To in-con dent (Fig. 4B, details in Sec. A1.3) (Cannon et al.,
vestigate this, we performed adversarial attacks on differen2022). For stronger perturbations, the posterior estimates
density estimators and evaluated how similar the adversapecome overcon dent around wrong parameter regions and
ial attacks were to each other (Fig. A3). We nd that the show poor coverage. As expected, adversarial attacks im-
attacks largely differ between different density estimatorspact the coverage substantially more strongly than random
suggesting that the attacks are indeed targeted to the speciattacks.

neural nework. Additional results for different density estimators, alterna-

tive attack de nitions, and simulation budgets can be found
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Figure 4.Adversarial attacks on neural posterior estimation (A) KL-divergence between posterior estimates for original and perturbed
data,Dk. (qjj&) for targeted (L2PGD) and random (L2Noise) attacks on a linear Gaussian model and six benchmark tasks (details in
Sec. Al1.2), for several tolerance levels. Error bars show 15% and 85% quai@)iéominal coverage vs. empirical expected coverage

for L2ZPGD (top) and L2Noise (bottom) attacks. The dotted line is identity.

in Sec. A4.2 (Figs. A4, Al, A5). The results are mostly true parameter set, a behavior which has been argued to be
consistent across different density estimators (with minodesirable in scienti ¢ applications (Hermans et al., 2022).
exceptions at low simulation budgets), indicating that moreOther defense methods (that were not speci cally developed
exible estimators are not necessarily less robust. as adversarial defenses), such as posterior ensembles or
noise augmentation, barely increase the adversarial robust-

Adversarial defense of NPE Next, we evaluated the ad- ness of NPE (Fig. A7, Sec. A4.3). Further, we investigate

versarial robustness when regularizing NPE with the movt-hiS effect directly comparing against the true posterior (as

ing average estimate of the trace of the Fisher Informatior'?s_timated via MGMC for a_sub§et of tasks) in S_ec. A8, veri-
Matrix (FIM) (Sec. 3.2). In addition, we evaluated two ap_fymg that posterior approximation on adversarial perturbed

proaches adapted from defense methods for classi catioHata is poor but can be improved using FIM regularization.

tasks— however, both of these approaches rely on generatirinally, we studied the trade-off between robustness to ad-
adversarial examples during training and are, thus, morgersarial perturbations and accuracy of the posterior estimate
computationally expensive (details in Sec. A2, methods aren unperturbed data (Zhang et al., 2019; Tsipras et al., 2019).
labeled as "Adv. training' and "TRADES). We computed the accuracy on unperturbed data (evaluated

All adversarial defense methods signi cantly reduce theds average log-likelihood) and the robustness to adversarial

ability of attacks to change the posterior estimate (Fig. SA)_per;uzjbations'(mea}sured B bfetweeln F;Iegn and per-h
In addition, the FIM regularizer performs similarly to other tur ? posteriors) for afr{?mge 0 rggu arllzatlo]rcl s.trgngt S
defense methods but is computationally much more ef cient (Fig. 5C). For a set of intermediate values farit is

and scalable (A4.1, Fig. A2, sweeps foin Fig. A6). possible to aghieve a large gain_ in_robustness while only
weakly reducing accuracy (details in Sec. A3, results for

We evaluated the expected coverage when using FIM regigther density estimators in Sec. A4.3, Figs. A6 and A8).
larization (Fig. 5B, results for Adv. Training and TRADES o , i

in Fig. A7). For all tasks, the coverage is shifted towards the2Verall. FIM regularization is a computationally ef cient
upper left corner, indicating a more conservative |oosteri0|methOOI t(? re_duce the impact of adversarial examples on
estimate (further analysis in Sec. A3). Even for medium to'\ - E- While it encourages undercon dent posterior esti-
high tolerance levels (i.e., strong perturbations), the posténates, it allows for high robustness with a relatively modest

rior estimate often remains undercon dent and covers théedUCtlon In accuracy.

6
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Figure 5.Defenses against adversarial attackgA) KL-divergencedD k. (qjj&) for all three defenses (FIM regularisation, adversarial
training and TRADES, see A4.3 for details) and without defense for six benchmark (B}#Escpected coverage for FIM regularization.
(C) Trade-offs between accuracy (average of log-likelihood on unperturbed data) and robustae¢gjje)) for = 2:0. For a range of
regularisation strengths, a large gain in robustness only leads to a small drop in accuracy.

4.2. Neuroscience example: Pyloric network predictive no longer matches the observations. In addition,
: . the predicted posterior given clean data strongly differs from
Finally, we pe_rformed adversarial _attacks an(_j defenses e predicted posterior given adversarially perturbed data.
a real-world simulator of the pyloric network in the stom-
atogastric ganglion (STG) of the cr@lancer BorealisThe  In contrast, when regularizing with the FIM approach, the
simulator includes three model neurons, each with eighneural density estimator becomes signi cantly more robust
membrane conductances and seven synapses (31 parameteradversarial perturbations (Fig. 6B). The posterior predic-
in total) (Prinz et al., 2003; 2004). Prior studies have usedives now closely matched the data, both for clean as well
extensive simulations from prior samples and performedis adversarially perturbed observations. In addition, the
amortized inference with NPE (18 million simulations in posterior estimates given clean and perturbed observations
Gorgalves et al. (2020), 9 million in Deistler et al. (2022b)). match closely.

Both of these studies used hand-crafted summary statistig;\;/e quanti ed these results by computing e, between

In Ck;) ntraslt ' (\jNg herfe rierfofr ng (ljnfeience on the ravx: trf"liegean and adversarially perturbed posterior estimates as well
(subsampled by a factor o ue to memory constraintSg ihe expected coverage (Fig. 6C). NPE without regulariza-

After subsampling, the data contains three voltage tracetipn has a higheDx, and is overcon dent. In contrast, the
each of lengtt800. We ran 8M simulations from the prior FIM-regularized posterior is undercon dent, even for strong
and excluded any parameters which generated physiologierturbations. These results demonstrate that real-world
cally implausible data (Lueckmann et al., 2017), resulting insimulators can strongly suffer from adversarial attacks. The
a dataset witly50k datapoints. We used a one-dimensionalresults also show that our proposed FIM-regularizer scales
convolutional neural network for each of the three traces ando challenging and high-dimensional tasks.

passed the resulting embedding through a fully-connected

neural network (Fig. 6). 5. Discussion

The neura_l density estimator, trained W.'thOUt regglanzatlonwe showed that amortized Bayesian inference can be vul-
is susceptible to adversarial attacks (Fig. 6A). Given unper-

turbed data. the posterior predictive closelv matches the datnerable to adversarial attacks. The posterior estimate can
u ’ P or predictiv y . change strongly when slightly perturbing the observed data,
whereas for the adversarially perturbed data the posterior

7
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Figure 6.Attack and defense on pyloric network simulator. (A) Adversarial attack on NPE. Top: Observation (blue line), posterior
predictives (blue shades), adversarially perturbed observation (orange line) and corresponding posterior predictives (orange shades).
Bottom: Subset of marginals of posterior distribution given clean (blue) and perturbed (orange) data. Blue line is the true parameter set.
(B) Same as A, but when employing FIM-regularizati¢@) Top: Dk, (qjj&) for NPE and FIM-regularized NPE. Bottom: Expected
coverage for NPE (left) and FIM-regularized NPE (right).

leading to inaccurate inference results. This poses a dif cultuse of (likelihood-based) importance sampling to identify
challenge for amortized Bayesian inference which wouldand correct poor approximations in an application from as-
severely limit its utility for applications in which trustworthy trophysics, and in this context also evaluated the adversarial
posterior estimates are essential: If small changes in the inebustness of a neural posterior estimator. Concurrent the-
put data can have a strong impact on inference results, usimgretical work of Altekiiger et al. (2023) established basic
misspeci ed data, or simply data not encountered duringconditions under which conditional density estimators on
training could also lead to severely wrong conclusions.  convergence are provably robust in particular depending on

. . .__the Lipschitz constant of the inference network with respect
To address this issue, we propose a computationally ef cien .
0 the observation.

defense strategy that can be used to reduce the vulnerability

of Neural Posterior Estimation to adversarial attacks. We

demonstrate the effectiveness of this method and show thérgortlzed Bfaye&e;n Tferenc?_ V\éeBStUd".ad gdfversanall
it can signi cantly improve the robustness and reliability of robustness of a particuiar amortized sayesian interence algo-

NPE in the presence of adversarial attacks. rithm, Neural Posterior Estimation (NPE).. Other simuIaFion-
based inference methods can be categorized as amortized as
well, e.g., Neural Ratio Estimation (NRE) or Neural Like-
Prior work on adversarial attacks and defenses Adver- lihood Estimation (NLE) (Cranmer et al., 2020; Hermans
sarial attacks and defenses have been studied on variatioredl al., 2020; Papamakarios et al., 2019). These methods
autoencoders (Kuzina et al., 2022; Husain & Knoblauchgo not require new simulations or network training for new
2022; Shu et al., 2018; Barrett et al., 2022; Willetts et al. observations, but they require a (potentially expensive) in-
2021; Akrami et al., 2022). Our work differs from these ference phase to obtain the posterior. In addition, another
papers in that we focus on posterior distributions parameapproach to amortized Bayesian inference would be to per-
terized by expressive conditional density estimators sucform amortized variational inference, which requires a dif-
as normalizing ows. Note, crucially, that the attacks in ferentiable model and likelihood-evaluations. We leave the
this context are on the conditioning-variable, in contraststudy of adversarial attacks in these methods to future work.
to previous work on ow-based models studying attacks
on theoutputof (unconditional) ow-based models (Pope Model misspeci cation and adversarial robustness Pre-
et al., 2020). To train our inference model, we use the negdous work (Cannon et al., 2022) raised concerns about the
ative log-likelihood as loss-function (as compared to thereliability of NPE on misspeci ed simulators. Adversar-
ELBO for variational autoencoders), which makes our aptal examples exploit the brittleness of neural networks to
proach applicable to non-differentiable and implicit models.construct examples on which NPE performs particularly
Several recent studies have proposed improvements to thmorly. As such, our study can be considered as a worst-
robustness of NPE (Dellaporta et al., 2022; Lemos et algase scenario of how minor deviations in the observed data
2022; Ward et al., 2022; Matsubara et al., 2022; Finlay &can impact its reliability. We nd that adversarial examples
Oberman, 2019), but none of them have considered defenselepend strongly on the network (for the same simulator),
against adversarial attacks. Dax et al. (2022) proposed thadicating the crucial role of the inference network.

8



Adversarial robustness of amortized Bayesian inference

Limitations Using a defense against adversarial attacks Elsevier.
comes at two costs: Increased computational cost and, p
tentially, broader posteriors on clean data. Our proposed re
ularization scheme largely reduces computational cost (by o : .
up to an order of magnitude compared to other defense meth- ante_,-e.s for bayesian inverse problenmesXiv preprint
ods such as TRADES), but it, nonetheless, requires drawing arxiv:2303.158452023.

Monte Carlo samples from the posterior estimate and evaxndrieu, C. and Thoms, J. A tutorial on adaptive mcmc.

uating its gradient w.r.t. every datapoint at every epoch. Statistics and computing8:343—-373, 2008.
Across six benchmark tasks, our regularizer increased train-

ing time by a factor of four (compared to standard NPEAMSt, M., Louppe, G., Van Hulle, R., Gillet, L., Bureau,
Fig. A2). Our analysis places emphasis on inference net- F-» and Denél, V.- A hybrid stochastic model and its
works that have the capability to learn summary statistics Bayesian identi cation for infectious disease screening in
of complex data, if necessary, in an end-to-end manner us- & University campus with application to massive COVID-
ing neural networks (Chan et al., 2018; Radev et al., 2020). 19 screening at the University of ége. Mathematical
However, in various applications, expert-crafted summary Biosciences347:108805, May 2022.

statistics are commonly employed which can be explicitlygarret, B., Camuto, A., Willetts, M., and Rainforth, T. Cer-
designed to be robust against certain perturbations. ti ably robust variational autoencoders. International

It has been argued that, in many applications (and in particu- Conference on Arti cial Intelligence and Statistjqgsp.

lar in the natural sciences), it is desirable to have undercon- 3663-3683. PMLR, 2022.

dent posteriors (Hermans et al., 2022) — however, pOSteriorBerger, J. 0., Moreno, E., Pericchi, L. R., Bayarri, M. J.,
estimates that are systematically too broad lead to a lower Bernardo, J. M., Cano, J. A., De la Horra, J.. Miard.,
rate of learning from data and, thus, slower information R os-India, D., Beto, B., Dasgupta, A., Gustafson, P.,
acquisition. While we demonstrated that our method is com- Wasserman, L., Kadane, J. B., Srinivasan, C., Lavine,

parable to NPE in terms of negative log-likelihood, users M., O'Hagan, A., Polasek, W., Robert, C. P., Goutis
might need to evaluate the trade-off between robustness andc"Ruggeri F .éalinetti G é,nd Sivaéanés;n S A,n

information acquisition for their applications. overview of robust Bayesian analysiEest 3(1):5-124,
June 1994.

_itekrUger, F., Hagemann, P., and Steidl, G. Conditional
generative models are provably robust: Pointwise guar-
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Appendix
Al. Further experimental details

Al.1. Training procedure

All methods and evaluations were conducted using PyTorch (Paszke et al., 2019). We used Pyro (Bingham et al., 2019)
implementations of masked autoregressive ow (MAF) or rational linear spline ow (NSF) (Papamakarios et al., 2017;
Dolatabadi et al., 2020). We employed three transforms, each of which was parameterized using a two-layered RelLU
multi-layer perceptron (MLP) with 100 hidden units. For higher dimensional tasks such as Hodgkin Huxley, VAE, and
Spatial SIR, we used a ReLU MLP embedding network with 400, 200, and 100 hidden units and outputting a 50 dim vector.

The diagonal Gaussian model used two hidden layers, a hidden layer of size 100, and ReLU activations. The Multivariate
Gaussian and mixture density networks used a hidden layer of size 200.

We trained each model with the Adam optimizer with a learning ratiDof, a batch size 0512, and a maximum of 300
epochs. If training failed, the learning rate was reducettd® or 10 °. To prevent over tting, we used early stopping
based on a validation loss evaluatedsdr? hold-out samples. Each model was trained on the same set of #thei0*, or
10° simulations.

For the adversarial attacks, we performed 200 projected gradient descent steps and estirDatedvtiite a Monte Carlo

average of 5 samples at each step (for the Gaussian models we used the analytical solution). Additionally, each adversarial
example was clamped to the minimum and maximum values within the test set to avoid generating samples outside of
the support op(x). After the optimization was nished, for the evaluation of the attack, the adversarial objective was
evaluated with a Monte Carlo budget of 256 samples. We note that, as the scale of data varies strongly between simulators,
all tolerance levels were normalized by the average of the standard deviation of prior predictives. Table 1 shows the
resulting tolerance levels.

For the results shown in Fig. 5, we used a different value for the regularization strefmteach task, as the parameter is
coupled to the magnitude of the perturbation (which is different for each task). The particular valuasthand-picked
based on initial experiments. The values weres 0:001for Gaussian linear, = 0:1for SIR, = 0:01for Lotka Volterra,

=100 for Hodgkin Huxley, = 0:01for VAE and = 0:1 for Spatial SIR. Sweeps for for each task are shown in
Fig. A6. We used Monte Carlo samples per iteration and a momentum ef0:85 for each benchmark task for the
FIM regularizer. We used a MAF for all benchmark results in the main paper and evaluated different density estimators in
Figs. A4 and Al.

For the pyloric network task, we employed a MAF with three transforms, each parameterized by a 3-layer neural network
with 200 hidden neurons. We also utilized an embedding network composed of three 1D convolutional neural networks,
each with three convolutional layers that produce six, nine, and twelve output channels. These networks were applied to the
voltage trace of each neuron. The results were then summarized by a 3-layer feed-forward neural network, and reduced to a
100-dimensional feature vector. We trained the model using 750,000 pre-selected simulations and evaluated its convergence
on a validation set of 4096 additional datapoints. The evaluation was conducted on 10,000 separate simulations. For the FIM
regularized model, we used= 100. Further, we set the number of Monte Carlo samples within the exponential moving
average to one; the momentum remaines 0 :85.

Al.2. Benchmark tasks

We used the following benchmark tasks, which produce relatively complex and high-dimensional data. We used these tasks
instead of established benchmark tasks (Lueckmann et al., 2021) because our tasks are chosen to have more high-dimensional
data and, thus, might offer more exibility for adversarial attacks.

Gaussian Linear: A simple diagonal linear mapping (entries sampled from a standard Gaussian) of a ten-dimensional
vector subject to isotropic Gaussian noise:

p(x; )= N(A 5 2DN( ;0;1)
with = 0:1. As aresult, the posterior is also Gaussian and analytically tractable.
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Lotka Volterra:  An ecological predator-prey model with four parameters. It is given by the solution of the following

differential equation:
dx _ « dy

at Xy azxy y

with  representing the growth rate of preythe death rate of prey,the hunting ef ciency of the predator andthe death

rate of the predator. The observed data are the predator and prey population densities at 50 equally spaced time points.
We added normally distributed noise with= 0:05. The prior for the parameters is Gaussian with 0: and = 0:5,
transformed by a sigmoid function in the simulator to be positive and bounded. The resulting 4-dimensional posterior is
highly correlated.

VAE: The decodeg (x) of a Variational Autoencoder (VAE) was used as a generative model for handwritten digits
(Kingma & Welling, 2014). The prior is a three-dimensional standard Gaussian. Images generated by the decoder were used
as observed dat28 28 dimensional), with Gaussian observation noise with 0:05:

p(x; )= N(x;g (x); 2)N( ;0;1)

Due to the training procedure of the VAE, the posterior should be almost Gaussian.

Hodgkin Huxley: A neuroscience model that describes how action potentials in neurons are initiated and propagated.
It is implemented based on Pospischil et al. (2008) and taken from Tejero-Cantero et al. (2020). We use a uniform prior
constrained to biologically reasonable values. The observed data is the membrane voltage at 200 equally spaced time points,
to which we added normally distributed noise with= 0:1, leading to a 7-dimensional posterior distribution.

SIR: A epidemiological model with two free parameters: The rate of recovery for infected individaaid the rate of
new infections for a population oN = 5. The solution satis es the following differential equation

ds _ S1 d _ S| | d_ I
dt N dt N dt
The observed data correspond to the number of infections at 50 equally spaced time points. We added log-normal observation
noise with = 0:2. The prior was a Gaussian with= 2: transformed by a sigmoid function, resulting in a complex
2-dimensional posterior.

Spatial SIR: An epidemiological model with a spatial dimension, similar to Hermans et al. (2022). The model is
initialized with three infections at random locations on the grid. The infection then propagates to neighboring grid cells
with probability per time step. Infected people recover with probabilityt each time step. We observe@@ 30grid

of infected/non-infected regions, subject to a Beta noise model modeling the probability of being infected after a test. A
logNormal prior with = 0:5was used.

Al.3. Metrics

The expected coverage was evaluated as proposed in Cannon et al. (2022); Hermans et al. (2022). 18i0€h the)%
highest posterior density region of the posterior estirhi?®, , we target to estimaté, ..y [1f 2 HPRy g], where
1 is the indicator function. If the model is well-calibrated, the empirical coverage should match the nominal cdverage

As in Cannon et al. (2022), we evaluate the coverage given (adversarially) perturbed data. Thus, the expected coverage
becomes:
Ep()&) Ep( %) [1f 2 HPR]_ g]

We use a Monte Carlo approximation to obtélRR,  as described by Rozet et al. (2021); Deistler et al. (2022a) to
ef ciently estimated this quantity.

A2. Adversarial training and TRADES

We mainly compared against two well-known methods to defend against adversarial examples (additional defenses and
results in Sec. A4.3).
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Table 1.Relative and absolute tolerance levels for each taskhe values of are multiples of the average standard deviation of prior
predictives.

TASK =0:1 =0:2 =0:3 =05 =1 =

GAUSSIAN LINEAR 0.11 0.21 0.32 0.53 1.05 2.13
SIR 0.03 0.06 0.09 0.15 0.3 0.6
LOTKA VOLTERRA 0.02 0.04 0.06 0.1 0.19 0.39
HODGKIN HUXLEY 1.83 3.65 5.48 9.13 18.26 36.54
VAE 0.02 0.05 0.07 0.12 0.25 0.5
SPATIAL SIR 0.02 0.04 0.07 0.11 0.22 0.45

Figure A1l.Expected coverages for all density estimatorsExpected coverage metric for a speci c density estimator trained with

10° simulations on standard NPE loss. The performance on well-speci ed data in black; colors indicate performance on adversarially
perturbed data at certain tolerance levels.
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A2.1. Adversarial training

Madry et al. (2018) proposed that the loss should be modi ed such that, instead of minimizing the negative log-likelihood
(NLL) given the clean observation, one minimizes the NLL given the worst possible obsen¢atitimin an ball around
the observation (i.e. the observation that has the highest NLL withinltiad). Formally, this objective can be written as

min B,y - max lo x)
PO ot il xji g 9a (%)

This scheme encourages the trained neural network to have a low NLL for aiithin the -ball and thus encourages
robustness to any adversarial perturbation.

In order to nd thex with the highest NLL within the -ball, one commonly generates an adversarial exarmptang
training e.g., with projected gradient descent (Madry et al., 2018). Considering the adversarial perturbation as a distribution
p(xjx; ) gives:

I—( ): Ep(x; ) Ep(x~jx; )[ Iqu ( JX')]
Epee; ) [ logq ( jx)]

This reveals that by modifying the training schemeno longer converges to the true posterior but to a different posterior
distribution given by 7

p( )/ pOe )p( )= p(xix; )p(xj )dxp( )

i.e., the posterior distribution given the likelihood of observing the adversarially pertargeagn . Therefore, adversarial
training can be interpreted as a regularization scheme where the data is perturbed by the adversarial perturbation (instead of
a random perturbation as in Shu et al. (2018)).

In our experiments, we use asprojected gradient descent attack with 20 iterations during training. After initial experiments,
we hand-picked = 0:1 for the Gaussian linear task ané 1:0 for the other benchmark tasks during training.

A2.2. TRADES

A second method for adversarial robustness was proposed by Zhang et al. (2019). Their proposed loss function balances the
trade-off between performance on clean and adversarially perturbed observations, controlled through a hyperparameter
The resulting surrogate loss adds a Kullback-Leibler divergence regularizer in the form of

L( )= Eppeix; ) [ loga (jx)+ Dxe (q ( jx)jiq ( )]

This ensures that the posterior estimate is smooth (as measured by the KL divergence). However, this approach requires
the ability to evaluate the KL divergence, which, for normalizing ows, can only be approximated through Monte Carlo
techniques.

In general, the strength of regularization is determined by both the magnitude of the adversarial exaamuehe
hyperparameter. Initial experiments showed thahad a greater effect than so we only varied. To estimate th® x,
during training, we use a single Monte Carlo sample. We xed 0:1 and hand-picked, based on initial experiments,

= 0:1 for the linear Gaussian and VAE = 0:5 for Hodgkin Huxley, Lotka Volterra, and Spatial SIR. The optimization to
obtainx was run with an , projected gradient descent attack with 20 iterations.

A3. Tradeoff between posterior approximation and robustness

Adversarially robust models typically sacri ce accuracy on clean data in order to achieve robustness. The errors on clean
and perturbed data have even been suggested to be fundamentally at odds (Zhang et al., 2019; Tsipras et al., 2019) and are
subject to the required strength of adversarial robustness (Min et al., 2021), even in the in nite data limit.

Regularizing with the Fisher Information Matrix (FIM) creates a similar trade-off between accuracy on clean and perturbed
data. The standard loss of neural posterior estimation minimizes

L( )= Eppo [Pru (RC x)iia ( XD = Epix; ) [ logg ( jx)]

16



Adversarial robustness of amortized Bayesian inference

Figure A2.Runtime. Average runtime in seconds for each defense, calculated across all benchmark tasks and various hyperparameters
per density estimator. For the MAF estimator with 5 Monte Carlo samples, the average timia@8kfdraining simulations are: 60
seconds for NPE, 250 seconds for FIM, 770 seconds for adv. training, and 2790 seconds for TRADES.

whereas the FIM regularizer minimizes
()= Epx:x) [DkL (g ( x)jig ( )] -

() isminimized globallyifg ( jx) = g ( jx)forallx;x p(x). This suggests that the optingl( jx) is independent
of x and, thus, indeed at odds with approximating the posterior distribution given clean data.

The strength of this trade-off is determined by the value of the hyperparameded the effect on the posterior tis
demonstrated in Fig. 5C, were we plot the trade-off between accuracy on clean data (evaluated as average log-likelihood)
and the robustness to adversarial perturbations (measuigg abetween clean and perturbed posteriors). The plotted
values of are Pareto-optimal solutions approximately solving the multi-objective optimization problem:

min L( ); () with =argminL( )+ Epy)ltr(Ix)]

It is clear that a large value of heavily regularizes , pushing it towards zero, which results in the inference model ignoring
the data and increasing Thus, as grows largeq ( jx) approachep( ), i.e. the prior distribution, as this is the best
estimate according tb which is independent of. This is in correspondence with approaches for robust generalized
Bayesian inference with, e.g.;posteriors (Ginwald & Ommen, 2017; Vovk, 1990; Medina et al., 2022).

However, for smaller values of, there is a plateau where the accuracy of clean data is almost constant, but the levels of
robustness vary signi cantly. This suggests that multiple inference models exist that have similar approximation errors but
differ in their robustness to adversarial examples. The regularizer in this region can effectively induce robustness without
sacri cing much accuracy.

It is worth noting that at a certain value of the approximation error increases signi cantly while the robustness decreases
only gradually. As previously discussed in the main papés,closely related to the magnitude of the adversarial perturbation
x i.e. the tolerance level Thetrue posterior might not be robust to such large-scale perturbations, making it an invalid
solution subject to robustness constraints.

A4. Additional benchmark results

Here, we present additional results obtained on the benchmark tasks.

A4.1. Runtime

In Figure A2, we show the average runtime of the benchmark tasks. It can be observed that FIM regularization has a slightly
higher cost compared to standard NPE, whereas TRADES is substantially more expensive across various density estimators.
This especially holds for normalizing ows where tBg regularizer is estimated via Monte Carlo.

A4.2. Additional results on attacks

Which observations are particularly vulnerable to adversarial attacks? In our experiments, we generated a subset

of parameters, along with well-speci ed data points, and adversarial examples found on these data pointsye
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Figure A3.Parameters which generated data susceptible to adversarial perturbationdn black, we illustrate the prior over parameters
for the SIR task. For each density estimator trained Wwithsimulations, we plot the distribution ofs on which we found the 50
"strongest” adversarial examples using the L2PGDAttack maximiBirg (qjje) (left) or Dx. (€fjq) (right).

next asked which observations are particularly vulnerable to adversarial attacks and what regions these correspond to in
parameter space. We selected the 10% datapoints which had the ighe$tetween posterior estimates given clean

and perturbed data and visualized the distribution of their corresponding ground truth parameters (Fig. A3). Attacks on
different density estimators have higher ef cacy on different sets of parameters, with some similarities (especially for similar
density estimators such as Gaussian and Multivariate Gaussian). This indicates that the attacks not only leverage worst-case
misspeci cation but also attack the particular neural network. Notably, parameters that generate data that is vulnerable to
adversarial attacks are not necessarily found in the tails of the prior (where training data is scarce), but also in regions where
many training data points are available. This observation could imply either vulnerable areas in the speci ¢ neural networks
or/and susceptible regions within the generative model.

Are more complex density estimators less robust? We evaluated th®, (forward and backward) between posterior
estimates given clean and perturbed data for several conditional density estimators. Our results show similar adversarial
robustness across all tested density estimators (Fig. A4). We note that attacking simple models might appear to be more
vulnerable because the adversarial objective can be computed in closed form, whereas complex models require Monte Carlo
approximations.

We also computed the expected coverage for all density estimators (Fig. Al). Again, the expected coverages suggest a
similar level of adversarial robustness across different conditional density estimators.

Does the adversarial objective matter? We evaluated whether using the forward vs the backuxd as the target for

the adversarial attack in uences the results. Despite minor differences, there is no clear advantage of divergence over the
other. Adversaries with different objectives may nd different adversarial examples that are more severe, as measured by
their notion of "distance” between the distributions, as shown in Figure A4. As the KL divergence is locally symmetric,
these differences are only noticeable for larger tolerance levels

In addition, we evaluated an attack based on the Maximum-Mean discrepancy (MMD)
=argmax MMD 2(q ( jx)jia ( ;x + ) s.t.jj i

We use the kernel MMD with an RBF kernel, estimated by a linear time Monte Carlo estimator as de ned in Gretton
et al. (2012) using ten samples. The MMD attack has a similar impdgkasattacks, but it is signi cantly weaker for

some tasks, such as Lotka Volterra and SIR. One potential explanation for this could be an unsuitable kernel selection.
Speci cally, if the length scale of the RBF kernel is too small, it is well-known that the gradients tend to vanish. This issue
can be particularly noticed in the SIR task, which plateaus for larger tolerance levels (in contrast to KL-based attacks, which
explode). We note, however, that the MMD attack could also be applied to implicit density estimators (such as VAESs or
GANSs)

Finally, we evaluated an attack that minimizes the log-likelihood of the true parameters:

zargmax logq ( ojXo+ ) S.tjj Jj
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Figure A4.Robustness for different density estimatorsEach density estimator is trained with NPE loss with a different number of
simulations, attacked by an projected gradient descent attack trying to maxinidze (qjj&) (top) orDk. (ejjq) (bottom).

Note that his attack requires access to one true parameter, which is only available for observations generated from the model
and hence is not generally applicable. Furthermore, minimizing the likelihood of a single good parameter may not inevitably
decrease the likelihood of all probable parameters. This attack strongly impacts the expected coverage since the attack
objective is explicitly designed to avoid the true parameter and push it away from the region of the highest density (which is
precisely the quantity measured by this metric).

A4.3. Additional results for the defenses

Robustness of ensembles and noise augmentatiomn addition to adversarial training and TRADES, we investigated
two defense methods that were not originally developed as defenses against adversarial attacks: Ensembles and Noise
Augmentation.

Ensembles do not use a single density estimatoKbdifferent ones. Assuming we trained &ll density estimators to
estimate the posterior distribution on different initialization, thus falling into different local minima. Then an Ensemble
Posterior is typically de ned as

. X1 .
q( jx) = & (%)
k=1

We built an ensemble df0 masked autoregressive ows and evaluated its robustness to adversarial attacks on the benchmark
tasks (Figure A7). The ensemble has a similar robustness as standard NPE.

Another defense, called "Noise Augmentation’, adds random perturbations to the data during training (in contrast to
adversarial training, which uses adversarial perturbations). We use random noise uniformly distributed daliheith
= 1:0. Again, this defense only slightly (if at all) improved the robustness of NPE.

Overall, these results show that these defenses are not suitable to make amortized Bayesian inference robust to adversarial

19



Adversarial robustness of amortized Bayesian inference

Figure A5.Adversarial attack using different divergence. Adversarial attacks using on each task using the MMPgnd minimizing
the true parameters log likelihoo8), On top, we show robustneBs« (qjj&) at the bottom; we show the expected coverage. The

performance on well-speci ed data is shown in black; the colors indicate performance on adversarially perturbed data at certain tolerance
levels.
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Figure A6.Robustness of FIM.ShowsD k. (qjj&) for different density estimators (rows) and different values of regularization strength
(colors).

attacks.

Visualizing adversarial attacks with defenses. To visualize the effect on the inference of adversarial examples, we
reproduced Figure 3 but with the robust inference models (witll :0). FIM regularization is an effective defense while
maintaining good accuracy on clean data, as evidenced by reasonable predictive distributions (Fig. A9). Notably, both
adversarial training and TRADES do not work as well (Fig. A10, Fig. A11).

Please note that in these gures, we do not necessarily utilize the identical observation or posterior. Instead, we present
visual representations of examples that share the same "rank”. By sorting all adversarial perturbations based on their
adversarial objective, we display the outcomes that correspond to the same index as selected for Figure 3. Pyloric network
examples were additionally constrained to be biophysically realistic.
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Figure A7.Results for other defensesRobustnesB k. (qjj &) for all defenses with selected hyperparametas Expected coverage for
all defenses with selected hyperparametBjs The performance on well-speci ed data is shown in black; the colors indicate performance
on adversarially perturbed data at certain tolerance levels.
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