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Abstract
Shadow tomography for quantum states provides
a sample efficient approach for predicting the mea-
surement outcomes of quantum systems. How-
ever, these shadow tomography procedures yield
poor bounds if there are more than two outcomes
per measurement. In this paper, we consider
a general problem of learning properties from
quantum states: given an unknown d-dimensional
quantum state ρ and M unknown quantum mea-
surements M1, ...,MM with K ≥ 2 outcomes,
estimating the probability distribution for ap-
plying Mi on ρ to within total variation dis-
tance ϵ. Compared to the special case when
K = 2, we have to learn unknown distribu-
tions instead of values. Here, we propose an on-
line shadow tomography procedure that solves
this problem with high success probability requir-
ing Õ(K log2M log d/ϵ4) copies of ρ. We fur-
ther prove an information-theoretic lower bound
showing that at least Ω(min{d2,K+logM}/ϵ2)
copies of ρ are required to solve this problem with
high success probability. Our shadow tomogra-
phy procedure requires sample complexity with
only logarithmic dependence on M and d and is
sample-optimal concerning the dependence on K.

1. Introduction
The statistical learning theory problem of extracting infor-
mation based on empirical observations is of fundamental
importance in a number of fields. In quantum physics, a fun-
damental problem is to obtain the properties of a quantum
system based on statistical results from quantum measure-
ments. A general method to obtain the full information of
an unknown d-dimensional quantum state ρ, called quan-
tum state tomography, completely recovers the density ma-
trix to within a small error. This task is proved to require
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Ω(d2) copies of ρ from the information-theoretical perspec-
tive (Haah et al., 2017; O’Donnell & Wright, 2016; Chen
et al., 2022b). These state tomography procedures have been
pushed to the limit of their capabilities after the recent ad-
vances in experimental quantum platforms (Preskill, 2018),
recalling that the dimension of the quantum state d = 2n

increases exponentially in the number of qubits.

However, demanding full descriptions of quantum states
may be excessive for concrete quantum problems. Fol-
lowing this conceptual different line of research, the quan-
tum shadow tomography problem developed by (Aaronson,
2019; 2007) considers the case when we are given an un-
known d-dimensional quantum state andM known quantum
events regarded as a two-outcome quantum measurement
that outputs 1 (or “accept”) with probability Tr(Eiρ) and
outputs 0 (or “reject”) otherwise. The goal is to estimate
each expectation Eρ[Ei] = Tr(Eiρ) to within additive error
±ϵ. This shadow tomography problem for two-outcome
POVMs is a quantum analog of the classical adaptive data
analysis (Dwork et al., 2015; 2010), which can be solved
with poly(logM, log d, 1/ϵ) samples (Bassily et al., 2021).
Recently, (Bădescu & O’Donnell, 2021) proved the best
known upper bound on sample complexity for this problem
as N = Õ(log2M log d/ϵ4).

In quantum mechanics, the prediction of some intriguing
properties requires quantum measurements with K > 2
measurement outcomes. In addition, in practical tasks, many
quantum properties are represented by the expectation val-
ues of quantum observables, which are obtained by com-
puting the probability distribution of each measurement
outcome and averaging the eigenvalue corresponding to the
outcome. In this case, the measurement M outputs results
j = 1, ...,K with probability Eρ[Ej ] = Tr(Ejρ), which
are expectations of quantum events E1, ..., EK that satisfy∑K

j=1Ej = I. Our goal is to approximate the probability
distribution over the outcomes of M within total variation
distance ϵ. Recalling that K can be as large as Θ(d) in the
extreme case, it is an important factor to concern in practical
shadow tomography. In this paper, we study the shadow to-
mography problem of K-outcome quantum measurements,
which can be formulated as follows

Problem 1.1 (Shadow Tomography ofK-outcome Measure-
ments). We consider an unknown d-dimensional quantum
state, as well as M quantum measurements M1, ...,MM ,
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each of which has K results and outputs the j-th result with
probability Tr(Ei,jρ) for i ∈ [M ] and j ∈ [K]. We denote
pi the probability distribution (Tr(Ei,1ρ), ...,Tr(Ei,Kρ))
after measurement Mi. Our goal is to output M proba-
bility distributions b1, ..., bM defined on the K-outcomes
such that the total variation distance dTV (pi, bi) ≤ ϵ with
success probability at least 1− δ.

The quantum events Ei,j for j ∈ [K] corresponding to the
quantum measurement Mi is defined to satisfy the con-
straint 0 ⪯ Ei,j ⪯ I and

∑K
j=1Ei,j = I. We remark that

Problem 1.1 can also be extended to other metrics such as
Euclidean norm or infinity norm and obtain a sample com-
plexity without K dependence. We choose the total varia-
tion distance because it has a direct connection with predict-
ing expectation values of observables: by bounding the total
variation distance, the error for the expectation value of any
observable O can be bounded with poly(∥O∥∞) overhead.

1.1. Main Results

The first main result of this paper is to propose an algorithm
to solve this shadow tomography problem of K-outcome
measurements. We prove the following sample-complexity
upper bound for our algorithm.

Theorem 1.2 (Shadow Tomography of K-outcome Mea-
surements). Problem 1.1 is solvable using

N = Õ

(
log(1/δ)

ϵ4
·K · log2M · log d

)
copies of ρ. Here, the Õ hides a poly(log logM, log logD,
log(1/ϵ), logK) factor. The procedure is fully explicit and
online.

We provide an overview of proof for this theorem in Sec-
tion 1.2. The detailed proof is technically involved and
provided in Section 3 and Section 4. Theorem 1.2 indicates
that we can learn the probability distribution of M quan-
tum measurements of K outcomes using sample complexity
that depends logarithmically on M and d but linearly on
K. Considering the parameters M , d, and ϵ, our algorithm
has the same dependence as the best known upper bound
for 2-outcome case (Bădescu & O’Donnell, 2021). The
dependence on K is the most important result in this work.
Compared to directly regarding each quantum event Ei,j as
a two-outcome quantum measurement and approximating
the expectation Tr(Ei,jρ) to within additive error 2ϵ/K,
our algorithm reduces the dependence on K from Õ(K4)
to Õ(K). Notice that in some extreme cases, K can be as
large as Θ(d), which is exponential in system size n, our
algorithm reduces the number of copies required to perform
the shadow tomography task significantly. Although the
complexity of our algorithm still has an Õ(K) dependence
on K, we emphasize that this dependence is necessary by

the following information-theoretic lower bound on Prob-
lem 1.1:

Theorem 1.3. Any strategy for Problem 1.1—i.e., for es-
timating all pi = (Tr(Ei,1ρ), ...,Tr(Ei,Kρ)) of Mi to
within total variation distance ϵ for all i ∈ [M ], with suc-
cess probability at least (say) 2/3—requires at least

N ≥ Ω

(
min{d2,K + logM}

ϵ2

)
copies of unknown d-dimensional quantum state ρ.

We provide the sketch of proof for this lower bound in Sec-
tion 1.2 and leave the detailed proof in Section 5. The lower
bound is obtained by an information-theoretic argument de-
veloped by (Flammia et al., 2012) and refined by further
works (Aaronson, 2019; Huang et al., 2020; Haah et al.,
2017). The proof exploits Holevo’s theorem (Holevo, 1973)
and Fano’s inequality (Fano, 1949). Even in the special case
where there is only M = 1 entirely classical measurement
and the unknown quantum state is also classical, learning a
distribution on [K] to within total variation distance ϵ still
requiresO(K/ϵ2) samples (Canonne, 2020). This result can
be understood as the information required to approximate
the probability distribution scales linearly with the dimen-
sion of the distribution. By comparing the lower bound
in Theorem 1.3 and the upper bound in Theorem 1.2, we
can conclude that our algorithm for shadow tomography of
K-outcome quantum measurement is optimal concerning
the dependence on K.

1.2. Technical Overview

Our shadow tomography procedure involves the combina-
tion of two ideas: solving a quantum distribution threshold
search problem using O(K log2M/ϵ2) samples in each it-
eration and performing an online learning procedure that
has at most O(log d/ϵ2) iterations.

The first step in this work concerns a problem which we
call the quantum distribution threshold search problem. We
formulate this problem as below:

Problem 1.4 (Quantum Distribution Threshold Search).
Suppose we are given

• Parameters 0 < ϵ, δ < 1
2 ;

• Unentangled copies of an unknown d-dimensional
quantum state ρ.

• A list of M d-dimensional POVMs M1, ...,MM each
of K outcomes corresponding to quantum events Ei,j ,
where i ∈ [M ], j ∈ [K], and

∑K
j=1Ei,j = I. We

denote pi = (Tr(Ei,1ρ), ...,
Tr(Ei,Kρ)) to be the actual distribution over the mea-
surement outcomes of Mi.
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• A list of M threshold vectors θi = (θi,1, ..., θi,K),
where θi,j ∈ [0, 1] and

∑K
j=1 θi,j = 1.

the algorithm outputs either:

• dTV (pi∗ ,θi∗) > 3ϵ/4 for some particular i∗; or

• dTV (pi,θi) ≤ ϵ for any i.

Our goal is to minimize the number of copies required to
ensure we output correctly with success probability at least
1− δ.

A similar problem for the case of K = 2 was originally
called a gentle search procedure in (Aaronson, 2019). Later,
it was renamed as the quantum threshold search problem
in (Bădescu & O’Donnell, 2021) since the gentle measure-
ment assumption (Aaronson & Rothblum, 2019) is not nec-
essary. It is proven that the quantum threshold problem can
be solved using Õ(log2M/ϵ2) copies of ρ with probability
at least (say) 3/4 (Bădescu & O’Donnell, 2021). Yet, it
is worthwhile to mention that Problem 1.4 is not a direct
extension of the quantum threshold search problem. Even at
K = 2, the requirement of Problem 1.4 is a two-side bound
instead of a one-side bound in the quantum threshold search
problem. In this paper, we provide an algorithm that can
solve Problem 1.4 for any K ≥ 2:

Theorem 1.5. Problem 1.4 (Quantum Distribution Thresh-
old Search) is solvable using

N = Õ

(
log(1/δ)

ϵ2
·K · log2M

)
copies of ρ.

We provide proof of this theorem in Section 3. WhenK = 2,
our upper bound for the quantum distribution threshold
search problem reduces to the same bound for the quantum
threshold search problem. We remark that the K depen-
dence in the sample complexity bound we provide in Theo-
rem 1.2 directly comes from the K dependence in solving
the quantum distribution threshold search problem.

Given our quantum distribution threshold search algorithm,
the second step is to employ a black-box reduction to an
online quantum state learning algorithm. In the special case
when K = 2, the bound is obtained by (Aaronson et al.,
2018). The formal version of our result in online learning
distributions is provided as follows:

Theorem 1.6. Let ρ be an unknown d-dimensional quantum
state, as well as M1,M2, ...,Mt, ... be a sequence of K-
outcome POVMs each consisting quantum events Et,j for
j ∈ [K]. We denote pt = (Tr(Et,1ρ), ...,Tr(Et,Kρ)) to be
the actual probability distribution when we apply Mt on ρ.
We are provided with a probability distribution bt after each

measurement Mt with dTV (pt, bt) ≤ ϵ/4. There exists
a strategy for outputting hypothesis states ω1, ω2, ... such
that the probability distribution µt, which is obtained by
applying Mt on ωt, deviates more than 3ϵ/4 from pt for
at most T = O(log d/ϵ2) iterations t (also called “bad
iterations”).

We provide the proof for Theorem 1.6 in Section 4.1 adapt-
ing the template of the Regularized Follow-the-Leader al-
gorithm (RFTL; see, for example, in (Hazan et al., 2016)).
However, our online learning procedure is not a direct ex-
tension of the standard template as we have to modify the
loss function to measure the total variation distance between
two distributions instead of the ℓ1 loss between two values
in (Aaronson et al., 2018; Chen et al., 2022c). We exploit
the property of the POVM to provide an upper bound for
the total regret of the learning procedure. We can then com-
bine our quantum distribution threshold search algorithm
with this online setting to prove the sample complexity for
our shadow tomography procedure of K-outcome quantum
measurements. We start with the maximally mixed state I/d.
In each iteration, we first perform the quantum distribution
threshold search algorithm to find an i∗ such that the total
variation distance between µt and pt is larger than 3ϵ/4.
We can then use Õ(K/ϵ2) samples to estimate bt with high
success probability and update the hypothesis. As there are
at most O(log d/ϵ2) “bad iterations”, we finally reach the
complexity bound in Theorem 1.2. The overall computa-
tional complexity of our shadow tomography protocol is
estimated to be O(KM · poly(K, 1/ϵ, log d)) + dO(1). We
further show the extension of Theorem 1.2 to the case of
predicting quantum observables in Appendix D.

To prove the lower bound, we first fix M different quan-
tum measurements. We then find a set (known as pack-
ing net (Haah et al., 2017)) of size 2K/2M consisting of
mixed states {ρ1, ..., ρN} such that we can use our shadow
tomography procedure to distinguish between any pair
of states chosen from this packing net, which requires
log
(
2K/2M

)
= Θ(K + logM) bits of information. We

further show using Holevo’s theorem (Nielsen & Chuang,
2002) that we can at most obtain O(ϵ2) bits of information
from any quantum states chosen from this set. Therefore, the
sample complexity is bounded below by Ω((K+logM)/ϵ2)
to make it possible to obtain the information. We emphasize
that, different from the previous lower bounds (Aaronson,
2019; Aaronson & Rothblum, 2019; Huang et al., 2020)
which either adapt a classical bound (Ullman et al., 2018;
Bun et al., 2018; Vadhan, 2017), or just consider a set con-
taining M quantum states corresponding to the M measure-
ments (observables), our construction of the set exploit a
coding parameter z for the states to introduce a K depen-
dence.
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1.3. Related Works

Shadow tomography of two-outcome quantum mea-
surements. A first related topic is the shadow tomogra-
phy of two-outcome quantum measurements (Aaronson,
2019; Bădescu & O’Donnell, 2021). It is proven that
only O(log2M log d/ϵ4) copies of ρ can estimate the ex-
pectation value of M two-outcome quantum measurement.
When K = 2, the sample complexity in Theorem 1.2 re-
duces to this bound. To extend this result to the case of
K > 2, a straightforward approach is to regard each quan-
tum event as a two-outcome quantum measurement and es-
timate each expectation value Tr(Ei,jρ) to within additive
error 2ϵ/K. However, this approach requires an additional
cost of Õ(K4) using the state-of-art shadow tomography
algorithms. Compared to this direct extension, our approach
only requires sample complexity that increases linear with
K and is proven to be optimal concerning the dependence
on K.

Quantum observable estimation using classical shadow.
(Huang et al., 2020) and (Chen et al., 2022a) considered the
task of estimating quantum functions (or the expectations
of quantum operators). Given ρ an unknown d-dimensional
state, as well as M quantum operators O1, ..., OM , they
provided a strategy that can approximate the expectation
value for each operator Tr(Oiρ) to within additive error ϵ
with high success probability O(logM2k/ϵ2) copies of ρ,
where k is the locality of the observable. Their protocol re-
quires neither quantum memory nor joint measurements that
simultaneously measure states of the form ρ⊗k. However,
the sample complexity may increase exponentially with the
system size n = log d. Our algorithm, however, can provide
sample-efficient shadow tomography when the number of
measurement outcome scales polynomially with system size
n, regardless of whether the measurement is global.

Quantum state tomography. It is proven that there exists
a sample-optimal algorithm that can perform state tomog-
raphy for an unknown quantum state ρ of rank r ≤ d using
O(dr/ϵ2) copies of ρ (Haah et al., 2017). Although the
shadow tomography procedure in this paper does not require
full information of ρ, the information obtained in this proce-
dure increases linearly with K. In the extreme case, when
we perform a quantum measurement on the computational
basis—i.e., there are d possible outcomes corresponding to
all possible n-bit classical strings x chosen from {0, 1}n.
To perform shadow tomography on this measurement, we
require Ω(d/ϵ2) copies of ρ. By performing this measure-
ment, we can obtain a full description of any pure states.
This bound is the same as the sample complexity required
for state tomography for pure states.

1.4. Broader impact

This work focuses on the theory of quantum shadow tomog-
raphy based on online learning, and as far as we see, we do
not anticipate its potential negative societal impact. Never-
theless, it might have a positive impact on researchers who
are interested in understanding the theoretical underpinnings
of online learning applications and statistical learning.

2. Preliminaries
2.1. Classical Probability Theory

We consider two probability distributions D = (px)x and
D′ = (qx)x on K-dimensional space, we will use the fol-
lowing two distance measures between them. The total
variation distance between D and D′ is defined by

dTV (D,D′) =
1

2

∑
x

|px − qx|.

We also consider another distance measure that is commonly
used for vectors. The Euclidean norm of the distance be-
tween the two distributions is defined by

∥D − D′∥2 =

(∑
x

(px − qx)
2

)1/2

.

The Euclidean norm is not commonly used in probability
theory. We employ it as the intermediate tool when using
the concentration inequalities on random vectors. To con-
nect among these norms, we notice that for any probability
distribution D and D′, the following inequality holds

dTV (D,D′) ≤
√
K

2
∥D − D′∥2. (1)

2.2. Quantum Preliminaries

Here, we briefly review some basic notations and concepts
in quantum information. More details can be found, for
example, in (Nielsen & Chuang, 2002).

A matrix A ∈ Cd×d is said to be a Hermitian matrix if
A† = A, where A† denotes the conjugate transpose of A.
We write A ⪰ 0 when the Hermitian operator A is positive
semidefinite. We write A ⪰ B when A−B ⪰ 0. We use I
for the identity matrix and the dimension can be understood
from the context.

In quantum mechanics, a d-dimensional quantum state vec-
tor is described by a unit vector ψ = (ψ1, . . . , ψd)

⊤ denoted
by |ψ⟩ with the Dirac symbol |·⟩, in a complex Hilbert space
Cd. The computational basis of Cd are defined as {|i⟩}di=1,
where |i⟩ = (0, . . . , 0, 1, 0, . . . , 0)⊤ is the vector with the i-
th entry being 1 and other entries being 0. A d-dimensional
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general quantum state can be written as a matrix ρ ∈ Cd×d

with ρ ⪰ 0 and Tr(ρ) = 1. If ρ has rank 1, it is a pure state
and can be written as an outer product |ψ⟩ ⟨ψ| of a complex
vector |ψ⟩. Equivalently, we can write ρ as a convex com-
bination for outer products of different pure states (without
loss of generality, there can be at most d orthogonal pure
states):

ρ =

d∑
i=1

pi |ψi⟩ ⟨ψi| ,

where
∑d

i=1 pi = 1 and pi ≥ 0 for arbitrary i ∈ [d]. This
representation can be interpreted as a probability distribution
over each pure state |ψi⟩. In the special case when ρ is di-
agonal, it represents a classical probability distribution over
orthogonal computational basis |1⟩ , ..., |d⟩. The maximally
mixed state I/d corresponds to the uniform distribution over
|1⟩ ⟨1| , ..., |d⟩ ⟨d|.

A quantum observable, or a quantum operator, is a d-
dimensional Hermitian matrix O ∈ Cd×d. A quantum
observable is a real-valued property of the physical systems.
Given a quantum state ρ, the expectation of O with respect
to ρ is defined by

Eρ[O] = Tr(Oρ).

A quantum event is a quantum operator that satisfies 0 ⪯
E ⪯ I, i.e., a Hermitian operator with eigenvalues chosen
from [0, 1]. The expectation value of a quantum event Eρ[E]
can be interpreted as a probability assigned by quantum state
ρ to E. We further call E a projector for the special case
when E2 = E and all eigenvalues for E are Boolean values
0 and 1.

A quantum measurement M, or a positive operator-valued
measure (POVM), is a sequence M = (E1, ..., EK) of quan-
tum events with

∑K
j=1Ej = I. According to the linearity

of trace, we can obtain that

K∑
j=1

Eρ[Ej ] = Eρ

 K∑
j=1

Ej

 = Eρ[I] = 1.

Given a quantum state ρ, a POVM determines a probability
distribution D = {pj}j on [K] defined by pj = Eρ[Ej ] =
Tr(Ejρ).

2.3. Online Learning Settings and Regrets

In the context of online learning quantum states consid-
ered in Theorem 1.6, we are given a sequence of quantum
measurements M1,M2, ... in each iteration t. The learner
constructs a hypothesis state ωt ∈ Cd×d in each iteration.
Given the quantum measurement Mt, the learner calculates
the distribution after applying Mt on the hypothesis state

ωt as µt = (Tr(Et,1ρ), ...,Tr(Et,Kρ)), which is known as
a ”prediction”.

The learner then obtains feedback from the measurement
M. The simplest feedback can be a random variable Yt
chosen from value [K] = {1, ...,K} for different outcomes.
In this paper, the learner obtains feedback by performing
a quantum distribution threshold search to find whether
dTV (µt,pt) is larger than some tolerance threshold, where
pt = (Tr(Et,1ρ), ...,Tr(Et,Kρ)) is the actual probability
distribution for the unknown state ρ.

If the quantum distribution threshold search procedure does
not output a t such that dTV (µt,pt) > 3ϵ/4, the learner
accepts the prediction and set it as the final result. If the
quantum distribution threshold search procedure outputs
such a t, the learner starts an update procedure. The learner
first estimates a probability distribution bt. According to
Eq. (7), the learner can guarantee that dTV (bt,pt) ≤ ϵ/4
with high probability by using O(K/ϵ2) copies of ρ. Then,
the learner defines a loss function that measures the total
variation distance between the “bad prediction” µt and bt
as:

ℓt(µt) :=
1

2

K∑
j=1

|Tr(Et,jωt)− bt,j |, (2)

where bt,j denotes the j-th entry of bt. The learner updates
the hypothesis ωt → ωt+1 based on the loss functions,
measurements, and feedback before the current iteration.

Our goal is to design a strategy such that the learner’s total
loss is minimized. Suppose there are in total T iterations,
we want to find a strategy such that the learner’s total loss
is not much more than that of the strategy which outputs
the same quantum hypothesis φ in each iteration, where φ
is chosen as the minimization of the total loss with perfect
hindsight. Formally, we define the regret RT to be the dif-
ference between values of total loss for these two strategies
as

RT :=

T∑
t=1

ℓt(µt)− min
φ∈H

T∑
t=1

ℓt(µφ), (3)

where µφ = (Tr(Et,1φ), ...,Tr(Et,Kφ)) is the probability
distribution after applying Mt on φ and H denotes the
set of all d-dimensional quantum states. We remark that
the sequence of measurements Mt can be arbitrary, even
adversarial, based on the learner’s prior actions.

3. Quantum Distribution Threshold Search
In this section, we prove Theorem 1.5. In Section 4, we will
use this procedure as feedback in the online learning proce-
dure of our shadow tomography algorithm for K-outcome
POVMs. Our starting point is the following expectation
estimation lemma.
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Lemma 3.1. Let ρ be an unknown d-dimensional state
and M be a K-outcome POVM. The probability distri-
bution over the outcomes for applying M to ρ is p =
(Tr(E1ρ), ...,Tr(EKρ)). We choose parameters 0 < ϵ, δ <
1
2 . Then there exists N = K log(1/δ)/ϵ2 such that, for any
d-dimensional quantum states ρ,

Pr
(
dTV (p,p

′) ≥ ϵ

8

)
≤ δ,

where p′ = (p′1, ..., p
′
K) is the empirical distribution by

applying M to the joint state ρ⊗N

Moreover, there exists a quantum event B such that for any
K-dimensional distribution τ

dTV (p, τ ) > ϵ⇒ Eρ⊗N [B] > 1− δ,

dTV (p, τ ) ≤
3ϵ

4
⇒ Eρ⊗N [B] ≤ δ.

We provide the proof for Lemma 3.1 in Appendix B. More-
over, we can observe that if Ei’s are projectors, then Ak’s
are also projectors. We can prove that B is a summation of
Ak’s. thus is also a projector. By using this lemma, we
reduce the shadow tomography procedure of a K-outcome
POVM to two-outcome ones.

Now, we begin to prove Theorem 1.5. Notice that the as-
sumptions on Ei,j is a quantum event in Problem 1.4 while
the assumptions for Ei,j is a projector in Lemma A.1, we
have to first reduce the theorem to the case of projectors.
Let ρ ∈ Cd×d be the unknown quantum state, and Ei,j

be the quantum events for i ∈ [M ] and j ∈ [K]. We can
achieve this through Naimark’s theorem(see, for example,
(Riesz & Nagy, 2012; Akhiezer & Glazman, 2013)). This
theorem demonstrates that a quantum event E ∈ Cd×d can
be reduced to a projector Π on the space C2d×2d, such that
for arbitrary ρ,

Eρ⊗|0⟩⟨0|[Π] = Eρ[E].

Therefore, we assume that Ei,j are projectors in the follow-
ing proofs. Suppose we are given M K-outcome POVMs
M1, ...,MM and M threshold vectors θ1, ...,θM . We first
apply Lemma 3.1 with parameters δ = 1/4 and τ = θi
for each measurement Mi. Therefore, we can find some
N0 = O(K/ϵ2) such that each measurement Mi can be
replaced by a quantum event Bi ∈ (Cd×d)⊗N0 satisfying

• if dTV (pi,θi) > ϵ, Eρ⊗N0 [Bi] > 3/4;

• if dTV (pi,θi) ≤ 3ϵ/4, Eρ⊗N0 [Bi] ≤ 1/4;

Here pi is the actual distribution after applying Mi on ρ.
Since Ei,j’s are projectors, quantum events Bi are also
projectors.

Algorithm 1 RFTL for Quantum Tomography of K-
outcome POVMs

1: Input: T , η < 1
2 .

2: Set ω1 := I/d.
3: for t = 1, ..., T do
4: Predict ωt. Consider the loss function ℓt :

RK−1 → R given by measurement Mt :
ℓt(Tr(Et,1φ), ...,Tr(Et,K−1φ)). It has the same
value with the loss function defined in Eq. (2). Let
∂ℓt/∂xj be a sub-derivative of ℓt with respect to xj
for j ∈ [K − 1]. Define

∇t :=

K−1∑
j=1

∂ℓt
∂(Tr(Et,j)ωt)

Et,j . (4)

5: Update decision according to the RFTL rule with von
Neumann entropy by ωt+1 :=:

arg min
φ∈H

{
η

t∑
s=1

Tr(∇sφ) +

d∑
i=1

λi(φ) log λi(φ)

}
,

(5)
where λi(A) denotes the i-th eigenvalue of Hermitian
matrix A ∈ Cd×d, and H ⊂ Cd×d denotes all d-
dimensional quantum states.

6: end for

We then apply Lemma A.1 by setting each Bi to be the
projectors we have just constructed and unknown state to be
ρ′ = ρ⊗N0 . If the algorithm outputs i∗ such that Eρ′ [Bi∗ ] >
1/4, we have dTV (pi∗ ,θi∗) > 3ϵ/4. Otherwise, we can
guarantee that dTV (pi,θi) ≤ ϵ for all i ∈ [M ] with high
probability.

4. Shadow Tomography of K-outcome POVMs
In this section, we first prove Theorem 1.6 in Section 4.1.
We then prove the upper bound in Theorem 1.2.

4.1. Online Learning of Quantum States

We suppose there are in total T iterations where the learner
performs an update procedure. In the update procedure, the
learner follows the template of the Regularized Follow-the-
Leader algorithm (RFTL) as the following Algorithm 1.

Algorithm 1 employs von Neumann entropy, which relates
to the matrix exponentiated gradient algorithm (Tsuda et al.,
2005). We remark that the loss function defined in Eq. (4) of
the RFTL algorithm is slightly different from the definition
in Eq. (2) in that it takes a vector of (K − 1) entries instead
of K entries. This is because the input vectors in Eq. (2)
are supposed to be probability distributions such that the
summation of all entries is 1. Therefore, there are only

6
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(K − 1) free parameters. We rewrite the loss function with
an input vector containing only free entries as Eq. (4).

According to the definition of regret in Eq. (3), we now
provide the following regret bound on this RFTL algorithm.

Lemma 4.1. Setting η =
√
log d/8T , the regret RT of

Algorithm 1 is bounded by 4
√
(2 log 2)T log d.

The proof for Lemma 4.1 is provided in Appendix C.
We then prove Theorem 1.6. We consider the case
that the RFTL is triggered when the prediction µt =
(Tr(Et,1ωt), ...,Tr(Et,Kωt)) deviates from the actual prob-
ability distribution pt = (Tr(Et,1ρ), ...,Tr(Et,Kρ)) for
more than 3ϵ/4—i.e.,dTV (µt,pt) > 3ϵ/4. As the pro-
vided distribution bt satisfies dTV (bt,pt) ≤ ϵ/4, the loss
function ℓt is at least ϵ/2 by triangle inequality.

We then consider using the real distribution in each iteration,
the loss function is at most ϵ/4 in each iteration. By the
regret bound, we have

ϵ

2
T ≤ ϵ

4
T + 4

√
2T log d.

Therefore, we can obtain the upper bound on T as T ≤
O(log d/ϵ2).

4.2. Online Shadow Tomography of K-outcome POVMs

We now prove Theorem 1.2 using Theorem 1.5 and Theo-
rem 1.6. We describe our online shadow tomography proce-
dure for K-outcome POVMs below.

Given the requirement parameters ϵ, δ and the number of
measurements M , we first define the following ancillary
parameters

T0 =

⌈
C0 log d

ϵ2

⌉
+ 1, δ0 =

δ

2T0
,

N0 =
C1K log(1/δ0)

ϵ2
log2M,

Nb =
C2K log(1/δ0)

ϵ2
log2M,

whereC0, C1, andC2 are three parameters that scale at most
poly(log logM, log logD, log(1/ϵ), logK). The number
of copies of ρ will be N = T0(N0 +Nb), which is indeed

N = Õ

(
log(1/δ)

ϵ4
·K · log2M log d

)
,

where Õ hides a poly(log logM, log logD, log(1/ϵ), logK)
factor.

After receiving N copies of ρ, our algorithm first divides
these states equally into T0 batches, each consisting N0

states. We prepare two joint states ρ⊗N0 and ρ⊗Nb using
each batch. Each batch is used for the update procedure in a
“bad iteration” in our online learning procedure.

To begin with, the learner initializes the hypothesis state
ω0 = I/d. In each iteration t, it chooses a fresh batch of
states and runs the quantum distribution threshold search
algorithm using joint state ρ⊗N0 . The threshold is chosen to
be the probability distribution µi after applying Mi for i ∈
[M ] on the hypothesis ωt. According to Theorem 1.5, we
can always find such C1 to solve this quantum distribution
search problem with success probability at least 1− δ0.

If the quantum distribution threshold search declares that for
all i ∈ [M ], dTV (µi,pi) ≤ ϵ. Then we have successfully
found a hypothesis such that the probability distributions
after applying all K-outcome POVMs on this hypothesis
are at most ϵ from that of the unknown state ρ.

If the quantum distribution threshold search outputs i∗

where dTV (pi∗ ,µi∗) > 3ϵ/4. We use ρ⊗Nb for an estima-
tion bi∗ of the probability distribution after applying Mi∗

on ρ. According to Eq. (7), we can always find C2 such
that with probability at least 1− δ0, one can bound the total
variation distance dTV (pi∗ , bi∗) ≤ ϵ/4. We supply this bi∗
to the learner and the learner employs the Algorithm 1 to
update the hypothesis state into ωt+1. Furthermore, the re-
maining copies in the current batch will be abandoned. The
learner will move into the next iteration with a new batch.

According to Theorem 1.6, the number of ”bad iterations”
is bounded by O(log d/ϵ2). If there is no failure in any
of the rounds, we can always find C0 such that we can
guarantee that for all i ∈ [M ], dTV (µi,pi) ≤ ϵ after the
online procedure, where µi is obtained by applying Mi for
i ∈ [M ] on the hypothesis ωT0 . Now we calculate the failure
probability in this procedure. In each iteration, the success
probability for the quantum distribution threshold search
and the calculation of bi∗ are both at least 1 − δ0. By the
union bound, the probability for failure after T0 iterations is
bounded by 2T0δ0 = δ.

Finally, we consider the computational complexity of our
shadow tomography procedure. In each iteration, we have
to implement a series of O(M) measurements on a batch
of O(K/ϵ2) joint samples to perform a quantum distribu-
tion threshold search and compute K terms for the gra-
dient ∇t to update the hypothesis in the RFTL protocol.
As the iteration number is bounded by O(log d/ϵ2), the
overall computational complexity is bounded by O(KM ·
poly(K, 1/ϵ, log d)) + dO(1).

5. The Lower Bound
We now show that any shadow tomography pro-
cedure for K-outcome POVMs requires at least
Ω(min{D2,K + log(M)}/ϵ2) copies of ρ. We set
D := ⌊min{d,

√
log2M +K}⌋ and suppose the unknown

state is D-dimensional mixed state. We choose some
constant c ∈ (0, 1) and set L = ⌊cD2−K⌋. We will have
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L quantum measurements of K outcomes for L ≤ M .
Notice that the probability for each outcome of the quantum
measurement can be regarded as the expectation for a
quantum event, there are in total L ·K quantum events.

We choose L · K subspaces {S1,1, ..., S1,K},...,
{SL,1, ..., SL,K} from CD×D for L POVMs inde-
pendently and Haar-randomly such that dim(Si,j) = D/K
for any i ∈ [L] and j ∈ [K]. The K subspaces in each set
{Si,1, ..., Si,K} are orthogonal. We denote Pi,j to be the
projection to Si,j and ρi,j = KPi,j/D to be the maximally
mixed state projected onto Si,j . As long as we choose a c
that is close enough to 1, we can always find a choice over
Si,j’s with success probability 1− o(1) such that∣∣∣∣Tr(Pi,jρi′,j′)−

1

K

∣∣∣∣ ≤ 1

2K
(6)

for i ̸= i′ according to Lemma A.2. We fix such a choice
over Si,j .

Without loss of generality, we assume that K is even. Now,
we consider constructing the following states using a classi-
cal bit string z = (z1, ..., zK/2) of K/2 bits as

ρi(z) :=

K/2∑
j=1

[
1− 50ϵzj

K
ρi,2j−1 +

1 + 50ϵzj
K

ρi,2j

]
.

We consider applying measurement Mi on state ρi(z). The
(2j−1)-th and the 2j-th entry for the probability distribution
are

Tr(Ei,2j−1ρi(z)) =
1− 50ϵzi

K
,

Tr(Ei,2jρi(z)) =
1 + 50ϵzi

K
.

We consider applying Mi′ on state ρi(z) for i ̸= i′. Accord-
ing to Eq. (6), the j-th entry of the probability distribution
is

Tr(Ei′,jρi(z)) ≤
3

4
· 1 + 50ϵ

K
+

1

4
· 1− 50ϵ

K
=

1 + 25ϵ

K
,

Tr(Ei′,jρi(z)) ≥
3

4
· 1− 50ϵ

K
+

1

4
· 1 + 50ϵ

K
=

1− 25ϵ

K
.

Now, we fix a measurement Mi. If we apply this measure-
ment to two quantum states ρi(z1) and ρi′(z2) for i ̸= i′.
The total variation distance for the two probability distribu-
tions is at least 25ϵ/2. It follows that, if we can estimate the
probability distribution after a Mi to within total variation
distance ϵ, we can immediately estimate i ∈ [L] for the
unknown state ρi(z).

We then consider applying this measurement to two quantum
states ρi(z1) and ρi(z2) for z1 ̸= z2. Since each single

difference on one entry in z1 and z2 will contribute 100ϵ
n

to the total variation distance between the two probability
distributions, the distance is at least ϵ if more than 1% of the
entries are different. Therefore, we can distinguish between
such z1 and z2 with more than 1% different entries if we
can estimate the probability distribution after a Mi to within
total variation distance ϵ.

Suppose we choose i and z uniformly and randomly, then
such choice contains log2(2

K/2M) = Ω(K + log2(M))
bits of classical information. Suppose we require N copies
of ρ to perform a shadow tomography procedure of K-
outcome POVMs. Let

ζ := Ei∈[L],z∈{0,1}K/2

[
ρi(z)

⊗N
]
.

In order to make learning i and 99% of the entries for z from
ζ information-theoretically possible, the mutual information
I(ζ : i, z) must be at least Ω(K+ log2(M)). As both i and
z are classical, we have

I(ζ : i, z) = S(ζ)− S(ζ|i)
= S(ζ)− S(ρi(z)

⊗N )

≤ N(log2D − S(ρi(z)),

where S(·) is the von Neumann entropy. Now, we calculate
the term S(ρi(z)). Let λi,z,1, ..., λi,z,D be the eigenvalues
for ρi(z). By applying a unitary transformation that diago-
nalizes ρi(z) rotating to a basis that contains half of the pro-
jectors, we can observe that half the λi,z,j’s are (1+50ϵ)/D
and the other half of the λi,z,j’s are (1− 50ϵ)/D. Hence,

S(ρi(z)) =

D∑
j=1

λi,z,j log2(
1

λi,z,j
)

≥ log2D −O(ϵ2).

Therefore, the mutual information can be bounded by

I(ζ : i, z) = O(Nϵ2).

As learning i and 99% of the entries for z requires Ω(K +
log2(M)) bits of classical information, we conclude that

N = Ω

(
D2

ϵ2

)
= Ω

(
min{d2,K + log(M)}

ϵ2

)
.

6. Conclusion
This work theoretically established the exact dependence
on K for shadow tomography of K-outcome quantum mea-
surements and proposed the explicit algorithm that learns
these distributions with sample complexity optimal in K.
To the best of our knowledge, K is the only parameter we
can obtain exact dependence for sample complexity in the
context of shadow tomography. We conclude by discussing
a few possible future directions.
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• Can we develop an algorithm or provide a tight sam-
ple complexity that has smaller dependence on logM ,
log d, and 1/ϵ. In addition, it is interesting to explore
whether the lower bound in our setting is multiplicative
(Ω(K · logM)) or additive (Ω(K+logM)). Also, can
we find a trade-off relation between the sample and the
time complexity?

• Can we achieve a better query complexity for shadow
tomography with access to a unitary oracle that pre-
pares the state? It has been shown that we can achieve
quantum speedups in similar tasks (Huggins et al.,
2021; van Apeldoorn et al., 2022) using quantum mean
estimation (Hamoudi, 2021; Cornelissen et al., 2022).

• Can we find a shadow tomography procedure that has
polynomial dependence on log d, logM , and logK
for some family of Mi’s and ρ’s that are commonly
considered in practical experiments?
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A. Auxiliary lemmas
Lemma A.1 (Lemma 4.2, (Bădescu & O’Donnell, 2021)). Suppose we are given an unknown d-dimensional quantum
state ρ, and M quantum projectors B1, ..., BM ∈ Cd×d.There exists an algorithm using O(log2M log(1/δ)) copies of ρ
outputting either

• Eρ[Bi∗ ] = Tr(Bi∗ρ) > 1/4 for some particular i∗; or

• Eρ[Bi] ≤ 3/4 for any i,

with success probability at least 1− δ.

The proof of this theorem employs the χ2-stable threshold reporting technique, which is a quantum version of classical
statistical results fitting into the adaptive data analysis framework. We omit the details here and refer to (Smith, 2017), for
example, for the related background.
Lemma A.2 (Hayden, Leung, and Winter (Hayden et al., 2006)). Let S and T be two subspaces of Cd×d with dimension d1
and d2. We denote PS and PT to be projectors on subspaces S and T . Consider ρS = 1

d1
PS to be the maximally mixed

state projected onto S. If we fix T and randomly choose S, then

Pr

[∣∣∣∣Tr(PT ρS)−
d2
d

∣∣∣∣ ≥ c0d2
d

]
≤ exp

(
− · c

2
0d1d2
6 ln 2

)
.

B. Expectation Estimation
We will need a concentration lemma for random vectors, which is an extension of the vector Bernstein inequality (Theorem
6) in (Gross, 2011; Kohler & Lucchi, 2017).
Lemma B.1. Let x1, ...,xm be independent K-dimensional vector-valued random variables. We assume that each random
vector is zero-mean, uniformly bounded, and has bounded variance, i.e.,

E[xi] = 0 and ∥xi∥∞ ≤ µ as well as E
[
∥xi∥22

]
≤ σ2

for some constants µ, σ > 0. Suppose that parameters satisfies 0 < ϵ < σ2/µ, then we have

Pr

{∥∥∥∥∥ 1

m

m∑
i=1

xi

∥∥∥∥∥
2

≥ ϵ

}
≤ exp

(
−m · ϵ2

8σ2
+ C

)
,

for some positive constant C.

Proof. Theorem 6 in (Gross, 2011) indicates that for independent, zero-mean random vectors

Pr

{∥∥∥∥∥
m∑
i=1

xi

∥∥∥∥∥ ≥ t+
√
V

}
≤ exp

(
− t2

4V

)
,

where V =
∑m

i=1 E
[
∥xi∥22

]
is the sum of variances for random vectors. We define ϵ = t +

√
V and rewrite the above

inequality as

Pr

{∥∥∥∥∥
m∑
i=1

xi

∥∥∥∥∥ ≥ ϵ

}
≤ exp

(
−1

4

(
ϵ√
V

− 1

)2
)

≤ exp

(
− ϵ2

8V
+

1

4

)
.

Since the sum of variance V can be bounded by mσ2 according to our assumption, we can finally obtain the following
inequality

Pr

{∥∥∥∥∥ 1

m

m∑
i=1

xi

∥∥∥∥∥ ≥ ϵ

}
≤ exp

(
−1

4

(
ϵ√
V

− 1

)2
)

≤ exp

(
−m · ϵ2

8σ2
+

1

4

)
.

By choosing the constant C = 1
4 , we finish the proof for this lemma.
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Now we consider sampling from a probability distribution p = (p1, ..., pK) for m times. For the i-th sample where i ∈ [m],
we obtain one sample p̂i = (p̂1i , ..., p̂

K
i ) with only one entry 1 and the other entries 0. We set xi = p − p̂i. Then xi is

centered because E(xi) = E[p− p̂i] = 0. Each entry of xi is bounded below by 1 and

E[∥xi∥2] = σ2 = 1−
K∑
j=1

p2j < 1.

Therefore, by Lemma B.1, we can guarantee that

Pr

(∥∥∥∥∥ 1

m

m∑
i=1

p̂i − p

∥∥∥∥∥
2

≥ ϵ

)
≤ δ,

as long as we choose m ≥ O(log(1/δ)/ϵ2). To bound the total variation distance dTV (
1
m

∑m
i=1 p̂i,p) between the

empirical distribution and the actual distribution, we combine the bound in Eq. (1) with Lemma B.1 and obtain:

Pr

(
dTV

(
1

m

m∑
i=1

p̂i,p

)
≥ ϵ

)
≤ Pr

(∥∥∥∥∥ 1

m

m∑
i=1

p̂i − p

∥∥∥∥∥
2

≥ 2ϵ√
K

)
≤ exp

(
−m · 4ϵ

2

K
+

1

4

)
.

Hence, we can bound dTV (
1
m

∑m
i=1 p̂i,p) below ϵ with probability at least 1− δ if

m ≥ O

(
log(1/δ)

ϵ2
·K
)
. (7)

We assign an index for every single copy ρ in the joint state ρ⊗N and assume each single ρ occupies a “register”. For all
N -bit classical strings x = (x1, ..., xN ) ∈ [K]N , we define quantum events Ex = Ex1

⊗ ..×ExN
to be the tensor product

of quantum event Exi
in the i-th register. It is easy to verify that

∑
x∈{0,1}N Ex = I. For all K-dimensional positive integer

arrays k = (k1, ..., kK) with
∑K

j=1 kj = N , we define quantum event Ak to be

Ak =
∑

x∈[K]⊗N

[num of xi=j]=kj

Ex.

Then the empirical approximation p′ is chosen as p′ = k/N . Since each entry ki of k is distributed as
Binomial(N,Tr(Eiρ)), we can bound the following probability using Eq. (7):

Pr
(
dTV (p,p

′) ≥ ϵ

8

)
≤ δ (8)

as N = O(K log(1/δ)/ϵ2).

We define a function f : [0, 1]⊗K → {0, 1} by

f(t) =

{
1, dTV (t, τ ) ≥ 7ϵ

8 ,

0, otherwise.

Based on this function, we define quantum event B by

B =
∑

k
k1+...+kK=N

f

(
k

N

)
Ak.

As each entry ki of k is distributed as Binomial(N,Tr(Eiρ)), we can observe that

Eρ⊗N [B] = Pr

(
dTV (p

′, τ ) ≥ 7ϵ

8

)
.

12



Learning Distributions over Quantum Measurement Outcomes

Recall the guarantee in Eq. (8). The condition dTV (p, τ ) > ϵ implies that dTV (p
′, τ ) ≥ 7ϵ/8 by triangle inequality. Hence,

Eρ⊗N [B] = Pr

(
dTV (p

′, τ ) ≥ 7ϵ

8

)
≥ Pr

(
dTV (p,p

′) ≤ ϵ

8

)
≥ 1− δ.

Similarly, the condition dTV (p, τ ) ≤ 3ϵ/4 implies that dTV (p
′, τ ) ≤ 7ϵ/8. Hence,

Eρ⊗N [B] = Pr

(
dTV (p

′, τ ) >
7ϵ

8

)
> Pr

(
dTV (p,p

′) ≤ ϵ

8

)
≥ 1− δ.

C. Proof of Lemma 4.1
We mainly follow the template of the proof for Theorem 3 in (Aaronson et al., 2018), but there are some differences since
the loss function is different. We first observe that the loss function ℓt(Tr(Et,1φ), ...,
Tr(Et,K−1φ)) is convex. There are at most two terms that contain each Tr(Et,jφ) in the loss function when calculating the
sub-derivative over each value Tr(Et,jφ):

• The variance in the j-th entry: 1/2|Tr(Et,jφ)− bt,j |;

• The variance in the last entry: 1/2|Tr(Et,Kφ)− bt,K | as Tr(Et,Kφ) = 1−
∑K−1

j=1 Tr(Et,jφ).

Therefore, the value of sub-derivative ∂ℓt/∂(Tr(Et,j)) is either ±1 or 0. We can divide all indexes j of Et,j into three
subsets St,1, St,−1, and St,0 such that the value of ∂ℓt/∂(Tr(Et,j)) is 1,−1, and 0 for j chosen from St,1, St,−1, and St,0.
We thus rewrite ∇t as:

∇t =
∑

j∈St,1

Et,j −
∑

j∈St,−1

Et,j .

Notice that Et,j are projectors corresponding to different measurement outcomes and
∑K

j=1Et,j = I, each Et,j are

orthogonal and the spectral norm of any summation
∥∥∥∑j∈[K]Et,j

∥∥∥ ≤ 1. We can thus bound the spectral norm of ∇t below
by

∥∇t∥ ≤

∥∥∥∥∥∥
∑

j∈St,1

Et,j

∥∥∥∥∥∥+
∥∥∥∥∥∥
∑

j∈St,−1

Et,j

∥∥∥∥∥∥ ≤ 2.

In the following, we denote µt = Tr(Et,1ωt), ...,Tr(Et,K−1ωt) and τt = Tr(Et,1φ), ...,Tr(Et,K−1φ) for simplicity.
Since ℓt is convex,

ℓt(µt)− ℓt(τt) ≤ ∇t · (ωt − φ)

holds for all φ ∈ H, where · denotes the trace inner-product between complex matrices. Summing over t, we obtain

T∑
t=1

[ℓt(µt)− ℓt(τt)] ≤
T∑

t=1

[Tr(∇tωt)− Tr(∇tφ)].

We define gt(X) = ∇t ·X for X ∈ H and H(X) to be the negative von Neumann Entropy of X . By Lemma 5.2 in (Hazan
et al., 2016), we have

T∑
t=1

[gt(ωt)− gt(φ)] ≤
T∑

t=1

∇t · (ωt − ωt+1) +
1

η
D2

R (9)

for any φ ∈ H, where D2
R := maxφ,φ′∈H{R(φ)− R(φ′)}. We define Φt(X) = η

∑t
s=1 ∇s ·X + R(X), then line 5 of

Algorithm 1 finds the minimal value of Φt(X) in H. To prove the theorem, we need the following two claims.

13



Learning Distributions over Quantum Measurement Outcomes

Claim C.1. For all t ∈ {1., , , .T}, we have ωt ≻ 0.

Proof. Consider a Hermitian matrix P ∈ Cd×d with zero minimal eigenvalue—i.e.,λmin = 0. Suppose P = V QV †, where
Q is a diagonal matrix with real entries as the eigenvalues of P . Assume Q1,1 = λmax(P ) and Qd,d = λmin(P ) = 0. We
consider a different matrix P ′ = V Q′V † such that Q′

1,1 = Q1,1 − ϵ, Q′
i,i = Qi,i for i ∈ {2, ..., d − 1}, and Q′

d,d = ϵ
for ϵ < λmax(P ). We then prove that there exists ϵ > 0 that satisfies Φt(P

′) ≤ Φt(P ). By expanding both sides of the
inequality, we need to prove an equivalent inequality

A · (P ′ − P ) ≤ α logα− (α− ϵ) log(α− ϵ)− ϵ log ϵ,

where A = η
∑t

s=1 ∇s and α = λmax(P ) = Q1,1. Notice that ∥A∥ ≤ η
∑t

s=1 ∥∇s∥ ≤ 2ηt. The left side of the inequality
can be bounded using Generalized Cauchy-Schwartz inequality (Bhatia, 2013) as

A · (P − P ′) ≤ 2ηt∥P − P ′∥Tr ≤ 4ϵηt.

where ∥A∥Tr is the trace norm for matrix A. As log ϵ → −∞ when ϵ → 0, there exists a small enough ϵ such that
4ηt ≤ logα− log ϵ. Therefore, we have

4ηtϵ ≤ ϵ logα− ϵ log ϵ ≤ α logα− (α− ϵ) log(α− ϵ)− ϵ log ϵ.

This indicates that there exists ϵ that is small enough such that Φt(P
′) ≤ Φt(P ). If P has more than one zero eigenvalues,

we can repeat the proof and construct the matrix P ′. As ωt is a minimal point of Φt−1 and ω1 ⪰ 0, we have ωt ⪰ 0 for all
t.

Now, we can focus on X ⪰ 0 and write R(X) = Tr(X logX). We can further calculate the gradient of Φt(X) as

∇Φt(X) = η

t∑
s=1

∇s + I+ logX.

Here, we assume that the function Φt(X) is defined over real symmetric matrices. We can further prove the following claim.

Claim C.2. For all t ∈ {1, ..., T − 1}, ∇Φt(ωt+1) · (ωt − ωt+1) ≥ 0.

Proof. We inversely assume that ∇Φt(ωt+1) · (ωt − ωt+1) < 0. We choose a parameter a ∈ (0, 1) and construct
X = (1− a)ωt+1 + aωt. Then X ⪰ 0 is also a density matrix. We denote ∆ = X − ωt+1 = a(ωt − ωt+1). According to
Theorem 2 in (Audenaert & Eisert, 2005), we have

Φt(X)− Φt(ωt+1) ≤ a∇Φt(ωt+1) · (ωt − ωt+1) +
Tr
(
∆2
)

λmin(ωt+1)

= a∇Φt(ωt+1) · (ωt − ωt+1) +
a2 Tr

(
(ωt − ωt+1)

2
)

λmin(ωt+1)
.

Then we divide the above inequality by a on both sides and get

Φt(X)− Φt(ωt+1)

a
≤ ∇Φt(ωt+1) · (ωt − ωt+1) +

aTr
(
(ωt − ωt+1)

2
)

λmin(ωt+1)
.

Since we assume that ∇Φt(ωt+1) · (ωt − ωt+1) < 0, we can always choose some small enough a such that the right-hand
side is negative while the left-hand side is always positive since Φt(X) > Φt(ωt+1). This leads to a contradiction. Therefore,
we have proved that ∇Φt(ωt+1) · (ωt − ωt+1) ≥ 0.

We define

BΦt
(ωt||ωt+1) := Φt(ωt)− Φt(ωt+1)−∇Φt(ωt+1) · (ωt − ωt+1).

14
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By Pinsker inequality (Carlen & Lieb, 2014), we have

1

2
∥ωt − ωt+1∥2Tr ≤ Tr(ωt logωt)− Tr(ωt logωt+1) = BΦt

(ωt||ωt+1).

Using Claim C.2 and Φt−1(ωt) ≤ Φt−1(ωt+1), we have

BΦt
(ωt||ωt+1) = Φt(ωt)− Φt(ωt+1)−∇Φt(ωt+1) · (ωt − ω[t+ 1])

≤ Φt(ωt)− Φt(ωt+1)

= Φt−1(ωt)− Φt−1(ωt+1) + η∇t · (ωt − ωt+1)

≤ η∇t · (ωt − ωt+1).

Therefore,

1

2
∥ωt − ωt+1∥2Tr ≤ η∇t(ωt − ωt+1).

By Generalized Cauchy-Schwartz inequality, we have

∇t · (ωt − ωt+1) ≤ ∥∇t∥∥ωt − ωt+1∥Tr
≤ ∥∇t∥

√
2η∇ · (ωt − ωt+1)

≤ 2η∥∇t∥2

≤ 8η.

We combine this inequality with Eq. (9) and reach the following bound

T∑
t=1

∇t · (ωt − φ) ≤ 8ηT +
1

η
D2

R.

We take η = DR

2
√
2T

. Observe that D2
R ≤ log d according to the definition of von Neumann entropy, the value for η is

η =

√
log d

8T
.

The corresponding regret bound is

T∑
t=1

[ℓt(µt)− ℓt(τt)] ≤
T∑

t=1

∇t · (ωt − φ) ≤ 4
√

2T log d.

D. An Exemplary Application
Here, we provide some applications of our shadow tomography procedure of K-outcome POVMs. In quantum mechanics,
we are sometimes interested in the expectation value of quantum operators {Oi}Mi=1:

oi = ⟨Oi⟩ = Tr(Oiρ),

given an unknown quantum state ρ. Suppose we perform a quantum measurement Mi that has K outcomes to estimate the
expectation value oi. Then the following corollary holds by using our shadow tomography procedure

Corollary D.1. We consider an unknown d-dimensional quantum state, as well as M quantum operators O1, ..., OM .
Assume we can measure each operator Oi using a quantum measurement M of K results. Then there exists a strategy that
can approximate the expectation of each operator Tr(Oiρ) within additive error ϵ using

N = Õ

(
maxi ∥Oi∥4

ϵ4
·K · log2M log d

)

copies of ρ. Here, ∥·∥ is the spectral norm. The success probability is at least 1− δ.

15
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To prove this corollary, we can divide the procedure into two steps.

In the first step, we approximate the distribution after we apply each measurement Mi within total variation distance
ϵ/maxi ∥Oi∥, which requires N copies of ρ according to Theorem 1.2.

Next, we calculate the expectation value using the distribution we obtained. The additive error for the expectation of Oi′ is
bounded above by

∥Oi′∥ ·
ϵ

maxi ∥Oi∥
≤ ϵ.

As an example, we consider a n-qubit quantum states that is d = 2n-dimensional. We want to measure the expectation value
for the operators {Sn̂i

}Mi=1 which measures the spin along n̂i directions as

Sn̂i
=

n∑
k=1

σk
n̂i

⊗
k′ ̸=k

Ik

where σk
n̂i

denotes the spin operator along n̂i on the k-th operator and Ik denotes the identity operator on the k-th qubit. Each
measurement Mi has K = n+ 1 outcomes. The quantum event corresponding to each outcome n− 2k for k = 0, 1, ..., n
can be written as a projector

An−2k =
∑

x∈{0,1}n
|x|=x−2k

|x⟩ ⟨x| ,

where |x| represents the Hamming weight for string x. We can calculate the spectral norm ∥·∥ and the Hilbert-Schmidt
norm ∥·∥HS of Sn̂i by

∥Sn̂i
∥HS = n2n,

∥Sn̂i
∥ = n.

Therefore, we can approximate the expectation value for {Sn̂i}Mi=1 using

N = Õ

(
log7 d

ϵ4
· log2M

)
copies of ρ according to Corollary D.1, which scales only poly-logarithmic on d. However, directly using classical shadow
exponential number of samples.
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