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Abstract
Annealed Importance Sampling (AIS) synthesizes
weighted samples from an intractable distribution
given its unnormalized density function. This al-
gorithm relies on a sequence of interpolating dis-
tributions bridging the target to an initial tractable
distribution such as the well-known geometric
mean path of unnormalized distributions which
is assumed to be suboptimal in general. In this
paper, we prove that the geometric annealing cor-
responds to the distribution path that minimizes
the KL divergence between the current particle
distribution and the desired target when the fea-
sible change in the particle distribution is con-
strained. Following this observation, we derive
the constant rate discretization schedule for this
annealing sequence, which adjusts the schedule
to the difficulty of moving samples between the
initial and the target distributions. We further
extend our results to f -divergences and present
the respective dynamics of annealing sequences
based on which we propose the Constant Rate AIS
(CR-AIS) algorithm and its efficient implementa-
tion for α-divergences. We empirically show that
CR-AIS performs well on multiple benchmark
distributions while avoiding the computationally
expensive tuning loop in existing Adaptive AIS.

1. Introduction
Annealed Importance Sampling (AIS) (Neal, 2001) is one of
the most popular sampling methods to estimate intractable
expectations given an unnormalized density of a distribu-
tion. Together with its other variants such as thermodynamic
integration (Ogata, 1989; Gelman & Meng, 1998) and Se-
quential Monte Carlo (SMC) (Del Moral et al., 2006) this
algorithm has vast applications, such as marginal likelihood
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estimation (Salakhutdinov & Murray, 2008; Grosse et al.,
2015; 2016), moment estimation (Johansen et al., 2015;
Jasra et al., 2011), generative model evaluation (Wu et al.,
2017) and more recently it has been incorporated in varia-
tional inference and training of deep generative networks
(Maddison et al., 2017; Naesseth et al., 2018; Wu et al.,
2020; Thin et al., 2021; Masrani et al., 2019).

To perform annealing, this algorithm uses a sequence of
bridging distributions between proposal distribution and the
target which is chosen in advance. Gelman & Meng (1998)
have demonstrated that the optimal path with lowest vari-
ance for thermodynamic integral estimator depends on the
Hellinger distance of the distributions and it is intractable
in complex setups. Instead, the geometric mean path has
been utilized for years (Neal, 2001; 1996). As alternatives,
moment-averaging have been proposed for exponential fam-
ily distributions (Grosse et al., 2013) and further generalized
to power mean for arbitrary endpoint distributions (Masrani
et al., 2021; Brekelmans et al., 2020). These heuristic an-
nealing paths achieve viable estimation results even though
they are considered to be suboptimal.

In this work, we analyze a version of AIS algorithm where
we apply infinitesimal changes to the initial density along
the annealing distribution path to get to the target distribu-
tion. We take a greedy approach and modify the particle
distribution in the direction that optimally reduces the re-
maining estimation bias at every instance. The remaining
bias is equivalent to the inverse KL-divergence between
current particle distribution and the target distribution under
common assumptions (Grosse et al., 2013) and we prove
that in this setup the optimal greedy strategy is achieved us-
ing the geometric mean path. Extending our analysis to the
larger class of f -divergences, we are able to derive an Or-
dinary Differential Equation (ODE) for the optimal greedy
annealing dynamics. In the subclass of α-divergences, this
ODE has a closed form solution and we show that power
mean annealing is a solution to this equation.

While other variational representations of geometric and
power mean paths have been provided in the previous work
(Grosse et al., 2013; Masrani et al., 2021), to the best of
our knowledge, we are the first to show the relation of
these annealing sequences with the functional derivatives
of various probability divergences. Using this framework,

1



Adaptive Annealed Importance Sampling with Constant Rate Progress

we are able to derive the constant rate schedule along the
steepest descent annealing path.

Our greedy strategy is similar to existing Adaptive AIS
in that we look ahead and measure the impact of each an-
nealing step base on an objective function. However, in a
typical Adaptive AIS algorithm, the schedule is adjusted
in each step to keep the reduction of the Effective Sample
Size (ESS) (Kong, 1992; Neal, 2001) or the Conditional
ESS (CESS) (Johansen et al., 2015) at a constant rate using
iterative search algorithms. Instead, we derive the anneal-
ing distribution path and its corresponding schedule using
the same objective derivative. Therefore, the constant rate
schedule is tightly connected to the bridging distributions
and is able to account for the difficulty of synthesis along
each annealing sequence.

Finally, we design the Constant Rate AIS (CR-AIS) al-
gorithm to approximate the constant rate schedule of the
variational objectives. We present multiple considerations
for its practical implementation. CR-AIS does not rely on
searching algorithms and excessive target density function
evaluations as in adaptive versions of AIS and uses the in-
formation from the derivative of the objective to choose the
bridging distributions. Using this algorithm we empirically
verify our findings on high dimensional targets and illustrate
how CR-AIS is able to trade-off computation complexity
with estimation accuracy while improving adaptivity.

2. Annealed Importance Sampling
Formally, suppose P and Q0 are two probability distri-
butions on Rd with density functions π and q0, respec-
tively. We assume evaluation of q0 is tractable while
π = π̃/Zπ is only known up to the normalization con-
stant Zπ =

∫
Rd π̃(z)dz. To sample from π, AIS uses a se-

quence of annealing distributions defined by the density path
γ : [0, 1] × Rd → R+ where γ(t, ·) ∈ P for all t ∈ [0, 1]
starting from γ(0, ·) = q0(·) and reaching to γ(1, ·) = π(·)
and P is the family of normalized density functions. This
path is discretized with the schedule 0 = t0 < ... < tM = 1.
Common choices for schedule are linear discretization with
ti = i/M , exponential with ti = 1− ϵi and sigmoidal with
ti = σ(c(i/M − 0.5)) for hyperparameters ϵ < 1, 0 < c
and σ(x) = 1/(1 + e−x).

A Markov process −→q (z0:M ) = q0(z0)
∏

i∈[M ]
−→q i(zi|zi−1)

is used for sampling such that particles sampled from the
initial distribution, z0 ∼ q0, gradually move following each
transition probability −→q i to have a marginal distribution
close to γ(ti, ·). An auxiliary backward Markov chain
←−q i(zi−1|zi) allows us to compute the unnormalized im-
portance weights corresponding to each particle trajectory

z0:M ,

w(z0:M ) =
π̃(zM )

∏
i
←−q i(zi−1|zi)

q0(z0)
∏

i
−→q i(zi|zi−1)

.

It is common to define the transition probabilities −→q i to
be reversible with respect to γ(ti, ·) (e.g. a Markov chain
with Metropolis-Hastings corrected transition kernels) and
select ←−q i as its reversal (Neal, 2001). Let us denote the
unnormalized density path with γ̃(t, ·) = Zγt

· γ(t, ·),
where Zγt

=
∫
Rd γ̃(t, z)dz. Therefore, with reversible tran-

sitions, ←−q i(zi−1|zi) = −→q i(zi|zi−1)γ̃(ti, zi−1)/γ̃(ti, zi),
we can rewrite the importance weights as w(z0:M ) =∏

i γ̃(ti, zi−1)/γ̃(ti−1, zi−1). The unbiased Monte Carlo
(MC) estimator of the partition function from N sampled
particle instances z(j)0:M ∼ q0

∏
i
−→q i for 1 ≤ j ≤ N is

Zπ ≈ Ẑπ =
1

N

∑
j

w(z
(j)
0:M ).

Although, to avoid numerical underflow, log space compu-
tations are preferred and logZπ is bounded from below by
(Grosse et al., 2015; Domke & Sheldon, 2018)

logZπ ≥E−→q [logw(z0:M )] (1)

≈ 1

N

∑
j

logw(z
(j)
0:M ).

It is possible to estimate the expectation of a test function h :
Rd → R under the target distribution via self-normalized
weighted average of h(z(j)M ) or equivalently by resampling
the particles according to a multinomial distribution where
z
(j)
M is sampled proportional to w(z

(j)
0:M ).

3. Adaptive Annealing Dynamics from
Divergence Derivative

Given the particle trajectory, z0:M ∼ −→q , we denote the
density of the marginal distribution of zi with qti(zi). It is
common to analyze the AIS algorithm in perfect transition
regime (i.e. when qti(z) = γ(ti, z) qti -a.s.) with reversible
transition kernels (Grosse et al., 2013; Kiwaki, 2015). This
is not unrealistic if ti − ti−1 is sufficiently small and the
consecutive annealing distributions are close to each other.
We assume the same conditions apply in our paper. Under
this setup, Grosse et al. (2013) decomposed the bias of the
estimator in Equation (1) as the sum of KL divergences
between consecutive annealing distributions (Grosse et al.,
2013),

logZπ − E−→q [logw(z0:M )] =

M∑
i=1

DKL(qti−1
||qti), (2)
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where DKL(q||p) =
∫
q(z) log(q(z)/p(z))dz. In fact, as

M →∞ the asymptotic bias decreases as

M

M∑
i=1

DKL
(
qti−1
||qti

)
→ 1

2

∫ 1

0

Varqt [
d

dt
log qt]dt. (3)

The end-to-end asymptotic bias in Equation (3) was used
to compare the efficiency of moment-averaging and geo-
metric mean paths in (Grosse et al., 2013) and optimized
with respect to the single dimensional schedule function for
a given density path γ̃ in (Kiwaki, 2015). Their method
does not scale to higher dimensional function space to op-
timize the annealing density path. Instead, we propose an
adaptive approach to maximize the reduction in bias with
every infinitesimal transition and we use the derivative of
KL-divergence at the current particle distribution to find the
optimal change in the annealing density path. By doing so,
we are able to extend the optimization space from the space
of discretization schedules to the space of unnormalized
annealing density paths. In the following, we explain the
details of our method. Proof of the results are provided in
Appendix A.

3.1. Inverse KL Divergence Dynamics

Let q̃t(z) = γ̃(t, z) be the unnormalized marginal density
at instant t and JKL[ϕt] define the functional of ϕt(z) =
log q̃t(z) corresponding to the inverse KL divergence,

JKL[ϕt] =DKL(qt||π) (4)

=

∫
q̃t(z) log

q̃t(z)
π̃(z) dz∫

q̃t(z)dz
+ logZπ − log

∫
q̃t(z)dz.

In our greedy strategy, at step i, we fix all the previous
annealing distributions up to qti and consider none of the
subsequent ones other than q1 = π. We choose the next
distribution qti+1 as an infinitesimal modification of qti
which minimizes the updated sampling bias. We can derive
the updated bias recursively from Equation (2) starting from
b0 = DKL(q0||π) and repeating

bi =bi−1 + DKL(qti ||qti+1)

+ DKL(qti+1 ||π)− DKL(qti ||π), (5)

for i < M . To find qti+1
we take the directional func-

tional derivative of bi and minimize it in a compact space
to find the steepest descent direction that leads to the opti-
mal annealing. As the first and last terms in Equation (5)
are constant with respect to qti+1

and the derivative of the
second term is zero, the directional derivative is equivalent
to the directional derivative of JKL[ϕti ]. First, we derive the
directional derivative of JKL in the following Lemma. Then,
in Proposition 3.2, we show that the geometric path,

log q̃geom
t (z) := (1− t) log q0(z) + t log π̃(z), (6)

corresponds to the path following this direction and is opti-
mal in this sense.

To take the derivative of JKL, we transform the negative
energy ϕt by a small perturbation in direction of the smooth
function η : Rd → R with a small step size ϵ > 0.

Lemma 3.1. Assume q̃t(z) and π̃(z) are positive unnormal-
ized density functions and let ϕt+ϵ(z) = ϕt(z) + ϵη(z) for
ϕt(z) = log q̃t(z). Then we have,

d

dϵ
JKL[ϕt+ϵ]

∣∣∣∣
ϵ=0

=Covqt

[
η(z), log

q̃t(z)

π̃(z)

]
, (7)

where Covq[·, ·] is the covariance under distribution of q
and we use the definition of Gâteaux differential for the
derivative,

d

dϵ
JKL[ϕt+ϵ]

∣∣∣∣
ϵ=0

= lim
ϵ→0+

JKL[ϕt(z) + ϵη(z)]− JKL[ϕt]

ϵ
.

To identify the optimal perturbation direction, η∗qt,π , we min-

imize Covqt

[
η(z), log q̃t(z)

π̃(z)

]
with respect to η in the space

of smooth functions with bounded variance. Using a bound
on the variance of the perturbation as opposed to its norm
is explained by the fact that the expectation of the perturba-
tion only impacts the normalization factor of the bridging
density function and does not affect the performance of
AIS. Therefore, by constraining the perturbations to have
bounded variance, we are accounting for the equivalency of
annealing paths with different time dependent scaling.

The optimal perturbation η∗qt,π is the steepest descent di-
rection of the inverse KL divergence which we can use to
derive the annealing dynamics via

d

dt
log q̃(z) = η∗qt,π(z) + b(t). (8)

Note that b(t) : R → R in Equation (8) is an arbitrary log
scale function of t which can be absorbed by η∗qt,π(z) for
each t without loss of generality. In the following, we show
that with initial distribution density q̃0 and following the
infinitesimal perturbations in direction of η∗qt,π we recover
an arbitrarily scaled geometric mean path. In addition to the
dynamics of the optimal greedy annealing path, we derive a
discretization schedule in the following proposition which
ensures a steady decrease in JKL as AIS algorithm proceeds.

Proposition 3.2. Assume the same conditions as in
Lemma 3.1. Additionally, consider the set of smooth pertur-
bation directions with bounded variance

Mqt,π := {η ∈ C1 : Varqt [η(z)] ≤ cKL
qt,π},

for B ≥ 0 and cKL
qt,π = B/Varqt [log(π̃(z)/q̃t(z))]. Then

the steepest descent direction that minimizes the derivative
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in Equation (7) inMqt,π is

η∗qt,π(z) =
cKL
qt,π√
B

log
π̃(z)

q̃t(z)
+ b, (9)

for arbitrary b ∈ R. A solution to the Ordinary Differen-
tial Equation (ODE) d

dtϕt(z) = η∗qt,π(z) with initial condi-
tion ϕ0(z) = log q̃0(z) is the scaled geometric mean path
log q̃geom

1−β(t)(z) which for β(t) set as

βKL(t) := e−
∫ t
0
cKL
qr,πdr/

√
B , (10)

decreases the inverse KL divergence in Equation (4) with
constant rate.

Note that the annealing process described by Proposition 3.2
encompasses the duration 0 < t as opposed to t ∈ [0, 1]
in the original AIS algorithm. This is due to taking in-
finitesimal annealing steps along the derivatives of JKL. In
particular, the annealing schedule in Proposition 3.2 is de-
fined with τ(t) = 1−β(t) and for β(t) = βKL(t) as t→∞,
τ(t)→ 1− and qt(z)→ π(z) for all z ∈ Rd, although the
normalization factor of q̃t may grow to infinity. Additionally,
due to the derivative of τ(t),

τ̇(t) ∝ (1− τ(t))/Varqt [log(π̃/q̃t)],

annealing is slower when the particle distribution is further
away from the target (i.e. in the beginning of the annealing
process). The constant rate schedule enforces a balanced
division of the sampling difficulty per annealing step in com-
parison to the heuristics such as linear. In other words, to
converge to the target, in each iteration, the particle distribu-
tion is altered by doing an equal amount of work which is
measured in terms of the reduction of the KL-divergence.

Due to the logarithmic term in the derivative, annealing is
slower when the particle distribution extends beyond the
target distribution support, while being less sensitive to
unexplored modes in the target distribution with a damped
sensitivity as t grows. However, in Section 5.1 we show this
not to be an issue as using this schedule results in coverage
of all of the modes of multimodal targets in the experiments.

3.2. Extension to f -Divergences

In this section, we extend our method to f -divergences to
explore other dynamics that are optimal with respect to alter-
native step-wise objectives. The f -divergence between two
distributions with unnormalized densities π̃(z) and q̃t(z) is
defined as

Jf [ϕt] = Df (π||qt) =
∫
q̃t(z)f

(
ut(z)

)
dz∫

q̃t(z)dz
,

where f : R→ R is convex, lower-semicontinuous function
with f(1) = 0 and

ut(z) =
π̃(z)

q̃t(z)
/Eqt

[
π̃(z)

q̃t(z)

]
.

Following a similar approach to the previous section, we can
find the optimal perturbation of ϕt and use Equation (8) to
obtain the annealing unnormalized density dynamics along
the steepest descent direction. In Lemma 3.3 we derive the
steepest descent direction of f -divergence.
Lemma 3.3. Assume q̃t(z) and π̃(z) are positive unnormal-
ized density functions and f : R→ R be convex and differ-
entiable. Let ϕt+ε(z) = ϕt(z)+ϵη(z) for ϕt(z) = log q̃t(z).
Then we have,

d

dϵ
Jf [ϕt+ϵ]

∣∣∣∣
ϵ=0

=Covqt
[
η(z),−g(ut(z))

]
,

where g(u) = uḟ(u) − f(u) and ḟ(u) = df(u)/du.
Moreover, consider the set of smooth perturba-
tion directions with bounded variance Mf

qt,π
:={

η ∈ C1 : Varqt [η(z)] ≤ cfqt,π

}
for B ≥ 0 and

cfqt,π = B/Varqt
[
g(ut(z))

]
.

Then the steepest descent direction that minimizes this
derivative inMf

qt,π is

η∗qt,π(z) =
cfqt,π√
B

g(ut(z)) + b,

for arbitrary b ∈ R.

Unfortunately, the solution of ODE in Equation (8) with
the optimal perturbation direction does not have a closed
form for general f functions. However, we can get a set
of solutions for the specific case of α-divergences in the
following Proposition, which correspond to the power mean
annealing path previously proposed in (Brekelmans et al.,
2020)1,

q̃α-pow
t (z) =

(
tπ̃(z)α + (1− t)q̃0(z)

α
) 1

α . (11)

Proposition 3.4. Assume the same conditions as in
Lemma 3.3 and f(u) = (uα − 1 − α(u − 1))/α(α − 1)
for α ̸∈ {0, 1} or f(u) = u log u for α = 1. Then α-
power mean path log q̃α-pow

1−β(t) is a solution to the ODE
d
dtϕt(z) = η∗qt,π(z) with initial condition ϕ0(z) = log q̃0(z)
and setting β(t) to

βα(t) := e−
∫ t
0
(cfqr,πZ

α
qr

/
√
BZα

π )dr, (12)

results in constant rate decrease in f -divergence.

Here, the annealing speed is inversely related to
Varqt [g(π/qt)]. With α = 1 the annealing dynamics corre-
spond to the arithmetic mean path (moment-averaging path
in the exponential family (Grosse et al., 2013)). We have
listed a few of the popular choices of α-divergences with
their respective f and g functions in Table 1.

1For illustrations of bridging distributions with different α
values we refer the readers to the works of Brekelmans et al. (2020)
and Masrani et al. (2021)
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Table 1. List of f -divergences

NAME f(u) g(u) α
KL DIVERGENCE u log u u 1∗

INVERSE KL DIVERGENCE − log u log u− 1 0∗

PEARSON χ2 (u− 1)2 u2 − 1 2

NEYMAN χ2 (u−1)2

u
2− 2

u
−1

SQUARED HELLINGER (
√
u− 1)2

√
u− 1 1/2

α-DIV (α ̸∈ {0, 1}) uα−αu
α(α−1)

+ 1
α

1
α
(uα + 1) α

4. Constant Rate AIS
Using Proposition 3.4, we can design an adaptive AIS algo-
rithm with constant rate decrease in α-divergence at each
annealing iteration. In Algorithm 1, we provide a pseu-
docode for Constant Rate AIS (CR-AIS) where we alternate
between updating the particle location with standard AIS
steps and tuning the schedule. Evaluation of the constant
rate schedule τ(t) = 1 − βα(t) given in Equation (12)
at time t requires the values of cfqr,π and Zπ/Zqr for all
0 ≤ r ≤ t and integration. We use weighted AIS particles
up to step i to estimate the integrand in βα(ti). We set
ti = iδ for small δ > 0 and approximate the integral with
Riemann sum∫ iδ

0

(cfqr,πZ
α
qr/
√
BZα

π )dr ≈
i∑

k=0

δcfqkδ,π
Zα
qkδ

/
√
BZα

π ,

where qkδ = qα-pow
1−βα(kδ) is the normalized density of power

mean path in Equation (11). We set B = 1 for simplicity.
We can rewrite the above equation incrementally, noting
that

βα((i+ 1)δ) = βα(iδ)e−
∫ (i+1)δ
iδ (cfqr,πZ

α
qr

/Zα
π )dr

≈ βα(iδ) exp(−δcfqiδ,πZ
α
qiδ

/Zα
π ). (13)

In the Algorithm 1, To compute exp(−δcfqiδ,πZ
α
qiδ

/Zα
π )

we use particles z0:i ∼ q0
∏i

k=1
−→q k and their weights

w(z0:i) =
∏i

k=1 q̃tk(zk−1)/q̃tk−1
(zk−1) given by the AIS

algorithm up to iteration i to estimate Zqiδ/Zπ (line 7-9) and
the empirical variance under qiδ (line 10-11). We reduce the
variance of the estimated integrand by reusing the same set
of particles to perform both estimations for all transitions.
Having these estimates, we can approximate βα((i+ 1)δ)
recursively from approximation of βα(iδ) in the previous
iteration using Equation (13) (line 12).

Using the constant rate schedule estimate, the next anneal-
ing density is updated (line 13-14) and particles (zji )j are
transitioned to their new location with a transition kernel
which is invariant with respect to q(i+1)δ (line 16-17). We
update the importance weights with standard AIS procedure
(line 18) and repeat the process until convergence.

Algorithm 1 CR-AIS tuning for α-divergences
1: Input: Target π̃, proposal density q0, α, δ
2: Output: Discretization sequence (τiδ)i
3: Set i← 0, β0 ← 1 and τ0 ← 0
4: Draw zj0 ∼ q0(z) for j ∈ [N ] and concatenate into zi.
5: Set logwj ← − log q0(z

j
0).

6: while not converged and i < max steps do
7: Set log Ẑπ ← logsumexp(logw + log π̃(zi)).
8: Set log Ẑqiδ ← logsumexp(logw + log q̃iδ(zi)).
9: Set ri ← exp(log Ẑπ − log Ẑqiδ).

10: Set uj
i ←

π̃(zj
i )

riq̃iδ(z
j
i )

for j ∈ [N ] and concat. to ui.

11: Set vi ← V̂arqiδ [g(ui)] .
12: Set β(i+1)δ ← βiδ exp(−δ/virαi ).
13: Set τ(i+1)δ = 1− β(i+1)δ .
14: Set q̃(i+1)δ = q̃α-pow

τ(i+1)δ
from Equation (11).

15: Set i← i+ 1.
16: Construct a −→q i(z|zji−1) invariant w.r.t. qiδ .
17: Draw zji ∼

−→q i(z|zji−1) for j ∈ [N ].

18: Set logwj ← logwj + log
←−q i(z

j
i−1|z

j
i )

−→q i(z
j
i |z

j
i−1)

.

19: end while
20: Set logwj ← logwj + log π̃(zji ).

To ensure stability of the numerical computations we abort
the algorithm when the empirical variance becomes lower
than a given threshold. This condition indicates that the last
annealing density is sufficiently close to the target. However,
the empirical variance given by the particles may be much
lower than the true value and mislead the algorithm to termi-
nate the annealing process in a handful of steps especially
for larger |α|. We recommend to mitigate this problem by
constraining the maximum step size in the schedule as we
did in our experiments with high dimensional targets.

Another consideration is to use disjoint sets of particles
for adjusting the schedule and testing. We recommend to
perform the final estimation after the tuning phase and fixing
the schedule to ensure the independence between samples
and the consistency of the importance weighted estimate.

When Equation (8) does not have a closed form solution,
we can use CR-AIS with numerical approximation of its
solution instead (line 14 of Algorithm 1). New annealing
paths may result in more robust estimation in practice as
we can optimize function f more effectively. We leave an
efficient implementation of this extension to the future work.

5. Experiments
In this section, we run a number of experiments to il-
lustrate the performance of CR-AIS on support coverage
and adaptivity with 2d distributions and we asses its ef-
ficiency and accuracy with estimation of the log normal-
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Sin Loopy Sin Branching Sin Bananas Gaussian Ring 2-components 4-components Narrow Normal q0

M =  90
ESS/N = 0.026

M =  82
ESS/N = 0.002

M =  65
ESS/N = 0.002

M =  139
ESS/N = 0.837

M =  487
ESS/N = 0.827

M =  38
ESS/N = 0.259

M =  17
ESS/N = 0.096

M =  5307
ESS/N = 0.455

Figure 1. Target distributions and resampled particles with CR-AIS, with geometric mean path and δ = 1/32. CR-AIS adjusts the number
of iterations M to the difficulty of the target and covers the support of the targets. The plot in top right corner is the initial distribution
used for annealing with the same scale.

ization constant of high dimensional synthetic targets and
the posterior of Bayesian models. Code is available at
https://github.com/shgoshtasb/cr_ais.

5.1. 2D Distribution Synthesis

Here, we investigate the adaptability of our algorithm to var-
ious target distributions. We evaluate CR-AIS on complex
2d distributions which are often used to benchmark sam-
pling (Rezende et al., 2014) and three other distributions.
With 2D targets, we can plot the synthesized samples and
assess if indeed the particle distribution converges to the
targets. We use the inverse KL objective (α = 0), initial
distribution N (0, I) and set δ = 1/32 for all the targets as
we aim to show the performance differences caused by the
difficulty of the sampling task (setup details in Appendix B).

Figure 1 depicts the target distributions next to resampled
particles according to the importance weights of the CR-AIS
algorithm. The initial distribution is shown in top right cor-
ner of Figure 1 with the same scale. Each plot is annotated
with the number of AIS iterations, M , and the ESS ratio
to number of particles. The algorithm adapts the number
of iterations to the difficulty of sampling from the target
distribution with the Narrow Gaussian distribution requir-
ing the longest annealing sequence. Additionally, the plots
show that particles have reached all the modes of the targets
and cover their support. In Appendix D we compare the
SMC variant of our algorithm and adaptive SMC on wider
multimodal target distributions. Our similar results confirm
superiority of the constant rate schedule in mode coverage
despite using shorter annealing sequences.

5.2. Adjusting the Schedule to the Annealing Path

In a setup similar to the previous experiment, we investigate
how the constant rate schedule adapts across different target
distributions and annealing paths. We plot the emerging
approximated schedule in CR-AIS for four of the previous

targets: the very narrow Gaussian target, Gaussian ring, the
dual mode Bananas and the Gaussian mixture distribution
with 4 components. We vary α between {−0.5, 0, 0.5, 1, 2}
to obtain different annealing paths. We compare the sched-
ules to the ones obtained from Adaptive AIS where the
schedule is adjusted to decrease CESS at an approximate
rate of 0.7. We constrain the maximum step size in Adaptive
AIS since large steps cause severe weight degeneracy and
premature termination of annealing.

In Figure 2, we show the constant rate schedule (τ(iδ))i
emerging from CR-AIS (solid curves) and Adaptive AIS
schedules (dashed curves) for different targets and bridging
distributions. The constant rate schedule varies considerably
between targets and depends explicitly on the similarity of
the target distribution and the particle distribution at each
time. Consider the second plot from left with α = 0. As
mentioned before, when majority of particles are in the
regions with small π annealing slows down significantly,
e.g. in the beginning of annealing for the narrow Gaussian
example. It also explains why a much larger number of
iterations are required to sample from this target (M =
5307) while for the others the number of iterations remain
moderate (487, 139 and 17). In contrast, Adaptive AIS
has close to linear schedule on the geometric path for 3 of
the distributions as CESS depends on weighted averages
which may be misleading due to the weight degeneracy
problem. For the narrow Gaussian where the target and
initial distributions are far apart, Adaptive AIS recovers a
schedule similar to CR-AIS.

Across different values of α, the constant rate schedule grad-
ually changes its form depending on the target distribution.
For Gaussian mixture, which has overlapping high density
regions with the initial distribution, the initial annealing
speed reduces monotonically with α. For Gaussian Ring
and Bananas, which have modes outside the typical region
of q0, the initial speed grows from α = 0 to α = 0.5 and
decreases for larger α values. Whereas, Adaptive AIS sched-
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Figure 2. Annealing schedules of CR-AIS (solid curves) and Adaptive AIS (dashed curves) across different annealing paths (α equal
to −0.5, 0, 0.5, 1 and 2 from left to right) and targets, δ = 1/32. CR-AIS shows higher adaptivity while Adaptive AIS is essentially
indifferent to the annealing path.

ule is relatively indifferent to the changes in the annealing
path and has to infer the path characteristics through CESS.
The high flexibility may lead to stability problems with large
variances (e.g. for Gaussian Ring and α = −0.5 or α = 2)
where the schedule grows very slowly and the algorithm
reaches the maximum number of iteration, or when the vari-
ance is underestimated (e.g. for the Normal distribution with
α = −0.5) leading to a large step to the target. To avoid
these pathologies we recommend to constrain the minimum
and maximum of step size as in Adaptive AIS.

5.3. Estimation of logZπ in High Dimensions

We explore the absolute error of log normalization factor
estimation for simple d = 128 and 512 dimensional dis-
tributions. For the following targets: narrow Gaussian
N (0, 0.01I), a mixture of 8 Gaussian components with
variance 1, a standard Laplace distribution and a Student-T
distribution with 3 degrees of freedom, we compare CR-AIS
with four baselines in Table 2: Adaptive AIS with CESS
decrease ratio of 0.6 (Ada. 0.6C), heuristic AIS with linear
(Lin.), exponential (Exp.) and sigmoidal (Sigm.) schedules
and Monte Carlo Diffusion (MCD) sampler (Doucet et al.,
2022a) where the mean and diagonal variance of q0, the
schedule and the transitions are trained for 100 epochs maxi-
mizing the evidence lower bound. As CR-AIS and Adaptive
AIS generate sequences of varying lengths, for better com-
parability, we also report a version of the algorithms with
interpolated schedules indicated by asterisk (∗). See Ap-
pendix E for implementation details and further comparison
with other adaptive baselines.

The average computation complexity of the sampling algo-
rithms are reported in terms of the number of times log π̃
is evaluated during tuning and testing. This value is pro-
portional to the number of times log π̃ or its gradient are
evaluated which are generally the expensive part of the sam-
pling. In Adaptive AIS this corresponds to the number of
iterations in the search process of every update to the sched-
ule for every step i during tuning and the final number of
discretization steps M for the estimation phase. A parallel

measure of complexity counts one schedule update per iter-
ation during tuning in CR-AIS and one schedule update for
each pass through the sequence for each annealing step in
MCD during training.

MCD has a clear advantage for the Normal target as the
parameters of its initial distribution are trained to match
the target. However, it’s performance drops drastically on
the other distributions with insufficient training and it is
difficult to justify its expensive training overhead without
amortization.

As expected, the performance of the heuristic schedules
depend on the target. The exponential schedule is superior
for the Normal target in both d = 128 and d = 512. The
linear schedule and the sigmodal schedule are more accurate
for the Student-T and the Laplace distributions, respectively,
while their ranking changes with d on the Gaussian mixture.
Cross validating the heuristic would reduce the efficiency by
three folds. On the other hand, at least one of the CR-AIS
variations is able to beat the linear, the exponential, and the
sigmoidal schedules in 7, 7 and 6 out of the 8 targets with
an average overhead of %40 due to tuning with interpolated
schedule and %70 without it.

CR-AIS is able to improve over Adaptive AIS while having
a higher efficiency. In particular, computation complexity
of non-interpolated Adaptive AIS is about 3.5× more than
CR-AIS on average, while CR-AIS estimations are more
accurate for 5 of the 8 experiments. As the constant rate
schedule preserves its form with different δ scales (see e.g.
Appendix F) CR-AIS can exploit this property leading to a
better performance in comparison to interpolated Adaptive
AIS in all 8 of the distributions.

5.4. Bayesian Logistic Regression

In this section, we compare the computation efficiency of
CR-AIS to heuristic and Adaptive AIS by evaluating the log
marginal likelihood of two Bayesian models. We use two
UCI datasets, Pima Indians diabetes dataset (N = 768 and
d = 8) and Sonar dataset (N = 207 and d = 60) with bi-
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Table 2. Absolute logZπ estimation error for (Top) d = 128 and (Bottom) d = 512 dimensional distributions with M close to 64
(schedules with ∗ use a shorter sequence for tuning and interpolate the result to M = 64). Results are cross validated over different values
of α. Smallest error is in bold.

β
NORMAL N (0, 0.01I) MIXTURE LAPLACE STUDENT-T
EST. ERR. COMPUT. EST. ERR. COMPUT. EST. ERR. COMPUT. EST. ERR. COMPUT.

LIN. 991.90 ± 69.87 64.0 230.65 ± 6.16 64.0 0.36 ± 0.22 64.0 1.37 ± 0.19 64.0
SIGM. 907.57 ± 24.04 64.0 270.55 ± 6.42 64.0 0.07 ± 1.14 64.0 1.46 ± 0.14 64.0
EXP. 780.58 ± 40.02 64.0 507.43 ± 15.04 64.0 1.21 ± 0.51 64.0 2.04 ± 0.31 64.0

ADA. 0.6C 853.39 ± 36.87 424.1 268.89 ± 21.24 316.6 0.45 ± 0.75 297.5 1.37 ± 0.24 296.6
ADA. 0.6C∗ 856.33 ± 29.96 125.8 250.06 ± 6.14 99.6 0.37 ± 0.90 73.4 1.66 ± 0.15 73.8

MCD 114.18 ± 15.83 12800.0 680.60 ± 13.68 12800.0 1.01 ± 1.33 12800.0 1.99 ± 1.26 12800.0
CR-AIS (OURS) 788.67 ± 36.25 78.0 308.82 ± 6.81 112.0 0.68 ± 0.31 117.2 0.69 ± 0.27 98.4
CR-AIS (OURS)∗ 807.77 ± 4.36 88.2 228.54 ± 0.00 72.0 0.01 ± 0.00 72.0 1.53 ± 0.00 73.0

LIN. 5279.55 ± 79.56 64.0 1087.38 ± 22.68 64.0 9.03 ± 0.77 64.0 8.16 ± 0.45 64.0
SIGM. 4757.13 ± 59.34 64.0 1022.60 ± 23.55 64.0 6.95 ± 2.48 64.0 8.71 ± 1.24 64.0
EXP. 4435.05 ± 110.36 64.0 1683.21 ± 13.73 64.0 13.17 ± 0.40 64.0 13.98 ± 1.08 64.0

ADA. 0.6C 5181.95 ± 232.09 503.8 1147.02 ± 142.66 367.2 9.12 ± 3.01 413.8 9.72 ± 2.41 247.7
ADA. 0.6C∗ 4423.42 ± 204.04 117.4 1272.70 ± 158.61 85.2 8.27 ± 1.33 94.8 9.30 ± 0.56 81.6

MCD 707.85 ± 110.02 12800.0 2173.25 ± 43.78 12800.0 16.94 ± 2.51 12800.0 20.95 ± 0.93 12800.0
CR-AIS (OURS) 4413.95 ± 95.75 129.6 1200.12 ± 27.12 140.0 8.75 ± 1.84 110.8 8.40 ± 1.28 98.4
CR-AIS (OURS)∗ 4546.65 ± 57.80 128.8 1069.32 ± 1.96 75.0 7.93 ± 0.74 78.6 8.98 ± 0.00 73.0

nary labels and a setup similar to (Chopin et al., 2020) with
AIS. We consider a Bayesian logistic regression model with
normal prior p(z) = N (0, 5I) and likelihood p(D|z) =∏

n p(yn|xn, z) for p(yn|xn, z) = Bern(σ(xT
nz)). We use

CR-AIS to estimate the log marginal likelihood logZ =
p(D) = log

∫
p(z)p(D|z)dz corresponding to the normal-

ization factor of the posterior distribution of the parameters
π(z) = p(z|D) ∝ p(z)p(D|z).

For computation complexity we use a similar measure as
described in Section 5.3 and plot the average of estimated
logZπ vs the computation complexity for Pima and Sonar
datasets in Figure 3. The estimation of all samplers con-
verges exponentially as the computation budget increases,
while CR-AIS has tighter lower bound estimator in compar-
ison to other samplers, especially when computation budget
is limited and it roughly requires ×4 fewer π̃ evaluations
for similar performance as Adaptive AIS.

5.5. Latent Variable Model

We estimate the log marginal likelihood of a Variational Au-
toEncoder trained on binarized MNIST dataset (Salakhutdi-
nov & Murray, 2008) with a conditional Bernoulli likelihood
model. We consider an architecture similar to the one used
in (Burda et al., 2016) where the latent variable has d = 50
dimensions and both the decoder and the encoder are neural
networks with 3 fully-connected layers and we use the same
set of hyperparameters as in section 5.3. The estimated
lower bound of log marginal likelihood are presented in
table 3 for M close to 64 and M close to 512.

With M close to 64, the samplers are far off from the esti-
mation of the variational encoder which is -95.80 nats. The
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Figure 3. Log marginal likelihood estimates of Bayesian logistic
regression model vs computation complexity for CR-AIS, Adap-
tive AIS with ESS decrease rate of 0.5 on Pima (Left) and Sonar
(Right) datasets.

exponential schedule is more accurate than the rest of the
samplers. CR-AIS gives a close estimate to it by doubling
the computation time and requiring 3× fewer resources in
comparison to Adaptive AIS. For the longer sequences with
M close to 512, the performance of samplers is harder to
distinguish and the gain of tuning diminishes.

6. Related Work and Discussion
Our work is similar to the first order optimization meth-
ods used to learn generative probability models. Optimiz-
ing functional of probability measures has been studied for
decades. Functional gradients are computed in the space
of probability distributions endowed with Hilbert structure
(Liu & Wang, 2016; Liu, 2017; Dai et al., 2016; Dai, 2018)
or Wasserstein structure (Frogner & Poggio, 2020; Lin et al.,
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Table 3. Estimated VAE log marginal likelihood with M close to
64 (Top) and M close to 512 (Bottom). Results are cross validated
over α. Higher is better.

β EST. ERR. M COMPUT.
LIN. -141.76 ± 0.07 64.0 64.0

SIGM. -130.65 ± 0.14 64.0 64.0
EXP. -121.04 ± 0.07 64.0 64.0

ADA. C0.7 -123.04 ± 3.66 81.6 395.6
CR-AIS (OURS) -124.63 ± 0.20 63.4 126.8

LIN. -106.44 ± 0.04 512.0 512.0
SIGM. -104.01 ± 0.07 512.0 512.0
EXP. -102.70 ± 0.06 512.0 512.0

ADA. C0.7 -103.26 ± 0.20 609.7 2560.0
CR-AIS (OURS) -104.24 ± 0.11 428.6 857.2

2021). Optimization of deep generative models is gener-
alized as linearization of functional gradients (Chu et al.,
2019). However, their application in bridging distributions
has not received sufficient attention. These works focus
on developing a Wasserstein gradient flow or particle flow
to optimally reduce the objective. By contrast our work
focuses on optimization of the intermediary unnormalized
densities which are required for annealing in particle meth-
ods such as Annealed Stein Variational Gradient Descent
(D’Angelo & Fortuin, 2021), Parallel Tempering (Earl &
Deem, 2005), or Sequential Monte Carlo (Del Moral et al.,
2006; Naesseth et al., 2018).

Traditionally, annealing schedule was tuned with ESS or
its variants (Jasra et al., 2011; Johansen et al., 2015; Elvira
et al., 2018). A variational optimization of the annealing
schedule was proposed in (Kiwaki, 2015) with fixed point
iteration algorithm to minimize the asymptotic estimation
bias/variance. In comparison, CR-AIS uses an analytically
interpretable schedule and is able to replace the expensive
numerical search or optimization loop with a simple Monte
Carlo estimation.

Alternatively, many recent works emerge on combination
of AIS and filtering with variational inference (Naesseth
et al., 2018; Maddison et al., 2017; Arbel et al., 2021; Thin
et al., 2021) or score based generative models (Doucet et al.,
2022a;b) to achieve more complex transition kernel and
priors and improve posterior approximation. In this line of
work, the annealing schedule of a predetermined density
path is treated as another set of parameters to optimize using
back propagation. This approach results in better amortiza-
tion for training deep latent variable models and higher log
marginal likelihood. End-to-end optimization of the distri-
bution path in AIS has proven to be a more challenging task
(Zhang et al., 2021) and is not considered to be effective
(Thin et al., 2021; Geffner & Domke, 2021; Goshtasbpour &
Perez-Cruz, 2023). Instead, we focus on a greedy optimiza-
tion approach in terms of the marginal particle distribution

divergence with the intended target distribution and we are
able to provide a long missing understanding of the reasons
underlying the popularity of heuristic annealing paths and
demonstrate their limitations due to the greedy nature of the
optimization.

7. Conclusion
In this work, we study the connection between the geo-
metric density path in AIS and the functional derivative of
inverse KL divergence of marginal particle distribution and
the target. We prove that the geometric mean path is the
solution to an ODE corresponding to the steepest descent
direction of this objective. The analysis can be extended to
f -divergences and the ODE has a closed form solution for α-
divergences in the form of power mean paths (Brekelmans
et al., 2020). We derived constant rate schedule and de-
signed an algorithm that achieves comparable results to the
traditional adaptive AIS while avoiding the time consuming
search procedure for tuning.

While our theory is motivated by reduction of the immediate
bias of the log marginal likelihood estimator, the geometric
path is not optimal with respect to the overall sampler bias as
it doesn’t use information from the possible future steps in
the updates. Similarly, power mean path does not translate
to an optimal end-to-end statistic of AIS importance weights.
However, our optimization method is similar to a continuous
time version of Adaptive AIS where instead of searching for
the next discretization step size, we optimize the succeeding
annealing densities in the function space. As a consequence,
we provide a better understanding of the performance of the
geometric mean heuristic and demonstrate the underlying
reason for its suboptimality. We hope our work helps future
research to develop alternative annealing paths with better
end-to-end statistics.
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A. Proofs
Here, we provide the proofs of the lemmas and propositions in the paper.

Lemma A.1. Let ϕt+ϵ(z) = ϕt(z) + ϵη(z) for ϕt(z) = log q̃t(z) where q̃t(z) and π̃(z) are positive unnormalized density
functions. Then we have,

d

dϵ
JKL[ϕt+ϵ]

∣∣∣∣
ϵ=0

=Covqt

[
η(z), log

q̃t(z)

π̃(z)

]
, (14)

where Covq[·, ·] is the covariance under distribution of q and we use the definition of Gâteaux differential for the derivative,

d

dϵ
JKL[ϕt+ϵ]

∣∣∣∣
ϵ=0

= lim
ϵ→0+

JKL[ϕt(z) + ϵη(z)]− JKL[ϕt]

ϵ
.

Proof. We take the derivative as follows,

d

dϵ
JKL[ϕt+ϵ]

∣∣∣∣
ϵ=0

=

∫
q̃t(z)η(z) log

q̃t(z)
π̃(z) dz∫

q̃t(z)dz
+

∫
q̃t(z)η(z)dz∫
q̃t(z)dz

−

∫
q̃t(z) log

q̃t(z)
π̃(z) dz

∫
q̃t(z)η(z)dz∫

q̃t(z)dz
∫
q̃t(z)dz

−
∫
q̃t(z)η(z)dz∫
q̃t(z)dz

=Covqt

[
η(z), log

q̃t(z)

π̃(z)

]
,

concluding the proof.

Proposition A.2. Assume the same conditions as in Lemma 3.1. Additionally, consider the set of smooth perturbation
directions with bounded variance

Mqt,π := {η ∈ C1 : Varqt [η(z)] ≤ cKL
qt,π},

for B ≥ 0 and cKL
qt,π = B/Varqt [log(π̃(z)/q̃t(z))]. Then the steepest descent direction that minimizes the derivative in

Equation (7) inMqt,π is

η∗qt,π(z) =
cKL
qt,π√
B

log
π̃(z)

q̃t(z)
+ b, (15)

for arbitrary b ∈ R. A solution to the Ordinary Differential Equation (ODE) d
dtϕt(z) = η∗qt,π(z) with initial condition

ϕ0(z) = log q̃0(z) is the scaled geometric mean path and results in constant rate decrease in the inverse KL divergence in
Equation (4).

Proof. It is straight forward to derive the equation for the steepest descent direction using Cauchy-Schwarz inequality. The
solution to the ODE is given by

ϕt(z) =β(t) log q̃0(z) + (1− β(t)) log π̃(z)

+ β(t)

∫ t

0

b(r)

β(r)
dr, (16)

which is equivalent to log q̃geom
1−β(t)(z) plus a z-independent scale for t ≥ 0 and for β(t) set as

βKL(t) := e−
∫ t
0
cKL
qr,πdr/

√
B , (17)

it leads in constant derivative value form Equation (7).

12
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Lemma A.3. Let ϕt+ϵ(z) = ϕt(z) + ϵη(z) for ϕt(z) = log q̃t(z) where q̃t(z) and π̃(z) are positive unnormalized density
functions and let f : R→ R be convex and differentiable. Then we have,

d

dϵ
Jf [ϕt+ϵ]

∣∣∣∣
ϵ=0

=Covqt
[
η(z),−g(ut(z))

]
,

where g(u) = uḟ(u) − f(u) and ḟ(u) = df(u)/du. Moreover, consider the set of smooth perturbation directions with

bounded varianceMf
qt,π

:=
{
η ∈ C1 : Varqt [η(z)] ≤ cfqt,π

}
for B ≥ 0 and

cfqt,π = B/Varqt
[
g(ut(z))

]
.

Then the steepest descent direction that minimizes this derivative inMf
qt,π is

η∗qt,π(z) =
cfqt,π√
B

g(ut(z)) + b,

for arbitrary b ∈ R.

Proof. With the perturbed negative energy

ϕt+ϵ(z) = log qt+ϵ(z) = ϕt(z) + ϵη(z)

in direction η, ut(z) is updated to ut(z)e
−ϵη(z) Eqt [e

ϵη(z)]. Consequently,

d

dϵ
Jf [ϕt+ϵ]

∣∣∣∣
ϵ=0

=

∫
q̃t(z)η(z)f

(
ut(z)

)
dz∫

q̃t(z)dz
+

∫
q̃t(z)

d
duf

(
ut(z)

)
ut(z)Eqt [η(z)]dz∫

q̃t(z)dz

−
∫
q̃t(z)

d
duf

(
ut(z)

)
ut(z)η(z)dz∫

q̃t(z)dz
−
∫
q̃t(z)f

(
ut(z)

)
dz∫

q̃t(z)dz
.

∫
q̃t(z)η(z)dz∫
q̃t(z)dz

=Covqt
[
η(z),−g(ut(z))

]
.

The rest of the proof follows due to Cauchy-Schwarz inequality.

Proposition A.4. Assume the same conditions as in Lemma 3.3 and f(u) = (uα − 1− α(u− 1))/α(α− 1) for α ̸∈ {0, 1}
or f(u) = u log u for α = 1. Then α-power mean path is the solution to the ODE d

dtϕt(z) = η∗qt,π(z) with initial condition
ϕ0(z) = log q̃0(z) and with a particular schedule it results in constant rate decrease in f -divergence.

Proof. We prove the proposition for α ̸∈ {0, 1} in the following which can be easly extended to the case with α = 1. Using
the derivative of f we have g(u) = (uα − 1)/α, therefore,

η∗qt,π(z) =
cfqt,π

α
√
B
(uα

t − 1) + b(t).

In the ODE

d

dt
log q̃(z) = η∗qt,π(z) + b(t)

=
cfqt,π

α
√
B

((
π̃(z)

q̃t(z)

Zqt

Zπ

)α

− 1

)
+ b(t). (18)

We use the change of variable s̃t(z) = q̃t(z)
α and rewrite the ODE as

d

dt
s̃t(z) +

(
cfqt,π√
B
− αb(t)

)
s̃t(z) =

cfqt,πZ
α
qt π̃(z)

α

√
BZα

π

,

13
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which has a solution of the form

st(z) = β(t)

[
π̃(z)α

∫ t

0

cfqr,πZ
α
qr√

BZα
π β(r)

dr + q̃0(z)
α

]

for

β(t) = e
∫ t
0
(αb(r)−cfqr,π/

√
B)dr.

Therefore, without loss of generality, we choose

b(t) = −cfqt,π((Zqt/Zπ)
α − 1)/α

√
B

and get the annealing sequence q̃α-pow
τ(t) (z) for the schedule τ(t) = 1− β(t) and with β(t) set to

βα(t) := e−
∫ t
0
(cfqr,πZ

α
qr

/
√
BZα

π )dr, (19)

The α-divergence decreases with a steady rate along the steepest descent direction.

B. 2D Distributions Implementation Details
Here we give the implementation details of our experiments on 2d benchmark dataset. We initialize CR-AIS with a standard
normal distribution for q0 which is plotted in the top right corner of Figure 1 for scale and we use the same value of δ = 1/32
for all the targets. Each AIS transition is a single Hamiltonian Monte Carlo (HMC) step with step size 0.5 and N = 1024

particles are used to approximate the constant rate schedule. We abort sampling when the empirical variance V̂arqiδ [g(u)] is
below 0.001. We use α = 0 for the results in Section 5.1.

In Section 5.2, for Adaptive AIS, we tune the schedule on each iteration using binary search with constrained maximum
step size set to 1/128 avoid large steps. This value is chosen to give the search algorithm sufficient flexibility to effect the
schedule while larger values would result in big steps and premature annealing.

C. Accuracy of the Approximations in CR-AIS
To assess the accuracy of the approximations used in the CR-AIS algorithm, we depict the Monte Carlo estimation of
the objective during a run of the algorithm for the same setup as Section 5.2 in Figure 4. The curves indicate an almost
static decrease of the inverse KL divergence and the efficiency of the approximations in CR-AIS with combination of
self-normalized normalization factor ratio estimation and Riemann sum.
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Figure 4. Mean objective vs normalized AIS iterations in four distributions used in Section 5.2, with geometric mean path and δ = 1/32.
Mean f is normalized by the initial divergence to fit in the same plot. Best seen in color.
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D. Constant Rate Sequential Monte Carlo Experiments
In this section, we adapt Sequential Monte Carlo (SMC) algorithm using the constant rate schedule and compare the
performance of sampling to Adaptive SMC. SMC is a modification of AIS with occasional resampling steps to prevent
weight degeneracy problem in sequential importance sampling algorithms. In practice, the resampling is performed
periodically or adaptively whenever ESS falls below a threshold, the latter providing more sample diversity.

To adapt the schedule in SMC we used weighted estimates of log normalization factor ratio with the SMC importance
weights (line 7-9). The rest of the algorithm is similar to Algorithm 1 with the additional branch for resampling after line 18
to duplicate the effective samples. We perform resampling adaptively when ESS is less than 0.9 of the last time resampling
was performed.

We construct 4 randomly generated wide Gaussian mixtures uniformly sampling the mean of the components from
[−15,−15] and compare the synthesized particles to Adaptive SMC where the schedule is determined with binary search on
each iteration to achieve constant rate decrease of 0.9 in ESS. Figure 5 shows the sampled particles from CR-SMC and
Adaptive AIS starting from standard normal distribution with similar HMC transitions. Adapative SMC particles tend to
group together in a few of the targets’ modes, while with CR-SMC the final samples have higher diversity and reach all the
target modes in three of the four distributions. This happens despite the fact that CR-SMC uses shorter annealing sequences
in all of the distributions.
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32-components

M =  402
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Figure 5. Contour lines of four wide mixture distributions in [-20,20] in each column with samples (blue discs) from CR-SMC (top) and
Adaptive SMC (bottom). geometric mean path with δ = 1/128 selected to have roughly the same number of iterations as Adaptive SMC
which has worse coverage.

In Table 4 we report the logZπ estimations with both algorithms on the four targets.

Table 4. Estimated logZ of four gaussian mixtures with the same order as Figure 5 with 16,24,32 and 48 components using CR-SMC and
Adaptive SMC with 0.9 CESS drop resampling and 0.9 ESS drop schedule adaptation. Lower estimation error is in bold.

TARGET 1 TARGET 2 TARGET 3 TARGET 4
logZ 5.997 6.402 6.690 7.095

ADA 0.9 5.387 6.285 5.891 6.808
CR-SMC (OURS) 5.967 6.125 6.634 6.974
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E. High dimensional Experiments
We use the same hyperparameters as in Appendix B for the log normalization factor estimation experiments with the
following modifications. We set N = 4096 and chose α from a grid in {−0.5, 0.0, ..., 2.}, δ from {1/256, ..., 4096} for
CR-AIS depending on the target such that sampling budget M will be M ≤ 64 for interpolation and close to M = 64
without interpolation. To generate the results with interpolated schedules, we interpolate the tuned schedules with each
δ to match the test-time computation of all samplers to M = 64 and sample from the target distribution. We report the
log 1/N

∑
w(zj0:M ) with smallest estimation error over α and δ. In order to avoid the large steps in Adaptive AIS when

ESS is underestimating the variance, we choose a maximum step size in the adaptive AIS from {1/512, ..., 1/4} using cross
validation in the same manner as CR-AIS. Each algorithm is run with 5 different seeds and the average absolute estimation
error is reported.

Below we present more thorough comparison of CR-AIS with adaptive and heuristic AIS benchmarks. The details of
the experiment are similar to the setup in Sectionsec:experiment3 with additional variations of Adaptive AIS algorithm.
Specifically, in Adaptive AIS, we tune the schedule on each iteration using binary search with constrained maximum step
size set to avoid large steps and apply proposed steps which decrease Effective Sample Size (ESS) and Conditional ESS
(CESS) (Johansen et al., 2015) constantly with ratio in {0.5, 0.6, 0.7, 0.8, 0.9}.

Table 5. Absolute logZπ estimation error for 128-dimensional distributions: Normal N (0, 0.01I), Gaussian mixtures with 8 components
of variance 1, standard Laplace and Student-T distribution with 3 degrees of freedom with M close to 64. Results are cross validated over
different values of α. Smallest error is in bold.

β
NORMAL MIXTURE LAPLACE STUDENT-T

EST. ERR. M EST. ERR. M EST. ERR. M EST. ERR. M
ADA. 0.9C 871.75 ± 25.81 69.8 246.08 ± 33.20 69.2 0.80 ± 0.65 43.2 0.96 ± 0.66 50.0
ADA. 0.6C 853.39 ± 36.87 61.8 268.89 ± 21.24 61.4 0.45 ± 0.75 39.6 1.37 ± 0.24 43.2
ADA. 0.7C 864.52 ± 31.07 61.6 253.38 ± 39.73 70.0 0.12 ± 0.55 69.8 1.13 ± 0.39 43.6
ADA. 0.8C 879.29 ± 22.60 63.2 252.01 ± 33.43 69.0 0.74 ± 0.97 40.8 0.96 ± 1.75 11.4
ADA. 0.9 992.07 ± 33.45 66.4 347.07 ± 29.13 43.0 0.04 ± 0.77 44.8 1.00 ± 1.25 42.0
ADA. 0.6 1001.14 ± 72.16 65.6 384.80 ± 24.05 36.8 0.72 ± 0.50 37.2 0.92 ± 0.83 37.2
ADA. 0.7 986.59 ± 53.15 65.8 378.61 ± 23.42 38.0 0.54 ± 0.62 39.4 1.56 ± 0.29 41.2
ADA. 0.8 987.17 ± 29.88 66.8 357.53 ± 22.14 40.6 0.15 ± 0.70 42.0 1.66 ± 0.14 39.8

LIN. 991.90 ± 69.87 64.0 230.65 ± 6.16 64.0 0.36 ± 0.22 64.0 1.37 ± 0.19 64.0
SIGM. 907.57 ± 24.04 64.0 270.55 ± 6.42 64.0 0.07 ± 1.14 64.0 1.46 ± 0.14 64.0
EXP. 780.58 ± 40.02 64.0 507.43 ± 15.04 64.0 1.21 ± 0.51 64.0 2.04 ± 0.31 64.0

CR-AIS (OURS) 788.67 ± 36.25 39.0 308.82 ± 6.81 56.0 0.68 ± 0.31 58.6 0.69 ± 0.27 49.2

Table 6. Absolute logZπ estimation error for 512-dimensional distributions: Normal N (0, 0.01I), Gaussian mixtures with 8 components
of variance 1, standard Laplace and Student-T distribution with 3 degrees of freedom with M close to 64. Results are cross validated over
different values of α. Smallest error is in bold.

β
NORMAL MIXTURE LAPLACE STUDENT-T

EST. ERR. M EST. ERR. M EST. ERR. M EST. ERR. M
ADA. 0.9C 5163.14 ± 217.21 54.8 1147.02 ± 136.34 65.6 8.30 ± 1.34 67.4 10.39 ± 2.15 40.8
ADA. 0.6C 5181.95 ± 232.09 53.4 1147.02 ± 142.66 66.4 9.12 ± 3.01 66.4 9.72 ± 2.41 37.2
ADA. 0.7C 5297.43 ± 188.64 56.4 1170.21 ± 104.98 66.4 7.01 ± 3.31 64.0 10.66 ± 0.83 39.2
ADA. 0.8C 5195.95 ± 105.26 55.8 1119.56 ± 79.00 69.6 8.27 ± 3.26 64.4 9.92 ± 1.65 38.6
ADA. 0.9 5107.72 ± 142.41 66.0 1662.46 ± 94.87 39.0 9.64 ± 2.18 40.8 9.97 ± 1.01 40.0
ADA. 0.6 5203.06 ± 115.42 65.2 1033.74 ± 42.08 69.2 7.14 ± 2.52 69.8 7.83 ± 1.26 69.4
ADA. 0.7 5190.67 ± 112.92 65.2 1095.46 ± 30.55 70.0 10.01 ± 3.15 36.2 10.15 ± 1.36 36.4
ADA. 0.8 5151.53 ± 87.72 65.6 1266.31 ± 67.74 69.8 9.65 ± 1.79 38.6 9.94 ± 1.54 39.4

LIN. 5279.55 ± 79.56 64.0 1087.38 ± 22.68 64.0 9.03 ± 0.77 64.0 8.16 ± 0.45 64.0
SIGM. 4757.13 ± 59.34 64.0 1022.60 ± 23.55 64.0 6.95 ± 2.48 64.0 8.71 ± 1.24 64.0
EXP. 4435.05 ± 110.36 64.0 1683.21 ± 13.73 64.0 13.17 ± 0.40 64.0 13.98 ± 1.08 64.0

CR-AIS (OURS) 4413.95 ± 95.75 64.8 1200.12 ± 27.12 70.0 8.75 ± 1.84 55.4 8.40 ± 1.28 49.2
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F. Bayesian Logistic Regression Details
For the Bayesian logistic regression experiment we have the following hyperparameters. We vary δ between {64, ..., 2048}
for CR-AIS and maximum step size in the range {1/65536, ..., 1/2048} for Adaptive AIS with N = 256 particles. We
chose α from a grid in [−0.5, 2.0] for each value of δ and maximum step size separately using cross validation on the highest
estimated log marginal likelihood.

We use standard normal distribution for q0 and 1-step HMC transitions as before with step size 0.5. Although the transition
kernels are considerably simple for a problem of moderate dimensions, it is chosen to compare the adaptability of the
algorithms to the posterior distribution. In fact, an annealing sequence with larger M and simple HMC transitions although
has the same amount of computations, is more flexible than a shorter annealing sequence with larger number of MCMC
steps per transition.

We use Adaptive AIS with ESS decrease rate of 0.5.

The adapted CR-AIS schedule for different values of δ is illustrated in Figure 6(Right) and Figure 7(Right) for Pima and
Sonar datasets. As expected, the discretization schedule has a similar pattern for different values of δ. It is possible to exploit
this property principally to increase the computation efficiency by interpolating the schedule obtained from tuning with a
large δ and elongating the annealing sequence to reach the desired M for the final estimation with negligible impact on the
performance.
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Figure 6. (Left) Log marginal likelihood estimates vs computation complexity for CR-AIS and Adaptive AIS. (Right) CR-AIS discretiza-
tion schedule for different values of δ on Bayesian logistic regression model of Pima dataset.
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Figure 7. (Left) Log marginal likelihood estimates vs computation complexity for CR-AIS and Adaptive AIS. (Right) CR-AIS discretiza-
tion schedule for different values of δ on Bayesian logistic regression model of Sonar dataset.
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