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Abstract
Novel view synthesis from a single image requires
inferring occluded regions of objects and scenes
whilst simultaneously maintaining semantic and
physical consistency with the input. Existing ap-
proaches condition neural radiance fields (NeRF)
on local image features, projecting points to the
input image plane, and aggregating 2D features
to perform volume rendering. However, under
severe occlusion, this projection fails to resolve
uncertainty, resulting in blurry renderings that
lack details. In this work, we propose NerfD-
iff, which addresses this issue by distilling the
knowledge of a 3D-aware conditional diffusion
model (CDM) into NeRF through synthesizing
and refining a set of virtual views at test-time.
We further propose a novel NeRF-guided distil-
lation algorithm that simultaneously generates
3D consistent virtual views from the CDM sam-
ples, and finetunes the NeRF based on the im-
proved virtual views. Our approach significantly
outperforms existing NeRF-based and geometry-
free approaches on challenging datasets includ-
ing ShapeNet, ABO, and Clevr3D. Please see the
supplementary website (https://jiataogu.
me/nerfdiff) for video results.

1. Introduction
Novel view synthesis is a core component of computer
graphics and vision applications, including virtual and aug-
mented reality, immersive photography, and the creation of
digital replicas. Given a few input views of an object or a
scene, one seeks to synthesize new views from other viewing

1Apple 2University of California, San Diego 3Max Planck In-
stitute for Informatics, Germany 4University of Pennsylvania. Cor-
respondence to: Jiatao Gu <jiatao@apple.com>, Alex Trevithick
<atrevithick@ucsd.edu>, Kai-En Lin <k2lin@ucsd.edu>,
Lingjie Liu <lingjie.liu@seas.upenn.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Ground-truth

VisionNeRF (Lin et.al., 2023)

OursInput Image

Figure 1. Renderings from our method in comparison to the SoTA
VisionNeRF (Lin et al., 2023). Note how our method can predict
sharp renderings despite large occlusion, whereas VisionNeRF
cannot handle this uncertainty and shows implausible blurring.

directions. This problem is challenging since novel views
must account for occlusions and unseen regions. This prob-
lem has a long history, going back to early work in image-
based rendering (IBR) (Chen & Williams, 1993; Gortler
et al., 1996; Levoy & Hanrahan, 1996; McMillan & Bishop,
1995). However, IBR methods can only produce subopti-
mal results and are often scene-specific. Recently, neural
radiance fields (NeRF) (Mildenhall et al., 2020) have shown
high-quality novel view synthesis results, but NeRF requires
tens or hundreds of images for overfitting a scene and has
no generalization ability to infer new scenes.

This work focuses on novel view synthesis from a single im-
age. In attempts to do so, generalizable NeRF models (Tre-
vithick & Yang, 2021; Yu et al., 2021; Lin et al., 2023)
have been proposed, whereby the NeRF representation is
conditioned by the projection of 3D points and gathering of
corresponding image features. These approaches produce
good results, especially for cameras near the input. How-
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ever, when the target views are far from the input, these
approaches yield blurry results. The uncertainty of large un-
seen regions in novel views cannot be resolved by projection
to the input image. A distinct line of work addresses the un-
certainty issue in single-image view synthesis by leveraging
2D generative models to predict novel views conditioned on
the input view (Rombach et al., 2021c; Watson et al., 2022).
However, these approaches are only able to synthesize par-
tially 3D-consistent images.

In this paper, we propose NerfDiff, a training-finetuning
framework for synthesizing multi-view consistent and high-
quality images given single-view input. Concretely, at the
training stage, we jointly train a camera-space triplane-
based NeRF together with a 3D-aware conditional diffusion
model (CDM) on a collection of scenes. We initialize the
NeRF representation given the input image at the finetun-
ing stage. Then, we finetune the parameters from a set of
virtual images predicted by the CDM conditioned on the
NeRF-rendered outputs. We found that a naive finetuning
strategy of optimizing the NeRF parameters directly using
the CDM outputs would lead to subpar renderings, as the
CDM outputs tend to be multi-view inconsistent. Therefore,
we propose NeRF-guided distillation, which updates the
NeRF representation and guides the multi-view diffusion
process in an alternating fashion. In this way, the uncertainty
in single-image view synthesis can be resolved by filling
in unseen information from CDM; in the meantime, NeRF
can guide CDM for multi-view consistent diffusion. An
illustration of the proposed pipeline is shown in Figure 2.

We evaluate our approach on three challenging benchmarks.
Our results indicate that the proposed NerfDiff signifi-
cantly outperforms all the existing baselines, achieving high-
quality generation with multi-view consistency. See sup-
plementary materials for video results. We summarize the
main contributions as follows:

• We develop a novel framework – NerfDiff which jointly
learns an image-conditioned NeRF and a CDM, and at
test time finetunes the learned NeRF using a multi-view
consistent diffusion process (§ 4.3,§ 4.4).

• We introduce an efficient image-conditioned NeRF rep-
resentation based on camera-aligned triplanes, which
is the core component enabling efficient rendering and
finetuning from the CDM (§ 4.1).

• We propose a 3D-aware CDM, which integrates vol-
ume rendering into 2D diffusion models, facilitating
generalization to novel views (§ 4.2).

2. Related Work
2.1. Diffusion models for 3D generation

Diffusion-based generative models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song & Ermon, 2019) have re-

cently become state-of-the-art on image synthesis (Dhari-
wal & Nichol, 2021) and have shown remarkable results
in handling highly under-constrained tasks such as text-to-
image (Ramesh et al., 2022; Rombach et al., 2021a; Saharia
et al., 2022) and text-to-video generation (Ho et al., 2022).

More recently, diffusion models have also been proven effec-
tive in 3D generation tasks. On the one hand, many methods
propose to directly apply diffusion in 3D space, including
point clouds (Nichol et al., 2022), voxels (Müller et al.,
2022a) and fields (Zhuang et al., 2023). Some of them learn
diffusion in a latent space derived from 3D space (Bautista
et al., 2022; Shue et al., 2022). However, a clear limitation
of these approaches is that it requires 3D ground truth for
learning the diffusion process, which is hard to acquire in
the real environment. On the other hand, several works
propose to learn 3D representations from diffusion in 2D
space. For example, Li et al. (2022) learns the geometry
based on a 2-view diffusion model; Anciukevicius et al.
(2022) designs an architecture that generates and renders an
intermediate 3D representation for each diffusion step. Con-
currently related to our method, a series of work (Poole et al.,
2022; Wang et al., 2022; Lin et al., 2022; Zhou & Tulsiani,
2022; Deng et al., 2022) have proposed score distillation
that learns 3D representation directly from pre-trained 2D
diffusion models.

2.2. Single-view Novel View Synthesis

Methods beyond Neural Fields Most initial attempts at
single-view 3D reconstruction relied on ground truth train-
ing data to estimate the geometry of objects. These methods
typically mapped an image to its depth or directly to a 3D
shape (Eigen et al., 2014; Saxena et al., 2009; Fan et al.,
2017; Tatarchenko et al., 2017; Tulsiani et al., 2017). Some
methods (Kato et al., 2018; Yan et al., 2016; Loper & Black,
2014) provide 3D reconstruction estimates without ground
truth 3D supervision using differentiable renderers; how-
ever, these methods were limited to reconstructing only the
geometry, not the appearance. Recently, other methods
have allowed the rendering of novel views without regard
for multiview consistency. For example, ENR (Dupont
et al., 2020) utilizes convolutions with a projection to de-
code 3D voxel features to RGB. Targeting more complex
scenes, SynSin (Wiles et al., 2020) makes use of a differen-
tiable point cloud renderer and an inpainter to extrapolate
to unseen areas. InfiniteNature (Liu et al., 2021) utilizes
estimated depth to iteratively inpaint novel views along a
camera trajectory. Other works, such as GeoFree (Rombach
et al., 2021b) and Pixelsynth (Rockwell et al., 2021), utilize
an autoregressive prior to inferring unseen areas of the scene.
Finally, light-field-based methods like Sajjadi et al. (2022)
and Suhail et al. (2022) condition transformers on features
from input images and query rays to directly output colors
or directly invert into a latent space (Sitzmann et al., 2021).
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Figure 2. NerfDiff incorporates a training and finetuning pipeline. We first learn the single-image NeRF and 2D CDM, which are
conditioned on the single-image NeRF renderings (left). We use the learned network parameters at test time to predict an initial NeRF
representation for finetuning. The NeRF-guided denoised images from the frozen CDM then supervise the NeRF in turn (right).

Methods based on Neural Fields Many methods pro-
pose to use neural fields (e.g., neural radiance field (NeRF,
Mildenhall et al., 2020)) for this task. For example, Sin-
NeRF (Xu et al., 2022) renders novel views near the input
image using pseudo geometry. On the other hand, Sitzmann
et al. (2019a); Rematas et al. (2021); Jang & Agapito (2021);
Müller et al. (2022b) incorporate global latent codes and
apply test-time tuning to refine these codes. This process is
very similar to inversion into the latent space of 3D NeRF-
based GANs (Gu et al., 2021; Chan et al., 2021; Bautista
et al., 2022; Cai et al., 2022). Note that it requires (esti-
mated) camera poses at test time, which hinders high-quality
results. Furthermore, the global bottleneck hinders captur-
ing fine details, and due to the optimization of the input view,
such methods also cannot handle occlusion appropriately.
Finally, image-conditioned methods (e.g., pixelNeRF (Yu
et al., 2021) and VisionNeRF (Lin et al., 2023)) directly
utilize local image features to condition NeRF and are the
most relevant to our method. Note that, like pixelNeRF, our
method can perform view synthesis without pose annotation.

3. Background
3.1. Image-conditioned NeRF

Neural radiance fields (NeRF, Mildenhall et al., 2020) have
been proven remarkably effective for novel view synthesis.
NeRF defines an implicit function fθ : (x,d) → (c, σ)
given a spatial location x ∈ R3 and ray direction d ∈ S2,
where θ are the learnable parameters, c and σ are the color
and density, respectively. To render a posed image I , we
march a camera ray through each pixel r(t) = xo + td
(where xo is the camera origin) and calculate its color via
an approximation of the volume rendering integral:

Iθ(r) =

∫ tf

tn

ω(t) · cθ(r(t),d) dt, (1)

where ω(t) = e−
∫ t
tn
σθ(r(s)) dsσθ(r(t)), tn and tf are the

near and far bounds of the ray, respectively. When multi-
view images are available, θ can be easily optimized with
the standard MSE loss:

LNeRF
θ = EI∼data,r∼R(I)∥Iθ(r)− I(r)∥22, (2)

where R(I) is the set of rays that composes I . To cap-
ture high-frequency details, NeRF encodes x and d with
sinusoidal positional functions ξpos(x), ξpos(d). Recently,
studies have shown that encoding functions with local struc-
tures like triplanes (Chan et al., 2021) achieves significantly
faster inference speed without quality loss.

The training of NeRF, i.e., the optimization of Eq. (2), re-
quires tens or hundreds of images along with their cam-
era parameters to provide sufficient multi-view constraints.
However, in reality, such multi-view data is not easily ac-
cessible. Therefore, this work focuses on recovering neural
radiance fields from a single image without knowing its
absolute camera pose. As this problem is under-constrained,
it requires 3D inductive biases learned from a large set of
scenes similar to the target scene. Following this philoso-
phy, pixel-aligned NeRFs (Yu et al., 2021; Lin et al., 2023)
encode 3D information with local 2D image features so that
the learned representations can generalize to unseen scenes
after being trained on a large number of scenes.

PixelNeRF Take PixelNeRF (Yu et al., 2021) as an exam-
ple. Given an input image Is, PixelNeRF first extracts a
feature volume W = eψ(I

s) where eψ is a learnable image
encoder. Then, for any 3D point x ∈ R3 in the input cam-
era space, its corresponding image features are obtained by
projecting x onto the image plane as P(x) ∈ [−1, 1]2 with
known intrinsic matrix, and then bilinearly interpolating the
feature volume as ξW (x) = W (P(x)). The image features
will be combined with the position x and view direction d
to infer the color and density. Next, similar to NeRF, the
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Figure 3. Details of the architecture of the single-image NeRF for NerfDiff. Using a UNet, we first map an input image to a camera-aligned
triplane-based NeRF representation. This triplane efficiently conditions volume rendering from a targeted view, resulting in an initial
rendering. This rendering conditions the diffusion process so the CDM can consistently denoise at that target pose.

color of a camera ray is calculated via volume rendering
(Eq. 1). Such a model is trained over a collection of scenes,
and for each scene, at least two views are needed to form
the training pairs (Is, I) for reconstruction:

LIC
θ,ψ = E(Is,I)∼data,r∼R(I)∥Iθ,W (r)− I(r)∥22, (3)

where Iθ,W is the volume rendered image.

Challenges However, existing single-image NeRF ap-
proaches fail to produce high-fidelity rendering results, espe-
cially when severe occlusions exist. This is because single-
image view synthesis is an under-constrained problem, as
the synthesized occluded regions can exhibit multiple possi-
bilities. Therefore, MSE loss (Eq. (3)) forces single-image
NeRF to regress to mean pixel values across all possible
solutions, yielding inaccurate and blurry predictions.

3.2. Geometry-free View Synthesis

To account for the uncertainty challenge, a distinct line of
research explicitly models view prediction p(I|Is) with 2D
generative models, like Dupont et al. (2020); Rombach et al.
(2021b); Sajjadi et al. (2022) and more recently conditional
diffusion models (3DiM, Watson et al., 2022). Take 3DiM
as an example. It learns a conditional noise predictor ϵϕ that
de-noises Gaussian-noised target images conditioning on
the input view Moreover, the corresponding camera poses.
Such a model can be optimized with a denoising loss:

LDM
ϕ = E(Is,I)∼data,ϵ,t∥ϵϕ (Zt, Is)− ϵ∥22 (4)

where Zt = αtI + σtϵ, ϵ ∼ N (0, 1), α2
t + σ2

t = 1 is the
noised target for I . As shown in Song & Ermon (2019), the
denoiser provides an approximation for the score function
of the distribution ϵϕ(Zt, I

s) ≈ −σt∇Zt
log pϕ(Zt|Is).

At test time, the learned score ϵϕ is applied iteratively and
refines noise images to synthesize novel views.

Challenges Geometry-free models typically suffer from
the “alignment problem” where the input view condition-
ing and target views are not pixel-wise aligned, leading
to inferior generalization when applying standard UNet-
based diffusion models. Watson et al. (2022) attempted to
alleviate this issue by using cross-attention to gather infor-
mation from the input view. However, this requires models
with large capacities, and even with this modification, it
still needs more generalizability for complex scenes and
out-of-distribution cameras. Moreover, since denoising is
conducted in 2D for each view independently rather than in
3D, the synthesized novel views of CDMs in the sampling
stage tend to be multi-view inconsistent.

4. NerfDiff
To achieve the best of both worlds, in this paper, we present a
training-finetuning two-stage approach, dubbed as NerfDiff,
to incorporate the power of diffusion models into image-
conditioned NeRFs for single-image view synthesis. We
illustrate the pipelines of the proposed two stages in Fig-
ure 2. In the following, we first introduce NerfDiff, which
consists of an improved single-image NeRF based on local
triplanes (§ 4.1) and a 3D-aware CDM built on top of the
single-image NeRF outputs (§ 4.2). An overview of the
proposed model is presented in Figure 3. These two compo-
nents are optimized jointly on the same training set (§ 4.3).
At test time, we adopt a second-stage finetuning. Further-
more, to mitigate the inconsistency issue brought by CDM
sampling, we present the NeRF-Guided Distillation (NGD)
algorithm to improve the finetuning performance (§ 4.4).

4.1. Single-image NeRF with Local Triplanes

NerfDiff is built upon an efficient camera-aligned triplane
extracted directly from an input image to condition the
NeRF. As mentioned in § 3.1, most existing single-view
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models (Yu et al., 2021; Lin et al., 2023) query the extracted
features via image plane projection: P : R3 → [−1, 1]2.
One issue with this operation is that the depth information
of a 3D point is not contained in its extracted features; that
is, all points along the same camera ray project to the same
location on the 2D image and thus have the same features.
Therefore, to differentiate the points along the same cam-
era ray, existing methods need to concatenate the image
features with the positional encoding of the global spatial
location ξpos(x) as the representation of point x. However,
this 3D representation is not efficient. Thus it needs a deep
MLP network to fuse the image features with spatial in-
formation for inferring the color and density of x, which
slows down the rendering process. Inspired by Chan et al.
(2021), we propose an efficient 3D representation that re-
shapes the image feature W into a camera-aligned triplane:
{Wxy,Wxz,Wyz}1. Then, each 3D point receives a unique
feature vector by bilinear interpolation within three planes:

ξW (x) = Wxy(x̃xy) +Wxz(x̃xz) +Wyz(x̃yz), (5)

where x̃ =
[
P(x), 2 · xz−tn

tf−tn
− 1

]
∈ [−1, 1]3, and tn, tf are

the near and far bounds of the input camera (Eq. (1)). As
this representation is expressive in the sense that it can allo-
cate depth information in the xz, yz planes, no additional
positional encoding ξpos(x) is needed to augment the repre-
sentation, and the deep MLP network can be replaced with a
shallow MLP network. This not only makes high-resolution
image rendering efficient (§ 4.2) but also enables fast NeRF
finetuning, which will be elaborated in § 4.4. Furthermore,
modeling triplanes in the camera space of the input image
has the following benefits: (1) The triplane can naturally
preserve the local image features, same as pixelNeRF (Yu
et al., 2021); (2) we do not need to assume a global coor-
dinate system, and global camera poses, which is different
from existing triplane-based methods (Chan et al., 2021;
Chen et al., 2022; Bautista et al., 2022).

Note that, for the image encoder, we adopt a UNet architec-
ture (Ronneberger et al., 2015; Nichol & Dhariwal, 2021)
rather than a pre-trained ResNet (He et al., 2016) used in Yu
et al. (2021). Thanks to the U-connection and self-attention
blocks, the output layer feature W = eψ(I) contains both
the local and global information that is essential for predict-
ing occluded views, which works similarly to the feature
extractors in Lin et al. (2023). See Figure 3 for details.

4.2. 3D-aware Conditional Diffusion Models

While single-image NeRF produces multi-view consistent
images, the outputs tend to be blurry due to the uncertainty
issue (§ 3.1). To address the uncertainty issue, we model
a 3D-aware CDM as the second part of NerfDiff, which

1The xy plane is aligned with the input image, while the xz
and yz planes are orthogonal to the xy plane and each other.

Algorithm 1 Finetuning with NeRF-guided distillation.
Input: NeRF (MLP fθ , triplanes W ), CDM ϵϕ, input Is, γ, N,B

1 Initialize Iπ = Iπθ,W , ϵπ = ϵ, π ∈ Π, ϵ ∼ N (0, 1)
for t = tmax . . . tmin do

2 for π ∈ Π do
3 Zπ = αtI

π + σtϵ
π;

ϵπ = ϵϕ(Z
π, Is) + γσt/αt · (Iπ − Iπ

θ,W )
Iπ = (Zπ − σtϵ

π)/αt

4 for n = 1 . . . N do
5 for b = 1 . . . B do
6 Sample a view π ∼ Π and sample a ray r from π;

7 Update θ,W with ∇θ,W
1
B

∑
π,r ∥I

π
θ,W (r)− Iπ(r)∥22

8 return θ,W

resolves uncertainty through a generative process. Specifi-
cally, the CDM is learned to iteratively refine the rendering
of single-image NeRF to match the target views.

Compared to existing geometry-free methods (Watson et al.,
2022), we avoid the “alignment” problem by applying
single-image NeRF to render the target-view images as
the conditioning to CDM rather than using the input-view
image as conditioning. As shown in Figure 3, we adopt the
standard conditional UNet architecture (Nichol & Dhariwal,
2021) where the noisy image is concatenated with the ren-
dered image. Similar to Watson et al. (2022), we can also
employ cross-attention blocks between the CDM UNet and
the encoder UNet to strengthen the conditioning. Note that
the efficiency of the triplane rendering (see Table 3) allows
the NeRF to be trained in tandem with the CDM, which
would take far too long otherwise.

4.3. Training Phase

Given a collection of scenes where each scene has at least
two views, we train end-to-end by combining Equations (3)
and (4): LTrain

θ,ψ,ϕ = λICLIC
θ,ψ + λDMLDM

ϕ to optimize the
single-image NeRF and CDM jointly. Note that the training
of single-image NeRF receives supervision from both the
photometric error LIC

θ,ψ and the CDM denoising loss LDM
ϕ .

See Figure 2 (left) for details.

4.4. Fine-tuning Phase

While the 3D-aware CDM resolves the uncertainty issue
in the single-image NeRF and thus makes the synthesized
images sharper, it compromises multi-view consistency, as
the 2D diffusion process is independently applied to each
novel view. To synthesize multi-view consistent and high-
quality results, we propose a novel finetuning strategy at
test time to distill the CDM’s knowledge.

As shown in Figure 2 (right), given an input view Is of
an unseen scene, we generate a set of “virtual views” with
the trained single-image NeRF and 3D-aware CDM. Then
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ShapeNet Cars ShapeNet Chairs Amazon-Berkeley Objects
PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

LFN (Sitzmann et al., 2021)∗ 22.42 0.89 – – 22.26 0.90 – – – – – –
3DiM (Watson et al., 2022)∗ 21.01 0.57 – 8.99 17.05 0.53 – 6.57 – – – –

SRN (Sitzmann et al., 2019a) 22.25 0.88 0.129 41.21 22.89 0.89 0.104 26.51 – – – –
PixelNeRF (Yu et al., 2021) 23.17 0.89 0.146 59.24 23.72 0.90 0.128 38.49 – – – –
CodeNeRF (Jang & Agapito, 2021) 22.73 0.89 0.128 – 23.39 0.87 0.166 – – – – –
FE-NVS (Guo et al., 2022) 22.83 0.91 0.099 – 23.21 0.92 0.077 – – – – –
VisionNeRF (Lin et al., 2023) 22.88 0.90 0.084 21.31 24.48 0.92 0.077 10.05 28.61 0.93 0.095 33.38

NerfDiff-B (Ours) 23.51 0.92 0.082 18.09 24.79 0.94 0.056 5.65 32.81 0.96 0.057 7.77
w/o NGD 23.81 0.92 0.093 42.37 24.77 0.93 0.068 15.72 32.07 0.95 0.063 18.01

NerfDiff-L (Ours) 23.76 0.92 0.076 15.49 24.95 0.94 0.056 5.34 32.84 0.97 0.042 6.31
w/o NGD 23.95 0.92 0.092 43.26 24.80 0.93 0.070 15.50 32.00 0.96 0.061 17.73

Table 1. Comparisons on ShapeNet Cars & Chairs and ABO datasets across baselines. ∗ indicates geometry-free model. The results of the
baselines except VisionNeRF (Lin et al., 2023) are copied from the official papers. – denotes the results are unavailable.

we finetune the triplane parameters W = eψ(I
s) and MLP

parameters θ (pink box in Fig. 3) with the generated virtual
views. Here, we treat W as learnable parameters. It per-
forms best when virtual views cover the region of interest.

NeRF Guided Distillation A naive optimization strategy
is the same as that in Mildenhall et al. (2020) (Eq. (2)), i.e.,
replacing the targets with the “virtual views” sampled from
the CDM. We found that this naive optimization typically
leads to noisy results with severe floating artifacts, as the
inconsistent CDM predictions cause conflicts in optimizing
the NeRF model. Instead, we propose NeRF Guided Distil-
lation (NGD) that alternates between NeRF distillation and
diffusion sampling. Inspired by classifier guidance (Dhari-
wal & Nichol, 2021), we incorporate 3D consistency into
multi-view diffusion by considering the joint distribution
for each virtual view I:

pϕ(Zt, Iθ,W |Is) = pϕ(Zt|Is) · p(Iθ,W |Zt, Is)

∝ pϕ(Zt|Is) · e−
γ
2 ∥It−Iθ,W ∥2

2 ,
(6)

where It = (Zt − σtϵϕ(Zt, I
s))/αt is the predicted target

image at the intermediate timestep. The second term intro-
duces multi-view constraints from a given NeRF. Therefore,
the goal is to find NeRF parameters (θ,W ) that maximize
Eq. (6) while sampling the most likely virtual views (Zt)
from the joint distribution. In practice, we adopt an iterative-
based updating rule at each diffusion step t. For generating
virtual views with the CDM, we follow the modified diffu-
sion score derived from Eq. (6):

ϵ̃ϕ(Zt, I
s) = ϵϕ(Zt, I

s) + γ
σt
αt

(It − Iθ,W ), (7)

where ϵ̃ϕ will be used in regular DDIM sampling (Song
et al., 2020) 2. Note that for γ = α2

t /σ
2
t (SNR), following

2We consider ∂It/∂Zt ≈ 1/αt to avoid backpropagation
through the UNet, similar to DreamFusion (Poole et al., 2022).

Method PSNR↑ SSIM↑ LPIPS↓ FID↓
VisionNeRF (Lin et al., 2023) 35.94 0.97 0.065 11.18
NerfDiff-B (Ours) 34.81 0.97 0.040 6.76

Table 2. Quantative results on Clevr3D

the modified score Eq. (7) is equivalent to replacing the
denoised images with the NeRF rendering. For distilling
NeRF, we directly maximize the log-likelihood of this joint
distribution w.r.t. the NeRF parameters, which is equivalent
to minimizing the MSE loss between the denoised images
It and the NeRF renderings Iθ,W across all virtual views:

LFT
θ,W = Eπ∼Π,r∼R(Iπ

t )∥Iπθ,W (r)− Iπt (r)∥22, (8)

where Π is a prior distribution on the relative camera poses
to the input and Iπt , I

π
θ,W are the corresponding images at

the relative camera π. Note that to reduce computation,
we sample the rays r with batch size B from all views,
supervise only the corresponding pixels, and finetune for N
steps. The algorithm details are shown in Algorithm 1.

Relationship to SDS Our method shares similarities with
the recently proposed score distillation sampling (SDS,
Poole et al., 2022). Although SDS also distills the dif-
fusion models into 3D, there is a fundamental difference. In
SDS, a random-scaled noise is injected into NeRF’s output
from a random angle. The noised image is then denoised
by a 2D diffusion model to provide supervision. In contrast,
our method initializes a set of virtual views and uses NeRF
to guide the diffusion process of each view (and alternat-
ingly refines NeRF based on this diffusion). As a result,
our pipeline completes the full diffusion trajectory for every
view, following a naturally decreasing noise schedule. In
Appendix E, we show additional comparisons and potential
reasons SDS is practically worse than our method.
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Figure 4. A qualitative comparison of our approach versus baselines in single-image view synthesis on multiple datasets. Compared to 3D
methods like VisionNeRF (Lin et al., 2023) and Ours(w/o NGD), our proposed NerfDiff synthesizes significantly sharper results behind
occlusions. Compared to Ours (CDM), our full model showcases its built-in multi-view consistency. The red arrows display the CDM’s
inability to synthesize consistently across views.

5. Experiments
5.1. Experimental Settings

Datasets We evaluate NerfDiff on three benchmarks –
SRN-ShapeNet (Sitzmann et al., 2019a), Amazon-Berkeley
Objects (ABO, Collins et al., 2022) and Clevr3D (Stelzner
et al., 2021) – for testing novel view synthesis under single-
category, category-agnostic, and multi-object settings, re-
spectively. SRN-ShapeNet includes two categories: Cars
and Chairs. Dataset details are given in Appendix A.

Baselines We choose the pixel-aligned method Vision-
NeRF (Lin et al., 2023) as the main baseline for comparison
considering its state-of-the-art performance in single-image
view synthesis. We additionally evaluate our proposed
single-image NeRF without the fine-tuning stage (denoted as
“Ours (w/o NGD)”), Furthermore, show qualitative results
from the CDM prediction without NeRF guidance (denoted
as “Ours (CDM)”). Besides, we include publicly-available
results for other methods such as SRNs (Sitzmann et al.,
2019a), CodeNeRF (Jang & Agapito, 2021), FE-NVS (Guo
et al., 2022), and geometry-free approaches LFN (Sitzmann
et al., 2021) and 3DiM (Watson et al., 2022).

Evaluation Metrics We evaluate our model and the base-
lines by comparing the generated images and target views
given a single image, and the relative target camera poses
as input. We report four standard metrics: PSNR, SSIM,
LPIPS (Zhang et al., 2018), and FID (Heusel et al., 2017).
PSNR measures the mean-squared error per pixel, while
SSIM measures the structural similarity; LPIPS is a deep
metric that reflects the perceptual similarity between im-
ages. Finally, FID measures the similarity between the
distribution of the rendered and ground truth images of all
test scenes. Note that generative frameworks–due to their
multimodal nature–generally perform poorly with respect to
PSNR, which prioritizes proximity to the mean pixel values.

5.2. Main Results

We show results with two variant sizes (NerfDiff-B:∼ 400M
parameters, NerfDiff-L:∼ 1B parameters). Details of the
implementation specifics are given in Appendix B.

Quantitative evaluation Tables 1 and 2 show the quan-
titative comparisons of our proposed models to the SoTA
geometry-free and single-view NeRF methods on all three
datasets. The quantitative scores of the baselines are copied
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Figure 5. A qualitative comparison on Clevr3d (Stelzner et al., 2021) which consists of images from cameras rotated 120 degrees about the
z-axis. We showcase generalization to OOD cameras in this figure. As can be seen, VisionNeRF gets a degenerate result, while NerfDiff
provides sharper renderings with fewer artifacts.

from the official papers if available. Our proposed NerfDiff
(with and without NGD finetuning) significantly outperform
all baselines in PSNR and SSIM, displaying the models’
ability to synthesize accurate pixel-level details with the
local triplane representations. Additionally, in LPIPS, our
proposed NerfDiff is better than all previous approaches
indicating its ability to create perceptually correct comple-
tions behind occlusions. Finally, about FID, our method
outperforms all single-view NeRF methods, only having
worse scores than 3DiM on ShapeNet-Cars as it is purely
2D. Note that, as mentioned in the original paper (Watson
et al., 2022), 3DiM cannot generalize well to the out-of-
the-distribution testing cameras of ShapetNet-Chairs, thus
performing poorly. In contrast, with the 3D-aware CDM,
our approach can easily handle unseen viewpoints. In addi-
tion, the proposed NGD finetuning, while slightly hurting
PSNR in some cases, significantly improves the sharpness
of the results, thus resulting in better FID and LPIPS scores.
Besides, scaling up further yields higher perceptual quality.

Qualitative evaluation Figure 4 displays the qualitative
comparison of our approach to the main baseline, Vision-
NeRF (Lin et al., 2023), and two ablated models. Our
method produces much more detailed results than the

Method Image encoding Rendering

PixelNeRF (Yu et al., 2021) 0.007s 1.639s
VisionNeRF (Lin et al., 2023) 0.015s 0.678s

NerfDiff-B 0.024s 0.018s
NerfDiff-L 0.031s 0.018s

Table 3. Comparison of encoding and rendering speed on
ShapeNet Cars dataset between models.

ablated model single-image NeRF and VisionNeRF on
ShapeNet and ABO. Due to their reliance on projected im-
age features, these methods cannot handle uncertainty be-
hind occlusion and thus regress mean pixel values, resulting
in blurry renderings. The CDM results are worse aligned
and inconsistent across views, as demonstrated by the red
arrows in Figure 4. Figure 5 shows additional qualitative
results on Clevr3D. Our method again shows consistent and
high-quality renderings. At the same time, VisionNeRF
overfits the camera distribution and fails to synthesize view-
points close to the input (see Appendix B for more details).
The CDM results are again inconsistent with objects appear-
ing and disappearing. Please refer to the supplementary
materials for uncurated and extensive video results.
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Method PSNR↑ SSIM↑ LPIPS↓ FID↓
No Fine-tuning 23.81 0.915 0.093 42.37

Fine-tuning
Direct distillation 23.46 0.911 0.105 35.88
w. SDS (Poole et al., 2022) 20.32 0.882 0.106 28.06
w. NGD (Ours) 23.51 0.917 0.082 18.09

Table 4. Ablation on fine-tuning strategy on ShapeNet-Cars.

# virtual views 5 10 25 50 100 w/o NGD

PSNR↑ 22.86 23.16 23.34 23.51 23.55 23.81
SSIM↑ 0.901 0.913 0.915 0.917 0.916 0.915
LPIPS↓ 0.095 0.085 0.083 0.083 0.087 0.093
FID↓ 27.41 16.04 17.14 18.09 19.13 42.37

Table 5. Comparison on the number of virtual views used for fine-
tuning on ShapeNet Cars.

5.3. Ablation Studies

We provide ablations on the Shapenet-Cars dataset to vali-
date our model’s key design choices, making our ablation
results directly comparable to the ShapeNet Cars results
in Figure 4. In Table 4, we compare our model without
any CDM-based finetuning and various CDM-based fine-
tuning strategies. As seen in the results, finetuning with a
CDM will improve the unconditional FID. However, only
our NGD sampling will yield the state-of-the-art conditional
SSIM and LPIPS. For details of the sampling baselines Di-
rect Distillation and SDS compared to our NGD, please see
Appendix E. Figure 6 also provides a qualitative comparison.
Next, in Table 5, we also provide ablations on the number
of virtual views for finetuning. With too few (e.g. 5) virtual
views, the NeRF overfits the denoised images resulting in
subpar renderings. We find that 50 virtual views provide a
good tradeoff between efficiency and performance.

6. Discussion
Limitations Our proposed method has two main limita-
tions. Firstly, we require at least two views of a scene at
training time. Secondly, our finetuning process is expensive
in time, limiting application in real-time domains. Future
work may address these issues.

Future work For future research, it is also possible to
investigate our proposed NGD to improve the fidelity of
text-to-3D pipelines (Jain et al., 2022; Poole et al., 2022;
Lin et al., 2022). Additionally, more complex datasets such
as the Waymo Open Dataset (Sun et al., 2020) may be
explored, leaving the challenging task of occlusion-handling
to large-scale pretrained 2D diffusion models as we do in
this paper. Also, incorporating our finetuning strategy in the
context of 3D GANs (Gu et al., 2021; Chan et al., 2021) may

improve inversion performance and 3D editing capabilities
as well. Finally, it may also be interesting to figure out how
to properly incorporate priors such as symmetry.

7. Conclusion
We introduced NerfDiff, a generative framework for single-
image view synthesis which distills a 3D-aware CDM to a
triplane-based image-conditioned NeRF. We further intro-
duced NeRF-guided distillation to sample multiple views
from the CDM while simultaneously improving the NeRF
renderings. Our method achieved the state-of-the-art results
on multiple challenging benchmarks.
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Sitzmann, V., Zollhöfer, M., and Wetzstein, G. Scene Rep-
resentation Networks: Continuous 3D-Structure-Aware
Neural Scene Representations. Advances in Neural Infor-
mation Processing Systems, pp. 1119–1130, 2019a.
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Appendix
A. Datasets
ShapeNet ShapeNet-Cars and -Chairs (Sitzmann et al.,
2019a) are standard for few-shot view synthesis bench-
marking. We use the data hosted by pixelNeRF (Yu
et al., 2021), which can be downloaded from GitHub
(https://github.com/sxyu/pixel-nerf). The
chairs dataset consists of 6591 scenes, and the cars dataset
has 3514 scenes, both with a predefined train/val/test split.
Each training scene contains 50 posed images taken from
random points on a sphere. Each testing scene contains 250
posed images taken on an Archimedean spiral along the
sphere. All scenes share intrinsic, and images are rendered
at a resolution of (128, 128). At testing, we choose one pose
as input (index 64) and keep this camera input constant for
all scenes.

Amazon Berkeley Objects (ABO) We also con-
sider the ABO dataset (Collins et al., 2022) from
https://amazon-berkeley-objects.s3.
amazonaws.com/index.html under the title ”ABO
3D Renderings.” We randomly sampled a custom split.
The dataset thus consists of 6743 training scenes, 396
validation scenes, and 794 testing scenes. Each scene
consists of 30 images of an object rendered onto a white
background in a physically-based manner. The objects are
drawn from 64 different object categories, providing an
extensive evaluation of the generalization capabilities of
various models. The images have resolution (256, 256),
and we crop and adjust the intrinsics so that the models are
fed with images of size (128, 128). The cameras are not
uniformly distributed, but all point at the object. For testing,
we use an input camera index of 0.

Clevr3D We consider the Clevr3D dataset provided in
(Stelzner et al., 2021) for multi-object/scene level learn-
ing, which can be downloaded from the github https:
//github.com/stelzner/obsurf. We define a cus-
tom split in which there are 70000 training scenes and 1000
held-out testing scenes. Each scene consists of 3 posed
images at a resolution of (120, 160) with the camera point-
ing at the origin. These images are rendered at 120 degree
rotations about the z-axis with varying distances from the
origin. We select one input image (index 0) at testing and
render the other two views.

B. Implementation Details
B.1. Architecture and Hyperaparameters

For all datasets, we learn NerfDiff based on the U-Net archi-
tecture adopted from ADM (Dhariwal & Nichol, 2021) with
two sets of configurations (-B: base ∼ 400M parameters,

-L: large ∼ 1B parameters). More specifically, we set the
model dimension d = 192 with 2 residual blocks per reso-
lution for the base architecture and d = 256 with 3 residual
blocks per resolution for the large architecture. All other
hyperparameters follow the default setting as ADM.

Note that the image encoder retains the same architecture
and hyperparameters as the CDM outlined above. Similar
to (Watson et al., 2022), we incorporate a cross-attention
module between the CDM and the image encoder after every
attention block to strengthen the conditioning. The last
layer output of the image encoder is reshaped to a triplane.
As a result, the triplane has the same spatial resolution as
the input image, and we set the feature dimension of the
triplane as 48. We implement the NeRF module (pink box
in Fig. 3) using a 2-layer MLP with a hidden size of 64. For
NeRF rendering, we follow Lin et al. (2023) and uniformly
sample 64 points along each ray, with 64 additional points
by importance sampling. As mentioned in § 4.2, we directly
concat the NeRF rendered image with the noised input and
send it to the CDM for denoising.

B.2. Training phase

The CDM is trained with cosine noise schedule αt =
cos(0.5πt) based on velocity prediction (Salimans & Ho,
2022). We set λIC = λDM = 1, which means that we add
the two losses of the two modules without re-weighting. All
models are trained using AdamW (Loshchilov & Hutter,
2017) with a learning rate of 2e−5 and an EMA decaying
rate of 0.9999. We train all models with a batch size of 32
images for 500K iterations on 8 A100 GPUs. Training takes
3− 4 days to finish for base models.

Note that for the Clevr3D dataset (Stelzner et al., 2021), we
noticed that the models tended to overfit to the input view
easily, creating a plane of density orthogonal to the camera
axis and thus clearly degenerate geometry. To ameliorate
this, we trained input view reconstruction with slightly noisy
camera locations (variance 0.3). We found that this fixed the
issue for our method, but it still failed for VisionNeRF (Lin
et al., 2023), even after increasing the noise.

B.3. Finetuning phase

When finetuning with NGD, we define K virtual views rela-
tive to the input image by sampling near the test trajectory.
By default, we set K = 50 for shapeNet and Clevr3D and
30 for ABO. See Appendix C for specific K per dataset
and how to obtain these poses. For the multiview diffusion
process, we run 64 DDIM (Song et al., 2020) steps with the
CDM for each view, respectively. At every diffusion step,
we update the NeRF parameters N = 64 steps, with a batch
size of B = 4096 rays. We use Adam optimizer (Kingma
& Ba, 2015) set the learning rates for NeRF MLPs 1e− 4
and the triplane features 5e− 2, respectively. Our empirical
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results indicate that a large learning rate on a triplane can
boost the finetuning efficiency.

C. Prior Relative Camera Distribution Π

In order to approximate the expectation in Eq. (8), we re-
quire a sampling of Π, i.e., a sampling of K ’important’
or ’relevant’ cameras, which adequately capture the region
of interest. For each of the three datasets, we rely on the
relative (to the input) camera poses of the testing set for this.
The cameras are very different between datasets, requiring
a slightly different procedure.

ShapeNet Because the Shapenet testing trajectory is an
Archimedean spiral around the object consisting of 251
views, we simply uniformly sample every 5th camera yield-
ing 50 cameras total from which we can approximate Π,
thus yielding K = 50 cameras to approximate Eq. (8).

Amazon Berkeley Objects (ABO) Because each scene
contains only 30 cameras, we use all the relative poses of
the testing set (K = 30) to approximate Eq. (8).

Clevr3D As Clevr3D contains only three cameras per scene,
creating a good sample of Π is slightly more difficult. As we
know, all of the Clevr3D cameras are pointing at the origin;
we can calculate the relative position of the world origin in
camera coordinates by intersecting two of the optical axes
of the relative cameras. This will serve as the look-at-point
for our virtual cameras. Note that the Clevr cameras are
additionally all of a similar height relative to the ground
plane of the scene. Thus, we can approximate the up di-
rection in camera coordinates by taking the normal plane
containing all three cameras. In order to resolve uncertainty
about whether this is the up direction or its negation, we
check that the cosine similarity with the camera directions
is negative, as they lie in the upper halfspace in world coor-
dinates. Given a camera center in camera coordinates, we
can thus create a camera pose. To define these centers, we
uniformly sample a circle in the plane containing all three
cameras, which approximately goes through each one (the
radius is the mean distance from the approximate world ori-
gin). We choose K = 50 camera centers and create camera
poses with the estimated world origin and up direction for
the finetuning process. We use these to approximate Eq. (8).

D. Details of Baseline Methods
The baselines are shown in Table. 1, we gathered the error
metrics of LFN (Sitzmann et al., 2021), 3DiM (Watson et al.,
2022) on the ShapeNet dataset from their respective papers.
As for SRN (Sitzmann et al., 2019b), PixelNeRF (Yu et al.,
2021), CodeNeRF (Jang & Agapito, 2021), FE-NVS (Guo
et al., 2022), and VisionNeRF (Lin et al., 2023), we obtain

Method PSNR↑ SSIM↑ LPIPS↓ FID↓
No CDM Fine-tuning 23.81 0.915 0.093 42.37

CDM architecture
Concat 20.72 0.874 0.135 56.27
Cross-attention 21.13 0.885 0.123 35.49
3D-aware (Ours) 23.51 0.917 0.082 18.09

Table 6. Experiments of showing importance for 3D-aware CDM
on ShapeNet-Cars.

the ShapeNet results from the VisionNeRF paper and con-
duct FID calculation using the renderings provided by the
authors of PixelNeRF and VisionNeRF. Moreover, to com-
pare against VisionNeRF on the ABO and Clevr3D datasets,
we used its publicly available source code and modified the
dataloader accordingly. For training, we use the same hyper-
parameter setup denoted by the VisionNeRF paper. Namely,
we set the image feature channels to 512. The learning rate
of the feature extractor is set to 1e−5 and MLP to 1e−4.
We keep the same learning rate schedule and apply warm-
up and decay, as shown in the original paper. We trained
VisionNeRF for 500k steps on the ABO dataset and 250k
steps on the Clevr3D dataset since we found it easier to
overfit the Clevr3D scenes. Moreover, we also adjusted the
batch and ray bundle sizes to fit into the GPU memory.

E. Additional Comparison Details
E.1. Importance of 3D-aware Diffusion

In Table 6, we showed the comparison with different CDM
architectures. “Concat” means directly concat the input
view with the noisy image, while “Cross-attention” adopts a
similar conditioning as X-UNet (Watson et al., 2022). Both
did not involve the volume rendering in the encoding time,
which can be seen as 3D-unaware. The results showed that,
when applying a 3D-aware diffusion model, we can con-
sistently achieve better results and generate more coherent
views based on the input.

E.2. Fine-tuning Strategies

In Table 4 and Figure 6, we showed results for multiple
sampling methods for finetuning NeRF. Here we give the
details of these methods.

v.s. Direct distillation For Direct distillation, we directly
sample virtual views from the CDM given the initial pixel-
NeRF renderings and use these to finetune the NeRF directly
with a standard L2 loss. Note that these renderings are un-
likely to be multiview consistent as the denoising process
takes place independently for each. Thus, the resultant ren-
derings are inconsistent and incongruous with the input,
which is also reflected in the learned NeRF.
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Figure 6. Qualitative examples of ablation studies on fine-tuning strategy. FT refers to finetuning. The red arrow shows floating and noisy
artifacts due to learning from inconsistent CDM predictions.

v.s. Score distillation sampling (SDS) We also compared
SDS (Poole et al., 2022), where virtual views are continually
predicted by adding noise directly to renderings and taking
an L2 loss between the NeRF rendering and the resultant
denoised images. Here we note three significant differences
with SDS, which may result in its poorer performance:

1. Inconsistent noise schedule. In our method, we only
sample once per view, continually decreasing the noise
with greater NeRF guidance. In contrast, SDS will pro-
vide inconsistent gradient updates as random amounts
of noise are added to the NeRF renderings and then de-
noised, yielding blurry results which regress the mean
of the supervision.

2. The learned score function of the CDM may be in-
adequate. That is to say, the modes of the PDF may
not reflect sharp images of the dataset, causing poorer
results. Our method uses NeRF to guide the process,
which avoids directly seeking a mode.

3. Out-of-distribution inputs. At low noise levels, render-
ing a NeRF with additional noise will not resemble a
real image with a similar amount of noise. Thus, the
inputs to the denoiser may be out-of-distribution. In
contrast, our method uses the CDM to refine the NeRF
during sampling, keeping the samples close to the data
manifold.

v.s. Stochastic Conditioning As shown in the main paper,
naively finetuning the NeRF parameters from the CDM’s
generation typically leads to noisy results with severe float-
ing artifacts. It is the inconsistent CDM predictions that
cause conflicts in learning NeRF. Targeting on this, Wat-
son et al. (2022) proposed “stochastic conditioning” – an
autoregressive approach for synthesizing virtual views in
a sequence, where for generating a novel view, each diffu-
sion step stochastically conditions on previously generated
views. Although this model’s dependencies are across the
virtual views, the generated images are not guaranteed to
be multiview consistent. Moreover, our initial exploration
showed that the imperfect autoregressive prediction accu-
mulated errors easily, resulting in degenerated results for
long sequences without stable geometry.

F. Additional Qualitative Results
Finally, we provide additional qualitative results for our
base single-image models compared with VisionNeRF (Lin
et al., 2023) on ShapeNet Cars (Figure 7), Chairs (Figure 8)
and ABO dataset (Figures 9 and 10). Images are rendered
at a specific viewpoint given a single image input. Please
refer to supplementary materials for more video results.
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Ours (w/ o NGD)VisionNeRF Ours Ground TruthInput View

Figure 7. Additional examples of single-image view synthesis on ShapeNet Cars.
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Ours (w/ o NGD)VisionNeRF Ours Ground TruthInput View

Figure 8. Additional examples of single-image view synthesis on ShapeNet Chairs.
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Ours (w/ o NGD)VisionNeRF Ours Ground TruthInput View

Figure 9. Additional examples of single-image view synthesis on ABO dataset.
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Ours (w/ o NGD)VisionNeRF Ours Ground TruthInput View

Figure 10. Additional examples of single-image view synthesis on ABO dataset.

19


